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Abstract

Because there is no generally accepted met-
ric for measuring the performance of anaphora
resolution systems, a combination of met-
rics was proposed to evaluate submissions to
the 2011 CONLL Shared Task (Pradhan et
al., 2011). We investigate therefore Multi-
objective function Optimization (MOO) tech-
niques based on Genetic Algorithms to opti-
mize models according to multiple metrics si-
multaneously.

1 Introduction

Many evaluation metrics have been proposed for
anaphora resolution (Vilain et al., 1995; Bagga and
Baldwin, 1998; Doddington et al., 2000; Luo, 2005;
Recasens and Hovy, 2011). Each of these metrics
seems to capture some genuine intuition about the
the task, so that, unlike in other areas ofHLT, none
has really taken over. This makes it difficult to com-
pare systems, as dramatically demonstrated by the
results of the Coreference Task atSEMEVAL 2010
(Recasens et al., 2010). It was therefore wise of the
CONLL organizers to use a basket of metrics to as-
sess performance instead of a single one.

This situation suggests using methods to opti-
mize systems according to more than one metric
at once. And as it happens, techniques for doing
just that have been developed in the area of Ge-
netic Algorithms—so-calledmulti-objective opti-
mization techniques (MOO) (Deb, 2001). The key
idea of our submission is to useMOO techniques
to optimize our anaphora resolution system accord-
ing to three metrics simultaneously: theMUC scorer

(a member of what one might call the ’link-based’
cluster of metrics) and the twoCEAF metrics (rep-
resentative of the ’entity-based’ cluster). In a pre-
vious study (Saha et al., 2011), we show that our
MOO-based approach yields more robust results than
single-objective optimization.

We test two types of optimization: feature se-
lection and architecture–whether to learn a single
model for all types of anaphors, or to learn sepa-
rate models for pronouns and for other nominals.
We also discuss how the default mention extraction
techniques of the system we used for this submis-
sion, BART (Versley et al., 2008), were modified to
handle the all-mention annotation in the OntoNotes
corpus.

In this paper, we first briefly provide some back-
ground on optimization for anaphora resolution, on
genetic algorithms, and on the method for multi-
objective optimization we used, Non-Dominated
Sorting Genetic Algorithm II (Deb et al., 2002). Af-
ter that we discuss our experiments, and present our
results.

2 Background

2.1 Optimization for Anaphora Resolution

There have only been few attempts at optimization
for anaphora resolution, and with a few exceptions,
this was done by hand.

The first systematic attempt at automatic opti-
mization of anaphora resolution we are aware of was
carried out by Hoste (2005), who used genetic algo-
rithms for automatic optimization of both feature se-
lection and of learning parameters, also considering
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two different machine learners, TimBL and Ripper.
Her results suggest that such techniques yield im-
provements on theMUC-6/7 datasets. Recasens and
Hovy (2009) carried out an investigation of feature
selection for Spanish using theANCORA corpus.

A form of multi-objective optimization was ap-
plied to coreference by Munson et al. (2005). Mun-
son et al. (2005) did not propose to train models so
as to simultaneously optimize according to multi-
ple metrics; instead, they used ensemble selection to
learn to choose among previously trained models the
best model for each example. Their general conclu-
sion was negative, stating that “ensemble selection
seems too unreliable for use in NLP”, but they did
see some improvements for coreference.

2.2 Genetic Algorithms

Genetic algorithms (GAs) (Goldberg, 1989) are ran-
domized search and optimization techniques guided
by the principles of evolution and natural genetics.
In GAs the parameters of the search space are en-
coded in the form of strings calledchromosomes. A
collection of such strings is called apopulation. An
objectiveor fitnessfunction is associated with each
chromosome that represents the degree ofgoodness
of that chromosome. A few of the chromosomes are
selected on the basis of the principle of survival of
the fittest, and assigned a number of copies that go
into the mating pool. Biologically inspired opera-
tors likecrossoverandmutationare applied on these
chromosomes to yield a new generation of strings.
The processes of selection, crossover and mutation
continues for a fixed number of generations or till a
termination condition is satisfied.

2.3 Multi-objective Optimization

Multi-objective optimization (MOO) can be formally
stated as follows (Deb, 2001). Find the vectors
x∗ = [x∗

1
, x∗

2
, . . . , x∗

n]T of decision variables that si-
multaneously optimize theM objective values

{f1(x), f2(x), . . . , fM (x)}

while satisfying the constraints, if any.
An important concept inMOO is that of dom-

ination. In the context of a maximization prob-
lem, a solution xi is said to dominatexj if
∀k ∈ 1, 2, . . . ,M, fk(xi) ≥ fk(xj) and ∃k ∈
1, 2, . . . ,M, such thatfk(xi) > fk(xj).

Genetic algorithms are known to be more effec-
tive for solvingMOO than classical methods such as
weighted metrics, goal programming (Deb, 2001),
because of their population-based nature. A particu-
larly popular genetic algorithm of this type isNSGA-
II (Deb et al., 2002), which we used for our runs.

3 Using MOO for Optimization in
Anaphora Resolution

We used multi-objective optimization techniques for
feature selection and for identifying the optimal ar-
chitecture for the CONLL data. In this section we
briefly discuss each aspect of the methodology.

3.1 The BART System

For our experiments, we useBART (Versley et al.,
2008), a modular toolkit for anaphora resolution that
supports state-of-the-art statistical approaches to the
task and enables efficient feature engineering.BART

comes with a set of already implemented features,
along with the possibility to design new ones. It
also implements different models of anaphora reso-
lution, allowing the choice between single and split
classifiers that we explore in our runs, as well as
between mention-pair and entity-mention, and be-
tween best-first and ranking. It also has interfaces
to different machine learners (MaxEnt, SVM, de-
cision trees). It is thus ideally suited for experi-
menting with feature selection and other aspects of
optimization. However, considering all the param-
eters, it was unfeasible to run an optimization on
the amount of data available on CONLL; we fo-
cused therefore on feature selection and the choice
between single and split classifiers. We considered
42 features, including 7 classifying mention type, 8
for string matching of different subparts and differ-
ent levels of exactness, 2 for aliasing, 4 for agree-
ment, 12 for syntactic information including also
binding constraints, 3 encoding salience, 1 encod-
ing patterns extracted from the Web, 3 for proximity,
and 2 for 1st and 2nd person pronouns. Again be-
cause of time considerations, we used decision trees
as implemented in Weka as our classification model
instead of maximum-entropy or SVMs. Finally, we
used a simple mention-pair model without ranking
as in (Soon et al., 2001).
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3.2 Mention detection

BART supports several solutions to the mention
detection (MD) task. The users can input pre-
computed mentions, thus, experimenting withgold
boundaries orsystemboundaries computed by ex-
ternal modules (e.g., CARAFE). BART also has
a built-in mention extraction module, computing
boundaries heuristically from the output of a parser.

For the CoNLL shared task, we use the BART
internal MD module, as it corresponds better to
the mention detection guidelines of the OntoNotes
dataset. We have further adjusted this module to im-
prove the MD accuracy. The process of mention de-
tection involves two steps.

First, we create a list ofcandidate mentionsby
merging basic NP chunks with named entities. NP
chunks are computed from the parse trees provided
in the CoNLL distribution, Named entities are ex-
tracted with the Stanford NER tool (Finkel et al.,
2005). For each candidate mention, we store it mini-
mal and maximal span. The former is used for com-
puting feature values (e.g., for string matching); it
corresponds to either the basic NP chunk or the NE,
depending on the mention type. The latter is used
for alignment with CoNLL mentions; it is computed
by climbing up the parse tree.

This procedure, combined with the perfect (gold)
coreference resolution, gives us an F-score of
91.56% for the mention detection task on the
CoNLL development set1.

At the second step, we aim at discarding men-
tions that are unlikely to participate in corefer-
ence chains. We have identified several groups of
such mentions: erroneous (”[uh]”), (parts of) multi-
word expressions (”for[example]”), web addresses,
emails (”[http://conll.bbn.com]”), time/date expres-
sions (”two times [a year]”), non-referring pronouns
(”[there]”,”[nobody]”), pronouns that are unlikely
to participate in a chain (”[somebody]”, ”[that]”),
time/date expressions that are unlikely to participate
in a chain (”[this time]”), and expletive ”it”.

Our experiments on the development data show
that the first five groups can be reliably identified
and safely discarded from the processing: even with

1Note that, due to the fact that OntoNotes guidelines exclude
singleton mentions, it is impossible to evaluate the MD compo-
nent independently from coreference resolution.

the perfect resolution, we observe virtually no per-
formance loss (the F-score for our MD module with
the gold coreference resolution remains at 91.45%
once we discard mentions from groups 1-5).

The remaining groups are more problematic:
when we eliminate such mentions, we see perfor-
mance drops with the gold resolution. The exact im-
pact of discarding those mentions can only be as-
sessed once we have trained the classifier.

In practice, we have performed our optimization
experiments, selected the best classifier and then
have done additional runs to fine-tune the mention
detection module.

3.3 Using NSGA-II

Chromosome Representation of Feature and Ar-
chitecture Parameters We used chromosomes of
length 43, each binary gene encoding whether or not
to use a particular feature in constructing the classi-
fier, plus one gene set to1 to use a split classifier,0
to use a single classifier for all types of anaphors.

Fitness Computation and Mutations For fitness
computation, the following procedure is executed.

1. Suppose there areN number of features
present in a particular chromosome (i.e., there
are totalN number of 1’s in that chromosome).

2. Construct the coreference resolution system
(i.e., BART) with only theseN features.

3. This coreference system is evaluated on the de-
velopment data. The recall, precision and F-
measure values of three metrics are calculated.

For MOO, the objective functions corresponding to
a particular chromosome areF1 = F-measureMUC

(for theMUC metric),F2 = F-measureφ3
(for CEAF

using theφ3 entity alignment function (Luo, 2005))
and F3 = F-measureφ4

(for CEAF using theφ3

entity alignment function). The objective is to:
max[F1, F2, F3]: i.e., these three objective func-
tions are simultaneously optimized using the search
capability ofNSGA-II.

We use crowded binary tournament selection as
in NSGA-II, followed by conventional crossover and
mutation for theMOO based optimization. The
most characteristic part ofNSGA-II is its elitism op-
eration, where the non-dominated solutions (Deb,
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2001) among the parent and child populations are
propagated to the next generation. The near-Pareto-
optimal strings of the last generation provide the dif-
ferent solutions to the feature selection problem.

Genetic Algorithms Parameters Using the
CONLL development set, we set the following pa-
rameter values forMOO (i.e., NSGA-II): population
size=20, number of generations=20, probability of
mutation=0.1 and probability of crossover=0.9.

3.4 Running the Optimization

Considering the size of the OntoNotes corpus, it
would be very time-consuming to run an optimiza-
tion experiment on the whole dataset. We have
therefore split the data into 3 sub-samples and per-
formed separate MOO experiments on each one.

The MOO approach provides a set of non-
dominated solutions on the final Pareto optimal
front. All the solutions are equally important from
the algorithmic point of view. We have collected sets
of chromosomes for each sub-sample and evaluated
them on the whole train/development set, picking
the solution with the highest FINAL2 score for our
CoNLL submission.

4 Results

4.1 Development set

Table 1 compares the performance level obtained
using all the features with that of loose re-
implementations of the systems proposed by Soon
et al. (2001) and Ng and Cardie (2002), commonly
used as baselines. Our reimplementation of the Ng
& Cardie model uses only a subset of features.

The results in Table 1 show that our system with
a rich feature set does not outperform simpler base-
lines (and, in fact, yields poorer results). A similar
trend has been observed by Ng and Cardie (2002),
where the improvement was only possible after man-
ual feature selection.

The last line of Table 1 shows the performance
level of the best chromosome found through the
MOO technique. As it can be seen, it outperforms
all the baselines according to all the measures, lead-
ing to an improvement of 2-5 percentage points in
the FINAL score.

2The FINAL score is an average ofFMUC , FB3 and
FCEAF E.

This suggests that automatic feature selection is
essential to improve performance – i.e., that an effi-
cient coreference resolution system should combine
rich linguistic feature sets with automatic feature se-
lection mechanisms.

4.2 Test set

We have re-trained our best solution on the com-
bined train and development set, running it on the
test data. This system has showed the following per-
formance in the official evaluation (open track): the
FINAL score of 54.32,FMUC = 57.53%, FB3 =
65.18%, FCEAFE = 40.16%.

5 Conclusion

Our results on the development set suggest that a
linguistically-rich system for coreference resolution
might benefit a lot from feature selection. In partic-
ular, we have investigated Non-Dominated Sorting
Genetic Algorithm II (Deb et al., 2002) for multi-
objective optimization.

In subsequent work, we plan to expand the opti-
mization technique to consider also learning param-
eters optimization, classifier selection, and learning
model selection.
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Features FMUC FCEAFE FB3 FINAL
following Soon et al. (2001) 54.12 41.08 66.67 53.42
-*-, with splitting 53.81 41.03 66.70 53.31
following Ng & Cardie (2002) 52.97 42.40 66.18 53.31
-*-, with splitting 53.28 40.46 66.03 52.72
All features 50.18 38.54 63.79 50.33
-*-, with splitting 50.19 39.47 65.38 51.16
Optimized feature set (splitting) 57.05 42.61 67.46 55.15

Table 1: Performance on the development set
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