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Abstract

We consider using online language models for
translating multiple streams which naturally
arise on the Web. After establishing that us-
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Recent work has shown good results using an in-
coming text stream as training data for either a static
or online language model (LM) in an SMT setting
(Goyal et al., 2009; Levenberg and Osborne, 2009).
A drawback of prior work is the oversimplified sce-

ing just one stream can degrade translations
on different domains, we present a series of
simple approaches which tackle the problem
of maintaining translation performance on all
streams in small space. By exploiting the dif-
fering throughputs of each stream and how
the decoder translates prior test points from
each stream, we show how translation perfor-
mance can equal specialised, per-stream lan-
guage models, but do this in a single language
model using far less space. Our results hold
even when adding three billion tokens of addi-
tional text as a background language model.

nario that all training and test data is drawn from the

same distribution using a single, in-domain stream.
In a real world scenario multiple incoming streams

are readily available and test sets from dissimilar do-
mains will be translated continuously. As we show,

using stream data from one domain to translate an-
other results in poor average performance for both
streams. However, combining streams naively to-
gether hurts performance further still.

In this paper we consider this problem of multiple
stream translation. Since monolingual data is very
abundant, we focus on the subtask of updating an on-
line LM using multiple incoming streams. The chal-
lenges in multiple stream translation include dealing
with domain differences, variable throughput rates
There is more natural language data available toddthe size of each stream per epoch), and the need
than there has ever been and the scale of its produo-maintain constant space. Importantly, we impose
tion is increasing quickly. While this phenomenorthe key requirement that our model match transla-
provides the Statistic Machine Translation (SMT}ion performance reached using the single stream ap-
community with a potentially extremely useful re-proach on all test domains.
source to learn from, it also brings with it nontrivial We accomplish this using the-gram history of
computational challenges of scalability. prior translations plus subsampling to maintain a

Text streams arise naturally on the Web whereonstant bound on memory required for language
millions of new documents are published each day imodelling throughout all stream adaptation. In par-
many different languages. Examples in the streanticular, when considering two test streams, we are
ing domain include the thousands of multilinguakable to improve performance on both streams from
websites that continuously publish newswire storiesn average (per stream) BLEU score30t71 and
the official proceedings of governments and othe37.09 using a single stream approach (Tables 2 and
bureaucratic organisations, as well as the million8) to an average BLEU score ¢f.28 and42.73 us-
of “bloggers” and host of users on social networkng multiple streams within a single LM using equal
services such as Facebook and Twitter. memory (Tables 6 and 7). We also show additive im-
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provements using this approach when using a largé Multiple Streams and their Properties
background LM consisting of over one billiom- h id .
grams. To our knowledge our approach is the firé%ny source that provides a continuous sequence

in the literature to deal with adapting an online LMOf natural language documents over “T“e. can be
to multiple streams in small space. thought of as anunbounded stream which is time-

stamped and access to it is given in strict chronolog-
ical order. The ubiquity of technology and the In-
ternet means there are many such text streams avail-
able already and their number is increasing quickly.
For SMT, multiple text streams provide a potentially
Randomised techniques for LMs from Talbot andbundant source of new training data that may be
Osborne (2007) and Talbot and Brants (2008) angseful for combating model sparsity.

currently industry state-of-the-art for fitting very Of primary concern is building models whose
large datasets into much smaller amounts of menspace complexity is independent of the size of the
ory than lossless representations for the data. Instesadoming stream. Allowing unbounded memory to
of representing the-grams exactly, the randomisedhandle unbounded streams is unsatisfactory. When
representation exchanges a small, one-sided errordgaling with more than one stream we must also

2 PreviousWork

2.1 Randomised LMs

false positives for massive space savings. consider how the properties of single streams inter-
act in a multiple stream setting.
22 Stream-based LMs Every text stream is associated with a particular

_ _ domain. For example, we may draw a stream from
An unbounded text stream is an input source of naty; newswire source. a daily web crawl of new blogs

ral language documents that is received sequentially the output of a company or organisation. Obvi-
and so has an implicit timeline attached. In Leveng gy the distribution over the text contained in these
berg and Osborne (2009) a text stream was used dfeams will be very different from each other. As
initially train and subsequently adapt an online, rang well-known from the work on domain adaptation
domised LM (ORLM) with good results. However, ihroughout the SMT literature, using a model from
aweakness of Levenberg and Osborne (2009) is thghe domain to translate a test document from an-
the experiments were all conducted over a single insiher domain would likely produce poor resullts.

put stream. Itis an oversimplification to assume that £5:h stream source will also have a different
all test material for a SMT system will be from a sin-;ata of production, othroughput, which may vary

gle domain. No work was done on the multi-streamy ety hetween sources. Blog data may be received
case where we have more than one incoming stregfapundance but the newswire data may have a sig-

from arbitrary domains. nificantly lower throughput. This means that the text
_ _ stream with higher throughput may dominate and
2.3 Domain Adaptation for SMT overwhelm the more nuanced translation options of

§1e stream with less data in the LM during decod-

Within MT there has been a variety of approache _
if we want to translate well for all

dealing with domain adaptation (for example (Wu el9: T_h's,'s bad ; )
al., 2008; Koehn and Schroeder, 2007)). Our Worgomalns in small space using a single model.
is related to qlomain a_daptati_on but differs in that W& Multi-Stream Retraining

are not skewing the distribution of an out-of-domain

LM to accommodate some test data for which wén a stream-based translation setting we can expect
have little or no training data for. Rather, we haveo translate test points from various domains on any
varying amounts of training data from all the do-number of incoming streams. Our goal is a single
mains via the incoming streams and the LM mustinified LM that obtains equal performance in less
account for each domain appropriately. Howevespace than when using a separate LM per stream.
known domain adaptation techniques are potentiallfhe underlying LMs could be exact, but here we use
applicable to multi-stream translation as well. randomised versions based on the ORLM.
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Naive Combination Approach Multiple LM Approach

new epoch new epoch new epoch new epoch
F input stream 1
I input stream 1 P
F input stream 2 stream 1 LM 1 stream 1 LM 3
. stream 1 LM 2
I input stream K F input stream 2
i tream 2 LM 1 Stream 2LV 3
I o I | =
LM 1 M2 Nl . stream 2 LM 2
I input stream K
stream K LM 1 stream K LM 3
stream K LM 2

Figure 1: In the naive approach &l streams are simply
combined into a single LM for each new epoch encoun-

tered. Figure 2: Each strearh. .. K gets its own stream-based
LM using the multiple LM approach.

Given an incoming numbetfs of unbounded
streams over a potentially infinite timelirig, with
t C T anepoch or windowed subset of the timeline,
the full set ofn-grams in allK streams over all’
is denoted withS. By S; we denoten-grams from
all K streams andy;, k£ € [1, K], as then-grams
in the kth stream over epoch Since the streams | .

bined streams for each epoch.

are unbounded, we do not have access to alhthe ) )
grams inS at once. Instead we selectgrams from Resulting LM To query the resulting LM’ dur-

each streans,, C S. We define the collection of INg decoding with a test-gramwy® = (wi, ..., wn)
n-grams encoded in the LM at timeover all K we use a simple smoothing algorithm called Stupid
streams ag’;. Initially, at time¢ = 0 the LM is Backoff (Brants et al.,, 2007). This returns the

composed of the-grams in the stream @, = S. probability of ann-gram as
Since it is unsatisfactory to allow unbounded i1

memory usage for the model and more bits arg(wi|wi—n+1) =

needed as we see more novegrams from the

streams, we enforce a memory constraint and use { Ct(wif_n“

where each of th& streams is combined into a sin-
gle model and the.-grams counts are merged lin-
early. Here we carry na-grams over from the LM
C;_1 from the previous epoch. The space needed is
the number of unigue-grams present in the com-

if Cy(wi_,,1) >0

) otherwise

an adaptation scheme to deletegrams from the 2)
LM C;_1 before adding any new-grams from the
streams to get the curremtgram setC;. Below
we describe various approaches of updating the LMhereC,(.) denotes the frequency count returned by
with data from the streams. the LM for ann-gram andx is a backoff parameter.
The recursion ends once the unigram is reached in
which case the probability iB(w;) := w;/N where
Approach The first obvious approach for an onlineNV is the size of the current training corpus.

LM using multiple input streams is to simply store Each stream provides a distribution over the

all the streams in one LM. That isi-grams from grams contained in it and, for SMT, if separate

all the streams are only inserted into the LM once M was constructed for each domain it would most
and their stream specific counts are combined intojiely cause the decoder to derive different 1-best
single value in the composite LM. hypotheses than using a LM built from all the stream
Modelling the Stream  In the naive case we retrain data. Using the naive approach blurs the distribution
the LM C; in full at epocht using all the new data distinctions between streams and negates any stream

4.1 Naive Combinations

from the streams. We have simply specific differences when the decoder produces a 1-
« best hypothesis. It has been shown that doing lin-
_ ear combinations of this type produces poor perfor-
Cr = Ske 1) )
et mance in theory (Mansour et al., 2008).
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4.2 Weighted Interpolation single stream case with good results. This is appli-

Approach An improved approach to using multi- ¢@ble to the multi-stream case as well.

ple streams is to build a separate LM for each streal¥ °d€lling the Stream For multiple streams and
and using a weighted combination of each durin§POCht > 0 we model the stream combination as
decoding. Each stream is stored in isolation and we K

interpolate the information contained within each Cr = fr(Ci1) U | (Ske)- (4)
during decoding using a weighting on each stream. k=1

Modelling the Stream Here we model the streamsWhere for each epoch a selected subset of the previ-

by simply storing each stream at timén its own Ousn-grams in the LMC;_, is merged with all the
LM so Cy; = Sy for each streans,,. Then the LM hewly arrived stream data to create the new LM set

after epocht is C;. The parametef denotes a function that filters
over the previous set af-grams in the model. It
Cy ={Cht,...,Cxy}. represents the specific adaptation scheme employed

and stays constant throughout the timelihdn this
We use more space here than all other approach&srk we consider any:.-grams queried by the de-
since we must store eaehigram/count occurring in coder in the last test point as potentially useful to
each stream separately as well as the overhead the next point. Since all of the-gramsS; in the
curred for each separate LM in memory. stream at time are used the space required is of the
ResultingLM During decoding, the probability of same order of complexity as the naive approach.
a testn-gramw;’ is a weighted combination of all Resulting LM  Since all then-grams from the

the individual stream LMs. We can write streams are now encoded in a single iMwe can
X query it using Equation 2 during decoding. The goal
P(w?) = Z fuPe,, (wl) 3) of retraining using decoding history is to keep use-
1 ful n-grams in the current model so a better model

is obtained and performance for the next transla-
where we query each of the individual LMs;; to  tjon point is improved. Note that making use of the
get a score from each LM using Equation 2 anghjstory for hypothesis combination is theoretically
combine them together using a weightirfig spe- \vell-founded and is the same approach used here for

cific to each LM. Here we impose the restriction omjstory based combination. (Mansour et al., 2008)
the weights thaE,QK:1 fi = 1. (We discuss specific

weight selections in the next section.) 4.4 Subsampling

By maintaining multiple stream specific LMs we Approach The problem of multiple streams with
maintain the particular distribution of the individualhighly varying throughput rates can be seen as a type
streams. This keeps the more nuanced translatiooBclass imbalance problem in the machine learning
from the lower throughput streams available duringiterature. Given a binary prediction problem with
decoding without translations being dominated by awo classes, for instance, the imbalance problem oc-
stream with higher throughput. However using muleurs when the bulk of the examples in the training
tiple distinct LMs is wasteful of memory. data are instances of one class and only a much

o o smaller proportion of examples are available from

4.3 Combining Modelsvia History the other class. A frequently used approach to bal-
Approach We want to combine the streams intoancing the distribution for the statistical model is to
a single LM using less memory than when storingiserandom under sampling and select only a sub-
each stream separately but still achieve at least ast of the dominant class examples during training
good a translation for each test point. Naively com¢Japkowicz and Stephen, 2002).
bining the streams removes stream specific transla- This approach is applicable to the multiple stream
tions but using the history ef-grams selected by the translation problem with imbalanced throughput
decoder during the previous test point in the streamates between streams. Instead of storing 1the
was done in Levenberg and Osborne (2009) for thgrams from each stream separately, we can apply a
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History Combination Approach Stream ‘ 1-grams 3-grams 5-grams

new epoch new epoch EP ng 520K 76OK
I input stream 1 GW (Xle) 120K 3M 5M
- Iputeteem RCV1 630K  21M 42M
F input s{reamK

= Ny Table 1: Sample statistics of uniquegram counts from
\ i the streams from epoch 2 of our timeline. Ttheoughput
rate varies a lot between streams.

5 Experiments
Figure 3: Using decoding history all the streams are com-

bined into a unified LM. Here we report on our SMT experiments with multi-
ple streams for translation using the approaches out-

. . . . lined in the previous section.
subsampling selection scheme directly to the incom- P

ing s_treams to balance each stregm’s_ contribution ¢ Experimental Setup

the final LM. Note that subsampling is also related _

to weighting interpolation. Since all returned LM The SMT setup we employ is standard and all re-
scores are based on frequency counts ofitiggams ~ SOUTCes used are publicly available. We translate
and their prefixes, taking a weighting on a full probffom Spanish into English using phrase-based de-
ability of ann-gram is akin to having fewer counts €0ding with Moses (Koehn and Hoang, 2007) as our
of then-grams in the LM to begin with. decoder. Our parallel data came from Europarl.
Modelling the Stream To this end we use the We use three streams (all are timestamped):
weighted function paramete, from Equation 3to RCV1 (Rose et al.,, 2002), Europarl (EP) (Koehn,

serve as the sampling probability rate for acceptinéoog)' and Giggwor_d (GW) (Graff'et al., 2007). GV_V
is taken from six distinct newswire sources but in

[ur initial experiments we limit the incoming stream
from Gigaword to one of the sources (xie). GW and
RCV1 are both newswire domain streams with high

an n-gram from a given strearh. The sampling
rate serves to limit the amount of stream data fro
a stream that ends up in the model. For> 1 we

have
X rates of incoming data whereas EP is a more nu-
Cy = fr(Ci_1) U U £1(Skt) (5) anced, smaller throughput domain of spoken tran-
kel scripts taken from sessions of the European Parlia-

ment. The RCV1 corpus only spans one calender

where f; is the probability a particulat-gram from  year from October, 1996 through September, 1997
stream.Sy, at epocht will be included inC;. The so we selected only data in this time frame from
adaptation functiorfr remains the same as in Equathe other two streams so our timeline consists of the
tion 4. The space used in this approach is now de&ame full calendar year for all streams.
pendent on the ratf; used for each stream. For this work we use the ORLM. The crux of the
ResultingLM Again, since we obtain a single LM ORLM is an online perfect hash function that pro-
from all the streams, we use Equation 2 to get thgides the ability to insert and delete from the data
probability of ann-gram during decoding. structure. Consequently the ORLM has the abil-

The subsampling method is applicable to all of théty to adapt to an unbounded input stream whilst
approaches discussed in this section. However, sing&intaining both constant memory usage and error
we are essentially limiting the amount of data thatate. All the ORLMs were 5-gram models built with
we store in the final LM we can expect to take a pertraining data from the streams discussed above and
formance hit based on the rate of acceptance giversed Stupid Backoff smoothing fer-gram scoring
by the parameterg;,. By using subsampling with (Brants et al., 2007). All results are reported using
the history combination approach we obtain goothe BLEU metric (Papineni et al., 2001).
performance for all streams in small space. For testing we held-out three random test points
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LM Type Testl Test2 Test3 LM Type Testl Test2 Test3
RCV1 (Static) 39.30 38.28 33.06 EP (Static) 42.09 44.15 36.42
RCV1 (Online) 39.30 40.64 39.19 EP (Online) 42.09 4594 37.22
EP (Online) 30.22 30.31 26.66 RCV1 (Online) 36.46 42.10 32.73
RCV1+EP (Online) 39.00 40.15 39.46 EP+RCV1 (Online) 40.82 44.07 35.01
RCV1+EP+GW (Online)| 41.29 41.73 4041 EP+RCV1+GW (Online) 40.91 44.05 35.56

Table 2: Results for the RCV1 test points. RCV1 and GWrable 3: EP results using in and out-of-domain streams.
streams are in-domain and EP is out-of-domain. Transldhe last two rows show that naive combination gets poor
tion results are improved using more stream data singesults compared to single stream approaches.
mostn-grams are in-domain to the test points.

o when using an online LM that incorporates recent
from both the RCV1 and EP stream’s timeline forya¢a against a static baseline.

a :Otf;: of six tESt po(ljnts. Th'j’ ?'\thid theI.StreS\TS We then ran the same experiments using a stream
Into threeepocns, and we updated the oniine enerated from the EP corpus. EP consists of the

using th_e dat"’? encountered in the ep(_)ch prior to eagpoceedings of the European Parliament and is a sig-
translation point. The-grams and their counts from

. . . nificantly different domain than the RCV1 newswire
the streams are combined in the LM using one of thgtream We updated the online LM usinggrams
approaches from the previous section. '

i ) i from the latest stream epoch before translating each
Using the notation from Section 4 we have the,_jomain EP test set. Results are in Table 3 and fol-
RCV1, EP, and GW streams described above ang, ihe same naming convention as Table 2 (except

K " 3asthe r_1umber of incoming streams from W%ow in-domain is EP and out-of-domain is RCV1).
distinct domains (newswire and spoken dialogue). Using a single stream we also cross tested and

Our timelineT is one year’s worth of data split into . ) .
y P translated each test point using the online LM

B e G ot P AL 1. aciape o th oG s, As expected
from the GW stream it acts as a background streatranSIatl.On be rformange decreases (sometimes dras
for these experiments Pﬂcally) in this case smce_the data of the_out—of—
' domain stream are not suited to the domain of the

current test point being translated.
) ) ] We then tested the naive approach and combined
!n this segnon we report on our translano_n EXPEhoth streams into a single LM by taking the union of
|ment§ u;mg a single st_ream a_nd the na!ve I'ne"i‘frlen-grams and adding their counts together. This
combination apprqach with multiple incoming dataIS theRCV1+EP (Online) row in Tables 2 and 3 and
streams from Section 4.1. ] clearly, though it contains more data compared to

Using the RCV1 corpus as our input stream We,ch, single stream LM, the naively combined LM
tested single stream translation first. Here we argyeg not help the RCV1 test points much and de-
replicating the experiments from Levenberg and OSgrades the performance of the EP translation results.
borne (2009) so both training and test data COM&g,js translation hit occurs as the throughput of each
from a single in-domain stream. Results are in Tablgyream is significantly different. The EP stream con-
2 where each row represents a different LM typ€ging far less data per epoch than the RCV1 counter-
RCVL (Static) is the traditional baseline with no ot (see Table 1) hence using a naive combination
adaptation where we use the training data for the fir§t . s ns that the more abundant newswire data from

epoch of the streamRCV1 (Online) is the online 1o RV stream overrides the probabilities of the
LM adapted with data from the in-domain stream,qre domain specific ER-grams during decoding.

Confirming the previous work we get improvements When we added a third newswire stream from a

A background stream is one that only serves as traininBOrtion_ of GW, shown in the _IaSt row of Tables 2
data for all other test domains. and 3, improvements are obtained for the RCV1 test

5.2 Basdinesand Naive Combinations
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Weighting | Testl Test2 Test3 Weighting | Testl Test2 Test3

33r + .33 + .33¢ | 38.97 39.78 35.66 33p 4+ .33r + .33¢ | 40.75 45.65 35.77
BO0rp + .25 4+ .25¢ | 39.59 4040 37.22 B0g + .25p + .25¢ | 41.46 46.37 36.94
25p + .50 + .25 | 36.57 38.03 34.23 25 + .50p + .25¢ | 40.57 4490 35.77
.T0r +0.0g 4+ .30¢ | 4054 4146 39.23 .7T0g + .20p 4+ .10¢ | 4247 46.83 38.08

Table 4: Weighted LM interpolation results for the RCV1 Table 5: EP results in BLEU for the interpolated LMs.
test points whergZ = Europarl,R = RCV1, andG =
Gigaword (xie).

weights to decode the test points from that domain.

: . _ _ Results are shown in Tables 4 and 5 using the
points due to the addition of in-domain data bu“heveighting scheme described above plus a selec-

El?r:]gstr?e:ﬁr?amﬁ sl §uffers. bination | tion of random parameter settings for comparison.
IS highlights why naive combination Is unsat'Using the notation from Section 4.2, a caption of

isfactory. While using more in-domain data alds.‘5R+‘25E+‘25G,,’ for example, denotes a weight-

in the transla_tlon of the_ngwswwe tests, for the EIiDng of frovt = 0.5 for the scores returned from the
test sets, naively combining thegrams from all

RCV1 stream LM whilefgp and fgyw = 0.25 for
streams means the hypotheses the decoder Sele{ﬁt@EP and GW stream LMs

are weighted heavily in fayor of the,out-of-domalrj The weighted interpolation results suggest that
data. As the out-of-domain stream’s throughput is

o . While naive combination of the streams may be mis-
significantly larger it swamps the model. . . .
guided, average translation performance can be im-

5.3 Interpolating Weighted Streams proved upon when using more than a single in-
domain stream. Comparing the best results in Tables

Stralghtforward Ilnear S”ea”.‘ comblnatloq into % and 3 to the single stream baselines in Tables 4 and
single LM results in degradation of translations for5 we achieve comparable, if not improved, transla-

test points whose in-domain training data is drawr . .
. tion performance foboth domains. This is espe-

from a stream with lower throughput than the other . . .
L cially true for test domains such as EP which have

data streams. We could maintain a separate MT sys- -
. : N ow training data throughput from the stream. Here

tem for each streaming domain but intuitively some | .. . : .
L . adding some information from the out-of-domain
combination of the streams may benefit average per-: . X N
%tream that contains a lot more data aids signifi-

formance since using all the data available shoul . . : . :
. . . cantly in the translation of in-domain test points.
benefit test points from streams with low through- . o .
However, the optimal weighting differs between

Eg:i.b-lc;?j tienststg (I:‘:fi(\;\:]e r szegl n?jnli;edm; w;;&z;oig%%%éch test domain. For instance, the weighting that
nation of the single s'tream LMs during decoding gives the best results for the EP tests results in much

We tested this approach using our three strearRo0rer translation performance for the RCV1 test

RCV1, EP and GW (xie). We used a separatgomts requiring us to track which stream we are
ORLM for each stream and then, during testing, th ecoding and then select the appropriate weighting.

result returned for an-gram queried by the decoder(-?‘hIS adds unnecessary complexity to the SMT sys-

was a value obtained from some weighted interpolatlgm' And, since we store each stream separately,

tion of each individual LM’s score for that-gram. memory usage is not optimal using this scheme.
To get the_ |r_1te_rpolat|on welght§ for each streamlng_4 History and Subsampling

LM we minimised the perplexity of all the mod- o _
els on held-out development data from the streamE0r space efficiency we want to represent multi-

2 Then we used the corresponding stream specifide streams non-redundantly instead of storing each
stream/domain in its own LM. Here we report on

2 i . . . L
Due to the lossy nature of the encoding of the ORLMgy 1o riments using both the history combination and
means that the perplexity measures were approximations.

Nonetheless the weighting from this approach had the best péubsampling approaches from Sections 4.3 and 4.4.
formance. Results are in Tables 6 and 7 for the RCV1 and
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LM Type | Testl Test2 Test3 pling and accepts alt-grams from all streams into

Multi- fy 4119 41.73 39.23 the LM. Here we get better results than naive combi-
Multi- fr 4129 42.23 4051 nation or plain subsampling at the expense of more
Multi- fr + fr | 41.19 4252 40.12 memory for the same error rate for the ORLM.

The final row,Multi-f; + fr uses both the sub-
Table 6: RCV1 test results using history and subsamplingampling functionf;, and fr so maintains a history
approaches. of the n-grams queried by the decoder for the prior
test points. This approach achieves significantly bet-

LM Type | Testl Test2 Test3 ) )

T 2001 4350 3611 ter results than naive adaptation and compares to us-
. ing all the data in the stream. Combining translation

Multi- f; 4091 47.84 39.29 g g

history as well as doing random subsampling over

the stream means we match the performance of but

use far less memory than when using multiple online
"' Ms whilst maintaining the same error rate.

Multi- f. + fr | 4091 4805 39.23

Table 7: Europarl test results with history and subsal
pling approaches.

5.5 Experiments Summary
EP test sets respectively with the column heade(;\;,e have shown that using data from multiple

denoting the test point. The roMulti-fy Shows  gyeamg penefits SMT performance. Our best ap-

results using only the random subsampling paran;oach, using history based combination along with
eter f, and the rowsMulti- - show results with just - ,nsampling, combines all incoming streams into a

the time-based adaptation parameter without SuQl'ngle, succinct LM and obtains translation perfor-

sampling. The fina_l rovMulti-fi, + fr us_es both mance equal to single stream, domain specific LMs
the f parameter_s W'th rand.om subsampling as Wegn all test domains. Crucially we do this in bounded
as taking decoding history into account. space, require less memory than storing each stream

Multi-f, uses the random subsampling paramesenarately, and do not incur translation degradations
ter fi. to filter out higher ordem-grams from the ,, any single domain.

streams. Alln-grams that are sampled from the A note on memory usage. The multiple LM ap-

streams are then combined into the joint LM. Theproach uses the most memory since this requires
counts ofn-grams sampleq from more 'than N overlappingn-grams in the streams to be stored
stream are a_dded together in the composite LM. Thbeeparately. The naive and history combination ap-
parametelfy, is set dependent on a stream’s throughy, 5 hes” use less memory since they storeall
pgt rate, we only subsample from the streams wit rams from all the streams in a unified LM. For the
high throughpgt, and th.e rate was chosgn based ggmpling the exact amount of memory is of course
the weighted interpolation results des_crlbed prev'dependent on the sampling rate used. For the results
ously. In Tables 6 and 7 the .subsamplmg "Ae= i Taples 6 and 7 we used significantly less memory
0.3 for the combined newswire streams RCV1 an_%OOMB) but still achieved comparable performance

GW and we ke.pt all of the EP data. We EXperlyg approaches that used more memory by storing the
mented with various other values for thesampling ¢ | streams (600MB).

rates and found translation results only minorly im-

pacted. Note that the subsampling is truly randorg Scaling Up

so two adaptation runs with equal subsampling rates

may produce different final translations. NonetheThe experiments described in the preceding section

less, in our experiments we saw expected perfoused combinations of relatively small (compared to

mance, observing slight variation in performance focurrent industry standards) input streams. The ques-

all test points that correlated to the percentage of inion remains if using such approaches aids in the per-

domain data residing in the model. formance of translation if used in conjunction with
The next row,Multi- f7-, uses recency criteria to large static LMs trained on large corpora. In this

keep potentially usefut-grams but uses no subsam-section we describe scaling up the previous stream-
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Order Count LM Type \ Testl Test2 Test3
1l-grams| 3.7M GW (static) 40.78 44.26 34.36
2-grams| 46.6M + EP (online) 4394 4782 38.71
3-grams| 195.5M + RCV1 (online)| 43.07 47.72 39.15
4-grams| 366.8M
5-grams| 454.2M Table 10: EP test results using the background GW LM.

Total 1067M

ground LM with ORLMs built using the approach
described in Section 4.4. In this case all streams
were combined into a single LM using a subsam-

Table 8: Singleton-pruned-gram counts (in millions)
for the GW3 background LM.

LM Type | Test1 Test2 Test3 pling rate for higher orden-grams. As before our
GW (static) 4169 4240 3548 sampling rate for the newswire streams was 30%
+RCV1 (online)| 42.44 43.83 4055 chosen by the perplexity reduction weights.

+ EP (online) 42.80 4394 38.82 The results show that even with a large amount

of static data adding small amounts of stream spe-

Table 9: Test results for the RCV1 stream using the larg@fic data reIevapt to a given test point has an im-
background LM. Using stream data benefits translationjpact on translation quality. Compared to only us-
ing the large background model we obtain signifi-

: _ , cantly better results when using a streaming ORLM
based translation experiments using a large bacls . pjiment it for all test domains. However the
ground LM trained on abllllom-grgms.. . large amount of data available to the decoder in

We used the same setup described in Section S "o ciaround LM positively impacts translation
However, instead of using o_nIy a subset of the _G\%erformance compared to single-stream approaches
corpus as one of our incoming streams, we train€@,pes 2 and 3). Further, when we combine the
a static LM using théull GW3 corpus of over three oo <into a single LM using the subsampling ap-

billion tokens and used it as a background LM. A3 h e get, on average, comparable scores for all
the n-gram statistics for this background LM show,qq; 15ints “Thus we see that the patterns for multi-

in Table 8, it _cpntains far more data than each of thﬁle stream adaptation seen in previous sections hold
stream specific LMs (Table 1). We tested Whethe«IF1 spite of big amounts of static data

using streams atop this large background LM had a
positive effect on translation for a given domain. 7 Conclusions and Future Work

Baseline results for all test points using only the _ _
GW background LM are shown in the top row inWe have shown how multiple streams can be effi-

Tables 9 and 10. We then interpolated the ORLMEiEeNtly incorporated into a translation system. Per-

with this LM. For each stream test point we interpo0rmance need not degrade on any of the streams.

lated with the big GW LM an online LM built with As well, these results can be additive. Even when

the most recent epoch’s data. Here we used seg"d large amounts of additional background data,
rate models per stream so the RCV1 test points us@gding stream specific data continues to improve
the GW LM along with a RCV1 specific ORLM. We translation.  Further, we achieve all results in

used the same mechanism to obtain the interpolati@@unded space. Future work includes investigating

weights as described in Section 5.3 and minimiseidiore sophisticated adaptation for multiple streams.

the perplexity of the static LM along with the stream'V€ &/S0 plan to explore alternative ways of sampling

specific ORLM. Interestingly, the tuned weights re{he Stréam when incorporating data.
turned gave approximately a 50-50 weighting be,

tween LMs and we found that simply using a 50-5(56\
weighting for all test points resulted had no negativ&pecial thanks to Adam Lopez and Conrad Hughes
effect on BLEU. In the third row of the Tables 9 andand Phil Blunosm for helpful discussion and advice.
10 we show the results of interpolating the big backThis work was sponsored in part by the GALE pro-
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