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Abstract

We consider using online language models for
translating multiple streams which naturally
arise on the Web. After establishing that us-
ing just one stream can degrade translations
on different domains, we present a series of
simple approaches which tackle the problem
of maintaining translation performance on all
streams in small space. By exploiting the dif-
fering throughputs of each stream and how
the decoder translates prior test points from
each stream, we show how translation perfor-
mance can equal specialised, per-stream lan-
guage models, but do this in a single language
model using far less space. Our results hold
even when adding three billion tokens of addi-
tional text as a background language model.

1 Introduction

There is more natural language data available today
than there has ever been and the scale of its produc-
tion is increasing quickly. While this phenomenon
provides the Statistic Machine Translation (SMT)
community with a potentially extremely useful re-
source to learn from, it also brings with it nontrivial
computational challenges of scalability.

Text streams arise naturally on the Web where
millions of new documents are published each day in
many different languages. Examples in the stream-
ing domain include the thousands of multilingual
websites that continuously publish newswire stories,
the official proceedings of governments and other
bureaucratic organisations, as well as the millions
of “bloggers” and host of users on social network
services such as Facebook and Twitter.

Recent work has shown good results using an in-
coming text stream as training data for either a static
or online language model (LM) in an SMT setting
(Goyal et al., 2009; Levenberg and Osborne, 2009).
A drawback of prior work is the oversimplified sce-
nario that all training and test data is drawn from the
same distribution using a single, in-domain stream.
In a real world scenario multiple incoming streams
are readily available and test sets from dissimilar do-
mains will be translated continuously. As we show,
using stream data from one domain to translate an-
other results in poor average performance for both
streams. However, combining streams naively to-
gether hurts performance further still.

In this paper we consider this problem of multiple
stream translation. Since monolingual data is very
abundant, we focus on the subtask of updating an on-
line LM using multiple incoming streams. The chal-
lenges in multiple stream translation include dealing
with domain differences, variable throughput rates
(the size of each stream per epoch), and the need
to maintain constant space. Importantly, we impose
the key requirement that our model match transla-
tion performance reached using the single stream ap-
proach on all test domains.

We accomplish this using then-gram history of
prior translations plus subsampling to maintain a
constant bound on memory required for language
modelling throughout all stream adaptation. In par-
ticular, when considering two test streams, we are
able to improve performance on both streams from
an average (per stream) BLEU score of39.71 and
37.09 using a single stream approach (Tables 2 and
3) to an average BLEU score of41.28 and42.73 us-
ing multiple streams within a single LM using equal
memory (Tables 6 and 7). We also show additive im-

177



provements using this approach when using a large
background LM consisting of over one billionn-
grams. To our knowledge our approach is the first
in the literature to deal with adapting an online LM
to multiple streams in small space.

2 Previous Work

2.1 Randomised LMs

Randomised techniques for LMs from Talbot and
Osborne (2007) and Talbot and Brants (2008) are
currently industry state-of-the-art for fitting very
large datasets into much smaller amounts of mem-
ory than lossless representations for the data. Instead
of representing then-grams exactly, the randomised
representation exchanges a small, one-sided error of
false positives for massive space savings.

2.2 Stream-based LMs

An unbounded text stream is an input source of natu-
ral language documents that is received sequentially
and so has an implicit timeline attached. In Leven-
berg and Osborne (2009) a text stream was used to
initially train and subsequently adapt an online, ran-
domised LM (ORLM) with good results. However,
a weakness of Levenberg and Osborne (2009) is that
the experiments were all conducted over a single in-
put stream. It is an oversimplification to assume that
all test material for a SMT system will be from a sin-
gle domain. No work was done on the multi-stream
case where we have more than one incoming stream
from arbitrary domains.

2.3 Domain Adaptation for SMT

Within MT there has been a variety of approaches
dealing with domain adaptation (for example (Wu et
al., 2008; Koehn and Schroeder, 2007)). Our work
is related to domain adaptation but differs in that we
are not skewing the distribution of an out-of-domain
LM to accommodate some test data for which we
have little or no training data for. Rather, we have
varying amounts of training data from all the do-
mains via the incoming streams and the LM must
account for each domain appropriately. However,
known domain adaptation techniques are potentially
applicable to multi-stream translation as well.

3 Multiple Streams and their Properties

Any source that provides a continuous sequence
of natural language documents over time can be
thought of as anunbounded stream which is time-
stamped and access to it is given in strict chronolog-
ical order. The ubiquity of technology and the In-
ternet means there are many such text streams avail-
able already and their number is increasing quickly.
For SMT, multiple text streams provide a potentially
abundant source of new training data that may be
useful for combating model sparsity.

Of primary concern is building models whose
space complexity is independent of the size of the
incoming stream. Allowing unbounded memory to
handle unbounded streams is unsatisfactory. When
dealing with more than one stream we must also
consider how the properties of single streams inter-
act in a multiple stream setting.

Every text stream is associated with a particular
domain. For example, we may draw a stream from
a newswire source, a daily web crawl of new blogs,
or the output of a company or organisation. Obvi-
ously the distribution over the text contained in these
streams will be very different from each other. As
is well-known from the work on domain adaptation
throughout the SMT literature, using a model from
one domain to translate a test document from an-
other domain would likely produce poor results.

Each stream source will also have a different
rate of production, orthroughput, which may vary
greatly between sources. Blog data may be received
in abundance but the newswire data may have a sig-
nificantly lower throughput. This means that the text
stream with higher throughput may dominate and
overwhelm the more nuanced translation options of
the stream with less data in the LM during decod-
ing. This is bad if we want to translate well for all
domains in small space using a single model.

4 Multi-Stream Retraining

In a stream-based translation setting we can expect
to translate test points from various domains on any
number of incoming streams. Our goal is a single
unified LM that obtains equal performance in less
space than when using a separate LM per stream.
The underlying LMs could be exact, but here we use
randomised versions based on the ORLM.
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Figure 1: In the naive approach allK streams are simply
combined into a single LM for each new epoch encoun-
tered.

Given an incoming numberK of unbounded
streams over a potentially infinite timelineT , with
t ⊂ T anepoch or windowed subset of the timeline,
the full set ofn-grams in allK streams over allT
is denoted withS. By St we denoten-grams from
all K streams andSkt, k ∈ [1, K], as then-grams
in the kth stream over epocht. Since the streams
are unbounded, we do not have access to all then-
grams inS at once. Instead we selectn-grams from
each streamSkt ⊂ S. We define the collection of
n-grams encoded in the LM at timet over all K
streams asCt. Initially, at time t = 0 the LM is
composed of then-grams in the stream soC0 = S0.

Since it is unsatisfactory to allow unbounded
memory usage for the model and more bits are
needed as we see more noveln-grams from the
streams, we enforce a memory constraint and use
an adaptation scheme to deleten-grams from the
LM Ct−1 before adding any newn-grams from the
streams to get the currentn-gram setCt. Below
we describe various approaches of updating the LM
with data from the streams.

4.1 Naive Combinations

Approach The first obvious approach for an online
LM using multiple input streams is to simply store
all the streams in one LM. That is,n-grams from
all the streams are only inserted into the LM once
and their stream specific counts are combined into a
single value in the composite LM.
Modelling the Stream In the naive case we retrain
the LM Ct in full at epocht using all the new data
from the streams. We have simply

Ct =
K
⋃

k=1

Skt (1)

stream 1 LM 1
stream 1 LM 2

stream 1 LM 3

input stream 1

stream 2 LM 1
stream 2 LM 2

stream 2 LM 3

input stream 2…
stream K LM 1

stream K LM 2
stream K LM 3

input stream K

Multiple LM Approach

new epoch new epoch

Figure 2: Each stream1 . . . K gets its own stream-based
LM using the multiple LM approach.

where each of theK streams is combined into a sin-
gle model and then-grams counts are merged lin-
early. Here we carry non-grams over from the LM
Ct−1 from the previous epoch. The space needed is
the number of uniquen-grams present in the com-
bined streams for each epoch.

Resulting LM To query the resulting LMCt dur-
ing decoding with a testn-gramwn

i
= (wi, . . . , wn)

we use a simple smoothing algorithm called Stupid
Backoff (Brants et al., 2007). This returns the
probability of ann-gram as

P (wi|w
i−1
i−n+1) :=







Ct(wi

i−n+1
)

Ct(w
i−1

i−n+1
)

if Ct(w
i
i−n+1) > 0

αP (wi|w
i−1
i−n+2) otherwise

(2)

whereCt(.) denotes the frequency count returned by
the LM for ann-gram andα is a backoff parameter.
The recursion ends once the unigram is reached in
which case the probability isP (wi) := wi/N where
N is the size of the current training corpus.

Each stream provides a distribution over then-
grams contained in it and, for SMT, if aseparate
LM was constructed for each domain it would most
likely cause the decoder to derive different 1-best
hypotheses than using a LM built from all the stream
data. Using the naive approach blurs the distribution
distinctions between streams and negates any stream
specific differences when the decoder produces a 1-
best hypothesis. It has been shown that doing lin-
ear combinations of this type produces poor perfor-
mance in theory (Mansour et al., 2008).
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4.2 Weighted Interpolation

Approach An improved approach to using multi-
ple streams is to build a separate LM for each stream
and using a weighted combination of each during
decoding. Each stream is stored in isolation and we
interpolate the information contained within each
during decoding using a weighting on each stream.
Modelling the Stream Here we model the streams
by simply storing each stream at timet in its own
LM so Ckt = Skt for each streamSk. Then the LM
after epocht is

Ct = {C1t, . . . , CKt}.

We use more space here than all other approaches
since we must store eachn-gram/count occurring in
each stream separately as well as the overhead in-
curred for each separate LM in memory.
Resulting LM During decoding, the probability of
a testn-gramwn

i
is a weighted combination of all

the individual stream LMs. We can write

P (wn
i ) :=

K
∑

k=1

fkPCkt
(wn

i ) (3)

where we query each of the individual LMsCkt to
get a score from each LM using Equation 2 and
combine them together using a weightingfk spe-
cific to each LM. Here we impose the restriction on
the weights that

∑

K

k=1 fk = 1. (We discuss specific
weight selections in the next section.)

By maintaining multiple stream specific LMs we
maintain the particular distribution of the individual
streams. This keeps the more nuanced translations
from the lower throughput streams available during
decoding without translations being dominated by a
stream with higher throughput. However using mul-
tiple distinct LMs is wasteful of memory.

4.3 Combining Models via History

Approach We want to combine the streams into
a single LM using less memory than when storing
each stream separately but still achieve at least as
good a translation for each test point. Naively com-
bining the streams removes stream specific transla-
tions but using the history ofn-grams selected by the
decoder during the previous test point in the stream
was done in Levenberg and Osborne (2009) for the

single stream case with good results. This is appli-
cable to the multi-stream case as well.
Modelling the Stream For multiple streams and
epocht > 0 we model the stream combination as

Ct = fT (Ct−1) ∪
K
⋃

k=1

(Skt). (4)

where for each epoch a selected subset of the previ-
ousn-grams in the LMCt−1 is merged with all the
newly arrived stream data to create the new LM set
Ct. The parameterfT denotes a function that filters
over the previous set ofn-grams in the model. It
represents the specific adaptation scheme employed
and stays constant throughout the timelineT . In this
work we consider anyn-grams queried by the de-
coder in the last test point as potentially useful to
the next point. Since all of then-gramsSt in the
stream at timet are used the space required is of the
same order of complexity as the naive approach.
Resulting LM Since all then-grams from the
streams are now encoded in a single LMCt we can
query it using Equation 2 during decoding. The goal
of retraining using decoding history is to keep use-
ful n-grams in the current model so a better model
is obtained and performance for the next transla-
tion point is improved. Note that making use of the
history for hypothesis combination is theoretically
well-founded and is the same approach used here for
history based combination. (Mansour et al., 2008)

4.4 Subsampling

Approach The problem of multiple streams with
highly varying throughput rates can be seen as a type
of class imbalance problem in the machine learning
literature. Given a binary prediction problem with
two classes, for instance, the imbalance problem oc-
curs when the bulk of the examples in the training
data are instances of one class and only a much
smaller proportion of examples are available from
the other class. A frequently used approach to bal-
ancing the distribution for the statistical model is to
userandom under sampling and select only a sub-
set of the dominant class examples during training
(Japkowicz and Stephen, 2002).

This approach is applicable to the multiple stream
translation problem with imbalanced throughput
rates between streams. Instead of storing then-
grams from each stream separately, we can apply a
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Figure 3: Using decoding history all the streams are com-
bined into a unified LM.

subsampling selection scheme directly to the incom-
ing streams to balance each stream’s contribution in
the final LM. Note that subsampling is also related
to weighting interpolation. Since all returned LM
scores are based on frequency counts of then-grams
and their prefixes, taking a weighting on a full prob-
ability of ann-gram is akin to having fewer counts
of then-grams in the LM to begin with.

Modelling the Stream To this end we use the
weighted function parameterfk from Equation 3 to
serve as the sampling probability rate for accepting
an n-gram from a given streamk. The sampling
rate serves to limit the amount of stream data from
a stream that ends up in the model. ForK > 1 we
have

Ct = fT (Ct−1) ∪
K
⋃

k=1

fk(Skt) (5)

wherefk is the probability a particularn-gram from
streamSk at epocht will be included inCt. The
adaptation functionfT remains the same as in Equa-
tion 4. The space used in this approach is now de-
pendent on the ratefk used for each stream.

Resulting LM Again, since we obtain a single LM
from all the streams, we use Equation 2 to get the
probability of ann-gram during decoding.

The subsampling method is applicable to all of the
approaches discussed in this section. However, since
we are essentially limiting the amount of data that
we store in the final LM we can expect to take a per-
formance hit based on the rate of acceptance given
by the parametersfk. By using subsampling with
the history combination approach we obtain good
performance for all streams in small space.

Stream 1-grams 3-grams 5-grams
EP 19K 520K 760K
GW (xie) 120K 3M 5M
RCV1 630K 21M 42M

Table 1: Sample statistics of uniquen-gram counts from
the streams from epoch 2 of our timeline. Thethroughput
rate varies a lot between streams.

5 Experiments

Here we report on our SMT experiments with multi-
ple streams for translation using the approaches out-
lined in the previous section.

5.1 Experimental Setup

The SMT setup we employ is standard and all re-
sources used are publicly available. We translate
from Spanish into English using phrase-based de-
coding with Moses (Koehn and Hoang, 2007) as our
decoder. Our parallel data came from Europarl.

We use three streams (all are timestamped):
RCV1 (Rose et al., 2002), Europarl (EP) (Koehn,
2003), and Gigaword (GW) (Graff et al., 2007). GW
is taken from six distinct newswire sources but in
our initial experiments we limit the incoming stream
from Gigaword to one of the sources (xie). GW and
RCV1 are both newswire domain streams with high
rates of incoming data whereas EP is a more nu-
anced, smaller throughput domain of spoken tran-
scripts taken from sessions of the European Parlia-
ment. The RCV1 corpus only spans one calender
year from October, 1996 through September, 1997
so we selected only data in this time frame from
the other two streams so our timeline consists of the
same full calendar year for all streams.

For this work we use the ORLM. The crux of the
ORLM is an online perfect hash function that pro-
vides the ability to insert and delete from the data
structure. Consequently the ORLM has the abil-
ity to adapt to an unbounded input stream whilst
maintaining both constant memory usage and error
rate. All the ORLMs were 5-gram models built with
training data from the streams discussed above and
used Stupid Backoff smoothing forn-gram scoring
(Brants et al., 2007). All results are reported using
the BLEU metric (Papineni et al., 2001).

For testing we held-out three random test points
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LM Type Test 1 Test 2 Test 3
RCV1 (Static) 39.30 38.28 33.06
RCV1 (Online) 39.30 40.64 39.19
EP (Online) 30.22 30.31 26.66
RCV1+EP (Online) 39.00 40.15 39.46
RCV1+EP+GW (Online) 41.29 41.73 40.41

Table 2: Results for the RCV1 test points. RCV1 and GW
streams are in-domain and EP is out-of-domain. Transla-
tion results are improved using more stream data since
mostn-grams are in-domain to the test points.

from both the RCV1 and EP stream’s timeline for
a total of six test points. This divided the streams
into threeepochs, and we updated the online LM
using the data encountered in the epoch prior to each
translation point. Then-grams and their counts from
the streams are combined in the LM using one of the
approaches from the previous section.

Using the notation from Section 4 we have the
RCV1, EP, and GW streams described above and
K = 3 as the number of incoming streams from two
distinct domains (newswire and spoken dialogue).
Our timelineT is one year’s worth of data split into
three epochs,t ∈ {1, 2, 3}, with test points at the
end of each epocht. Since we have no test points
from the GW stream it acts as a background stream
for these experiments.1

5.2 Baselines and Naive Combinations

In this section we report on our translation exper-
iments using a single stream and the naive linear
combination approach with multiple incoming data
streams from Section 4.1.

Using the RCV1 corpus as our input stream we
tested single stream translation first. Here we are
replicating the experiments from Levenberg and Os-
borne (2009) so both training and test data comes
from a single in-domain stream. Results are in Table
2 where each row represents a different LM type.
RCV1 (Static) is the traditional baseline with no
adaptation where we use the training data for the first
epoch of the stream.RCV1 (Online) is the online
LM adapted with data from the in-domain stream.
Confirming the previous work we get improvements

1A background stream is one that only serves as training
data for all other test domains.

LM Type Test 1 Test 2 Test 3
EP (Static) 42.09 44.15 36.42
EP (Online) 42.09 45.94 37.22
RCV1 (Online) 36.46 42.10 32.73
EP+RCV1 (Online) 40.82 44.07 35.01
EP+RCV1+GW (Online) 40.91 44.05 35.56

Table 3: EP results using in and out-of-domain streams.
The last two rows show that naive combination gets poor
results compared to single stream approaches.

when using an online LM that incorporates recent
data against a static baseline.

We then ran the same experiments using a stream
generated from the EP corpus. EP consists of the
proceedings of the European Parliament and is a sig-
nificantly different domain than the RCV1 newswire
stream. We updated the online LM usingn-grams
from the latest stream epoch before translating each
in-domain EP test set. Results are in Table 3 and fol-
low the same naming convention as Table 2 (except
now in-domain is EP and out-of-domain is RCV1).

Using a single stream we also cross tested and
translated each test point using the online LM
adapted on the out-of-domain stream. As expected,
translation performance decreases (sometimes dras-
tically) in this case since the data of the out-of-
domain stream are not suited to the domain of the
current test point being translated.

We then tested the naive approach and combined
both streams into a single LM by taking the union of
then-grams and adding their counts together. This
is theRCV1+EP (Online) row in Tables 2 and 3 and
clearly, though it contains more data compared to
each single stream LM, the naively combined LM
does not help the RCV1 test points much and de-
grades the performance of the EP translation results.
This translation hit occurs as the throughput of each
stream is significantly different. The EP stream con-
tains far less data per epoch than the RCV1 counter-
part (see Table 1) hence using a naive combination
means that the more abundant newswire data from
the RCV1 stream overrides the probabilities of the
more domain specific EPn-grams during decoding.

When we added a third newswire stream from a
portion of GW, shown in the last row of Tables 2
and 3, improvements are obtained for the RCV1 test
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Weighting Test 1 Test 2 Test 3
.33R + .33E + .33G 38.97 39.78 35.66
.50R + .25E + .25G 39.59 40.40 37.22
.25R + .50E + .25G 36.57 38.03 34.23
.70R + 0.0E + .30G 40.54 41.46 39.23

Table 4: Weighted LM interpolation results for the RCV1
test points whereE = Europarl,R = RCV1, andG =
Gigaword (xie).

points due to the addition of in-domain data but the
EP test performance still suffers.

This highlights why naive combination is unsat-
isfactory. While using more in-domain data aids
in the translation of the newswire tests, for the EP
test sets, naively combining then-grams from all
streams means the hypotheses the decoder selects
are weighted heavily in favor of the out-of-domain
data. As the out-of-domain stream’s throughput is
significantly larger it swamps the model.

5.3 Interpolating Weighted Streams

Straightforward linear stream combination into a
single LM results in degradation of translations for
test points whose in-domain training data is drawn
from a stream with lower throughput than the other
data streams. We could maintain a separate MT sys-
tem for each streaming domain but intuitively some
combination of the streams may benefit average per-
formance since using all the data available should
benefit test points from streams with low through-
put. To test this we used an alternative approach de-
scribed in Section 4.2 and used a weighted combi-
nation of the single stream LMs during decoding.

We tested this approach using our three streams:
RCV1, EP and GW (xie). We used a separate
ORLM for each stream and then, during testing, the
result returned for ann-gram queried by the decoder
was a value obtained from some weighted interpola-
tion of each individual LM’s score for thatn-gram.
To get the interpolation weights for each streaming
LM we minimised the perplexity of all the mod-
els on held-out development data from the streams.
2 Then we used the corresponding stream specific

2Due to the lossy nature of the encoding of the ORLM
means that the perplexity measures were approximations.
Nonetheless the weighting from this approach had the best per-
formance.

Weighting Test 1 Test 2 Test 3
.33E + .33R + .33G 40.75 45.65 35.77
.50E + .25R + .25G 41.46 46.37 36.94
.25E + .50R + .25G 40.57 44.90 35.77
.70E + .20R + .10G 42.47 46.83 38.08

Table 5: EP results in BLEU for the interpolated LMs.

weights to decode the test points from that domain.
Results are shown in Tables 4 and 5 using the

weighting scheme described above plus a selec-
tion of random parameter settings for comparison.
Using the notation from Section 4.2, a caption of
“ .5R+ .25E+ .25G”, for example, denotes a weight-
ing of fRCV 1 = 0.5 for the scores returned from the
RCV1 stream LM whilefEP andfGW = 0.25 for
the EP and GW stream LMs.

The weighted interpolation results suggest that
while naive combination of the streams may be mis-
guided, average translation performance can be im-
proved upon when using more than a single in-
domain stream. Comparing the best results in Tables
2 and 3 to the single stream baselines in Tables 4 and
5 we achieve comparable, if not improved, transla-
tion performance forboth domains. This is espe-
cially true for test domains such as EP which have
low training data throughput from the stream. Here
adding some information from the out-of-domain
stream that contains a lot more data aids signifi-
cantly in the translation of in-domain test points.

However, the optimal weighting differs between
each test domain. For instance, the weighting that
gives the best results for the EP tests results in much
poorer translation performance for the RCV1 test
points requiring us to track which stream we are
decoding and then select the appropriate weighting.
This adds unnecessary complexity to the SMT sys-
tem. And, since we store each stream separately,
memory usage is not optimal using this scheme.

5.4 History and Subsampling

For space efficiency we want to represent multi-
ple streams non-redundantly instead of storing each
stream/domain in its own LM. Here we report on
experiments using both the history combination and
subsampling approaches from Sections 4.3 and 4.4.

Results are in Tables 6 and 7 for the RCV1 and
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LM Type Test 1 Test 2 Test 3
Multi-fk 41.19 41.73 39.23
Multi-fT 41.29 42.23 40.51
Multi-fk + fT 41.19 42.52 40.12

Table 6: RCV1 test results using history and subsampling
approaches.

LM Type Test 1 Test 2 Test 3
Multi-fk 40.91 43.50 36.11
Multi-fT 40.91 47.84 39.29
Multi-fk + fT 40.91 48.05 39.23

Table 7: Europarl test results with history and subsam-
pling approaches.

EP test sets respectively with the column headers
denoting the test point. The rowMulti-fk shows
results using only the random subsampling param-
eterfk and the rowsMulti-fT show results with just
the time-based adaptation parameter without sub-
sampling. The final rowMulti-fk + fT uses both
thef parameters with random subsampling as well
as taking decoding history into account.

Multi-fk uses the random subsampling parame-
ter fk to filter out higher ordern-grams from the
streams. Alln-grams that are sampled from the
streams are then combined into the joint LM. The
counts of n-grams sampled from more than one
stream are added together in the composite LM. The
parameterfk is set dependent on a stream’s through-
put rate, we only subsample from the streams with
high throughput, and the rate was chosen based on
the weighted interpolation results described previ-
ously. In Tables 6 and 7 the subsampling ratefk =
0.3 for the combined newswire streams RCV1 and
GW and we kept all of the EP data. We experi-
mented with various other values for thefk sampling
rates and found translation results only minorly im-
pacted. Note that the subsampling is truly random
so two adaptation runs with equal subsampling rates
may produce different final translations. Nonethe-
less, in our experiments we saw expected perfor-
mance, observing slight variation in performance for
all test points that correlated to the percentage of in-
domain data residing in the model.

The next row,Multi-fT , uses recency criteria to
keep potentially usefuln-grams but uses no subsam-

pling and accepts alln-grams from all streams into
the LM. Here we get better results than naive combi-
nation or plain subsampling at the expense of more
memory for the same error rate for the ORLM.

The final row,Multi-fk + fT uses both the sub-
sampling functionfk andfT so maintains a history
of then-grams queried by the decoder for the prior
test points. This approach achieves significantly bet-
ter results than naive adaptation and compares to us-
ing all the data in the stream. Combining translation
history as well as doing random subsampling over
the stream means we match the performance of but
use far less memory than when using multiple online
LMs whilst maintaining the same error rate.

5.5 Experiments Summary

We have shown that using data from multiple
streams benefits SMT performance. Our best ap-
proach, using history based combination along with
subsampling, combines all incoming streams into a
single, succinct LM and obtains translation perfor-
mance equal to single stream, domain specific LMs
on all test domains. Crucially we do this in bounded
space, require less memory than storing each stream
separately, and do not incur translation degradations
on any single domain.

A note on memory usage. The multiple LM ap-
proach uses the most memory since this requires
all overlappingn-grams in the streams to be stored
separately. The naive and history combination ap-
proaches use less memory since they store alln-
grams from all the streams in a unified LM. For the
sampling the exact amount of memory is of course
dependent on the sampling rate used. For the results
in Tables 6 and 7 we used significantly less memory
(300MB) but still achieved comparable performance
to approaches that used more memory by storing the
full streams (600MB).

6 Scaling Up

The experiments described in the preceding section
used combinations of relatively small (compared to
current industry standards) input streams. The ques-
tion remains if using such approaches aids in the per-
formance of translation if used in conjunction with
large static LMs trained on large corpora. In this
section we describe scaling up the previous stream-
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Order Count
1-grams 3.7M
2-grams 46.6M
3-grams 195.5M
4-grams 366.8M
5-grams 454.2M

Total 1067M

Table 8: Singleton-prunedn-gram counts (in millions)
for the GW3 background LM.

LM Type Test 1 Test 2 Test 3
GW (static) 41.69 42.40 35.48
+ RCV1 (online) 42.44 43.83 40.55
+ EP (online) 42.80 43.94 38.82

Table 9: Test results for the RCV1 stream using the large
background LM. Using stream data benefits translation.

based translation experiments using a large back-
ground LM trained on a billionn-grams.

We used the same setup described in Section 5.1.
However, instead of using only a subset of the GW
corpus as one of our incoming streams, we trained
a static LM using thefull GW3 corpus of over three
billion tokens and used it as a background LM. As
then-gram statistics for this background LM show
in Table 8, it contains far more data than each of the
stream specific LMs (Table 1). We tested whether
using streams atop this large background LM had a
positive effect on translation for a given domain.

Baseline results for all test points using only the
GW background LM are shown in the top row in
Tables 9 and 10. We then interpolated the ORLMs
with this LM. For each stream test point we interpo-
lated with the big GW LM an online LM built with
the most recent epoch’s data. Here we used sepa-
rate models per stream so the RCV1 test points used
the GW LM along with a RCV1 specific ORLM. We
used the same mechanism to obtain the interpolation
weights as described in Section 5.3 and minimised
the perplexity of the static LM along with the stream
specific ORLM. Interestingly, the tuned weights re-
turned gave approximately a 50-50 weighting be-
tween LMs and we found that simply using a 50-50
weighting for all test points resulted had no negative
effect on BLEU. In the third row of the Tables 9 and
10 we show the results of interpolating the big back-

LM Type Test 1 Test 2 Test 3
GW (static) 40.78 44.26 34.36
+ EP (online) 43.94 47.82 38.71
+ RCV1 (online) 43.07 47.72 39.15

Table 10: EP test results using the background GW LM.

ground LM with ORLMs built using the approach
described in Section 4.4. In this case all streams
were combined into a single LM using a subsam-
pling rate for higher ordern-grams. As before our
sampling rate for the newswire streams was 30%
chosen by the perplexity reduction weights.

The results show that even with a large amount
of static data adding small amounts of stream spe-
cific data relevant to a given test point has an im-
pact on translation quality. Compared to only us-
ing the large background model we obtain signifi-
cantly better results when using a streaming ORLM
to compliment it for all test domains. However the
large amount of data available to the decoder in
the background LM positively impacts translation
performance compared to single-stream approaches
(Tables 2 and 3). Further, when we combine the
streams into a single LM using the subsampling ap-
proach we get, on average, comparable scores for all
test points. Thus we see that the patterns for multi-
ple stream adaptation seen in previous sections hold
in spite of big amounts of static data.

7 Conclusions and Future Work

We have shown how multiple streams can be effi-
ciently incorporated into a translation system. Per-
formance need not degrade on any of the streams.
As well, these results can be additive. Even when
using large amounts of additional background data,
adding stream specific data continues to improve
translation. Further, we achieve all results in
bounded space. Future work includes investigating
more sophisticated adaptation for multiple streams.
We also plan to explore alternative ways of sampling
the stream when incorporating data.
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