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Abstract (a member of what one might call the ’link-based’

_ cluster of metrics) and the twoEAF metrics (rep-
Because there is no generally accepted met-  oqentative of the 'entity-based’ cluster). In a pre-
ric for measuring the performance of anaphora vious study (Saha et al., 2011), we show that our

resolution systems, a combination of met- based h vield b Its th
rics was proposed to evaluate submissions to MOO-based approach yields more robust results than

the 2011 CONLL Shared Task (Pradhan et  Single-objective optimization.

al., 2011). We investigate therefore Multi- We test two types of optimization: feature se-
objective function OptimizationM00) tech- lection and architecture-whether to learn a single
niques based on Genetic Algorithms to opti-  model for all types of anaphors, or to learn sepa-
mize models according to multiple metrics si- 4t models for pronouns and for other nominals.

multan ly. . . .
uttaneously We also discuss how the default mention extraction

. techniques of the system we used for this submis-
1 Introduction sion, BART (Versley et al., 2008), were modified to

Many evaluation metrics have been proposed sdrandle the all-mention annotation in the OntoNotes
anaphora resolution (Vilain et al., 1995; Bagga an§°"PUs-

Baldwin, 1998; Doddington et al., 2000; Luo, 2005; In this paper, we first briefly provide some back-
Recasens and Hovy, 2011). Each of these metriggound on optimization for anaphora resolution, on
seems to capture some genuine intuition about tigeNetic algorithms, and on the method for multi-
the task, so that, unlike in other areasrafr, none objective optimization we used, Non-Dominated
has really taken over. This makes it difficult to com-S0rting Genetic Algorithm 1l (Deb et al., 2002). Af-
pare systems, as dramatically demonstrated by tiy that we discuss our experiments, and present our
results of the Coreference Task sEMEVAL 2010 results.

(Recasens et al., 2010). It was therefore wise of the

CONLL organizers to use a basket of metrics to a®® Background

sess performance instead of a single one. oo .

ThiFs) situation suggests using ?nethods to optlg'l Optimization for Anaphora Resolution
mize systems according to more than one metrithere have only been few attempts at optimization
at once. And as it happens, techniques for doinfpr anaphora resolution, and with a few exceptions,
just that have been developed in the area of Gé#his was done by hand.
netic Algorithms—so-callednulti-objective opti- The first systematic attempt at automatic opti-
mization techniques NjoO) (Deb, 2001). The key mization of anaphora resolution we are aware of was
idea of our submission is to useoo techniques carried out by Hoste (2005), who used genetic algo-
to optimize our anaphora resolution system accordithms for automatic optimization of both feature se-
ing to three metrics simultaneously: tkc scorer lection and of learning parameters, also considering
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two different machine learners, TimBL and Ripper. Genetic algorithms are known to be more effec-
Her results suggest that such techniques yield intive for solvingMoo than classical methods such as
provements on th&uc-6/7 datasets. Recasens anaveighted metrics, goal programming (Deb, 2001),
Hovy (2009) carried out an investigation of featurebecause of their population-based nature. A particu-
selection for Spanish using the@lCORA corpus. larly popular genetic algorithm of this typensGaA-

A form of multi-objective optimization was ap- Il (Deb et al., 2002), which we used for our runs.
plied to coreference by Munson et al. (2005). Mun-
son et al. (2005) did not propose to train models s  ysing MOO for Optimization in
as to simultaneously optimize according to multi- Anaphora Resolution
ple metrics; instead, they used ensemble selection to

learn to choose among previously trained models thgie used multi-objective optimization techniques for
best model for each example. Their general conclyeature selection and for identifying the optimal ar-
sion was negative, stating that “ensemble selectiqthitecture for the CONLL data. In this section we

seems too unreliable for use in NLP”, but they didyriefly discuss each aspect of the methodology.
see some improvements for coreference.

2.2 Genetic Algorithms 3.1 TheBART System

Genetic algorithmsdas) (Goldberg, 1989) are ran- For our experiments, we useaRT (Versley et al.,
domized search and optimization techniques guide2D08), a modular toolkit for anaphora resolution that
by the principles of evolution and natural geneticssupports state-of-the-art statistical approaches to the
In GAs the parameters of the search space are dask and enables efficient feature engineersrRT
coded in the form of strings callethromosomesA comes with a set of already implemented features,
collection of such strings is calledpmpulation An  along with the possibility to design new ones. It
objectiveor fitnessfunction is associated with eachalso implements different models of anaphora reso-
chromosome that represents the degregoafdness lution, allowing the choice between single and split
of that chromosome. A few of the chromosomes arelassifiers that we explore in our runs, as well as
selected on the basis of the principle of survival obetween mention-pair and entity-mention, and be-
the fittest, and assigned a number of copies that doveen best-first and ranking. It also has interfaces
into the mating pool. Biologically inspired opera-to different machine learners (MaxEnt, SVM, de-
tors likecrossovemandmutationare applied on these cision trees). It is thus ideally suited for experi-
chromosomes to yield a new generation of stringsnenting with feature selection and other aspects of
The processes of selection, crossover and mutatioptimization. However, considering all the param-
continues for a fixed number of generations or till @ters, it was unfeasible to run an optimization on

termination condition is satisfied. the amount of data available on CONLL; we fo-
S o cused therefore on feature selection and the choice
2.3 Multi-objective Optimization between single and split classifiers. We considered

Multi-objective optimization g100) can be formally 42 features, including 7 classifying mention type, 8
stated as follows (Deb, 2001). Find the vector§or string matching of different subparts and differ-

T = |2}, 25, ... ,2*]T of decision variables that si- ent levels of exactness, 2 for aliasing, 4 for agree-
multaneously optimize thi objective values ment, 12 for syntactic information including also
- - _ binding constraints, 3 encoding salience, 1 encod-
{A@), @), fu (@)} ing patterns extracted from the Web, 3 for proximity,
while satisfying the constraints, if any. and 2 for 1st and 2nd person pronouns. Again be-

An important concept irmoo is that of dom- cause of time considerations, we used decision trees
ination. In the context of a maximization prob- as implemented in Weka as our classification model
lem, a solutionz; is said to dominatez; if instead of maximum-entropy or SVMs. Finally, we
Vk € 1,2,...,M, fi(z;) > fr(z;) and3dk € used a simple mention-pair model without ranking
1,2,..., M, such thatf,(z;) > fi(Z;). asin (Soon et al., 2001).
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3.2 Mention detection the perfect resolution, we observe virtually no per-

BART supports several solutions to the mentiorﬁﬁrmar}ge Iossf (the F-scorel f?r our MD. modtugalvilg; y
detection (MD) task. The users can input pre- € gold coreterence resolution remains at 9.2.45%

computed mentions, thus, experimenting wgttid on_l(fﬁ we dlsc.ar.d mentions from groups 1'5&' fic:
boundaries osystemboundaries computed by ex- € remaining groups are more problematic.

ternal modules (e.g., CARAFE). BART also hasWhen we eliminate such mentions, we see perfor-

a built-in mention extraction module, computingmar,scefdolr.OpS v(;/!th t?ﬁ gold resct)_lutlon. The ?Xathlm_
boundaries heuristically from the output of a parser‘?aC ot discarding those mentions can only be as-

For the CONLL shared task, we use the BAR elsnsecrla(:t]izi inehﬁ\ésérag]r?gr:r:]:dcffrs I(T)Ietri'mization
internal MD module, as it corresponds better to P ' b P

: : - experiments, selected the best classifier and then
the mention detection guidelines of the OntoNote}s1 o . :
ave done additional runs to fine-tune the mention

dataset. We have further adjusted this module to im- .
. detection module.
prove the MD accuracy. The process of mention de-

tection involves two steps. 3.3 Using NSGA-I|

Flr_st, we c_reate a list o«‘:a_ndldate mentl_o_nby Chromosome Representation of Feature and Ar-
merging basic NP chunks with named entities. N%hitecture Parameters We used chromosomes of

chunks are computed from the parse trees providef(g’;lng,[h 43, each binary gene encoding whether or not

In thedCo!\IrI]_Lhdls;rlbu:log, lil\IEaLnEd Tn,llt-'ef Iare ei('to use a particular feature in constructing the classi-
tracted with the Stanfor tool (Finkel et & “'fier, plus one gene set tioto use a split classifief)

2005). For ea}ch candidate mentlon,'we store it MINES use a single classifier for all types of anaphors.
mal and maximal span. The former is used for com-

puting feature values (e.g., for string matching); ifitness Computation and Mutations For fitness
corresponds to either the basic NP chunk or the NEpmputation, the following procedure is executed.
depending on the mention type. The latter is used
for alignment with CoNLL mentions; it is computed
by climbing up the parse tree.

This procedure, combined with the perfect (gold)
coreference resolution, gives us an F-score of2. Construct the coreference resolution system
91.56% for the mention detection task on the (j.e. BART) with only theseN features.

CoNLL development sét

At the second step, we aim at discarding men- 3 This coreference system is evaluated on the de-
tions that are unlikely to participate in corefer- ~ Velopment data. The recall, precision and F-
ence chains. We have identified several groups of Mmeasure values of three metrics are calculated.
such mentions: erroneous/h”), (parts of) multi-

woro! expressions ("fofexampl¢’), yveb addresses, , particular chromosome af§ — F-measurg;yc
emails ("[http://conll.bbn.com]”), time/date expres-(fOr the MUC metric), F, = F-measurg, (for CEAF

sions ("two times [a year]"), non-referring pronounsiinq the. entity alignment function (Luo, 2005))
("[there]”,"[nobody]”), pronouns that are unlikely and F

oy . o . ; 3 = F-measurg, (for CEAF using the¢s
to participate in a chain (‘[somebody]", "[that]’), entity alignment function). The objective is to:

time/date expressions that are unlikely to participat%OL;E[F1 Fy, Fy): ie., these three objective func-

in a chain ("[this time]"), and expletive "it". tions are simultaneously optimized using the search
Our experiments on the development data Sho%pability ofNSGA-II.

that the first five groups can be reliably identified \we yse crowded binary tournament selection as
and safely discarded from the processing: even wit \sa-ll, followed by conventional crossover and
INote that, due to the fact that OntoNotes guidelines excludrenUtatIon for themoo based optimization.  The

singleton mentions, it is impossible to evaluate the MD comp mos_t characteristic part NSG'_“'” is its eIiti.sm op-
nent independently from coreference resolution. eration, where the non-dominated solutions (Deb,

1. Suppose there aré&V number of features
present in a particular chromosome (i.e., there
are totalN number of 1's in that chromosome).

For MO0, the objective functions corresponding to
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2001) among the parent and child populations are This suggests that automatic feature selection is
propagated to the next generation. The near-Paretessential to improve performance —i.e., that an effi-
optimal strings of the last generation provide the difeient coreference resolution system should combine
ferent solutions to the feature selection problem. rich linguistic feature sets with automatic feature se-

. . . lection mechanisms.
Genetic Algorithms Parameters Using the

CONLL development set, we set the following pa4.2 Test set
rameter values foMoO (i.e., NSGA-1): population Zv

6=20 ber of tions=20 babilit e have re-trained our best solution on the com-
s12€=29, number of generations=2L, probabliity Ofne train and development set, running it on the
mutation=0.1 and probability of crossover=0.9.

test data. This system has showed the following per-
3.4 Running the Optimization formance in the official evaluation (open track): the

L . FINAL score of 54.32,Fyyc = 57.53%, Fps =
Considering the size of the OntoNotes corpus, %5.18%, Freparp — 40.16%.

would be very time-consuming to run an optimiza-

tion experiment on the whole dataset. We havg Conclusion

therefore split the data into 3 sub-samples and per-

formed separate MOO experiments on each one. Our results on the development set suggest that a
The Moo approach provides a set of non-linguistically-rich system for coreference resolution

dominated solutions on the final Pareto Optimaqnight benefit a lot from feature selection. In partic-

front. All the solutions are equally important fromular, we have investigated Non-Dominated Sorting

the algorithmic point of view. We have collected set§3€netic Algorithm I (Deb et al., 2002) for multi-

of chromosomes for each sub-sample and evaluat€giective optimization.

them on the whole train/development set, picking !N subsequent work, we plan to expand the opti-

the solution with the highest FINALscore for our Mization technique to consider also learning param-
CoNLL submission. eters optimization, classifier selection, and learning

model selection.

4 Results
Acknowledgments
4.1 Development set
e-(gihis work was in part supported by the Provincia

Table 1 compares the performance level obtain : .
P P I Trento Grande Progetto LiveMemories, in part by

sing all the features with that of loose re- . .
using . u w an Erasmus Mundus scholarship for Asif Ekbal and
implementations of the systems proposed by Soo§|.
riparna Saha.

et al. (2001) and Ng and Cardie (2002), commonly
used as baselines. Our reimplementation of the Ng
& Cardie model uses only a subset of features.

The results in Table 1 show that our system with
a rich feature set does not outperform simpler base-
lines (and, in fact, yields poorer results). A similar
trend has been observed by Ng and Cardie (2002),
where the improvement was only possible after man-
ual feature selection.

The last line of Table 1 shows the performance
level of the best chromosome found through the
MOO technique. As it can be seen, it outperforms
all the baselines according to all the measures, lead-
ing to an improvement of 2-5 percentage points in
the FINAL score.

2The FINAL score is an average dfyuc, Fss and
FeparE.
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Features Frvoo | FOEAFE Fps | FINAL
following Soon et al. (2001) 54.12 41.08| 66.67| 53.42
-*-, with splitting 53.81 41.03| 66.70| 53.31
following Ng & Cardie (2002) | 52.97 42.40| 66.18| 53.31
-*-, with splitting 53.28 40.46| 66.03| 52.72
All features 50.18 38.54| 63.79| 50.33
-*-, with splitting 50.19 39.47| 65.38| 51.16
Optimized feature set (splitting) 57.05 42.61| 67.46| 55.15

Table 1: Performance on the development set
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