
Proceedings of the 6th Workshop on Statistical Machine Translation, pages 187–197,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

KenLM: Faster and Smaller Language Model Queries

Kenneth Heafield
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213 USA
heafield@cs.cmu.edu

Abstract

We present KenLM, a library that imple-
ments two data structures for efficient lan-
guage model queries, reducing both time and
memory costs. The PROBING data structure
uses linear probing hash tables and is de-
signed for speed. Compared with the widely-
used SRILM, our PROBING model is 2.4
times as fast while using 57% of the mem-
ory. The TRIE data structure is a trie with
bit-level packing, sorted records, interpola-
tion search, and optional quantization aimed
at lower memory consumption. TRIE simul-
taneously uses less memory than the small-
est lossless baseline and less CPU than the
fastest baseline. Our code is open-source1,
thread-safe, and integrated into the Moses,
cdec, and Joshua translation systems. This
paper describes the several performance tech-
niques used and presents benchmarks against
alternative implementations.

1 Introduction

Language models are widely applied in natural lan-
guage processing, and applications such as machine
translation make very frequent queries. This pa-
per presents methods to query N -gram language
models, minimizing time and space costs. Queries
take the form p(wn|wn−1

1) where wn
1 is an n-gram.

Backoff-smoothed models estimate this probability
based on the observed entry with longest matching

1http://kheafield.com/code/kenlm

history wn
f , returning

p(wn|wn−1
1) = p(wn|wn−1

f)
f−1∏
i=1

b(wn−1
i). (1)

where the probability p(wn|wn−1
f) and backoff

penalties b(wn−1
i) are given by an already-estimated

model. The problem is to store these two values for a
large and sparse set of n-grams in a way that makes
queries efficient.

Many packages perform language model queries.
Throughout this paper we compare with several
packages:

SRILM 1.5.12 (Stolcke, 2002) is a popular toolkit
based on tries used in several decoders.

IRSTLM 5.60.02 (Federico et al., 2008) is a sorted
trie implementation designed for lower mem-
ory consumption.

MITLM 0.4 (Hsu and Glass, 2008) is mostly de-
signed for accurate model estimation, but can
also compute perplexity.

RandLM 0.2 (Talbot and Osborne, 2007) stores
large-scale models in less memory using ran-
domized data structures.

BerkeleyLM revision 152 (Pauls and Klein, 2011)
implements tries based on hash tables and
sorted arrays in Java with lossy quantization.

Sheffield Guthrie and Hepple (2010) explore sev-
eral randomized compression techniques, but
did not release code.

TPT Germann et al. (2009) describe tries with bet-
ter locality properties, but did not release code.

These packages are further described in Section 3.
We substantially outperform all of them on query

187

speed and offer lower memory consumption than
lossless alternatives. Performance improvements
transfer to the Moses (Koehn et al., 2007), cdec
(Dyer et al., 2010), and Joshua (Li et al., 2009)
translation systems where our code has been inte-
grated. Our open-source (LGPL) implementation is
also available for download as a standalone package
with minimal (POSIX and g++) dependencies.

2 Data Structures

We implement two data structures: PROBING, de-
signed for speed, and TRIE, optimized for mem-
ory. The set of n-grams appearing in a model is
sparse, and we want to efficiently find their associ-
ated probabilities and backoff penalties. An impor-
tant subproblem of language model storage is there-
fore sparse mapping: storing values for sparse keys
using little memory then retrieving values given keys
using little time. We use two common techniques,
hash tables and sorted arrays, describing each before
the model that uses the technique.

2.1 Hash Tables and PROBING

Hash tables are a common sparse mapping technique
used by SRILM’s default and BerkeleyLM’s hashed
variant. Keys to the table are hashed, using for ex-
ample Austin Appleby’s MurmurHash2, to integers
evenly distributed over a large range. This range is
collapsed to a number of buckets, typically by tak-
ing the hash modulo the number of buckets. Entries
landing in the same bucket are said to collide.

Several methods exist to handle collisions; we use
linear probing because it has less memory overhead
when entries are small. Linear probing places at
most one entry in each bucket. When a collision oc-
curs, linear probing places the entry to be inserted
in the next (higher index) empty bucket, wrapping
around as necessary. Therefore, a populated probing
hash table consists of an array of buckets that contain
either one entry or are empty. Non-empty buckets
contain an entry belonging to them or to a preceding
bucket where a conflict occurred. Searching a prob-
ing hash table consists of hashing the key, indexing
the corresponding bucket, and scanning buckets un-
til a matching key is found or an empty bucket is

2http://sites.google.com/site/murmurhash/

encountered, in which case the key does not exist in
the table.

Linear probing hash tables must have more buck-
ets than entries, or else an empty bucket will never
be found. The ratio of buckets to entries is controlled
by space multiplier m > 1. As the name implies,
space is O(m) and linear in the number of entries.
The fraction of buckets that are empty is m−1

m , so av-

erage lookup time is O
(

m
m−1

)
and, crucially, con-

stant in the number of entries.
When keys are longer than 64 bits, we conserve

space by replacing the keys with their 64-bit hashes.
With a good hash function, collisions of the full 64-
bit hash are exceedingly rare: one in 266 billion
queries for our baseline model will falsely find a key
not present. Collisions between two keys in the table
can be identified at model building time. Further, the
special hash 0 suffices to flag empty buckets.

The PROBING data structure is a rather straight-
forward application of these hash tables to store N -
gram language models. Unigram lookup is dense so
we use an array of probability and backoff values.
For 2 ≤ n ≤ N , we use a hash table mapping from
the n-gram to the probability and backoff3. Vocab-
ulary lookup is a hash table mapping from word to
vocabulary index. In all cases, the key is collapsed
to its 64-bit hash. Given counts cn1 where e.g. c1 is
the vocabulary size, total memory consumption, in
bits, is

(96m+ 64)c1 + 128m
N−1∑
n=2

cn + 96mcN .

Our PROBING data structure places all n-grams
of the same order into a single giant hash table.
This differs from other implementations (Stolcke,
2002; Pauls and Klein, 2011) that use hash tables
as nodes in a trie, as explained in the next section.
Our implementation permits jumping to any n-gram
of any length with a single lookup; this appears to
be unique among language model implementations.

2.2 Sorted Arrays and TRIE

Sorted arrays store key-value pairs in an array sorted
by key, incurring no space overhead. SRILM’s com-
pact variant, IRSTLM, MITLM, and BerkeleyLM’s

3N -grams do not have backoff so none is stored.

188

sorted variant are all based on this technique. Given
a sorted array A, these other packages use binary
search to find keys in O(log |A|) time. We re-
duce this to O(log log |A|) time by evenly distribut-
ing keys over their range then using interpolation
search4 (Perl et al., 1978). Interpolation search for-
malizes the notion that one opens a dictionary near
the end to find the word “zebra.” Initially, the algo-
rithm knows the array begins at b ← 0 and ends at
e← |A|−1. Given a key k, it estimates the position

pivot← k −A[b]
A[e]−A[b]

(e− b).

If the estimate is exact (A[pivot] = k), then the al-
gorithm terminates succesfully. If e < b then the
key is not found. Otherwise, the scope of the search
problem shrinks recursively: if A[pivot] < k then
this becomes the new lower bound: l ← pivot; if
A[pivot] > k then u ← pivot. Interpolation search
is therefore a form of binary search with better esti-
mates informed by the uniform key distribution.

If the key distribution’s range is also known (i.e.
vocabulary identifiers range from 0 to the number
of words), then interpolation search can use this in-
formation instead of reading A[0] and A[|A| − 1] to
estimate pivots; this optimization alone led to a 24%
speed improvement. The improvement is due to the
cost of bit-level reads and avoiding reads that may
fall in different virtual memory pages.

Vocabulary lookup is a sorted array of 64-bit word
hashes. The index in this array is the vocabulary
identifier. This has the effect of randomly permuting
vocabulary identifiers, meeting the requirements of
interpolation search when vocabulary identifiers are
used as keys.

While sorted arrays could be used to implement
the same data structure as PROBING, effectively
making m = 1, we abandoned this implementation
because it is slower and larger than a trie implemen-
tation. The trie data structure is commonly used for
language modeling. Our TRIE implements the pop-
ular reverse trie, in which the last word of an n-gram
is looked up first, as do SRILM, IRSTLM’s inverted
variant, and BerkeleyLM except for the scrolling
variant. Figure 1 shows an example. Nodes in the

4Not to be confused with interpolating probabilities, which
is outside the scope of this paper.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Figure 1: Lookup of “is one of” in a reverse trie. Children
of each node are sorted by vocabulary identifier so order
is consistent but not alphabetical: “is” always appears be-
fore “are”. Nodes are stored in column-major order. For
example, nodes corresponding to these n-grams appear in
this order: “are one”, “<s> Australia”, “is one of”, “are
one of”, “<s> Australia is”, and “Australia is one”.

trie are based on arrays sorted by vocabulary identi-
fier.

We maintain a separate array for each length n
containing all n-gram entries sorted in suffix order.
Therefore, for n-gram wn

1 , all leftward extensions
wn

0 are an adjacent block in the n + 1-gram array.
The record for wn

1 stores the offset at which its ex-
tensions begin. Reading the following record’s off-
set indicates where the block ends. This technique
was introduced by Clarkson and Rosenfeld (1997)
and is also implemented by IRSTLM and Berke-
leyLM’s compressed option. SRILM inefficiently
stores 64-bit pointers.

Unigram records store probability, backoff, and
an index in the bigram table. Entries for 2 ≤ n < N
store a vocabulary identifier, probability, backoff,
and an index into the n+1-gram table. The highest-
order N -gram array omits backoff and the index,
since these are not applicable. Values in the trie are
minimally sized at the bit level, improving memory
consumption over trie implementations in SRILM,
IRSTLM, and BerkeleyLM. Given n-gram counts
{cn}Nn=1, we use dlog2 c1e bits per vocabulary iden-
tifier and dlog2 cne per index into the table of n-
grams.

When SRILM estimates a model, it sometimes re-
moves n-grams but not n + 1-grams that extend it
to the left. In a model we built with default set-
tings, 1.2% of n + 1-grams were missing their n-

189

gram suffix. This causes a problem for reverse trie
implementations, including SRILM itself, because it
leaves n+1-grams without an n-gram node pointing
to them. We resolve this problem by inserting an en-
try with probability set to an otherwise-invalid value
(−∞). Queries detect the invalid probability, using
the node only if it leads to a longer match. By con-
trast, BerkeleyLM’s hash and compressed variants
will return incorrect results based on an n− 1-gram.

2.2.1 Quantization
Floating point values may be stored in the trie ex-

actly, using 31 bits for non-positive log probability
and 32 bits for backoff5. To conserve memory at
the expense of accuracy, values may be quantized
using q bits per probability and r bits per backoff6.
We allow any number of bits from 2 to 25, unlike
IRSTLM (8 bits) and BerkeleyLM (17−20 bits). To
quantize, we use the binning method (Federico and
Bertoldi, 2006) that sorts values, divides into equally
sized bins, and averages within each bin. The cost
of storing these averages, in bits, is

[32(N − 1)2q + 32(N − 2)2r

Because there are comparatively few unigrams,
we elected to store them byte-aligned and unquan-
tized, making every query faster. Unigrams also
have 64-bit overhead for vocabulary lookup. Using
cn to denote the number of n-grams, total memory
consumption of TRIE, in bits, is

(32 + 32 + 64 + 64)c1+
N−1∑
n=2

(dlog2 c1e+ q + r + dlog2 cn+1e)cn+

(dlog2 c1e+ q)cN

plus quantization tables, if used. The size of TRIE

is particularly sensitive to dlog2 c1e, so vocabulary
filtering is quite effective at reducing model size.

3 Related Work

SRILM (Stolcke, 2002) is widely used within
academia. It is generally considered to be fast (Pauls

5Backoff “penalties” are occasionally positive in log space.
6One probability is reserved to mark entries that SRILM

pruned. Two backoffs are reserved for Section 4.1. That leaves
2q − 1 probabilities and 2r − 2 non-zero backoffs.

and Klein, 2011), with a default implementation
based on hash tables within each trie node. Each trie
node is individually allocated and full 64-bit point-
ers are used to find them, wasting memory. The
compact variant uses sorted arrays instead of hash
tables within each node, saving some memory, but
still stores full 64-bit pointers. With some minor API
changes, namely returning the length of the n-gram
matched, it could also be faster—though this would
be at the expense of an optimization we explain in
Section 4.1. The PROBING model was designed
to improve upon SRILM by using linear probing
hash tables (though not arranged in a trie), allocat-
ing memory all at once (eliminating the need for full
pointers), and being easy to compile.

IRSTLM (Federico et al., 2008) is an open-source
toolkit for building and querying language models.
The developers aimed to reduce memory consump-
tion at the expense of time. Their default variant im-
plements a forward trie, in which words are looked
up in their natural left-to-right order. However, their
inverted variant implements a reverse trie using less
CPU and the same amount of memory7. Each trie
node contains a sorted array of entries and they use
binary search. Compared with SRILM, IRSTLM
adds several features: lower memory consumption,
a binary file format with memory mapping, caching
to increase speed, and quantization. Our TRIE im-
plementation is designed to improve upon IRSTLM
using a reverse trie with improved search, bit level
packing, and stateful queries. IRSTLM’s quantized
variant is the inspiration for our quantized variant.
Unfortunately, we were unable to correctly run the
IRSTLM quantized variant. The developers sug-
gested some changes, such as building the model
from scratch with IRSTLM, but these did not resolve
the problem.

Our code has been publicly available and inter-
grated into Moses since October 2010. Later, Berke-
leyLM (Pauls and Klein, 2011) described ideas sim-
ilar to ours. Most similar is scrolling queries,
wherein left-to-right queries that add one word at
a time are optimized. Both implementations em-
ploy a state object, opaque to the application, that
carries information from one query to the next; we

7Forward tries are faster to build with IRSTLM and can effi-
ciently return a list of rightward extensions, but this is not used
by the decoders we consider.

190

discuss both further in Section 4.2. State is imple-
mented in their scrolling variant, which is a trie an-
notated with forward and backward pointers. The
hash variant is a reverse trie with hash tables, a
more memory-efficient version of SRILM’s default.
While the paper mentioned a sorted variant, code
was never released. The compressed variant uses
block compression and is rather slow as a result. A
direct-mapped cache makes BerkeleyLM faster on
repeated queries, but their fastest (scrolling) cached
version is still slower than uncached PROBING, even
on cache-friendly queries. For all variants, we found
that BerkeleyLM always rounds the floating-point
mantissa to 12 bits then stores indices to unique
rounded floats. The 1-bit sign is almost always neg-
ative and the 8-bit exponent is not fully used on the
range of values, so in practice this corresponds to
quantization ranging from 17 to 20 total bits.

Lossy compressed models RandLM (Talbot and
Osborne, 2007) and Sheffield (Guthrie and Hepple,
2010) offer better memory consumption at the ex-
pense of CPU and accuracy. These enable much
larger models in memory, compensating for lost
accuracy. Typical data structures are generalized
Bloom filters that guarantee a customizable prob-
ability of returning the correct answer. Minimal
perfect hashing is used to find the index at which
a quantized probability and possibly backoff are
stored. These models generally outperform our
memory consumption but are much slower, even
when cached.

4 Optimizations

In addition to the optimizations specific to each data-
structure described in Section 2, we implement sev-
eral general optimizations for language modeling.

4.1 Minimizing State

Applications such as machine translation use lan-
guage model probability as a feature to assist in
choosing between hypotheses. Dynamic program-
ming efficiently scores many hypotheses by exploit-
ing the fact that an N -gram language model condi-
tions on at most N − 1 preceding words. We call
these N − 1 words state. When two partial hy-
potheses have equal state (including that of other
features), they can be recombined and thereafter ef-

ficiently handled as a single packed hypothesis. If
there are too many distinct states, the decoder prunes
low-scoring partial hypotheses, possibly leading to a
search error. Therefore, we want state to encode the
minimum amount of information necessary to prop-
erly compute language model scores, so that the de-
coder will be faster and make fewer search errors.

We offer a state function s(wn
1) = wn

m where
substring wn

m is guaranteed to extend (to the right)
in the same way that wn

1 does for purposes of
language modeling. The state function is inte-
grated into the query process so that, in lieu of
the query p(wn|wn−1

1), the application issues query
p(wn|s(wn−1

1)) which also returns s(wn
1). The re-

turned state s(wn
1) may then be used in a follow-

on query p(wn+1|s(wn
1)) that extends the previous

query by one word. These make left-to-right query
patterns convenient, as the application need only
provide a state and the word to append, then use the
returned state to append another word, etc. We have
modified Moses (Koehn et al., 2007) to keep our
state with hypotheses; to conserve memory, phrases
do not keep state. Syntactic decoders, such as cdec
(Dyer et al., 2010), build state from null context then
store it in the hypergraph node for later extension.

Language models that contain wk
1 must also con-

tain prefixes wi
1 for 1 ≤ i ≤ k. Therefore, when

the model is queried for p(wn|wn−1
1) but the longest

matching suffix is wn
f , it may return state s(wn

1) =
wn

f since no longer context will be found. IRSTLM
and BerkeleyLM use this state function (and a limit
of N − 1 words), but it is more strict than necessary,
so decoders using these packages will miss some re-
combination opportunities.

State will ultimately be used as context in a sub-
sequent query. If the context wn

f will never extend to
the right (i.e. wn

f v is not present in the model for all
words v) then no subsequent query will match the
full context. If the log backoff of wn

f is also zero
(it may not be in filtered models), then wf should
be omitted from the state. This logic applies recur-
sively: if wn

f+1 similarly does not extend and has
zero log backoff, it too should be omitted, termi-
nating with a possibly empty context. We indicate
whether a context with zero log backoff will extend
using the sign bit: +0.0 for contexts that extend and
−0.0 for contexts that do not extend. RandLM and
SRILM also remove context that will not extend, but

191

SRILM performs a second lookup in its trie whereas
our approach has minimal additional cost.

4.2 Storing Backoff in State
Section 4.1 explained that state s is stored by appli-
cations with partial hypotheses to determine when
they can be recombined. In this section, we ex-
tend state to optimize left-to-right queries. All lan-
guage model queries issued by machine translation
decoders follow a left-to-right pattern, starting with
either the begin of sentence token or null context for
mid-sentence fragments. Storing state therefore be-
comes a time-space tradeoff; for example, we store
state with partial hypotheses in Moses but not with
each phrase.

To optimize left-to-right queries, we extend state
to store backoff information:

s(wn−1
1) =

(
wn−1

m ,
{
b(wn−1

i)
}n−1

i=m

)
where m is the minimal context from Section 4.1
and b is the backoff penalty. Because b is a function,
no additional hypothesis splitting happens.

As noted in Section 1, our code finds the longest
matching entry wn

f for query p(wn|s(wn−1
1)) then

computes

p(wn|wn−1
1) = p(wn|wn−1

f)
f−1∏
i=1

b(wn−1
i).

The probability p(wn|wn−1
f) is stored with wn

f and
the backoffs are immediately accessible in the pro-
vided state s(wn−1

1).
When our code walks the data structure to find

wn
f , it visits wn

n, w
n
n−1, . . . , w

n
f . Each visited entry

wn
i stores backoff b(wn

i). These are written to the
state s(wn

1) and returned so that they can be used for
the following query.

Saving state allows our code to walk the data
structure exactly once per query. Other packages
walk their respective data structures once to find wn

f

and again to find {b(wn−1
i)}f−1

i=1 if necessary. In
both cases, SRILM walks its trie an additional time
to minimize context as mentioned in Section 4.1.

BerkeleyLM uses states to optimistically search
for longer n-gram matches first and must perform
twice as many random accesses to retrieve back-
off information. Further, it needs extra pointers

in the trie, increasing model size by 40%. This
makes memory usage comparable to our PROBING

model. The PROBING model can perform optimistic
searches by jumping to any n-gram without needing
state and without any additional memory. However,
this optimistic search would not visit the entries nec-
essary to store backoff information in the outgoing
state. Though we do not directly compare state im-
plementations, performance metrics in Table 1 indi-
cate our overall method is faster.

4.3 Threading

Only IRSTLM does not support threading. In our
case multi-threading is trivial because our data struc-
tures are read-only and uncached. Memory mapping
also allows the same model to be shared across pro-
cesses on the same machine.

4.4 Memory Mapping

Along with IRSTLM and TPT, our binary format is
memory mapped, meaning the file and in-memory
representation are the same. This is especially effec-
tive at reducing load time, since raw bytes are read
directly to memory—or, as happens with repeatedly
used models, are already in the disk cache.

Lazy mapping reduces memory requirements by
loading pages from disk only as necessary. How-
ever, lazy mapping is generally slow because queries
against uncached pages must wait for the disk. This
is especially bad with PROBING because it is based
on hashing and performs random lookups, but it
is not intended to be used in low-memory scenar-
ios. TRIE uses less memory and has better locality.
However, TRIE partitions storage by n-gram length,
so walking the trie reads N disjoint pages. TPT
has theoretically better locality because it stores n-
grams near their suffixes, thereby placing reads for a
single query in the same or adjacent pages.

We do not experiment with models larger than
physical memory in this paper because TPT is un-
released, factors such as disk speed are hard to repli-
cate, and in such situations we recommend switch-
ing to a more compact representation, such as Ran-
dLM. In all of our experiments, the binary file
(whether mapped or, in the case of most other pack-
ages, interpreted) is loaded into the disk cache in ad-
vance so that lazy mapping will never fault to disk.
This is similar to using the Linux MAP POPULATE

192

1

10

100

10 1000 100000 107

L
oo

ku
ps

/µ
s

Entries

probing
hash set
unordered
interpolation
binary search
set

Figure 2: Speed in lookups per microsecond by data
structure and number of 64-bit entries. Performance dips
as each data structure outgrows the processor’s 12 MB L2
cache. Among hash tables, indicated by shapes, probing
is initially slower but converges to 43% faster than un-
ordered or hash set. Interpolation search has a more ex-
pensive pivot function but does less reads and iterations,
so it is initially slower than binary search and set, but be-
comes faster above 4096 entries.

flag that is our default loading mechanism.

5 Benchmarks

This section measures performance on shared tasks
in order of increasing complexity: sparse lookups,
evaluating perplexity of a large file, and translation
with Moses. Our test machine has two Intel Xeon
E5410 processors totaling eight cores, 32 GB RAM,
and four Seagate Barracuda disks in software RAID
0 running Linux 2.6.18.

5.1 Sparse Lookup
Sparse lookup is a key subproblem of language
model queries. We compare three hash tables:
our probing implementation, GCC’s hash set, and
Boost’s8 unordered. For sorted lookup, we compare
interpolation search, standard C++ binary search,
and standard C++ set based on red-black trees.
The data structure was populated with 64-bit inte-
gers sampled uniformly without replacement. For
queries, we uniformly sampled 10 million hits and

8http://boost.org

10 million misses. The same numbers were used for
each data structure. Time includes all queries but ex-
cludes random number generation and data structure
population. Figure 2 shows timing results.

For the PROBING implementation, hash table
sizes are in the millions, so the most relevant val-
ues are on the right size of the graph, where linear
probing wins. It also uses less memory, with 8 bytes
of overhead per entry (we store 16-byte entries with
m = 1.5); linked list implementations hash set and
unordered require at least 8 bytes per entry for point-
ers. Further, the probing hash table does only one
random lookup per query, explaining why it is faster
on large data.

Interpolation search has a more expensive pivot
but performs less pivoting and reads, so it is slow on
small data and faster on large data. This suggests
a strategy: run interpolation search until the range
narrows to 4096 or fewer entries, then switch to bi-
nary search. However, reads in the TRIE data struc-
ture are more expensive due to bit-level packing, so
we found that it is faster to use interpolation search
the entire time. Memory usage is the same as with
binary search and lower than with set.

5.2 Perplexity
For the perplexity and translation tasks, we used
SRILM to build a 5-gram English language model
on 834 million tokens from Europarl v6 (Koehn,
2005) and the 2011 Workshop on Machine Trans-
lation News Crawl corpus with duplicate lines re-
moved. The model was built with open vocabulary,
modified Kneser-Ney smoothing, and default prun-
ing settings that remove singletons of order 3 and
higher. Unlike Germann et al. (2009), we chose a
model size so that all benchmarks fit comfortably in
main memory. Benchmarks use the package’s bi-
nary format; our code is also the fastest at building a
binary file. As noted in Section 4.4, disk cache state
is controlled by reading the entire binary file before
each test begins. For RandLM, we used the settings
in the documentation: 8 bits per value and false pos-
itive probability 1

256 .
We evaluate the time and memory consumption

of each data structure by computing perplexity on
4 billion tokens from the English Gigaword corpus
(Parker et al., 2009). Tokens were converted to vo-
cabulary identifiers in advance and state was carried

193

from each query to the next. Table 1 shows results
of the benchmark. Compared to decoding, this task
is cache-unfriendly in that repeated queries happen
only as they naturally occur in text. Therefore, per-
formance is more closely tied to the underlying data
structure than to the cache. In fact, we found that
enabling IRSTLM’s cache made it slightly slower,
so results in Table 1 use IRSTLM without caching.
Moses sets the cache size parameter to 50 so we did
as well; the resulting cache size is 2.82 GB.

The results in Table 1 show PROBING is 81%
faster than TRIE, which is in turn 31% faster than the
fastest baseline. Memory usage in PROBING is high,
though SRILM is even larger, so where memory is of
concern we recommend using TRIE, if it fits in mem-
ory. For even larger models, we recommend Ran-
dLM; the memory consumption of the cache is not
expected to grow with model size, and it has been
reported to scale well. Another option is the closed-
source data structures from Sheffield (Guthrie and
Hepple, 2010). Though we are not able to calculate
their memory usage on our model, results reported
in their paper suggest lower memory consumption
than TRIE on large-scale models, at the expense of
CPU time.

5.3 Translation

This task measures how well each package performs
in machine translation. We run the baseline Moses
system for the French-English track of the 2011
Workshop on Machine Translation,9 translating the
3003-sentence test set. Based on revision 4041, we
modified Moses to print process statistics before ter-
minating. Process statistics are already collected
by the kernel (and printing them has no meaning-
ful impact on performance). SRILM’s compact vari-
ant has an incredibly expensive destructor, dwarfing
the time it takes to perform translation, and so we
also modified Moses to avoiding the destructor by
calling exit instead of returning normally. Since
our destructor is an efficient call to munmap, by-
passing the destructor favors only other packages.
The binary language model from Section 5.2 and
text phrase table were forced into disk cache before
each run. Time starts when Moses is launched and
therefore includes model loading time. These con-

9http://statmt.org/wmt11/baseline.html

Package Variant Queries/ms RAM (GB)

Ken
PROBING 1818 5.28
TRIE 1139 2.72
TRIE 8 bitsa 1127 1.59

SRI
Default 750 9.19
Compact 238 7.27

IRSTb Invert 426 2.91
Default 368 2.91

MIT Default 410 7.72+1.34c

Rand Backoff 8 bitsa 56 1.30+2.82c

Berkeley
Hash+Scrolla 913 5.28+2.32d

Hasha 767 3.71+1.72d

Compresseda 126 1.73+0.71d

Estimates for unreleased packages
Sheffield C-MPHRa 607e

TPT Default 357f

Table 1: Single-threaded speed and memory use on the
perplexity task. The PROBING model is fastest by a sub-
stantial margin but generally uses more memory. TRIE is
faster than competing packages and uses less memory than
non-lossy competitors. The timing basis for Queries/ms in-
cludes kernel and user time but excludes loading time; we
also subtracted time to run a program that just reads the
query file. Peak virtual memory is reported; final resident
memory is similar except for BerkeleyLM. We tried both
aggressive reading and lazy memory mapping where appli-
cable, but results were much the same.

aUses lossy compression.
bThe 8-bit quantized variant returned incorrect probabilities as

explained in Section 3. It did 402 queries/ms using 1.80 GB.
cMemory use increased during scoring due to batch processing

(MIT) or caching (Rand). The first value reports use immediately
after loading while the second reports the increase during scoring.

dBerkeleyLM is written in Java which requires memory be
specified in advance. Timing is based on plentiful memory. Then
we ran binary search to determine the least amount of memory
with which it would run. The first value reports resident size af-
ter loading; the second is the gap between post-loading resident
memory and peak virtual memory. The developer explained that
the loading process requires extra memory that it then frees.

eBased on the ratio to SRI’s speed reported in Guthrie and
Hepple (2010) under different conditions. Memory usage is likely
much lower than ours.

fThe original paper (Germann et al., 2009) provided only 2s of
query timing and compared with SRI when it exceeded available
RAM. The authors provided us with a ratio between TPT and SRI
under different conditions.

194

Time (m) RAM (GB)
Package Variant CPU Wall Res Virt

Ken

PROBING-L 72.3 72.4 7.83 7.92
PROBING-P 73.6 74.7 7.83 7.92
TRIE-L 80.4 80.6 4.95 5.24
TRIE-P 80.1 80.1 4.95 5.24
TRIE-L 8a 79.5 79.5 3.97 4.10
TRIE-P 8a 79.9 79.9 3.97 4.10

SRI Default 85.9 86.1 11.90 11.94
Compact 155.5 155.7 9.98 10.02

IRST

Cache-Invert-L 106.4 106.5 5.36 5.84
Cache-Invert-R 106.7 106.9 5.73 5.84
Invert-L 117.2 117.3 5.27 5.67
Invert-R 117.7 118.0 5.64 5.67
Default-L 126.3 126.4 5.26 5.67
Default-R 127.1 127.3 5.64 5.67

Rand Backoffa 277.9 278.0 4.05 4.18
Backoffb 247.6 247.8 4.06 4.18

Table 2: Single-threaded time and memory consumption
of Moses translating 3003 sentences. Where applicable,
models were loaded with lazy memory mapping (-L),
prefaulting (-P), and normal reading (-R); results differ
by at most than 0.6 minute.

aLossy compression with the same weights.
bLossy compression with retuned weights.

ditions make the value appropriate for estimating re-
peated run times, such as in parameter tuning. Table
2 shows single-threaded results, mostly for compar-
ison to IRSTLM, and Table 3 shows multi-threaded
results.

Part of the gap between resident and virtual mem-
ory is due to the time at which data was collected.
Statistics are printed before Moses exits and after
parts of the decoder have been destroyed. Moses
keeps language models and many other resources in
static variables, so these are still resident in mem-
ory. Further, we report current resident memory and
peak virtual memory because these are the most ap-
plicable statistics provided by the kernel.

Overall, language modeling significantly impacts
decoder performance. In line with perplexity results
from Table 1, the PROBING model is the fastest fol-
lowed by TRIE, and subsequently other packages.
We incur some additional memory cost due to stor-
ing state in each hypothesis, though this is minimal
compared with the size of the model itself. The
TRIE model continues to use the least memory of

Time (m) RAM (GB)
Package Variant CPU Wall Res Virt

Ken

PROBING-L 130.4 20.2 7.91 8.53
PROBING-P 132.6 21.7 7.91 8.41
TRIE-L 132.1 20.6 5.03 5.85
TRIE-P 132.2 20.5 5.02 5.84
TRIE-L 8a 137.1 21.2 4.03 4.60
TRIE-P 8a 134.6 20.8 4.03 4.72

SRI Default 153.2 26.0 11.97 12.56
Compact 243.3 36.9 10.05 10.55

Rand Backoffa 346.8 49.4 5.41 6.78
Backoffb 308.7 44.4 5.26 6.81

Table 3: Multi-threaded time and memory consumption
of Moses translating 3003 sentences on eight cores. Our
code supports lazy memory mapping (-L) and prefault-
ing (-P) with MAP POPULATE, the default. IRST is not
threadsafe. Time for Moses itself to load, including load-
ing the language model and phrase table, is included.
Along with locking and background kernel operations
such as prefaulting, this explains why wall time is not
one-eighth that of the single-threaded case.

aLossy compression with the same weights.
bLossy compression with retuned weights.

the non-lossy options. For RandLM and IRSTLM,
the effect of caching can be seen on speed and mem-
ory usage. This is most severe with RandLM in
the multi-threaded case, where each thread keeps a
separate cache, exceeding the original model size.
As noted for the perplexity task, we do not ex-
pect cache to grow substantially with model size, so
RandLM remains a low-memory option. Caching
for IRSTLM is smaller at 0.09 GB resident mem-
ory, though it supports only a single thread. The
BerkeleyLM direct-mapped cache is in principle
faster than caches implemented by RandLM and by
IRSTLM, so we may write a C++ equivalent imple-
mentation as future work.

5.4 Comparison with RandLM

RandLM’s stupid backoff variant stores counts in-
stead of probabilities and backoffs. It also does not
prune, so comparing to our pruned model would
be unfair. Using RandLM and the documented
settings (8-bit values and 1

256 false-positive prob-
ability), we built a stupid backoff model on the
same data as in Section 5.2. We used this data
to build an unpruned ARPA file with IRSTLM’s

195

RAM (GB)
Pack Variant Time (m) Res Virt BLEU

Ken
TRIE 82.9 12.16 14.39 27.24
TRIE 8 bits 82.7 8.41 9.41 27.22
TRIE 4 bits 83.2 7.74 8.55 27.09

Rand Stupid 8 bits 218.7 5.07 5.18 25.54
Backoff 8 bits 337.4 7.17 7.28 25.45

Table 4: CPU time, memory usage, and uncased BLEU
(Papineni et al., 2002) score for single-threaded Moses
translating the same test set. We ran each lossy model
twice: once with specially-tuned weights and once with
weights tuned using an exact model. The difference in
BLEU was minor and we report the better result.

improved-kneser-ney option and the default
three pieces. Table 4 shows the results. We elected
run Moses single-threaded to minimize the impact
of RandLM’s cache on memory use. RandLM is the
clear winner in RAM utilization, but is also slower
and lower quality. However, the point of RandLM
is to scale to even larger data, compensating for this
loss in quality.

6 Future Work

There any many techniques for improving language
model speed and reducing memory consumption.
For speed, we plan to implement the direct-mapped
cache from BerkeleyLM. Much could be done to fur-
ther reduce memory consumption. Raj and Whit-
taker (2003) show that integers in a trie implemen-
tation can be compressed substantially. Quantiza-
tion can be improved by jointly encoding probability
and backoff. For even larger models, storing counts
(Talbot and Osborne, 2007; Pauls and Klein, 2011;
Guthrie and Hepple, 2010) is a possibility. Beyond
optimizing the memory size of TRIE, there are alter-
native data structures such as those in Guthrie and
Hepple (2010). Finally, other packages implement
language model estimation while we are currently
dependent on them to generate an ARPA file.

While we have minimized forward-looking state
in Section 4.1, machine translation systems could
also benefit by minimizing backward-looking state.
For example, syntactic decoders (Koehn et al., 2007;
Dyer et al., 2010; Li et al., 2009) perform dynamic
programming parametrized by both backward- and
forward-looking state. If they knew that the first four
words in a hypergraph node would never extend to

the left and form a 5-gram, then three or even fewer
words could be kept in the backward state. This in-
formation is readily available in TRIE where adja-
cent records with equal pointers indicate no further
extension of context is possible. Exposing this in-
formation to the decoder will lead to better hypoth-
esis recombination. Generalizing state minimiza-
tion, the model could also provide explicit bounds
on probability for both backward and forward ex-
tension. This would result in better rest cost esti-
mation and better pruning.10 In general, tighter, but
well factored, integration between the decoder and
language model should produce a significant speed
improvement.

7 Conclusion

We have described two data structures for language
modeling that achieve substantial reductions in time
and memory cost. The PROBING model is 2.4
times as fast as the fastest alternative, SRILM, and
uses less memory too. The TRIE model uses less
memory than the smallest lossless alternative and is
still faster than SRILM. These performance gains
transfer to improved system runtime performance;
though we focused on Moses, our code is the best
lossless option with cdec and Joshua. We attain
these results using several optimizations: hashing,
custom lookup tables, bit-level packing, and state
for left-to-right query patterns. The code is open-
source, has minimal dependencies, and offers both
C++ and Java interfaces for integration.

Acknowledgments

Alon Lavie advised on this work. Hieu Hoang
named the code “KenLM” and assisted with Moses
along with Barry Haddow. Adam Pauls provided a
pre-release comparison to BerkeleyLM and an initial
Java interface. Nicola Bertoldi and Marcello Fed-
erico assisted with IRSTLM. Chris Dyer integrated
the code into cdec. Juri Ganitkevitch answered ques-
tions about Joshua. This material is based upon
work supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No.
0750271 and by the DARPA GALE program.

10One issue is efficient retrieval of bounds, though these
could be quantized, rounded in the safe direction, and stored
with each record.

196

References

Philip Clarkson and Ronald Rosenfeld. 1997. Statistical
language modeling using the CMU-Cambridge toolkit.
In Proceedings of Eurospeech.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proceed-
ings of the ACL 2010 System Demonstrations, pages
7–12.

Marcello Federico and Nicola Bertoldi. 2006. How
many bits are needed to store probabilities for phrase-
based translation? In Proceedings of the Workshop on
Statistical Machine Translation, pages 94–101, New
York City, June.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo.
2008. IRSTLM: an open source toolkit for handling
large scale language models. In Proceedings of Inter-
speech, Brisbane, Australia.

Ulrich Germann, Eric Joanis, and Samuel Larkin. 2009.
Tightly packed tries: How to fit large models into
memory, and make them load fast, too. In Proceedings
of the NAACL HLT Workshop on Software Engineer-
ing, Testing, and Quality Assurance for Natural Lan-
guage Processing, pages 31–39, Boulder, Colorado.

David Guthrie and Mark Hepple. 2010. Storing the web
in memory: Space efficient language models with con-
stant time retrieval. In Proceedings of EMNLP 2010,
Los Angeles, CA.

Bo-June Hsu and James Glass. 2008. Iterative lan-
guage model estimation: Efficient data structure & al-
gorithms. In Proceedings of Interspeech, Brisbane,
Australia.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Annual
Meeting of the Association for Computational Linguis-
tics (ACL), Prague, Czech Republic, June.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of MT
Summit.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Sanjeev
Khudanpur, Lane Schwartz, Wren Thornton, Jonathan
Weese, and Omar Zaidan. 2009. Joshua: An open
source toolkit for parsing-based machine translation.
In Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 135–139, Athens, Greece,
March. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evalution of machine translation. In Proceedings 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, PA, July.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2009. English gigaword fourth edi-
tion. LDC2009T13.

Adam Pauls and Dan Klein. 2011. Faster and smaller n-
gram language models. In Proceedings of ACL, Port-
land, Oregon.

Yehoshua Perl, Alon Itai, and Haim Avni. 1978. Inter-
polation search—a log log N search. Commun. ACM,
21:550–553, July.

Bhiksha Raj and Ed Whittaker. 2003. Lossless compres-
sion of language model structure and word identifiers.
In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 388–
391.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Proceedings of the Seventh Inter-
national Conference on Spoken Language Processing,
pages 901–904.

David Talbot and Miles Osborne. 2007. Randomised
language modelling for statistical machine translation.
In Proceedings of ACL, pages 512–519, Prague, Czech
Republic.

197

