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Abstract

Reordering is a major challenge for machine
translation between distant languages. Recent
work has shown that evaluation metrics that
explicitly account for target language word or-
der correlate better with human judgments of
translation quality. Here we present a simple
framework for evaluating word order indepen-
dently of lexical choice by comparing the sys-
tem’s reordering of a source sentence to ref-
erence reordering data generated from manu-
ally word-aligned translations. When used to
evaluate a system that performs reordering as
a preprocessing step our framework allows the
parser and reordering rules to be evaluated ex-
tremely quickly without time-consuming end-
to-end machine translation experiments. A
novelty of our approach is that the translations
used to generate the reordering reference data
are generated in an alignment-oriented fash-
ion. We show that how the alignments are
generated can significantly effect the robust-
ness of the evaluation. We also outline some
ways in which this framework has allowed our
group to analyze reordering errors for English
to Japanese machine translation.

1 Introduction

Statistical machine translation systems can perform
poorly on distant language pairs such as English
and Japanese. Reordering errors are a major source
of poor or misleading translations in such systems
(Isozaki et al., 2010). Unfortunately the stan-
dard evaluation metrics used by the statistical ma-
chine translation community are relatively insensi-
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tive to the long-distance reordering phenomena en-
countered when translating between such languages
(Birch et al., 2010).

The ability to rapidly evaluate the impact of
changes on a system can significantly accelerate the
experimental cycle. In a large statistical machine
translation system, we should ideally be able to ex-
periment with separate components without retrain-
ing the complete system. Measures such as per-
plexity have been successfully used to evaluate lan-
guage models independently in speech recognition
eliminating some of the need for end-to-end speech
recognition experiments. In machine translation,
alignment error rate has been used with some mixed
success to evaluate word-alignment algorithms but
no standard evaluation frameworks exist for other
components of a machine translation system (Fraser
and Marcu, 2007).

Unfortunately, BLEU (Papineni et al., 2001) and
other metrics that work with the final output of a ma-
chine translation system are both insensitive to re-
ordering phenomena and relatively time-consuming
to compute: changes to the system may require the
realignment of the parallel training data, extraction
of phrasal statistics and translation of a test set. As
training sets grow in size, the cost of end-to-end ex-
perimentation can become significant. However, it is
not clear that measurements made on any single part
of the system will correlate well with human judg-
ments of the translation quality of the whole system.

Following Collins et al. (2005a) and Wang (2007),
Xu et al. (2009) showed that when translating from
English to Japanese (and to other SOV languages
such as Korean and Turkish) applying reordering as
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a preprocessing step that manipulates a source sen-
tence parse tree can significantly outperform state-
of-the-art phrase-based and hierarchical machine
translation systems. This result is corroborated by
Birch et al. (2009) whose results suggest that both
phrase-based and hierarchical translation systems
fail to capture long-distance reordering phenomena.

In this paper we describe a lightweight framework
for measuring the quality of the reordering compo-
nents in a machine translation system. While our
framework can be applied to any translation sys-
tem in which it is possible to derive a token-level
alignment from the input source tokens to the out-
put target tokens, it is of particular practical interest
when applied to a system that performs reordering
as a preprocessing step (Xia and McCord, 2004). In
this case, as we show, it allows for extremely rapid
and sensitive analysis of changes to parser, reorder-
ing rules and other reordering components.

In our framework we evaluate the reordering pro-
posed by a system separately from its choice of tar-
get words by comparing it to a reference reordering
of the sentence generated from a manually word-
aligned translation. Unlike previous work (Isozaki
et al., 2010), our approach does not rely on the sys-
tem’s output matching the reference translation lexi-
cally. This makes the evaluation more robust as there
may be many ways to render a source phrase in the
target language and we would not wish to penalize
one that simply happens not to match the reference.

In the next section we review related work on
reordering for translation between distant language
pairs and automatic approaches to evaluating re-
ordering in machine translation. We then describe
our evaluation framework including certain impor-
tant details of how our reference reorderings were
created. We evaluate the framework by analyz-
ing how robustly it is able to predict improvements
in subjective translation quality for an English to
Japanese machine translation system. Finally, we
describe ways in which the framework has facili-
tated development of the reordering components in
our system.
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2 Related Work

2.1 Evaluating Reordering

The ability to automatically evaluate machine trans-
lation output has driven progress in statistical ma-
chine translation; however, shortcomings of the
dominant metric, BLEU (Papineni et al., 2001) , par-
ticularly with respect to reordering, have long been
recognized (Callison-burch and Osborne, 2006).
Reordering has also been identified as a major fac-
tor in determining the difficulty of statistical ma-
chine translation between two languages (Birch et
al., 2008) hence BLEU scores may be most unreli-
able precisely for those language pairs for which sta-
tistical machine translation is most difficult (Isozaki
et al., 2010).

There have been many results showing that met-
rics that account for reordering are better correlated
with human judgements of translation quality (Lavie
and Denkowski, 2009; Birch and Osborne, 2010;
Isozaki et al., 2010). Examples given in Isozaki et
al. (2010) where object and subject arguments are
reversed in a Japanese to English statistical machine
translation system demonstrate how damaging re-
ordering errors can be and it should therefore not
come as a surprise that word order is a strong pre-
dictor of translation quality; however, there are other
advantages to be gained by focusing on this specific
aspect of the translation process in isolation.

One problem for all automatic evaluation metrics
is that multiple equally good translations can be con-
structed for most input sentences and typically our
reference data will contain only a small fraction of
these. Equally good translations for a sentence may
differ both in terms of lexical choice and word or-
der. One of the potential advantages of designing a
metric that looks only at word order, is that it may,
to some extent, factor out variability along the di-
mension of the lexical choice. Previous work on au-
tomatic evaluation metrics that focus on reordering,
however, has not fully exploited this.

The evaluation metrics proposed in Isozaki et al.
(2010) compute a reordering score by comparing
the ordering of unigrams and bigrams that appear
in both the system’s translation and the reference.
These scores are therefore liable to overestimate
the reordering quality of sentences that were poorly
translated. While Isozaki et al. (2010) does propose



a work-around to this problem which combines the
reordering score with a lexical precision term, this
clearly introduces a bias in the metric whereby poor
translations are evaluated primarily on their lexical
choice and good translations are evaluated more on
the basis of their word order. In our experience
word order is particularly poor in those sentences
that have the lowest lexical overlap with reference
translations; hence we would like to be able to com-
pute the quality of reordering in all sentences inde-
pendently of the quality of their lexical choice.

Birch and Osborne (2010) are closer to our ap-
proach in that they use word alignments to induce a
permutation over the source sentence. They com-
pare a source-side permutation generated from a
word alignment of the reference translation with one
generated from the system’s using various permuta-
tion distances. However, Birch and Osborne (2010)
only demonstrate that these metrics are correlated
with human judgements of translation quality when
combined with BLEU score and hence take lexical
choice into account.

Birch et al. (2010) present the only results we
are aware of that compute the correlation be-
tween human judgments of translation quality and
a reordering-only metric independently of lexical
choice. Unfortunately, the experimental set-up there
is somewhat flawed. The authors ‘undo’ reorderings
in their reference translations by permuting the ref-
erence tokens and presenting the permuted transla-
tions to human raters. While many machine trans-
lation systems (including our own) assume that re-
ordering and translation can be factored into sepa-
rate models, e.g. (Xia and McCord, 2004), and per-
form these two operations in separate steps, the lat-
ter conditioned on the former, Birch et al. (2010) are
making a much stronger assumption when they per-
form these simulations: they are assuming that lexi-
cal choice and word order are entirely independent.
It is easy to find cases where this assumption does
not hold and we would in general be very surprised
if a similar change in the reordering component in
our system did not also result in a change in the lex-
ical choice of the system; an effect which their ex-
periments are unable to model.

Another minor difference between our evaluation
framework and (Birch et al., 2010) is that we use
a reordering score that is based on the minimum

14

number of chunks into which the candidate and ref-
erence permutations can be concatenated similar to
the reordering component of METEOR (Lavie and
Denkowski, 2009). As we show, this is better cor-
related with human judgments of translation quality
than Kendall’s 7. This may be due to the fact that
it counts the number of ‘jumps’ a human reader has
to make in order to parse the system’s order if they
wish to read the tokens in the reference word order.
Kendall’s 7 on the other hand penalizes every pair
of words that are in the wrong order and hence has
a quadratic (all-pairs) flavor which in turn might ex-
plain why Birch et al. (2010) found that the square-
root of this quantity was a better predictor of trans-
lation quality.

2.2 Evaluation Reference Data

To create the word-aligned translations from which
we generate our reference reordering data, we used
a novel alignment-oriented translation method. The
method (described in more detail below) seeks
to generate reference reorderings that a machine
translation system might reasonably be expected to
achieve. Fox (2002) has analyzed the extent to
which translations seen in a parallel corpus can be
broken down into clean phrasal units: they found
that most sentence pairs contain examples of re-
ordering that violate phrasal cohesion, i.e. the cor-
responding words in the target language are not
completely contiguous or solely aligned to the cor-
responding source phrase. These reordering phe-
nomena are difficult for current statistical transla-
tion models to learn directly. We therefore deliber-
ately chose to create reference data that avoids these
phenomena as much as possible by having a single
annotator generate both the translation and its word
alignment. Our word-aligned translations are cre-
ated with a bias towards simple phrasal reordering.
Our analysis of the correlation between reorder-
ing scores computed on reference data created from
such alignment-oriented translations with scores
computed on references generated from standard
professional translations of the same sentences sug-
gests that the alignment-oriented translations are
more useful for evaluating a current state-of-the-art
system. We note also that while prior work has con-
jectured that automatically generated alignments are
a suitable replacement for manual alignments in the



context of reordering evaluation (Birch et al., 2008),
our results suggest that this is not the case at least for
the language pair we consider, English-Japanese.

3 A Lightweight Reordering Evaluation

We now present our lightweight reordering evalu-
ation framework; this consists of (1) a method for
generating reference reordering data from manual
word-alignments; and (2) a reordering metric for
scoring a sytem’s proposed reordering against this
reference data; and (3) a stand-alone evaluation tool.

3.1 Generating Reference Reordering Data

We follow Birch and Osborne (2010) in using ref-
erence reordering data that consists of permuations
of source sentences in a test set. We generate these
from word alignments of the source sentences to
reference translations. Unlike previous work, how-
ever, we have the same annotator generate both the
reference translation and the word alignment. We
also explicitly encourage the translators to generate
translations that are easy to align even if this does
result in occasionally unnatural translations. For in-
stance in English to Japanese translation we require
that all personal pronouns are translated; these are
often omitted in natural Japanese. We insist that
all but an extremely small set of words (articles and
punctuation for English to Japanese) be aligned. We
also disprefer non-contiguous alignments of a sin-
gle source word and require that all target words be
aligned to at least one source token. In Japanese
this requires deciding how to align particles that
mark syntactic roles; we choose to align these to-
gether with the content word (jiritsu-go) of the cor-
responding constituent (bunsetsu). Asking annota-
tors to translate and perform word alignment on the
same sentence in a single session does not necessar-
ily increase the annotation burden over stand-alone
word alignment since it encourages the creation of
alignment-friendly translations which can be aligned
more rapidly. Annotators need little special back-
ground or training for this task, as long as they can
speak both the source and target languages.

To generate a permutation from word alignments
we rank the source tokens by the position of the first
target token to which they are aligned. If multiple
source tokens are aligned to a single target word
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or span we ignore the ordering within these source
spans; this is indicated by braces in Table 2. We
place unaligned source words immediately before
the next aligned source word or at the end of the
sentence if there is none. Table 2 shows the ref-
erence reordering derived from various translations
and word alignments.

3.2 Fuzzy Reordering Score

To evaluate the quality of a system’s reordering
against this reference data we use a simple reorder-
ing metric related to METEOR’s reordering compo-
nent (Lavie and Denkowski, 2009) . Given the refer-
ence permutation of the source sentence o,y and the
system’s reordering of the source sentence o4y, €i-
ther generated directly by a reordering component or
inferred from the alignment between source and tar-
get phrases used in the decoder, we align each word
in 04y to an instance of itself in 0.y taking the first
unmatched instance of the word if there is more than
one. We then define C' to be the number chunks of
contiguously aligned words. If M is the number of
words in the source sentence then the fuzzy reorder-
ing score is computed as,

Cc-1

1-— .
M—-1

FRS(UsyS7Uref) = (D
This metric assigns a score between 0 and 1 where
1 indicates that the system’s reordering is identical
to the reference. C has an intuitive interpretation as
the number of times a reader would need to jump in
order to read the system’s reordering of the sentence
in the order proposed by the reference.

3.3 Evaluation Tool

While the framework we propose can be applied to
any machine translation system in which a reorder-
ing of the source sentence can be inferred from the
translation process, it has proven particularly use-
ful applied to a system that performs reordering as
a separate preprocessing step. Such pre-ordering
approaches (Xia and McCord, 2004; Collins et al.,
2005b) can be criticized for greedily committing to
a single reordering early in the pipeline but in prac-
tice they have been shown to perform extremely well
on language pairs that require long distance reorder-
ing and have been successfully combined with other
more integrated reordering models (Xu et al., 2009).



The performance of a parser-based pre-ordering
component is a function of the reordering rules and
parser; it is therefore desirable that these can be eval-
uated efficiently. Both parser and reordering rules
may be evaluated using end-to-end automatic met-
rics such as BLEU score or in human evaluations.
Parsers may also be evaluated using intrinsic tree-
bank metrics such as labeled accuracy. Unfortu-
nately these metrics are either expensive to compute
or, as we show, unpredictive of improvements in hu-
man perceptions of translation quality.

Having found that the fuzzy reordering score pro-
posed here is well-correlated with changes in human
judgements of translation quality, we established a
stand-alone evaluation tool that takes a set of re-
ordering rules and a parser and computes the re-
ordering scores on a set of reference reorderings.
This has become the most frequently used method
for evaluating changes to the reordering component
in our system and has allowed teams working on
parsing, for instance, to contribute significant im-
provements quite independently.

4 Experimental Set-up

We wish to determine whether our evaluation frame-
work can predict which changes to reordering com-
ponents will result in statistically significant im-
provements in subjective translation quality of the
end-to-end system. To that end we created a num-
ber of systems that differ only in terms of reorder-
ing components (parser and/or reordering rules). We
then analyzed the corpus- and sentence-level corre-
lation of our evaluation metric with judgements of
human translation quality.

Previous work has compared either quite separate
systems, e.g. (Isozaki et al., 2010), or systems that
are artificially different from each other (Birch et al.,
2010). There has also been a tendency to measure
corpus-level correlation. We are more interested in
comparing systems that differ in a realistic manner
from one another as would typically be required in
development. We also believe sentence-level cor-
relation is more important than corpus-level corre-
lation since good sentence-level correlation implies
that a metric can be used for detailed analysis of a
system and potentially to optimize it.
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4.1 Systems

We carried out all our experiments using a state-of-
the-art phrase-based statistical English-to-Japanese
machine translation system (Och, 2003). Dur-
ing both training and testing, the system reorders
source-language sentences in a preprocessing step
using a set of rules written in the framework pro-
posed by (Xu et al., 2009) that reorder an English
dependency tree into target word order. During de-
coding, we set the reordering window to 4 words.
In addition to the regular distance distortion model,
we incorporate a maximum entropy based lexical-
ized phrase reordering model (Zens and Ney, 20006).
For parallel training data, we use an in-house collec-
tion of parallel documents. These come from vari-
ous sources with a substantial portion coming from
the web after using simple heuristics to identify po-
tential document pairs. We trained our system on
about 300 million source words.

The reordering rules applied to the English de-
pendency tree define a precedence order for the chil-
dren of each head category (a coarse-grained part of
speech). For example, a simplified version of the
precedence order for child labels of a verbal head
HEADVERSB is: advcl, nsubj, prep, [other children],
dobj, prt, aux, neg, HEADVERB, mark, ref, compl.

The dependency parser we use is an implementa-
tion of a transition-based dependency parser (Nivre,
2008). The parser is trained using the averaged per-
ceptron algorithm with an early update strategy as
described in Zhang and Clark (2008).

We created five systems using different parsers;
here targeted self-training refers to a training pro-
cedure proposed by Katz-Brown et al. (2011) that
uses our reordering metric and separate reference re-
ordering data to pick parses for self-training: an n-
best list of parses is generated for each English sen-
tence for which we have reference reordering data
and the parse tree that results in the highest fuzzy
reordering score is added to our parser’s training set.
Parsers P3, P4 and P5 differ in how that framework
is applied and how much data is used.

e P1 Penn Treebank, perceptron, greedy search
e P2 Penn Treebank, perceptron, beam search

e P3 Penn Treebank, perceptron, beam search,
targeted self-training on web data



e P4 Penn Treebank, perceptron, beam search,
targeted self-training on web data

e P5 Penn Treebank, perceptron, beam search,
targeted self-training on web data, case insen-
sitive

We also created five systems using the fifth parser
(P5) but with different sets of reordering rules:

e R1 No reordering
e R2 Reverse reordering

e R3 Head final reordering with reverse reorder-
ing for words before the head

e R4 Head final reordering with reverse reorder-
ing for words after the head

e RS Superset of rules from (Xu et al., 2009)

Reverse reordering places words in the reverse of the
English order. Head final reordering moves the head
of each dependency after all its children. Rules in R3
and R4 overlap significantly with the rules for noun
and verb subtrees respectively in RS5. Otherwise all
systems were identical. The rules in RS have been
extensively hand-tuned while R1 and R2 are rather
naive. System PSRS was our best performing system
at the time these experiments were conducted.

We refer to systems by a combination of parser
and reordering rules set identifiers, for instance, sys-
tem P2RS, uses parser P2 with reordering rules RS5.
We conducted two subjective evaluations in which
bilingual human raters were asked to judge trans-
lations on a scale from 0 to 6 where O indicates
nonsense and 6 is perfect. The first experiment
(Parsers) contrasted systems with different parsers
and the second (Rules) varied the reordering rules.
In each case three bilingual evaluators were shown
the source sentence and the translations produced by
all five systems.

4.2 Meta-analysis

We perform a meta-analysis of the following metrics
and the framework by computing correlations with
the results of these subjective evaluations of transla-
tion quality:
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1. Evaluation metrics: BLEU score on final trans-
lations, Kendall’s 7 and fuzzy reordering score
on reference reordering data

2. Evaluation data: both manually-generated and
automatically-generated word alignments on
both standard professional and alignment-
oriented translations of the test sentences

The automatic word alignments were generated us-
ing IBM Model 1 in order to avoid directional biases
that higher-order models such as HMMs have.

Results presented in square parentheses are 95
percent confidence intervals estimated by bootstrap
resampling on the test corpus (Koehn, 2004).

Our test set contains 500 sentences randomly
sampled from the web. We have both professional
and alignment-friendly translations for these sen-
tences. We created reference reorderings for this
data using the method described in Section 3.1.
The lack of a broad domain and publically avail-
able Japanese test corpus makes the use of this non-
standard test set unfortunately unavoidable.

The human raters were presented with the source
sentence, the human reference translation and the
translations of the various systems simultaneously,
blind and in a random order. Each rater was allowed
to rate no more than 3 percent of the sentences and
three ratings were elicited for each sentence. Rat-
ings were a single number between 0 and 6 where 0
indicates nonsense and 6 indicates a perfectly gram-
matical translation of the source sentence.

5 Results

Table 2 shows four reference reorderings generated
from various translations and word alignments. The
automatic alignments are significantly sparser than
the manual ones but in these examples the refer-
ence reorderings still seem reasonable. Note how the
alignment-oriented translation includes a pronoun
(translation for ‘I’) that is dropped in the slightly
more natural standard translation to Japanese.

Table 1 shows the human judgements of transla-
tion quality for the 10 systems (note that PSRS ap-
pears in both experiments but was scored differently
as human judgments are affected by which other
translations are present in an experiment). There is a
clear ordering of the systems in each experiment and



1. Parsers | Subjective Score (0-6) || 2. Rules | Subjective Score (0-6)
PIR5 2.173 [2.086, 2.260] || P5R1 1.258 [1.191, 1.325]
P2R5 2.320 [2.233,2.407] || P5R2 1.825 [1.746, 1.905]
P3R5 2.410[2.321, 2.499] || P5R3 1.849 [1.767, 1.931]
P4R5 2.453 [2.366, 2.541] || P5R4 2.205[2.118, 2.293]
P5R5 2.501 [2.413,2.587] || P5R5 2.529 [2.441, 2.619]

Table 1: Human judgements of translation quality for 1. Parsers and 2. Rules.

Metric Sentence-level correlation

r 14
Fuzzy reordering | 0.435 0.448
Kendall’s 7 0.371 0.450
BLEU 0.279 0.302

Table 6: Pearson’s correlation (r) and Spearman’s rank
correlation (p) with subjective translation quality at
sentence-level.

we see that both the choice of parser and reordering
rules clearly effects subjective translation quality.

We performed pairwise significance tests using
bootstrap resampling for each pair of ‘improved’
systems in each experiment. Tables 3, 4 and 5
shows which pairs were judged to be statistically
significant improvements at either 95 or 90 percent
level under the different metrics. These tests were
computed on the same 500 sentences. All pairs
but one are judged to be statistically significant im-
provements in subjective translation quality. Sig-
nificance tests performed using the fuzzy reorder-
ing metric are identical to the subjective scores for
the Parsers experiment but differ on one pairwise
comparison for the Rules experiment. According to
BLEU score, however, none of the parser changes
are significant at the 95 percent level and only one
pairwise comparison (between the two most differ-
ent systems) was significant at the 90 percent level.
BLEU score appears more sensitive to the larger
changes in the Rules experiment but is still in dis-
agreement with the results of the human evaluation
on four pairwise comparisons.

Table 6 shows the sentence-level correlation of
different metrics with human judgments of transla-
tion quality. Here both the fuzzy reordering score
and Kendall’s 7 are computed on the reference
reordering data generated as described in Section
3.1. Both metrics are computed by running our
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Translation Alignment | Sentence-level

r P
Alignment-oriented | Manual 0.435 | 0.448
Alignment-oriented | Automatic | 0.234 | 0.252
Standard Manual 0.271 | 0.257
Standard Automatic | 0.177 | 0.159

Table 7: Pearson’s correlation (r) and Spearman’s rank
correlation (p) with subjective translation quality at the
sentence-level for different types of reordering reference
data: (i) alignment-oriented translation vs. standard, (ii)
manual vs. automatic alignment.

lightweight evaluation tool and involve no transla-
tion whatsoever. These lightweight metrics are also
more correlated with subjective quality than BLEU
score at the sentence level.

Table 7 shows how the correlation between fuzzy
reordering score and subjective translation quality
degrades as we move from manual to automatic
alignments and from alignment-oriented translations
to standard ones. The automatically aligned refer-
ences, in particular, are less correlated with subjec-
tive translation scores then BLEU; we believe this
may be due to the poor quality of word alignments
for languages such as English and Japanese due to
the long-distance reordering between them.

Finally we present some intrinsic evaluation met-
rics for the parsers used in the first of our experi-
ments. Table 8 demonstrates that certain changes
may not be best captured by standard parser bench-
marks. While the first four parser models improve
on the WSJ benchmarks as they improve subjective
translation quality the best parser according to sub-
jective translation qualtiy (P5) is actually the worst
under both metrics on the treebank data. We con-
jecture that this is due to the fact that P5 (unlike the
other parsers) is case insensitive. While this helps us
significantly on our test set drawn from the web, it



Standard / Manual

Source How Can | Qualify For A Mortgage Tax Deduction ?

Reordering A Mortgage {{ Tax Deduction }} For | Qualify How Can ?

Translation FEO-—VBRICHE RER ZB2ICIFEEI TR IE LW TT H ?
Alignment 6,6,7_8,4,3,3,3,3,3,0,0,0,0,0,1,1,9,9

Alignment-oriented / Manual

Source How Can | Qualify For A Mortgage Tax Deduction ?

Reordering | How A Mortgage {{ Tax Deduction }} For Qualify Can ?

Translation RIFESI LA FEO—Y O FF O ERICETE IENTESET H?
Alignment 2,2,0,0,0,6,6,6,7_8,4,3,3,3,1,1,1,1,1,9

Standard / Automatic

Source We do not claim to cure , prevent or treat any disease .

Reordering any disease cure , prevent or treat claim to We do not .

Translation WD /R D B , Bk , FRIE AR DS §5 €D Tk HY FE A .
Alignment 10,11,,5,6,7,,8,9,,.4,,,,2,2,2,12

Alignment-oriented / Automatic

Source We do not claim to cure , prevent or treat any disease .

Reordering We any disease cure , prevent or treat claim to do not .

Translation TE L HOPEHEEDBRE , FRHHIWVEAEEL 1T & ERL FH A .
Alignment 0,0,,10,11,,5,6,7,8,9,,,,3,4,2,2,12

Table 2: Reference reordering data generated via various methods: (i) alignment-oriented vs. standard translation, (ii)
manual vs. automatic word alignment

Exp. 1 Parsers Exp. 2 Reordering Rules
P2R5 | P3R5 | P4ARS5 | P5RS P5R2 | P5R3 | P5R4 | P5R5
P1RS5 H* +¥* +¥* +** || P5SR1 +¥* +H* +H* +H*
P2R5 % % +** || PSR2 0] +** +¥*
P3R5 +** 1| PSR3 +7H* +H*
P4R5 0 || PSR4 +¥*

Table 3: Pairwise significance in subjective evaluation (0 = not significant, * = 90 percent, ** = 95 percent).

Exp. 1 Parsers Exp. 2 Reordering Rules
P2RS | P3R5 | PARS | P5SRS P5R2 | P5R3 | P5R4 | P5R5
PIRS | %% | %% | x| %)) PSR] 0| %% | 4F% | 4**
P2R5 +EE L pEE L pRE ) PSR2 HEE ) pEE
P3R5 +¥% | 4% || PSR3 Ol B Sk
P4R5 0 || PSR4 X%

Table 4: Pairwise significance in fuzzy reordering score (0 = not significant, * = 90 percent, ** = 95 percent).

Exp. 1 Parsers Exp. 2 Reordering Rules
P2R5 | P3RS | P4R5 | P5RS PSR2 | P5R3 | PSR4 | P5R5S
PIRS5 0 0 +* +* || PSR1 4EE R k| ek
P2R5 0 0 0 || P5SR2 0| %%k | 4H*
P3R5 0 0 || PSR3 0 +%
P4R5 0 || P5SR4 0

Table 5: Pairwise significance in BLEU score (0 = not significant, * = 90 percent, ** = 95 percent).
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Parser | Labeled attachment | POS accuracy
P1 0.807 0.954
P2 0.822 0.954
P3 0.827 0.955
P4 0.830 0.955
P5 0.822 0.944

Table 8: Intrinsic parser metrics on WSJ dev set.

SN
VERVEER v 4
det nsubj ROOT acomp aux aux xcomp p
This site requires JavaScript to be enabled
DT NN VBZ JJ TO vB VBN
DT N v J P v v
RawSource Thi ite requires . cript to be enabled.
TokenizedSource This site requires . cript to be enabled .
ResultReordering This te enabled be to JavaScript requires .
GoldenReordering This site JavaScript {{ to be enabled }} requires .
Fuzzy  0.571429
SN
A~ [ ) X
v ) v
det nsubj ROOT nsubjpass aux aux ccomp p
This site requires JavaScript to be enabled
DT NN VBZ NNP TO VB VBN . &
DT N v N P v v

RawSource Thi cript to be enabled.

TokenizedSource Thi

cript to be enabled .

ResultReordering Script enabled be to requires .

GoldenReordering Script {{ to be enabled }} requires .

Fuzzy 1

Figure 1: P1 and P5’s parse trees and automatic reorder-
ing (using RS ruleset) and fuzzy score.

hurts parsing performance on cleaner newswire.

6 Discussion

We have found that in practice this evaluation frame-
work is sufficiently correlated with human judg-
ments of translation quality to be rather useful for
performing detailed error analysis of our English-to-
Japanese system. We have used it in the following
ways in simple error analysis sessions:

e To identify which words are most frequently re-
ordered incorrectly

e To identify systematic parser and/or POS errors
e To identify the worst reordered sentences
e To evaluate individual reordering rules

Figures 1 and 2 show pairs of parse trees together
with their resulting reorderings and scores against
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NNP N DT  CD s NNP NNP NNPS VBP
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RawSource Learn about The 10 Biggest Mistakes Deg Trainers Make.
TokenizedScurce Learn about The 10 Biggest Mistakes Dog Trainers Make .
ResultReordering The 10 about Learn Biggest Mistakes Dog Trainers Make .
GoldenReordering Dog Trainers Make The 10 Biggest Mistakes about Learn .

Fuzzy 0.5
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ROOT  prep  det num amod pobj nn nsubj remod  p
Learn about The 10 Biggest Mistakes Dog Trainers Make N
VB IN DT  CD Js NNS NN NNS VBP
\Y P DT N J N N N

Rawsource Learn about The 10 Biggest Mistakes Dog Trainers Make.

TokenizedSource Learn about The 10 Biggest Mistakes Dog Trainers Make .
kes about Learn .

ResultReordering Dog Trainers Make The 10 Biggest

GoldenReordering Dog Trainers Make The 10 Biggest Mistakes about Learn .

Fuzzy 1

Figure 2: P1 and P5’s parse trees and automatic reorder-
ing (using RS ruleset) and fuzzy score.

the reference. These are typical of the parser er-
rors that impact reordering and which are correctly
identified by our framework. In related joint work
(Katz-Brown et al., 2011) and (Hall et al., 2011), it
is shown that the framework can be used to optimize
reordering components automatically.

7 Conclusions

We have presented a lightweight framework for eval-
uating reordering in machine translation and demon-
strated that this is able to accurately distinguish sig-
nificant changes in translation quality due to changes
in preprocessing components such as the parser or
reordering rules used by the system. The sentence-
level correlation of our metric with judgements of
human translation quality was shown to be higher
than other standard evaluation metrics while our
evaluation has the significant practical advantage of
not requiring an end-to-end machine translation ex-
periment when used to evaluate a separate reorder-
ing component. Our analysis has also highlighted
the benefits of creating focused evaluation data that
attempts to factor out some of the phenomena found
in real human translation. While previous work has
provided meta-analysis of reordering metrics across
quite independent systems, ours is we believe the
first to provide a detailed comparison of systems



that differ only in small but realistic aspects such as
parser quality. In future work we plan to use the
framework to provide a more comprehensive analy-
sis of the reordering capabilities of a broad range of
machine translation systems.
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