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Abstract system that produces uninflected output. Their ap-

L : proach is successfully applied to English-Arabic and
Languages with rich inflectional morphology . .
pose a difficult challenge for statistical ma- English-Russian systems by Toutanova et al. (2008).
chine translation. To address the problem of Another promising line of research involves the
morphologically inconsistent output, we add direct integration of linguistic information into SMT
unification-based constraints to the target-side  models. Koehn and Hoang (2007) generalise the
of a string-to-tree model. By integrating con-  ppyrase-hased model's representation of the word
straint evaluation into the decoding Process, ¢, 4 string to a vector, allowing additional features
implausible hypotheses can be penalised or
fitered out during search. We use a sim- s_uch as .part-of-speech and morphology to be asso-
ple heuristic process to extract agreement con- ~ ciated with, or even to replace, surface forms dur-

straints for German and test our approach on  ing search. Luong et al. (2010) decompose words

an English-German system trained on WMT into morphemes and use this extended represen-
data, achieving a small improvement in trans-  tation throughout the training, tuning, and testing
lation accuracy as measured by BLEU. pipeline.

Departing further from traditional SMT mod-
els, the transfer-based systems of Riezler and
Historically, most work in statistical machine trans-Maxwell (2006), Bojar and Hagi (2008), and Gra-
lation (SMT) has focused on translation into Enham et al. (2009) employ rich feature structure
glish. Languages with richer inflectional mor-representations for linguistic attributes, but have
phologies pose additional challenges for translatiopo far been limited by their dependence on non-
and conventional SMT approaches tend to performtOChaStiC parsers with limited coverage. The Stat-
poorly when either source or target language has ricRFER transfer-based framework (Lavie, 2008) is
morphology (Koehn, 2005). neutral with regard to the rule acquisition method

For complex source inflection, a successful apand the author describes a manually developed
proach has been to cluster inflectional variants intblebrew-English transfer grammar, which includes a
equivalence classes. This removes information thamall number of constraints between agreement fea-
is redundant for translation and can be performed ddres. In Hanneman et al. (2009) the framework is
a preprocessing step for input to a conventional sutsed with a large automatically-extracted grammar,
face form based translation model (NieRen and Neffyough this does not use feature constraints.

2001; Goldwater and McClosky, 2005; Talbot and In this paper we propose a model that retains the
Osborne, 2006). use of surface forms during decoding whilst also

For complex target inflection, checking linguistic constraints defined over asso-
Minkov et al. (2007) investigate how post-ciated feature structures. Specifically, we extend
processing can be used to generate inflection foraastring-to-tree model by adding unification-based

1 Introduction
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constraints to the target-side of the synchronous An equivalent representation, and the one we use
grammar. We suggest that such a constraint systefor implementation, is that of a rooted, labelled, di-
can: rected acyclic graph.

A value belonging to a complex feature structure
can be specified using a path notation that describes
The chain of features in enclosing feature structures.

In the examples above, the patth\GR GENDER)

e improve search by allowing the early elimina-specifies the atomic valdfeem

tion of morphologically-inconsistent hypothe- Informally, unificationis a merging operation that
ses given two feature structures, yields the minimal fea-

ture structure containing all information from both
To evaluate the approach, we develop a system fgq, 5. A unification failure results if the input
English-German with constraints to enforce intrateatyre structures have mutually-conflicting values.
NP/PP and subject-verb agreement, and with a siffe subject of unification, both in the context of nat-
ple probabilistic model for NP case. ural language processing and more generally, is sur-
veyed in Knight (1989). In this work, we use de-
structive graph-based unification, which results in
There is an extensive literature on constraint-basable source feature structures sharing values upon
approaches to grammar, employing a rich varietynification.
of terminology and linguistic devices. We use only For example, the result of unifying the agreement
a few of the core ideas, which we briefly describe&values for the feature structures above would be:

e improve the model by enforcing inflectional
consistency in combinations unseen by the la
guage model

2 Preiminaries

in this section. We borrow the terminology and die —  [pos ART

notation of PATR-II (Shieber, 1984), a minimal CASE  acc

constraint-based formalism that extends context-free aor [ |PECH - veak
GENDER fem

grammar.

Central to our model are the conceptsfeéture NUMBER 59

structuresandunification Feature structures are of
two kinds:

Katze — [ros NN
AGR

The index boxes are used to indicate that a value is
e atomicfeature structures are untyped, indivisi-shared.

ble values, such as¥P, nom orsg
_ -3 Grammar
e complexfeature structures are partial functions

mapping features to values, the values then|D this section we describe the synchronous gram-
selves being feature structures. mar used in our string-to-tree model. Rule extraction

is similar to the syntax-augmented model of Zoll-
Complex feature structures are conventionally writmann and Venugopal (2006), though we do not use
ten as attribute-value matrices. For example, the fokxtended categories in this work. We then describe

lowing might represent lexical entries for the Gerhow we extend the grammar with target-side con-
man definite article,die, and the German noun, straints.

Katze meaningcat
3.1 Synchronous Grammar

die —  [ros ART
[case  acc | Our translation model is based on a synchronous
acr |PECL  weak context-free grammar (SCFG) learned from a par-

GENDER fem

allel corpus. Rule extraction follows the hierarchi-
[NUMBER  sg

- : cal phrase-based algorithm of Chiang (2005; 2007).
Katze — [ros NN ) . o

fonse ace Source non-terminals are given the undistinguished
AGR | GENDER fem label X, whereas the target non-terminals are given

| NUMBER  sg part-of-speech and constituent labels obtained from
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a parse of the target-side of the parallel corpus.

Rules in which the target span is not covered by a NP-SB — die AP Katze
parse tree constituent are discarded. ( NP-SB acr) = ( die acr)
Compared with the hierarchical phrase-based NP-SB aGr) = ( AP AGR)
model, the restriction to constituent target phrases NP-SB acr) = ( Katzeacr)
) =C

linguistic labels reduces the problem of spurious am dieros) = ART
biguity. We therefore relax Chiang’s (2007) rule fil- Katzeros) = NN
tering in the following ways:

(
(
reduces the total grammar size and the addition of ( NP-SB AGR CASE
(
(

0.990,c = NOM
1. Upto seven source-side terminal / non-terminal 0.005, ¢ = DAT
P(C=c¢c) =
elements are allowed. 0.004, ¢ = GEN
0.001,c = ACC
2. Rules with scope greater than three are filtered
out (Hopkins and Langmead, 2010).
3. Consecutive source non-terminals are permit- Figure 1: Example target constraint rule
ted.
4. Single-word lexical phrases are allowed for hiunification is attempted between all combinations. If
erarchical subphrase subtraction. no combination can be successfully unified then the
_ constraint fails.
3.2 Constraint Grammar Ultimately, all feature structures originate in the

We extend the synchronous grammar by adding cofexicon which maps a surface form word to a set of
straints to the target-side. A constraint is an identitgero or more complex feature structures.

between either:
3.3 Some Constraintsfor German

l) feature structure values belonging to two ruIeWe now describe the German constraints that we use

elements, in this paper. Whilst the constraint model described

ii) a feature structure value belonging to a rule el2bove is language-independent, the actual form of
ement and a constant value, or the constraints will largely be language- and corpus-

specific.

iii) afeature structure value belonging to a rule ele- |n this work, the linguistic annotation is obtained
ment and a random variable with an associateflom a statistical parser and a morphological anal-
probability function yser. We use the BitPar parser (Schmid, 2004)

trained on the TIGER treebank (Brants et al., 2002)

and the Morphisto morphological analyser (Zielin-

ski and Simon, 2009). We find that we can extract
useful constraints for German based on a minimal
might have the target constraint rule shown in Figset of simple manually-developed heuristics.

ure 1.

The first three constraints ensure that amyhas
agreement values consistent with the lexical items German determiners and adjectives are inflected
dieandKatze The next provides a probability basedto agree in gender and number with the nouns that
on the resulting case value. The final two are used they modify. As in English, a distinction is made be-
disambiguate between possible parts-of-speech. tween singular and plural number, with most nouns

Constraints are evaluated by attempting to uniffpaving separate forms for each. Grammatical gender
the specified feature structures. A rule element mdyas three values: masculine, feminine, and neuter.
have more than one associated feature structure, sCA noun phrase’s case is usually determined by its

For example, the following synchronous rule:

NP-SB — the X cat| die Ar; Katze

Base NP/PP Agreement
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structures of the words and rejecting relations
ADJA, ART, NN, PDAT, for which this fails
{ PIAT,PPOSAT,PWAT } {p, PP}

{APPR, APPRART} — {PP} Having annotated the training data trees with
{ADJA} — {AP,CAP} agreement relations, rule extraction is extended to
{AP} — {CAP} accept annotated trees and to generate constraint

{AP,CAP} — {NP,PP} rules of the form shown in Figure 1. Constraints are

produced where any two target-side rule elements

belong to a common agreement relation. The result-
Figure 2: Propagation rules used to captrérPagree- ing constraints are grouped by relation into distinct
ment relations constraint sets

role in the clause. For example, nominative caseubject-Verb Agreement

usually indicates the subject of a verb. The case of We add limited subject-verb agreement in a sim-
a prepositional phrase is usually determined by thigar manner. The additional propagation rules are
choice of preposition. given in Figure 4. To determine the subject we rely

We model these grammatical properties by i) asspon the TIGER treebank’s grammatical function
sociating, via the lexicon, a set of possible agredabels, which the parser affixes to constituent labels.

ment values with each preposition, determiner, adrhese are otherwise ignored in all propagation rules.
jective, and noun, and ii) enforciragreement rela-

tions through pairwise identities between rule eleProbabilistic Constraintsfor NP Case

ments (as in the example in Figure 1). We make further use of the treebank’s grammat-
For constraint extraction, we first group parse tregal function labels in order to define probabilistic
nodes into agreement relations. We use the parggnstraints for noun phrase case. Many of the func-
tree labels to determine whether a parent sharﬂgn labels are Strong|y biased towards a particu-
agreement information with a child. Figure 2 showsar case fip-Top uses nominative case in 91.5% of
the rules that we used in experiments. These shoulghambiguous occurrences, for example). We esti-
be read as saying that if a child node has a label thatate probabilities by evaluating NP agreement rela-
appears on the left-hand side of a ruleand its par- tions in the training data and counting case-label co-
ent node has a label that appears on the right-hagécurrences. Ambiguous case values are ignored.
side ofr then the parent and child share agreementhe training data uses only 23 distinct NP labels,
information. most of which occur very frequently, so no smooth-

These rules are applied bottom-up from theng is applied. Table 1 shows the 10 most common
preterminal nodes of the training data trees. Agregabels and their case frequencies.

ment relations are merged if they share a common

parent. Finally, relations are extended to includa M odel

child words. Figure 3 shows a sentence pair in which

the target-side tree has been annotated to show t#§ is standard, we frame the decoding problem as a
NP agreement relations found according to the rulggarch for the most probable target language tree

of Figure 2. given a source language string
Of course, this process is not perfect and finds
many spurious relations. We guard against the most t = arg max, p(t|s)

frequent errors by:
o _ The functionp(t|s) is modelled by a log-linear
i) Filtering out relations based on label-patterngm of weighted feature functions:
found during error analysis (for example, rela-

tions containing multipleiN nodes)

1 n
tls) = = )\Zhl S,t
ii) Attempting to unify the agreement feature pltls) Z; (5,2)
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Figure 3: Sentence pair from training data. The two NP agesgnelations used for constraint extraction are indicated
by the rectangular and elliptical node borders.

{VAFIN, VMFIN,VVFIN} — {S}
{NP-SB} — {S}

4.1 String-to-Tree Features

Our feature functions include thegram language
model probability oft’s yield, a count of the words

in t's yield, and various scores for the synchronous
derivation. We score grammar rules according to the
following functions:

Figure 4: Propagation rules used to capture subject-verb ¢ p(RHS¢|RHS;, LHS), the noisy-channel trans-
agreement relations

Label | Nom Acc Gen Dat Freq
AG 0.1 0.0 999 0.0 308156
CJ 109 10.3 324 46.4 77198
OA 16 915 0.7 6.2 67686
SB 99.0 01 04 0.5 60245
DA 1.9 0.2 1.4 96.5 41624
PD 98.2 0.2 14 0.3 19736
APP 394 73 8.7 44. 7739
MO 186 173 569 7. 7591
PNC | 30.6 0.0 474 22. 4888
oG 01 00 979 2. 2060

lation probability.

e p(RHS;|RHS,, LHS), the direct translation
probability, which we further condition on the
root label of the target tree fragment.

¢ pie: (RHS;|RHS;) andp;., (RHSs|RHS;), the
direct and indirect lexical weights (Koehn et al.,
2003).

® puefs(FRAGy), the monolingual PCFG proba-
bility of the tree fragment from which the rule
was extracted. This is defined §§" , p(r;),
wherer; ...r, are the constituent CFG rules
of the fragment. The PCFG parameters are esti-
mated from the parse of the target-side training
data. All lexical rules are given the probabil-
ity 1. This is similar to they, feature used in

Table 1: The 10 most fregently occurring NP labels with ~ Marcu et al. (2006) and is intended to encour-
their case frequencies (shown as percentages)
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4.2 Constraint Model Features Cube pruning begins with these cubes being placed

In addition to the string-to-tree features, we add w0 & priority queue ordered according to the model

features related to constraint evaluation: score of their comner hypotheses.
With the introduction of the constraint model, the

e cxp(f), wheref is the derivation’s constraint cube pruning algorithm must also allow for con-
set failure count. This serves as a penalty feastraint failure. For the hard constraint model, we
ture in a soft constraint variant of the model:make the following modifications:
for each constraint set in which a unification
failure occurs, this count is increased and an 1. Since the corner hypothesis might fail the con-
empty feature structure is produced, permitting ~ straint check, rule cube ordering is based on

decoding to continue. the score of the nearest hypothesis to the corner
o that satisifies its constraints (if any exists). This
® [, Pease(cn), the product of the derivation’s hypothesis is found by exploring neighbours in

case model probabilities. Where the case value  order of estimated score (that is, without calcu-
is ambiguous we take the highest possible prob-  |ating the full language model score) starting at
ability. the corner.

5 Decoding 2. When a hypothesis is popped from a cube and
its neighbours created, constraint-failing neigh-

Wi he M Koeh l., 2007 .
@ use the Moses (Koehn et al, 2007) decoder, a bours are added to a ‘bad neighbours’ queue.

bottom-up synchronous parser that implements the
CYK+ algorithm (Chappelier and Rajman, 1998) 3
with cube pruning (Chiang, 2007).

The constraint model requires some changes to
decoding, which we briefly describe here:

If a cube cannot produce a new hypothesis be-
cause all of the neighbours fail constraints, it
starts exploring neighbours of the bad neigh-
bours.

51 Hypothess State We place an arbitrary limit of 10 on the number

Bottom-up constraint evaluation requires a featurgf consecutive constraint-failing hypotheses to con-
structure set for every rule element that participatesider before discarding the cube.

in a constraint. For lexical rule elements these are \ye anticipate that decoding for a highly in-

obtained from the lexicon. For non-lexical rule ele‘ﬂected target |anguage will result in a less mono-

ments these are obtained from predecessor hypothgnic search space due to the increased formation of
ses. After constraint evaluation, each hypothesigfiectionally-inconsistent combinations.

therefore stores the resulting, possibly empty, set of
feature structures corresponding to its root rule el Experiments
ment. ,

Hypothesis recombination must take these featufel Baseline Setup
structure states into account. We take the simple¥¥e trained a baseline system using the English-
approach of requiring sets to be equal for recombiserman Europarl and News Commentary data from
nation. the ACL 2010 Joint Fifth Workshop on Statistical

) Machine Translation and Metrics MATR

52 CubePruning The German-side of the parallel corpus was
At each chart cell, the decoder determines whicparsed using the BitPaparser. Where a parse failed
rules can be applied to the span and which conthe pair was discarded, leaving a total of 1,516,961
binations of subspans they can cover (the applicaentence pairs. These were aligned using GIZA++
tion contegts).. Am-dimensional cube is cregted form statnt. or g/ wit 10/
each application context of a rule, Whef'eL 1is t_he translation-task. htni
rank of the rule. Each cube has one dimension per 2nt ¢ p: // waw. i ms. uni - stuttgart. de/tcl/
subspan and one for target-side translation optionSOFTWARE/ Bi t Par . ht
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and SCFG rules were extracted as described in sglie-A¢ der o regelnaigen) 4oIa taglichen) (i Handel))
tion 3.1 USing the Moses toolkit. The I’esulting gramgpp-mo nach Angaben dempJa ortlichen) (N Index))
mar contained just under 140 million synchronous , o
rules. (NP-cJdie (ADJA amerikanischen)\NN Blutbad))

We used all of the available monolingual Ger{PrMnR fir die (ApJA asiatischen)NN Handel))
man data to train three 5-gram language models (00& (yp-ss der (un Vorsprung) desin razor))
each for the Europarl, News Commentary, and News  (vvrin kampfen)
data sets). These were interpolated using weights ()CN“OA: (NN MP3-Player) kon und) (\n Mobiltelefone))
optimised against the development set and the re-
sulting language model was used in experiment§igure 5: Tree fragments containing the first five con-
We used the SRILM toolkit (Stolcke, 2002) with straint failures found on the baseline 1-best output
Kneser-Ney smoothing (Chen and Goodman, 1998).

The baseline system'’s feature weights were tuned
on thenews-test2008ev set (2,051 sentence pairskt al., 2002) with a single reference.

using minimum error rate training (Och, 2003). Table 2 shows the results for the three constrained

6.2 Constraint Model Setup test tests. The p—vqlues were calculated using paired
_ bootstrap resampling (Koehn, 2004). We suspect

A feature structure lexicon was generated by runnat the substantially lower baseline scores on the

ning the Morphistd morphological analyser over pewstest2011est set are largely due to recency ef-

the training vocabulary and then extracting featurgscts (since we use 2010 data for training).

values from the output. S
. : To gauge the frequency of agreement violations

The constraint rules were extracted using the . .
Ih the baseline output we matched constraint rules

agreemen_t rele_ltlon |d_ent|f|cat|on and filtering methfo the 1-best baseline derivations and performed a
ods described in section 3.3.

bottom-up evaluation for each target-side tree. For

, We tested two constraint '.“Ode' systems, one u ne three constrained test setgwstest20Q9new-
ing the rules as hard constraints and the other as sQ 1ést2010andnewstest201,]we found that 15.5%
constraints. The former discarded all hypothes o

4.4%, and 15.6% of sentences, respectively, con-

that failed constraints and used the modified cubg. : . .
tained one or more constraint failures. Figure 5

pruning §earch algorithm. T_he latter allowed “ONshows the tree fragments for the first five failures

straint failure but used the failure count feature as # :
und innewstest20Q9

penalty. Both systems used the NP case probab|E _ _ _

ity feature. The weights for these two features were [N order to explore the interaction of the constraint

optimised using MERT (with all baseline weightsModel with search we then repeated the experiments

fixed). The systems were otherwise identical to thfPr varying cube pruning pop limits. Figure 6 shows
baseline. how the mean test set BLEU score varies against pop

limit. Except at very low pop limits, the soft con-
6.3 Evaluation straint system outperforms the hard constraint sys-

The systems were evaluated against constrained v&?m' ngether with the high p-values for the hfard
constraint system, this suggests that, despite filter-

sions of thenewstest20Q0ewstest2010andnew- . ) ) . o
g, our simple constraint extraction heuristics may

stest201ltest sets. We used a maximum rule spag‘ troduc anificant b ; .
of 20 tokens for decoding. In order that the inpu € Introducing significant numboers o spurious con-

straints. Alternatively, enforcing the hard constraint

could be covered without the use of glue rules (ex- -
ay eliminate too many hypotheses that cannot be

cept for unknown words), we used sentences of tisifactorily substituted traint-satisfyi |
or fewer tokens, giving test sets of 1,025, 1,054, angfstactortly substituted — constraint-sa isfying al-

1,317 sentences, respectively. We evaluated trans{g-maté\./tis frequetnhtly dlger n rtno_ret thag JTJ.St ug‘llect-
tion quality using case-sensitiveLBu-4 (Papineni 'on. Either way, Ine SOt constraint modet s ab'e o
overcome some of these deficiencies by permitting

ht t p: / / code. googl e. con p/ nor phi st o/ some constraint failures in the 1-best output.
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Experiment BLEU p-value| BLEU p-value| BLEU p-value
baseline 1534 - 1565 - 1290 -

hard constraint 15.49 0.164 | 15.95 0.065 | 12.87 0.318
soft constraint| 15.67 0.006 | 1598 0.009 | 13.11 0.053

newstestZOOQ—ZT newstest2010—2(f newstest2011-20

Table 2: BLEU scores and p-values for the three test sets
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