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Abstract

We present a pilot study on an evaluation
method which is able to rank translation out-
puts with no reference translation, given only
their source sentence. The system employs a
statistical classifier trained upon existing hu-
man rankings, using several features derived
from analysis of both the source and the tar-
get sentences. Development experiments on
one language pair showed that the method
has considerably good correlation with human
ranking when using features obtained from a
PCFG parser.

1 Introduction

Automatic evaluation metrics for Machine Transla-
tion (MT) have mainly relied on analyzing both the
MT output against (one or more) reference transla-
tions. Though, several paradigms in Machine Trans-
lation Research pose the need to estimate the quality
through many translation outputs, when no reference
translation is given (n-best rescoring of SMT sys-
tems, system combination etc.). Such metrics have
been known as Confidence Estimation metrics and
quite a few projects have suggested solutions on this
direction. With our submission to the Shared Task,
we allow such a metric to be systematically com-
pared with the state-of-the-art reference-aware MT
metrics.

Our approach suggests building a Confidence Es-
timation metric using already existing human judg-
ments. This has been motivated by the existence
of human-annotated data containing comparisons of
the outputs of several systems, as a result of the
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evaluation tasks run by the Workshops on Statistical
Machine Translation (WMT) (Callison-Burch et al.,
2008; Callison-Burch et al., 2009; Callison-Burch
et al., 2010). This amount of data, which has been
freely available for further research, gives an op-
portunity for applying machine learning techniques
to model the human annotators’ choices. Machine
Learning methods over previously released evalua-
tion data have been already used for tuning com-
plex statistical evaluation metrics (e.g. SVM-Rank
in Callison-Burch et al. (2010)). Our proposition
is similar, but works without reference translations.
We develop a solution of applying machine learning
in order to build a statistical classifier that performs
similar to the human ranking: it is trained to rank
several MT outputs, given analysis of possible qual-
itative criteria on both the source and the target side
of every given sentence. As qualitative criteria, we
use statistical features indicating the quality and the
grammaticality of the output.

2 Automatic ranking method

2.1 From Confidence Estimation to ranking

Confidence estimation has been seen from the Nat-
ural Language Processing (NLP) perspective as a
problem of binary classification in order to assess
the correctness of a NLP system output. Previ-
ous work focusing on Machine Translation includes
statistical methods for estimating correctness scores
or correctness probabilities, following a rich search
over the spectrum of possible features (Blatz et al.,
2004a; Ueffing and Ney, 2005; Specia et al., 2009;
Raybaud and Caroline Lavecchia, 2009; Rosti et al.,
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2007).

In this work we slightly transform the binary clas-
sification practice to fit the standard WMT human
evaluation process. As human annotators have pro-
vided their evaluation in the form of ranking of five
system outputs at a sentence level, we build our eval-
uation mechanism with similar functionality, aim-
ing to training from and evaluating against this data.
Evaluation scores and results can be then calculated
based on comparative analysis of the performance of
each system.

Whereas latest work, such as Specia et al. (2010),
has focused on learning to assess segment perfor-
mance independently for each system output, our
contribution measures the performance by compar-
ing the system outputs with each other and con-
sequently ranking them. The exact method is de-
scribed below.

2.2 Internal pairwise decomposition

We build one classifier over all input sentences.
While the evaluation mechanism is trained and eval-
uated on a multi-class (ranking) basis as explained
above, the classifier is expected to work on a binary
level: we provide the features from the analysis of
the two system outputs and the source, and the clas-
sifier should decide if the first system output is better
than the second one or not.

In order to accomplish such training, the n sys-
tems’ outputs for each sentence are broken down to
n x (n — 1) pairs, of all possible comparisons be-
tween two system outputs, in both directions (sim-
ilar to the calculation of the Spearman correlation).
For each pair, the classifier is trained with a class
value c, for the pairwise comparison of system out-
puts ?; and t; with respective ranks r; and r;, deter-
mined as:

C(Tz‘ﬂ“j) = { 1_1 :z i :j

At testing time, after the classifier has made all
the pairwise decisions, those need to be converted
back to ranks. System entries are ordered, according
to how many times each of them won in the pair-
wise comparison, leading to rank lists similar to the
ones provided by human annotators. Note that this
kind of decomposition allows for ties when there are
equal times of winnings.
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2.3 Acquiring features

In order to obtain features indicating the quality of
the MT output, automatic NLP analysis tools are ap-
plied on both the source and the two target (MT-
generated) sentences of every pairwise comparison.
Features considered can be seen in the following cat-
egories, according to their origin:

e Sentence length: Number of words of source
and target sentences, source-length to target-
length ratio.

e Target language model: Language models
provide statistics concerning the correctness of
the words’ sequence on the target language.
Such language model features include:

— the smoothed n-gram probability of the
entire target sentence for a language
model of order 5, along with

— uni-gram, bi-gram, tri-gram probabilities
and a

— count of unknown words

e Parsing: Processing features acquired from
PCFG parsing (Petrov et al., 2006) for both
source and target side include:

parse log likelihood,

number of n-best trees,

confidence for the best parse,

— average confidence of all trees.

Ratios of the above target features to their re-
spective source features were included.

e Shallow grammatical match: The number of
occurences of particular node tags on both the
source and the target was counted on the PCFG
parses. In particular, NPs, VPs, PPs, NNs and
punctuation occurences were counted. Then
the ratio of the occurences of each tag in the
target sentence by its occurences on the source
sentence was also calculated.

2.4 Classifiers

The machine learning core of the system was built
supporting two classification approaches.



e Naive Bayes allows prediction of a binary
class, given the assumption that the features are
statistically independent.

i=1
JF) =p(O) [[p(FilC)

n
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p(C) is estimated by relative frequencies of
the training pairwise examples, while p(F;|C)
for our continuous features are estimated with
LOESS (locally weighted linear regression
similar to Cleveland (1979))

o k-nearest neighbour (knn) algorithm allows
classifying based on the closest training exam-
ples in the feature space.

3 Experiment

3.1 Experiment setup

A basic experiment was designed in order to deter-
mine the exact setup and the feature set of the metric
prior to the shared task submission. The classifiers
for the task were learnt using the German-English
testset of the WMT 2008 and 2010 (about 700 sen-
tences)!. For testing, the classifiers were used to per-
form ranking on a test set of 184 sentences which
had been kept apart from the 2010 data, with the cri-
terion that they do not contain contradictions among
human judgments.

In order to allow further comparison with other
evaluation metrics, we performed an extended ex-
periment: we trained the classifiers over the WMT
2008 and 2009 data and let them perform automatic
ranking on the full WMT 2010 test set, this time
without any restriction on human evaluation agree-
ment.

In both experiments, tokenization was performed
with the PUNKT tokenizer (Kiss et al., 2006; Gar-
rette and Klein, 2009), while n-gram features were
generated with the SRILM toolkit (Stolcke, 2002).
The language model was relatively big and had been
built upon all lowercased monolingual training sets
for the WMT 2011 Shared Task, interpolated on
the 2007 test set. As a PCFG parser, the Berkeley
Parser (Petrov and Klein, 2007) was preferred, due

!data acquired from http://www.statmt.org/wmt11

67

to the possibility of easily obtaining complex inter-
nal statistics, including n-best trees. Unfortunately,
the time required for parsing leads to significant de-
lays at the overall processing. The machine learn-
ing algorithms were implemented with the Orange
toolkit (Demsar et al., 2004).

3.2 Feature selection

Although the automatic NLP tools provided a lot of
features (section 2.3), the classification methods we
used (and particularly naive Bayes were the develop-
ment was focused on) would be expected to perform
better given a smaller group of statistically inde-
pendent features. Since exhaustive training/testing
of all possible feature subsets was not possible,
we performed feature selection based on the Reli-
eff method (Kononenko, 1994; Kira and Rendell,
1992). Automatic ranking was performed based on
the most promising feature subsets. The results are
examined below.

3.3 Results

The performance of the classifier is measured after
the classifier output has been converted back to rank
lists, similar to the WMT 2010 evaluation. We there-
fore calculated two types of rank coefficients: aver-
aged Kendall’s tau on a segment level, and Spear-
man’s rho on a system level, based on the percentage
that the each system’s translations performed better
than or equal to the translations of any other system.

The results for the various combinations of fea-
tures and classifiers are depicted on Table 1. Naive
Bayes provides the best score on the test set, with
p = 0.81 on a system level and 7 = 0.26 on a
segment level, trained with features including the
number of the unknown words, the source-length
by target-length ratio, the VP count ratio and the
source-target ratio of the parsing log-likelihood. The
number of unknown words particularly appears to be
a strong indicator for the quality of the sentence. On
the first part of the table we can also observe that
language model features do not perform as well as
the features deriving from the processing informa-
tion delivered by the parser. On the second part of
the table we compare the use of various grammatical
combinations. The third part contains the correlation
obtained by various similar internal parsing-related
features.



features naive Bayes knn
rho tau rho tau
basic experiment
ngram 0.19 0.05 | 0.13 0.01
unk, len 0.67 020 | 0.73 0.24
unk, len, bigram 0.61 021 [0.74 0.21
unk, len, ngram 0.63 0.19 | 0.59 0.21
unk, len, trigram 0.67 020 | 0.76 0.21
unk, len, logparse 075 021 |0.74 025
unk, len, nparse, VP 0.67 024 | 061 0.20
unk, len, nparse, VP, confpegiparse | 0.78  0.25 | 0.75  0.24
unk, len, nparse, NP, confpesparse | 0.78  0.23 | 0.74  0.23
unk, len, npyse, VP, confyy, 075 021 |0.78 023
unk, len, nparse, VP, confpegiparse | 0.78  0.25 | 0.75  0.24
unk, len, nparse, VP, 10gparse 0.81 0.26 | 0.75 0.23
extended experiment
unk, len, nparse, VP, 10gparse 0.60 0.23 | 0.28 0.02

Table 1: System-level Spearman’s rho and segment-level Kendall’s tau correlation coefficients achieved on automatic

ranking (average absolute value)

The correlation coefficients of the extended exper-
iment, allowing comparison with last year’s shared
task, are shown on the last line of the table. With
coefficients p = 0.60 and 7 = 0.23, our metric
performs relatively low compared to the other met-
rics of WMTI10 (indicatively iBLEU: p = 0.95,
7 = 0.39 according to Callison-Burch et al. (2010).
Though, it still has a position in the list, scoring bet-
ter than several other reference-aware metrics (e.g.
of p = 0.47 and 7 = 0.12 respectively) for the par-
ticular language pair.

4 Discussion

A concern on the use of Confidence Estimation for
MT evaluation has to do with the possibility of a
system “tricking” such metrics. This would for ex-
ample be the case when a system offers a well-
formed candidate translation and gets a good score,
despite having no relation to the source sentence
in terms of meaning. We should note that we are
not capable of fully investigating this case based
on the current set of experiments, because all of
the systems in our data sets have shown acceptable
scores (11-25 BLEU and 0.58-0.78 TERp accord-
ing to Callison-Burch et al. (2010)), when evaluated
against reference translations. Though, we would
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assume that we partially address this problem by us-
ing ratios of source to target features (length, syn-
tactic constituents), which means that in order for a
sentence to trick the metric, it would need a com-
parable sentence length and a grammatical structure
that would allow it to achieve feature ratios similar
to the other systems’ outputs. Previous work (Blatz
et al., 2004b; Ueffing and Ney, 2005) has used fea-
tures based on word alignment, such as IBM Mod-
els, which would be a meaningful addition from this
aspect.

Although k-nearest-neighbour is considered to be
a superior classifier, best results are obtained by
naive Bayes. This may have been due of the fact
that feature selection has led to small sets of uncor-
related features, where naive Bayes is known to per-
form well. K-nearest-neighbour and other complex
classification methods are expected to prove useful
when more complex feature sets are employed.

5 Conclusion and Further work

The experiments presented in this article indicate
that confidence metrics trained over human rankings
can be possibly used for several tasks of evaluation,
given particular conditions, where e.g. there is no
reference translation given. Features obtained from



a PCFG parser seem to be leading to better correla-
tions, given our basic test set. Although correlation
is not particularly high, compared to other reference-
aware metrics in WMT 10, there is clearly a poten-
tial for further improvement.

Nevertheless this is still a small-scale experiment,
given the restricted data size and the single transla-
tion direction. The performance of the system on
broader training and test sets will be evaluated in the
future. Feature selection is also subject to change
if other language pairs are introduced, while more
sophisticated machine learning algorithms, allowing
richer feature sets, may also lead to better results.
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