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Abstract

This paper presents a progressively challeng-
ing series of experiments that investigate clar-
ification subdialogues to resolve the words in
noisy transcriptions of user utterances. We fo-
cus on user utterances where the user’s spe-
cific intent requires little additional inference,
given sufficient understanding of the form. We
learned decision-making strategies for a dia-
logue manager from run-time features of our
spoken dialogue system and from observation
of human wizards we had embedded within it.
Results show that noisy ASR can be resolved
based on predictions from context about what
a user might say, and that dialogue manage-
ment strategies for clarifications of linguistic
form benefit from access to features from spo-
ken language understanding.

1 Introduction

Utterances have literal meaning derived from their
linguistic form, and pragmatic intent, the actions
speakers aim to achieve through words (Austin,
1962). Because the channel is usually not noisy
enough to impede communication, misunderstand-
ings that arise between adult human interlocutors
are more often due to confusions about intent, rather
than about words. Between humans and machines,
however, verbal interaction has a much higher rate
of linguistic misunderstandings because the channel
is noisy, and machines are not as adept at using spo-
ken language. It is difficult to arrive at accurate rates
for misunderstandings of form versus intent in hu-
man conversation, because the two types cannot al-
ways be distinguished (Schlangen and Fern’andez,

2005). However, one estimate of the rate of mis-
understandings of literal meaning between humans,
based on text transcripts of the British National Cor-
pus, is in the low range of 4% (Purver et al., 2001),
compared with a 30% estimate for human-computer
dialogue (Rieser and Lemon, 2011). The thesis
of our work is that misunderstandings of linguis-
tic form in human-machine dialogue are more ef-
fectively resolved through greater reliance on con-
text, and through closer integration of spoken lan-
guage understanding (SLU) with dialogue manage-
ment (DM). We investigate these claims by focusing
on noisy speech recognition for utterances where the
user’s specific intent requires little additional infer-
ence, given sufficient understanding of the form.

This paper presents three experiments that pro-
gressively address SLU methods to compensate for
poor automated speech recognition (ASR), and com-
plementary DM strategies. In two of the experi-
ments, human wizards are embedded in the spoken
dialogue system while run-time SLU features are
collected. Many wizard-of-Oz investigations have
addressed the noisy channel issue for SDS (Zollo,
1999; Skantze, 2003; Williams and Young, 2004;
Skantze, 2005; Rieser and Lemon, 2006; Schlangen
and Fern’andez, 2005; Rieser and Lemon, 2011).
Like them, we study how human wizards solve the
joint problem of interpreting users’ words and in-
ferring users’ intents. Our work differs in its ex-
ploration of the role context can play in the literal
interpretation of noisy language. We rely on knowl-
edge in the backend database to propose candidate
linguistic forms for noisy ASR.

Our principal results are that both wizards and our
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SDS can achieve high accuracy interpretations, in-
dicating that predictions about what the user might
be saying can play a significant role in resolving
noise. We show it is possible to achieve low rates
of unresolved misunderstanding, even at word error
rates (WER) as poor as 50%-70%. We achieve this
through machine learned models of DM actions that
combine standard DM features with a rich number
and variety of SLU features. The learned models
predict DM actions to determine whether a reliable
candidate interpretation exists for a noisy utterance,
and if not, what action to take. The results support
an approach to DM design that integrates the two
problems of understanding form and intent.

The next sections present related work, our library
domain and our baseline SDS architecture. Subse-
quent sections discuss the SLU settings across the
three experiments, and present the experimental de-
signs and results, discussion and conclusion.

2 Related Work

Previous WOz studies of wizards’ ability to pro-
cess noisy transcriptions of speaker utterances in-
clude the use of real (Skantze, 2003; Zollo, 1999)
or simulated ASR (Kruijff-Korbayová et al., 2005;
Williams and Young, 2004). WOz studies that
directed their attention to the wizard include ef-
forts to predict: the wizard’s response when the
user is not understood (Bohus 2004); the wizard’s
use of multimodal clarification strategies (Rieser
and Lemon, 2006; Rieser and Lemon, 2011); and
the wizard’s use of application-specific clarification
strategies (Skantze, 2003; Skantze, 2005). WOz
studies that address real or simulated ASR reveal
that wizards can find ways to not respond to utter-
ances they fail to understand (Zollo, 1999; Skantze,
2003; Kruijff-Korbayová et al., 2005; Williams and
Young, 2004). For example, they can prompt the
user for an alternative attribute of the same object.
Our work differs in that we address clarifications
about the words used, and rely on a rich set of SLU
features. Further, we compare behavior across wiz-
ards. Our SDS benefits from models of the most
skilled wizards.

To limit communication errors incurred by faulty
ASR, an SDS can rely on strategies to detect and re-
spond to incorrect recognition output (Bohus, 2004).

The SDS can repeatedly request user confirmation
to avoid misunderstanding, or ask for confirmation
using language that elicits responses from the user
that the system can handle (Raux and Eskenazi,
2004). When the user adds unanticipated informa-
tion in response to a system prompt, two-pass recog-
nition can rely on a concept-specific language model
to improve the recognition of the domain concepts
within the utterance containing unknown words, and
thereby achieve better recognition (Stoyanchev and
Stent, 2009). An SDS could take this approach one
step further and use context-specific language for in-
cremental understanding of noisy input throughout
the dialogue (Aist et al., 2007).

Current work on error recovery and grounding for
SDS assumes that the primary responsibility of a
dialogue management strategy is to understand the
user’s intent. Errors of understanding are addressed
by ignoring the utterances where understanding fail-
ures occur, asking users to repeat, or pursuing clari-
fications about intent. These strategies typically rely
on knowledge sources that follow the SLU stage.
The RavenClaw dialogue manager, which represents
domain-dependent (task-based) DM strategy as a
tree of goals, triggers error handling by means of a
single confidence score associated with the concepts
hypothesized to represent the user’s intent (Bohus
and Rudnicky, 2002; Bohus and Rudnicky, 2009).
Features for reinforcement learning of MDP-based
DM strategies include a few lexical features and a
measure of noise analogous to WER (Rieser and
Lemon, 2011). The WOz studies reported here yield
learned models of specific actions in response to
noisy input, such as whether to treat a candidate in-
terpretation as correct, or to pursue one of many pos-
sible clarification strategies, including clarifications
of form or intent. These models rely on relatively
large numbers of features from all phases of spoken
language understanding, as well as on typical dia-
logue management features.

3 CheckItOut

3.1 Domain

Our domain of investigation simulates book orders
from the Andrew Heiskell Braille and Talking Book
Library, part of the New York Public Library and the
Library of Congress. Patrons order books by tele-
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phone during conversation with a librarian, and re-
ceive them by mail. Patrons typically have identify-
ing information for the books they seek, which they
get from monthly newsletters. In a corpus of eighty
two calls recorded at the library, we found that most
book requests by title were very faithful to the actual
title. Challenges to SLU in this domain include the
size of the database, the size of the vocabulary, and
the average sentence length.

While large databases have been used for inves-
tigations of phonological query expansion (Georgila
et al., 2003), much of the research on DM strategy
relies on relatively small databases. A recent study
of reinforcement learning of DM strategy modeled
as a Markov Decision Process reported in (Rieser
and Lemon, 2011) relies on a database of 438 items.
In (Gordon and Passonneau, 2011) we compared
the SLU challenges faced by CheckItOut and the
Let’s Go bus schedule information system, both of
which rely on the same architecture (Raux et al.,
2005). The Let’s Go corpus contained 70 bus routes
names and 1300 place names, and a mean utterance
length of 4.4 words. The work reported here uses the
full 2007 version of Heiskell’s database of 71,166
books and 28,031 authors, and a sanitized version
of its 2007 patron database of 5,028 active patrons.
Authors and titles contribute 45,636 distinct words,
with a 10.43% overlap between the two. Average
book title length is 5.4 words; 26% of titles are 1-2
words, 44% are 3-5 words, 20% are 6 to 10. Con-
sequently, our domain has relatively long utterances.
The syntax of book titles is much richer than typical
SDS slot fillers, such as place or person names.

To achieve high-confidence SLU, we integrate
voice search into the SLU components of our two
SDS experiments (Wang et al., 2008).1 Our custom
voice search query relies on Ratcliff/Obershershelp
(R/O) pattern matching (Ratcliff and Metzener,
1988), the ratio of the number of matching charac-
ters to the total length of both strings. This simple
metric captures gross similarities without overfitting
to a specific application domain. The criteria for se-
lecting R/O derive from our first offline experiment,
described in Section 4.2.

For an experiment focused only on a single turn
1In concurrent work on a new SDS architecture, we use en-

sembles of SLU strategies (Gordon and Passonneau, 2011; Gor-
don et al., 2011).

(a) Baseline CheckItOut

(b) Embedded Wizard

Figure 1: CheckItOut information pipeline

exchange beginning with a user book request, we
queried the backend directly with the ASR string.
For a subsequent experiment on full dialogues, we
queried the backend with a modified ASR string, be-
cause the SDS architecture we used permits backend
queries to occur only during the dialogue manage-
ment phase, after natural language understanding.
The next section describes this architecture.

3.2 Architecture

CheckItOut, our baseline SDS, employs the Olym-
pus/RavenClaw architecture developed at Carnegie
Mellon University (CMU) (Raux et al., 2005; Bo-
hus and Rudnicky, 2009). SDS modules commu-
nicate via message passing, controlled by a central
hub. However, the information flow is largely a
pipeline, as depicted in Figure 1(a). The Pocket-
Sphinx recognizer (Huggins-Daines et al., 2006) re-
ceives acoustic data segmented by the audio man-
ager, and passes a single recognition hypothesis to
the Phoenix parser (Ward and Issar, 1994). Phoenix
sends one or more equivalently ranked semantic
parses to the Helios confidence annotator (Bohus
and Rudnicky, 2002), which selects a parse and as-
signs a confidence score. The Apollo interaction
manager (Raux and Eskenazi, 2007) monitors the
three SLU modules–the recognizer, the semantic
parser, and the confidence annotator–to determine
whether the user or SDS has the current turn. To
a limited degree, Apollo can override the early seg-
mentation decisions based solely on pause length.
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Confidence-annotated concepts from the semantic
parse are passed to the RavenClaw DM, which de-
cides when to prompt the user, present information
to her, or query the backend database.

A wizard server communicates with other mod-
ules via the hub, as shown in Figure 1(b). For each
wizard experiment, we constructed a graphical user
interface (GUI). Wizard GUIs display information
for the wizard in a manageable form, and allow the
wizard to query the backend or select communica-
tive actions that result in utterances directed to the
user. Figure 1(b) shows an arrow from the speech
recognizer directly to the wizard: the recognition
string has been vetted by Apollo before it is dis-
played to the wizard.

4 Experiments and Results

The experiments reported here are an off-line pilot
study to identify book titles under worst case recog-
nition (Title Pilot), an embedded WOz study of a
single turn exchange involving book requests by ti-
tle (Turn Exchange), and an embedded WOz study
of dialogues where users followed scenarios that in-
cluded four books at a time (Full WOz). To evaluate
the impact of learned models of wizard actions from
the Full WOz wizard data, we evaluated CheckItOut
before and after the dialogue manager was enhanced
with wizard models for specific actions.

4.1 Experimental Settings

All three experiments use the full database for
search. To control for WER, the knowledge sources
for speech recognition and semantic parsing vary
across experiments. For each experiment, Table 1
indicates the acoustic model (AM) used, the num-
ber of hours of domain-specific spontaneous speech
used for AM adaptation, the number of titles used
to construct the language model (LM), the type of
LM, the type of grammar rules in the Phoenix book
title subgrammar, and average WER as measured by
Levenstein word edit distance (Levenshtein, 1996).

For the first two experiments, we used CMU’s
Open Source WSJ1 dictation AMs for wideband
(16kHz) microphone (dictation) speech. For Full
WOz we adapted narrowband (8kHz) WSJ1 dicta-
tion speech with about eight hours of data collected
from Turn Exchange and two hours of scripted spon-

taneous speech typical of CheckItOut dialogues.
Logios is a CMU toolkit for generating a pseudo-

corpus from a Phoenix grammar. It produces a set
of strings generated by Phoenix production rules,
which in turn are used to build an LM (Carnegie
Mellon University Speech Group, 2008). Before we
explain the three rightmost columns in Table 1, we
first briefly describe Phoenix, the Phoenix book title
subgrammar, and how we combine title strings with
a Logios pseudo-corpus.

Phoenix is a context-free grammar (CFG) parser
that produces one or more semantic frames per
parse. A semantic frame has slots, where each slot is
a concept with its own CFG productions (subgram-
mar). To accommodate noisy ASR, the parser can
skip words between frames or slots. Phoenix is well-
suited for restricted domains, where a frame repre-
sents a particular type of subdialogue (e.g., ordering
a plane ticket), and slots represent constrained con-
cepts (e.g., departure city, destination city). Phoenix
is not well-suited for book titles, which have a rich
vocabulary and syntax, and no obvious component
slots. The CFG rules for the Turn Exchange book ti-
tle subgrammar consisted of a verbatim rule for each
book title. Rules that consisted of a bag-of-words
(BOW; i.e., unordered) for each title proved to be
too unconstrained.2 In Turn Exchange, interpreta-
tion of ASR consisted primarily of voice search; the
highly constrained CFG rules (exact words in exact
order) had little impact on performance. For base-
line CheckItOut dialogues, and for Full WOz, we
required more constrained grammar rules that would
preserve Phoenix’s robustness to noise.

To avoid the brittleness of exact string CFG rules,
and the massive over-generation of BOW CFG rules,
we wrote a transducer that mapped dependency
parses of book titles to CFG rules. When ASR
words are skipped, book title parses can consist of
multiple slots. We used MICA, a broad-coverage
dependency grammar (Bangalore et al., 2009) to
parse the entire book title database. When a set
of titles is selected for an experiment, the corre-
sponding MICA parses are transduced to the rele-
vant CFG productions, and inserted into a Phoenix
grammar. Productions for the author subgrammar

2BOW Phoenix rules for book titles are used in a more re-
cent Olympus/RavenClaw system inspired in part by Check-
ItOut (Lee et al., 2010), with a database of 15,088 eBooks.
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Exp. AM Adapted # Titles for LM LM Grammar rules WER
Title Pilot WSJ1 16kHz NA 500 unigram NA 0.76
Turn Exchange WSJ1 16kHz NA 7,500 trigram title strings 0.71
Full WOz WSJ1 8kHz 10 hr. 3,000 Logios + book data Mica-based 0.50 (est)

Table 1: SLU settings across experiments

consist largely of a first name slot followed by a last
name slot. The remaining portions of the Phoenix
CheckItOut grammar consist of subgrammars for
book request prefixes and affixes (e.g., ”I would like
the book called”), for confirmations and rejections,
phone numbers, book catalogue numbers, and mis-
cellaneous additional concepts. The set of subgram-
mars excluding the book title and author subgram-
mars (book requests, confirmations, and so on; the
grammar shell) are the same for all experiments.
The MICA-based book title grammar also provides
several features (e.g., number of slots in a parse) for
machine learning.

The Title Pilot LM consisted of unigram frequen-
cies of the 1400 word types from a random sample
(without replacement) of 500 titles. For Turn Ex-
change, a trigram LM was constructed from 7,500
titles randomly selected from the 19,708 titles that
remained after we eliminated one-word titles and ti-
tles with below average circulation. For Full WOz,
3,000 books were randomly selected from the full
book database (with no more than three titles by
the same author, and no one-word titles). Logios
was used on the grammar shell to generate an initial
pseudo-corpus, which was combined with the book
title and author strings to generate a full pseudo-
corpus for the trigram LM (denoted as “Logios +
book data” in Table 1).

4.2 Title Pilot

The Title Pilot (Passonneau et al., 2009) was an of-
fline investigation of how reliance on prior knowl-
edge in the database might facilitate interpretation
of noisy ASR. It demonstrates that given the context
of things a user might say, ASR that is otherwise un-
intelligible becomes intelligible.

Three males each read 50 randomly selected ti-
tles from the LM subset of 500 (see Table 1). Their
average WER was 0.75, 0.83 and 0.69, respectively.
Three undergraduates (A, B, C) were each given one
of the sets of 50 recognition strings from a different
speaker. Each also received a plain text file listing all

the titles in the database, and word frequency statis-
tics for the book titles. Their task was to try to find
the correct title, and to provide a brief description of
their overall strategy.

A was accurate on 66.7% of the titles he matched,
B and C on 71.7%. We identified similar strate-
gies for A and B, including number of exact word
matches, types of exact word matches (e.g., content
words were favored over stop words), rarity of ex-
act word matches, and phonetic similarity. Analysis
of C’s responses showed dependency on number and
types of exact word matches, and on miscellaneous
strategies that could not be grouped. Through in-
spection, we determined that similarity in length and
number of words were important factors. From this
experiment, we concluded that humans are adept at
interpreting noisy ASR when provided with context;
that voice search (queries to the backend with ASR)
would prove useful, given an appropriate similarity
metric; and that there would likely always be uncer-
tain cases that might lead to false hits. As we discuss
below, two of seven Turn Exchange wizards were
fairly adept, and five of six Full WOz wizards were
very adept, at avoiding false hits from voice search.

4.3 Turn Exchange

The offline Title Pilot suggested that voice search
could lead to far fewer non-understandings, given
some predictions as to the actual words a noisy ASR
string might represent. The next experiment ad-
dressed, in real time, the question of what level of
accuracy might be achieved through an online im-
plementation of voice search for book requests by
title (Passonneau et al., 2010; Ligorio et al., 2010b).
We embedded wizards into the CheckItOut SDS to
present them with live ASR, and to collect runtime
recognition features. On the GUI, variations in the
display fonts for ASR and voice search returns cued
the wizard to gross differences in word-level recog-
nition confidence, and similarities between an ASR
string and each candidate returned by the search.
Learned models of wizard actions indicated that
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recognition features such as acoustic model fit and
speech rate, along with various measures of sim-
ilarity between the ASR output string and candi-
date titles, number of books ordered thus far (Re-
centSuccess), and number of relatively close candi-
date matches, were useful in modeling the most ac-
curate wizards. These results show that DM strat-
egy for determing what actions to take, given an in-
terpretation of a user request, can depend on subtle
recognition metrics.

In Turn Exchange, users requested books by ti-
tle from embedded wizards. Speech input and out-
put was by microphone and headset, with wizards
and users seated in separate rooms, each using a dif-
ferent GUI. Seven undergraduates (one female and
six males, including two non-native speakers of En-
glish) participated as paid subjects. Each of the 21
possible pairs of students met for five trials. A trial
had two sessions. In the first, one student served as
wizard and the other as user for a session in which
the user requested 20 books by title. In the second
session, the students reversed roles. We collected
4,192 turn exchanges.

The GUI displayed the ASR corresponding to the
user utterance, with confident words in bolder font.
The wizard could query the backend with some or
all of the ASR. Voice search results displayed a sin-
gle candidate above a high R/O threshold with all
matching words in boldface, or three candidates of
moderate similarity with matching words in medium
bold, or five to ten candidates of lower similarity in
grayscale. There were four available wizard actions:
to offer a candidate title to the user in a confident
manner (through Text-to-Speech), to offer a title ten-
tatively, to select two or more candidates and ask a
free-form question about them (here the user would
hear the wizard’s speech), or to give up. The user in-
dicated whether an offered candidate was correct, or
indicated the quality and appropriateness of a wiz-
ard’s question. A prize would go to the wizard who
offered the most correct titles.

The top ranked search return was correct 65.24%
of the time. The two wizards who most often offered
the top ranked return (81% and 86% of the time)
both achieved 69.5% accuracy. The two best wiz-
ards (W4 and W5) could detect search returns that
did not contain the correct title, thus avoiding false
hits. On average, they offered the top return only

73% of the time and both achieved the highest accu-
racy (83.4%).

Several classification methods were used to pre-
dict the four wizard actions: firm offer, tentative of-
fer, question, and give up. Features (N=60) included
many ASR metrics, such as word-level confidence,
AM fit, and three measures of speech rate; various
measures of the average similarity or overlap be-
tween the ASR string and the candidate titles from
the R/O query; the dialogue history; the number of
candidates titles returned; and so on. The learned
classifiers, including C4.5 decision trees (Quinlan,
1993), all had similar performance. Learned trees
for W4 and W5 both had F measures of 0.85. De-
cision trees give a transparent view of the relative
importance of features; those nearer the root have
greater discriminatory power. Common features at
the tops of trees for all wizards were the type and
size of the query return, how often the wizard had
chosen the correct title in the last three title cycles,
the average of the maximum number of contiguous
exact word matches between the ASR string and the
candidate titles, and the Helios confidence score.

We trained an additional decision tree to learn
how W4 (the best wizard) chose between offering
a title versus asking a question (F=0.91 for making
an offer; F=0.68 for asking a question). The tree
is distinctive in that it splits at the root on a mea-
sure of speech rate. If the ASR is short (as mea-
sured both by the number of recognition frames and
the words), W4 asks a question if the query return
is not a single title, and either RecentSuccess=1 or
ContiguousWord-Match=0, and the acoustic model
score is low. Note that shorter titles are more con-
fusable. If the ASR is long, W4 asks a question
when ContiguousWordMatch=1, RecentSuccess=2,
and either CandidateDisplay = NoisyList, or Helios
Confidence is low, and there is a choice of titles.

4.4 Full WOz

The third experiment was a full WOz study demon-
strating that embedded wizards could achieve high
task success by relying on a large number of actions
that included clarifications of utterance form or in-
tent. Here we briefly report results on task success
and time on task in a comparision of baseline Check-
ItOut with an enhanced version, CheckItOut+, that
incorporates learned models of wizard actions. The
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evaluation demonstrates improved performance with
more books ordered, more correct books ordered,
and less elapsed time per book, or per correct book.

For Full WOz (Ligorio et al., 2010a), CheckItOut
relied on VOIP (Voice over Internet Protocol) tele-
phony. Users interacted with the embedded wizards
by telephone, and wizards took over after Check-
ItOut answered the phone. After familiarization
with the task and GUI, nine wizards auditioned and
six were selected. There were ten users. Both groups
were evenly balanced for gender. Users were di-
rected to a website that presented scenarios for each
call. The scenario page gave the user a patron iden-
tity and phone number, and author, title and cata-
logue number information for four books they were
to order. Each user was to make at least fifteen calls
to each wizard; we recorded 913 usable calls.

A single trainer prepared the original nine wizard
volunteers one at a time. First, each trainee practiced
on data from the experiments described above. Next,
the trainer explained the wizard GUI and demon-
strated it, serving as wizard on a sample call. Fi-
nally, the trainee served as wizard on five test calls
with guidance from the trainer. The trainer chose the
six most skilled and motivated trainees as wizards.

The GUI had two screens, one for user login
and one for book requests. Users identified them-
selves by scenario phone number. The book re-
quest screen had a scrollable frame displaying the
ASR for each user utterance. Separate frames on
the GUI displayed the query return, dialogue history,
basic actions (e.g., querying the backend with a cus-
tom R/O query, or prompting the user for a book),
and auxiliary actions (e.g., removing a book from
the order in progress). Finally, wizards could select
among four types of dialogue acts: signals of non-
understanding, or clarifications about the ASR, the
book request or the query return. A dialogue act se-
lected by the wizard was passed to a template-based
natural language generator, and then to a Text-to-
Speech component. Due to their complexity, calls
could be time consuming. A clock on the GUI indi-
cated call duration; wizards were instructed to finish
the current book request and then terminate the call
after six minutes.

A wizard’s precision is the proportion of books
she offer that correctly match the user’s request; five
of the six wizards had precision over 90%. A wiz-

ard’s recall is the number of books in the scenario
that she correctly identified. The two best wizards,
WA and WB, had the highest recall, 63% and 67%
respectively.

The number of book requests per dialogue was
tallied automatically. Some dialogues were termi-
nated before all scenario books could be requested.
Also, a wizard who experienced problems with a
book request could abandon the current request and
prompt the user for a new book. The user could re-
sume the abandoned book request later in the dia-
logue. In such cases, the abandoned and resumed re-
quests for the same book would count as two distinct
book requests. Given these facts, the ratio of number
of correct books to number of book requests yields
only an approximate estimate of how many scenario
books were correctly identified. WA correctly iden-
tified 2.69 books per call from 3.64 requests per call,
yielding a total success rate of 73.9% per book re-
quest, and 67.25% per 4-book scenario. WB cor-
rectly identified 2.54 books per call from 4.44 re-
quests per call, yielding success rates of 57.21% per
request and 63.50% per 4-book scenario. WA and
WB had quite distinct strategies. WA persisted with
each book request and exploited a wide range of
the available GUI actions, with the greatest num-
ber of actions per book request among all wizards
(N=8.24). WB abandoned book requests early and
moved on to the next book request, exploited rela-
tively fewer GUI actions, and had the fewest actions
per book request (N=5.10).

From 163 features that characterize the ASR,
search, current user utterance, current turn ex-
change, current book request, and the entire dia-
logue, we learned models for three types of wiz-
ard actions: select a non-understanding prompt, per-
form a search, or select a prompt to disambiguate
among search returns. We used three machine learn-
ing methods for classification: decision trees, logis-
tic regression and support vector machines. Table 2
gives the accuracies and overall F measures for de-
cision trees that model WA and WB. (All learning
methods have similar performance.)

Of note here is the range of features that predict
when the best wizards selected a non-understanding,
shown in Table 3. In addition, the two models de-
pend partly on different features. Trees for the other
actions in Table 2 have similarly diverse features.
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Wizard Action Acc F
A Non-Understanding 0.71 0.71
B Non-Understanding 0.73 0.73
A Disambiguate 0.80 0.81
B Disambiguate 0.86 0.87
A Search 0.94 0.95
B Search 0.93 0.94

Table 2: Performance of learned trees

To evaluate the benefit of learned models of wiz-
ard actions for SDS, we conducted two data collec-
tions where subjects placed calls following the same
types of scenarios used in Full WOz. For our base-
line evaluation of CheckItOut, 10 subjects were re-
cruited from Columbia University and Hunter Col-
lege. Each was to place a minimum of 50 calls over
a period of three days; 562 calls were collected. For
each call, subjects visited a web page that presented
a new scenario. Each scenario included mock patron
data for the caller to use (e.g., name, address and
phone number), a list of four books, and instructions
to request one book by catalogue number, one by
title, one by author, and one by any of those meth-
ods. At three points during their calls, subjects com-
pleted a user satisfaction survey containing eleven
questions adapted from (Hone and Graham, 2006).

CheckItOut+ is an enhanced version of our SDS
in which the DM was modified to include learned
models for three decisions. The first determines
whether the system should signal non-understanding
in response to the caller’s last utterance, and exe-
cutes before voice search would take place. The
second determines whether to perform voice search
with the ASR (i.e., before the parse, in contrast to
CheckItOut). The third executes after voice search,
and determines whether to offer the candidate with
the highest R/O score to the user. The evaluation
setup for CheckItOut+ also included 10 callers who
were to place 50 calls each; 505 calls were collected.

Here we report results that compare the number
of books ordered per call, the number of correct
books per call, the elapsed time per book ordered,
and elapsed time per correct book. T-tests show all
differences to be highly significant. (A full discus-
sion of the evaluation results will appear in future
publications.) Callers to CheckItOut+ nearly always
ordered four books (3.998), compared with 3.217 for
the baseline (p < 0.0001). There was an increase
of correct books in the order from 2.40 in the base-

Feature WA WB
# books ordered so far Y Y
% unparsed ASR words Y N
Avg. word confidence Y N
# explicit confirms in call Y Y
# MICA slots per concept Y N
# searches in call Y N
Most recent wizard action N Y
Most frequent concept in call N Y
Speech rate N Y
# user utts. this request N Y
# author searches in call Y Y
Normalized LM score this utt Y Y

Table 3: Features that predict wizards’ non-
understanding

line to 2.70 in CheckItOut+ (p < 0.0001). The total
elapsed time per call increased by only 13 seconds
from 210.93 to 223.96 (p < 0.0175). Given that
CheckItOut+ callers ordered more books and more
correct books, CheckItOut+ performed much faster.
The elapsed time per ordered book decreased from
65.57 to 56.01 seconds, and decreased from 87.89 to
82.95 seconds per correct books.

5 Discussion

Spoken language understanding has been relatively
under-investigated in SDS design. Our experiments
suggest that tighter integration of all phases of SLU
with dialogue management can lead to more robust
system behavior. We illustrate here with an exam-
ple of WA’s strategic questioning in which a non-
understanding is avoided, and WA builds on partial
understanding to identify the user’s objective.

In response to ASR MARY .JO. EARTH, where
the ’.’s bracket an unconfident word, WA’s search
returned three authors with first name Mary, and
last names that had moderate character overlap with
.JO. EARTH. WA first asked whether the book
was by Mary O’Hara. When the user responded
negatively, WA confirmed the first name, prompted
for the last name, and got SURE as the ASR. WA fi-
nally confirmed that the book was by Mary Stewart.
Although it took four turns, WA was able to identify
the correct book.

In general, the Full WOz corpus contains a very
high proportion of wizard questions. In the to-
tal corpus of 20,415 caller utterances, there were
11,562 wizard questions. The types of questions
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S1: What’s the next book?
U1: .BARBARA. THREE THREE
S2: Is the author barbara freethy?
U2: YES
S3: Would you like ’some kind of wonderful’ by

BARBARA FREETHY?
U3: YES

(a) Example 1

S1: Sorry, I misunderstood. Can you repeat the author?
U1: DIDN’T I AM THE .GOLDEN. ARM
S2: Is the title ’THE man with THE golden ARM ’?
U2: NO
S3: Sorry, I misunderstood. Can you repeat the title please?
U3: .A. .AMBLING. .THE. .GAME. .EDELMAN. STORY
S4: Is the title ’up and running the jami goldman STORY ’?
U4: YES

(b) Example 2

Figure 2: Sample Clarification Subdialogues

wizard’s ask not only often lead to successful con-
cept identification, they also avoid prompting the
user to repeat what they said. Previous work has
presented results showing that the hyperarticulation
associated with user repetitions often leads users to
slow their speech, speak more loudly, and pronounce
words more carefully, which hurts recognition per-
formance (Hirschberg et al., 2004).

Figure 2 illustrates two clarification subdialogues
from CheckItOut+. The first illustrates how prior
knowledge about what a user might say provides
sufficient constraints to interpret ASR that would
otherwise be unintelligible. The first word in the
ASR for the caller’s first utterance is bracketed by
’.’, which again represents low word confidence.
The high confidence words THREE THREE are
phonologically and orthographically similar to the
actual author name, Freethy. Note that from the
caller’s point of view, the same question shown
in S3 could be motivated by confusion over the
words alone, as in this case, or confusion over the
words and multiple candidate referents (e.g., Bar-
bara Freethy versus Freeling).

The second clarification subdialogue illustrates
how confusions about the linguistic input can be
resolved through strategies that combine questions
about words and intents. The prompt at system turn
3 indicates that the system believes that the caller
provided a title in user turn 1, which is incorrect.
The caller responds with the title, however, which
provides an alternative means to guess the intended

book, Jami Goldman’s memoir Up and Running.

6 Conclusion

The studies reported here are premised on two hy-
potheses about the role spoken language understand-
ing plays in SDS design. First, prior knowledge
derived from the context in which a dialogue takes
place can yield predictions about the words a user
might produce, and that these predictions can play
a key role in interpreting noisy ASR. Here we have
used context derived from knowledge in the appli-
cation database. Similar results could follow from
predictions from other sources, such as an explicit
model of the alignment of linguistic representa-
tions proposed in the work of Pickering and Gar-
rod (e.g., (Pickering and Garrod, 2006). Second,
closer integration of spoken language understanding
and dialogue management affords a wider range of
clarification subdialogues.

Our results from the experiments reported here
support both hypotheses. Our first experiment
demonstrated that words obscured by very noisy
ASR (50% ≤ WER ≤ 75%) can be inferred by re-
liance on what might have been said, predictions
that came from the database of entities in the do-
main. We assume that an SDS that interacts well
when ASR quality is poor will perform all the better
when ASR quality is good. Our second experiment
demonstrated that two of five human wizards were
able to achieve high accuracy in on-line resolution
of noisy ASR, when presented with no more than ten
candidate matches. Run-time recognition features
not available to the wizards were nonetheless useful
in modeling the ability of the two best wizards to
avoid false hits. Our third experiment demonstrated
that wizards could achieve high task success on full
dialogues where callers requested four books, and
an enhancement of our baseline SDS with learned
models of three wizard actions led to improved task
success with less time per subtask. The variety of
features that contribute to learned models of wiz-
ard actions demonstrates the advantages of embed-
ded wizardry, as well as the benefit of DM clarifica-
tion strategies that include features from all phases
of SLU.
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