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Abstract 

This paper proposes a new automatic ma-

chine translation evaluation metric: 

AMBER, which is based on the metric 

BLEU but incorporates recall, extra penal-

ties, and some text processing variants. 

There is very little linguistic information in 

AMBER. We evaluate its system-level cor-

relation and sentence-level consistency 

scores with human rankings from the 

WMT shared evaluation task; AMBER 

achieves state-of-the-art performance. 

1 Introduction 

Automatic evaluation metrics for machine transla-

tion (MT) quality play a critical role in the devel-

opment of statistical MT systems. Several metrics 

have been proposed in recent years.  Metrics such 

as BLEU (Papineni et al., 2002), NIST (Dodding-

ton, 2002), WER, PER, and TER (Snover et al., 

2006) do not use any linguistic information - they 

only apply surface matching. METEOR (Banerjee 

and Lavie, 2005), METEOR-NEXT (Denkowski 

and Lavie 2010), TER-Plus (Snover et al., 2009), 

MaxSim (Chan and Ng, 2008), and TESLA (Liu et 

al., 2010) exploit some limited linguistic resources, 

such as synonym dictionaries, part-of-speech tag-

ging or paraphrasing tables. More sophisticated 

metrics such as RTE (Pado et al., 2009) and DCU-

LFG (He et al., 2010) use higher level syntactic or 

semantic analysis to score translations. 

Though several of these metrics have shown bet-

ter correlation with human judgment than BLEU, 

BLEU is still the de facto standard evaluation me-

tric. This is probably due to the following facts: 

1. BLEU is language independent (except for 

word segmentation decisions).  

2. BLEU can be computed quickly. This is im-

portant when choosing a metric to tune an 

MT system. 

3. BLEU seems to be the best tuning metric 

from a quality point of view - i.e., models 

trained using BLEU obtain the highest 

scores from humans and even from other 

metrics (Cer et al., 2010). 

When we developed our own metric, we decided 

to make it a modified version of BLEU whose 

rankings of translations would (ideally) correlate 

even more highly with human rankings. Thus, our 

metric is called AMBER: “A Modified Bleu, En-

hanced Ranking” metric. Some of the AMBER 

variants use an information source with a mild lin-

guistic flavour – morphological knowledge about 

suffixes, roots and prefixes – but otherwise, the 

metric is based entirely on surface comparisons.  

2 AMBER 

Like BLEU, AMBER is composed of two parts: a 

score and a penalty. 
 

penaltyscoreAMBER ×=                 (1)  

 

To address weaknesses of BLEU described in 

the literature (Callison-Burch et al., 2006; Lavie 

and Denkowski, 2009), we use more sophisticated 

formulae to compute the score and penalty. 

2.1 Enhancing the score 

First, we enrich the score part with geometric av-

erage of n-gram precisions (AvgP), F-measure de-

rived from the arithmetic averages of precision and 

recall (Fmean), and arithmetic average of F-

measure of precision and recall for each n-gram 

(AvgF). Let us define n-gram precision and recall 

as follows: 
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where T = translation, R = reference.  

Then the geometric average of n-gram preci-

sions AvgP, which is also the score part of the 

BLEU metric, is defined as: 
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The arithmetic averages for n-gram precision 

and recall are: 
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 The F-measure that is derived from P(N) and 

R(M), (Fmean), is given by: 
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The arithmetic average of F-measure of preci-

sion and recall for each n-gram (AvgF) is given by: 
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The score is the weighted average of the three 

values: AvgP, Fmean, and AvgF. 
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The free parameters N, M,α , 
1θ  and 

2θ  were  

manually tuned on a dev set.  

2.2 Various penalties 

Instead of the original brevity penalty, we experi-

mented with a product of various penalties: 
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where wi is the weight of each penalty peni.  

Strict brevity penalty (SBP): (Chiang et al., 

2008) proposed this penalty. Let ti be the transla-

tion of input sentence i, and let ri be its reference 

(or if there is more than one, the reference whose 

length in words || ir  is closest to length || it ). Set 
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Strict redundancy penalty (SRP): long sen-

tences are preferred by recall. Since we rely on 

both recall and precision to compute the score, it is 

necessary to punish the sentences that are too long.  
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Character-based strict brevity penalty 
(CSBP) and Character-based strict redundancy 

penalty (CSRP) are defined similarly. The only 

difference with the above two penalties is that 

here, length is measured in characters. 

Chunk penalty (CKP): the same penalty as in 

METEOR: 
β

γ 

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γ and β  are free parameters. We do not compute 

the word alignment between the translation and 

reference; therefore, the number of chunks is com-

puted as )(#)(## wordmatchesbigrammatcheschunks −= . 

For example, in the following two-sentence trans-

lation (references not shown), let “mi” stand for a 

matched word, “x” stand for zero, one or more 

unmatched words:  

S1: m1 m2 x m3 m4 m5 x m6  

S2: m7 x m8 m9 x m10 m11 m12 x m13 

If we consider only unigrams and bigrams, there 

are 13 matched words and 6 matched bigrams (m1 

m2, m3 m4, m4 m5, m8 m9, m10 m11, m11 m12), so there 

are 13-6=7 chunks (m1 m2, m3 m4 m5, m6, m7, m8 m9, 

m10 m11 m12, m13).  

Continuity penalty (CTP): if all matched 

words are continuous, then 

segmentRTgramsn

RTngrams

#)()1(#

)(#

−∩−

∩
 equals 1.  

Example: 

S3: m1 m2 m3 m4 m5m6  

S4: m7 m8 m9m10 m11 m12 m13 

There are 13 matched unigrams, and 11 matched 

bi-grams; we get 11/(13-2)=1. Therefore, a conti-

nuity penalty is computed as: 
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Short word difference penalty (SWDP): a 

good translation should have roughly the same 

number of stop words as the reference. To make 

AMBER more portable across all Indo-European 

languages, we use short words (those with fewer 

than 4 characters) to approximate the stop words.   

)
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where a and b are the number of short words in the 

translation and reference respectively. 

Long word difference penalty (LWDP): is de-

fined similarly to SWDP.  
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where c and d  are the number of long words (those 

longer than 3 characters) in the translation and ref-

erence respectively. 

Normalized Spearman’s correlation penalty 
(NSCP): we adopt this from (Isozaki et al., 2010). 

This penalty evaluates similarity in word order be-

tween the translation and reference. We first de-

termine word correspondences between the 

translation and reference; then, we rank words by 

their position in the sentences. Finally, we compute 

Spearman’s correlation between the ranks of the n 

words common to the translation and reference. 
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where di indicates the distance between the ranks 

of the i-th element. For example: 

T: Bob reading book likes 

R: Bob likes reading book  

The rank vector of the reference is [1, 2, 3, 4], 

while the translation rank vector is [1, 3, 4, 2]. The 

Spearman’s correlation score between these two 

vectors is 
)14(4)14(

)42()34()23(0
1

222

−⋅⋅+

−+−+−+
− =0.90. 

In order to avoid negative values, we normalized 

the correlation score, obtaining the penalty NSCP: 

2)1( /ρNSCP +=                     (17) 

Normalized Kendall’s correlation penalty 
(NKCP):  this is adopted from (Birch and Os-

borne, 2010) and (Isozaki et al., 2010). In the pre-

vious example, where the rank vector of the 

translation is [1, 3, 4, 2], there are 62

4 =C  pairs of 

integers. There are 4 increasing pairs: (1,3), (1,4), 

(1,2) and (3,4). Kendall’s correlation is defined by:  

1
#

#
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τ         (18) 

Therefore, Kendall’s correlation for the transla-

tion “Bob reading book likes” is 16/42 −× =0.33. 

Again, to avoid negative values, we normalized 

the coefficient score, obtaining the penalty NKCP: 

2)1( /NKCP τ+=                     (19) 

2.3 Term weighting 

The original BLEU metric weights all n-grams 

equally; however, different n-grams have different 

amounts of information. We experimented with 

applying tf-idf to weight each n-gram according to 

its information value. 

2.4 Four matching strategies 

In the original BLEU metric, there is only one 

matching strategy: n-gram matching. In AMBER, 

we provide four matching strategies (the best 

AMBER variant used three of these): 

1. N-gram matching: involved in computing 

precision and recall. 

2. Fixed-gap n-gram: the size of the gap be-

tween words “word1 [] word2” is fixed; 

involved in computing precision only. 

3. Flexible-gap n-gram:  the size of the gap 

between words “word1 * word2” is flexi-

ble; involved in computing precision only. 

4. Skip n-gram: as used ROUGE (Lin, 2004); 

involved in computing precision only. 

2.5 Input preprocessing 

The AMBER score can be computed with different 

types of preprocessing. When using more than one 

type, we computed the final score as an average 

over runs, one run per type (our default AMBER 

variant used three of the preprocessing types): 
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We provide 8 types of possible text input: 

0. Original - true-cased and untokenized. 
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1. Normalized - tokenized and lower-cased.  

(All variants 2-7 below also tokenized and 

lower-cased.)  

2. “Stemmed” - each word only keeps its first 

4 letters. 

3. “Suffixed” - each word only keeps its last 

4 letters. 

4. Split type 1 - each longer-than-4-letter 

word is segmented into two sub-words, 

with one being the first 4 letters and the 

other the last 2 letters. If the word has 5 

letters, the 4
th
 letter appears twice: e.g., 

“gangs” becomes “gang” + “gs”. If the 

word has more than 6 letters, the middle 

part is thrown away 

5. Split type 2 - each word is segmented into 

fixed-length (4-letter) sub-word sequences, 

starting from the left.  

6. Split type 3 - each word is segmented into 

prefix, root, and suffix. The list of English 

prefixes, roots, and suffixes used to split 

the word is from the Internet
1
; it is used to 

split words from all languages. Linguistic 

knowledge is applied here (but not in any 

other aspect of AMBER).  

7. Long words only - small words (those with 

fewer than 4 letters) are removed. 

3 Experiments 

3.1 Experimental data 

We evaluated AMBER on WMT data, using WMT 

2008 all-to-English submissions as the dev set. 

Test sets include WMT 2009 all-to-English, WMT 

2010 all-to-English and 2010 English-to-all sub-

missions. Table 1 summarizes the dev and test set 

statistics. 
Set Dev Test1 Test2 Test3 

Year 2008 2009 2010 2010 

Lang. xx-en xx-en xx-en en-xx 

#system 43 39 53 32 

#sent-pair 7,861 13,912 14,212 13,165 

Table 1: statistics of the dev and test sets. 

                                                           
1http://en.wikipedia.org/wiki/List_of_Greek_and_Latin_roots_

in_English 

3.2 Default settings 

Before evaluation, we manually tuned all free pa-

rameters on the dev set to maximize the system-

level correlation with human judgments and de-

cided on the following default settings for 

AMBER:   

1. The parameters in the formula  
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are set as  N=4, M=1, α =0.9, 1θ = 0.3 

and 
2θ = 0.5.  

2. All penalties are applied; the manually set 

penalty weights are shown in Table 2. 

3. We took the average of runs over input text 

types 1, 4, and 6 (i.e. normalized text, 

split type 1 and split type 3).  

4. In Chunk penalty (CKP), 3=β , and 

γ =0.1. 

5. By default, tf-idf is not applied.  

6. We used three matching strategies: n-gram, 

fixed-gap n-gram, and flexible-gap n-

gram; they are equally weighted. 

 

Name of penalty Weight value 

SBP 0.30 

SRP 0.10 

CSBP 0.15 

CSRP 0.05 

SWDP 0.10 

LWDP 0.20 

CKP 1.00 

CTP 0.80 

NSCP 0.50 

NKCP 2.00 
Table 2: Weight of each penalty 

3.3 Evaluation metrics 

We used Spearman’s rank correlation coefficient to 

measure the correlation of AMBER with the hu-

man judgments of translation at the system level. 

The human judgment score we used is based on the 

“Rank” only, i.e., how often the translations of the 

system were rated as better than the translations 

from other systems (Callison-Burch et al., 2008). 

Thus, AMBER and the other metrics were eva-

luated on how well their rankings correlated with 

74



the human ones. For the sentence level, we use 

consistency rate, i.e., how consistent the ranking of 

sentence pairs is with the human judgments. 

3.4 Results 

All test results shown in this section are averaged 

over all three tests described in 3.1. First, we com-

pare AMBER with two of the most widely used 

metrics: original IBM BLEU and METEOR v1.0. 

Table 3 gives the results; it shows both the version 

of AMBER with basic preprocessing, AMBER(1) 

(with tokenization and lowercasing) and the default 

version used as baseline for most of our experi-

ments (AMBER(1,4,6)). Both versions of AMBER 

perform better than BLEU and METEOR on both 

system and sentence levels. 
 

Metric   Dev     3 tests average   ∆ tests 

BLEU_ibm 

(baseline) 

sys 

sent 

0.68            0.72               N/A 

0.37            0.40               N/A 

METEOR 

     v1.0 

sys 

sent 

0.80            0.80              +0.08 

0.58            0.56              +0.17 

AMBER(1) 

(basic preproc.) 

sys 

sent 

0.83            0.83              +0.11 

0.61            0.58              +0.19 

AMBER(1,4,6) 

(default)  

sys 

sent 

0.84            0.86              +0.14 

0.62            0.60              +0.20 

 

 Table 3: Results of AMBER vs BLEU and METEOR 

 

Second, as shown in Table 4, we evaluated the 

impact of different types of preprocessing, and 

some combinations of preprocessing (we do one 

run of evaluation for each type and average the 

results). From this table, we can see that splitting 

words into sub-words improves both system- and 

sentence-level correlation. Recall that input 6 pre-

processing splits words according to a list of Eng-

lish prefixes, roots, and suffixes: AMBER(4,6) is 

the best variant. Although test 3 results, for target 

languages other than English, are not broken out 

separately in this table,  they are as follows: input 1 

yielded 0.8345  system-level correlation and 

0.5848 sentence-level consistency, but input 6 

yielded 0.8766 (+0.04 gain) and 0.5990 (+0.01) 

respectively. Thus, surprisingly, splitting non-

English words up according to English morpholo-

gy helps performance, perhaps because French, 

Spanish, German, and even Czech share some 

word roots with English. However, as indicated by 

the underlined results, if one wishes to avoid the 

use of any linguistic information, AMBER(4) per-

forms almost as well as AMBER(4,6). The default 

setting, AMBER(1,4,6), doesn’t perform quite as 

well as AMBER(4,6) or AMBER(4), but is quite 

reasonable.  

Varying the preprocessing seems to have more 

impact than varying the other parameters we expe-

rimented with.  In Table 5, “none+tf-idf” means 

we do one run without tf-idf and one run for “tf-idf 

only”, and then average the scores. Here, applying 

tf-idf seems to benefit performance slightly. 

 
Input   Dev     3 tests average     ∆ tests 

0  

(baseline) 

sys 

sent 

0.84            0.79                 N/A 

0.59            0.58                 N/A 

1 sys 

sent 

0.83            0.83               +0.04 

0.61            0.58               +0.00 

2 sys 

sent 

0.83            0.84               +0.05 

0.61            0.59               +0.01 

3 sys 

sent 

0.83            0.84               +0.05 

0.61            0.58               +0.00 

4 sys 

sent 

0.84            0.87               +0.08 

0.62            0.60               +0.01 

5 sys 

sent 

0.82            0.86               +0.07 

0.61            0.56               +0.01 

6 sys 

sent 

0.83            0.88               +0.09 

0.62            0.60               +0.02 

7 sys 

sent 

0.34            0.56               -0.23 

0.58            0.53               -0.05 

1,4 sys 

sent 

0.84            0.85               +0.07 

0.62            0.60               +0.01 

4,6 sys 

sent 

0.83            0.88               +0.09 

0.62            0.60               +0.02 

1,4,6 sys 

sent 

0.84            0.86               +0.07 

0.62            0.60               +0.02 

 
Table 4: Varying AMBER preprocessing (best  

linguistic = bold, best non-ling. = underline) 

 
tf-idf    Dev     3 tests average    ∆ tests 

none 

(baseline) 

sys 

sent 

0.84             0.86                N/A 

0.62             0.60                N/A 

tf-idf 

only 

sys 

sent 

0.81             0.88              +0.02 

0.62             0.61              +0.01 

none+tf-

idf 

sys 

sent 

0.82             0.87              +0.01 

0.62             0.61              +0.01 

 

Table 5: Effect of tf-idf on AMBER(1,4,6) 

 

Table 6 shows what happens if you disable one 

penalty at a time (leaving the weights of the other 

penalties at their original values). The biggest sys-

tem-level performance degradation occurs when 

LWDP is dropped, so this seems to be the most 
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useful penalty. On the other hand, dropping CKP, 

CSRP, and SRP may actually improve perfor-

mance. Firm conclusions would require retuning of 

weights each time a penalty is dropped; this is fu-

ture work.  

 
Penalties    Dev     3 tests average    ∆ tests 

All 

(baseline) 

sys 

sent 

0.84            0.86               N/A 

0.62            0.60               N/A 

-SBP sys 

sent 

0.82            0.84               -0.02 

0.62            0.60               -0.00 

-SRP sys 

sent 

0.83            0.88              +0.01 

0.62            0.60              +0.00 

-CSBP sys 

sent 

0.84            0.85               -0.01 

0.62            0.60              +0.00 

-CSRP sys 

sent 

0.83            0.87              +0.01 

0.62            0.60               -0.00 

-SWDP sys 

sent 

0.84            0.86               -0.00 

0.62            0.60              +0.00 

-LWDP sys 

sent 

0.83            0.83               -0.03 

0.62            0.60               -0.00 

-CTP sys 

sent 

0.82            0.84               -0.02 

0.62            0.60               -0.00 

-CKP sys 

sent 

0.83            0.87              +0.01 

0.62            0.60               -0.00 

-NSCP sys 

sent 

0.83            0.86               -0.00 

0.62            0.60              +0.00 

-NKCP sys 

sent 

0.82            0.85               -0.01 

0.62            0.60              +0.00 

 
Table 6: Dropping penalties from AMBER(1,4,6) – 

biggest drops on test in bold 

 
Matching   Dev     3 tests avg     ∆ tests 

n-gram + fxd-

gap+ flx-gap 

(default) 

sys 

sent 

0.84             0.86         N/A 

0.62             0.60         N/A 

n-gram sys 

sent 

0.84             0.86         -0.00 

0.62             0.60         -0.00 

fxd-gap+ 

 n-gram 

sys 

sent 

0.84             0.86         -0.00 

0.62             0.60         -0.00 

flx-gap+ 

 n-gram 

sys 

sent 

0.83             0.86         -0.00 

0.62             0.60         -0.00 

skip+ 

 n-gram 

sys 

sent 

0.83             0.85         -0.01 

0.62             0.60         -0.00 

All four 

matchings 

sys 

sent 

0.83             0.86         -0.01 

0.62             0.60          0.00 

Table 7: Varying matching strategy for AMBER(1,4,6) 

 

Finally, we evaluated the effect of the matching 

strategy. According to the results shown in Table 

7, our default strategy, which uses three of the four 

types of matching (n-grams, fixed-gap n-grams, 

and flexible-gap n-grams) is close to optimal;  the 

use of skip n-grams (either by itself or in combina-

tion) may hurt performance at both system and 

sentence levels.  

4 Conclusion 

This paper describes AMBER, a new machine 

translation metric that is a modification of the 

widely used BLEU metric. We used more sophisti-

cated formulae to compute the score, we developed 

several new penalties to match the human judg-

ment, we tried different preprocessing types, we 

tried tf-idf, and we tried four n-gram matching 

strategies. The choice of preprocessing type 

seemed to have the biggest impact on performance. 

AMBER(4,6) had the best performance of any va-

riant we tried. However, it has the disadvantage of 

using some light linguistic knowledge about Eng-

lish morphology (which, oddly, seems to be help-

ful for other languages too). A purist may prefer 

AMBER(1,4) or AMBER(4), which use no linguis-

tic information and still match human judgment 

much more closely than either BLEU or 

METEOR. These variants of AMBER share 

BLEU’s virtues: they are language-independent 

and can be computed quickly. 

Of course, AMBER could incorporate more lin-

guistic information: e.g., we could use linguistical-

ly defined stop word lists in the SWDP and LWDP 

penalties, or use synonyms or paraphrasing in the 

n-gram matching.  

AMBER can be thought of as a weighted com-

bination of dozens of computationally cheap fea-

tures based on word surface forms for evaluating 

MT quality. This paper has shown that combining 

such features can be a very effective strategy for 

attaining better correlation with human judgment. 

Here, the weights on the features were manually 

tuned; in future work, we plan to learn weights on 

features automatically. We also plan to redesign 

AMBER so that it becomes a metric that is highly 

suitable for tuning SMT systems. 
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