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Abstract

We present our end-to-end coreference res-
olution system,COPA, which implements a
global decision via hypergraph partitioning.
In constrast to almost all previous approaches,
we do not rely on separate classification and
clustering steps, but perform coreference res-
olution globally in one step.COPA represents
each document as a hypergraph and partitions
it with a spectral clustering algorithm. Various
types of relational features can be easily incor-
porated in this framwork.COPA has partici-
pated in theopen setting of the CoNLL shared
task on modeling unrestricted coreference.

1 Introduction

Coreference resolution is the task of grouping men-
tions of entities into sets so that all mentions in
one set refer to the same entity. Most recent ap-
proaches to coreference resolution divide this task
into two steps: (1) a classification step which de-
termines whether a pair of mentions is coreferent or
which outputs a confidence value, and (2) a cluster-
ing step which groups mentions into entities based
on the output of step 1.

In this paper we present an end-to-end corefer-
ence resolution system,COPA, which avoids the di-
vision into two steps and instead performs a global
decision in one step. The system presents a doc-
ument as a hypergraph, where the vertices denote
mentions and the edges denote relational features
between mentions. Coreference resolution is then
performed globally in one step by partitioning the
hypergraph into subhypergraphs so that all mentions

in one subhypergraph refer to the same entity (Cai
and Strube, 2010).COPA assigns edge weights by
applying simple descriptive statistics on the tranin-
ing data. SinceCOPA does not need to learn an
explicit model, we used only30% of the CoNLL
shared task training data. We did this not for effi-
ciency reasons, only for convenience.

While COPA has been developed originally to
perform coreference resolution on MUC and ACE
data (Cai and Strube, 2010), the move to the
OntoNotes data (Weischedel et al., 2011) required
mainly to update the mention detector and the fea-
ture set. Since several off-the-shelf preprocessing
components are used,COPA participated in theopen
setting of the CoNLL shared task on modeling unre-
stricted coreference (Pradhan et al., 2011). We did
not make extensive use of information beyond infor-
mation from the closed class setting.

2 Preprocessing

COPA is implemented on top of theBART-toolkit
(Versley et al., 2008). Documents are transformed
into theMMAX2-format (Müller and Strube, 2006)
which allows for easy visualization and (linguis-
tic) debugging. Each document is stored in several
XML-files representing different layers of annota-
tions. These annotations are created by a pipeline
of preprocessing components. We use theStan-
ford MaxentTagger (Toutanova et al., 2003) for part-
of-speech tagging, and theStanford Named En-
tity Recognizer (Finkel et al., 2005) for annotat-
ing named entities. In order to derive syntactic
information, we use theCharniak/Johnson rerank-
ing parser (Charniak and Johnson, 2005) com-
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bined with a constituent-to-dependency conversion
Tool (http://nlp.cs.lth.se/software/
treebank_converter ). The preprocessing
models are not trained on CoNLL data, so we only
participated in the open task.

We have implemented an in-house mention detec-
tor, which makes use of the parsing output, the part-
of-speech tags, as well as the chunks from theYam-
cha Chunker (Kudoh and Matsumoto, 2000). For
the OntoNotes data, the mention detector annotates
the biggest noun phrase spans.

3 COPA: Coreference Partitioner

TheCOPA system consists of modules which derive
hyperedges from features and assign edge weights
indicating a positive correlation with the coreference
relation, and resolution modules which create a hy-
pergraph representation for the testing data and per-
form partitioning to produce subhypergraphs, each
of which represents an entity.

3.1 HyperEdgeCreator

COPA needs training data only for computing the
hyperedge weights. Hyperedges represent features.
Each hyperedge corresponds to a feature instance
modeling a simple relation between two or more
mentions. This leads to initially overlapping sets of
mentions. Hyperedges are assigned weights which
are calculated on the training data as the percentage
of the initial edges being in fact coreferent. Due to
the simple strategy of assigning edge weights, only
a reasonable size of training data is needed.

3.2 Coreference Resolution Modules

Unlike pairwise models,COPA processes a docu-
ment globally in one step, taking care of the pref-
erence information among all the mentions simul-
taneously and clustering them into sets directly. A
document is represented as a single hypergraph with
multiple edges. The hypergraph resolver partitions
the hypergraph into several sub-hypergraphs, each
corresponding to one set of coreferent mentions.

3.2.1 HGModelBuilder

A single document is represented in a hypergraph
with basic relational features. Each hyperedge in a
graph corresponds to an instance of one of those fea-
tures with the weight assigned by theHyperEdge-

Learner. Instead of connecting nodes with the tar-
get relation as usually done in graph models,COPA
builds the graph directly out of low dimensional fea-
tures without assuming a distance metric.

3.2.2 HGResolver

In order to partition the hypergraph we adopt a
spectral clustering algorithm (Agarwal et al., 2005).
All experimental results are obtained using symmet-
ric Laplacians (Lsym) (von Luxburg, 2007).

We apply the recursive variant of spectral clus-
tering,recursive 2-way partitioning (R2 partitioner)
(Cai and Strube, 2010). This method does not need
any information about the number of target sets (the
numberk of clusters). Instead a stopping criterion
α⋆ has to be provided which is adjusted on develop-
ment data.

3.3 Complexity of HGResolver

Since edge weights are assigned using simple de-
scriptive statistics, the time HGResolver needs for
building the graph Laplacian matrix is not substan-
tial. For eigensolving, we use an open source library
provided by the Colt project1which implements a
Householder-QL algorithm to solve the eigenvalue
decomposition. When applied to the symmetric
graph Laplacian, the complexity of the eigensolv-
ing is given byO(n3), wheren is the number of
mentions in a hypergraph. Since there are only a
few hundred mentions per document in our data, this
complexity is not an issue. Spectral clustering gets
problematic when applied to millions of data points.

4 Features

In our system, features are represented as types of
hyperedges. Any realized edge is an instance of the
corresponding edge type. All instances derived from
the same type have the same weight, but they may
get reweighed by the distance feature (see Cai and
Strube (2010)). We use three types of features:

negative: prevent edges between mentions;

positive: generate strong edges between mentions;

weak: add edges to an existing graph without intro-
ducing new vertices;

1http://acs.lbl.gov/ ˜ hoschek/colt/
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In the following subsections we describe the fea-
tures used in our experiments. Some of the fea-
tures described in Cai and Strube (2010) had to be
changed to cope with the OntoNotes data. We also
introduced a few more features (in particular in or-
der to deal with the dialogue section in the data).

4.1 Negative Features

Negative features describe pairwise relations which
are most likely not coreferent. While we imple-
mented this information as weak positive features in
Cai and Strube (2010), here we apply these features
before graph construction as global variables.

When two mentions are connected by a negative
relation, no edges will be built between them in the
graph. For instance, no edges are allowed between
the mentionHillary Clinton and the mentionhe due
to incompatible gender.

(1) N Gender, (2) N Number: Two mentions do
not agree in gender or number.

(3) N SemanticClass: Two mentions do not
agree in semantic class (only theObject, Date and
Person top categories derived from WordNet (Fell-
baum, 1998) are used).

(4) N Mod: Two mentions have the same syntac-
tic heads, and the anaphor has a pre-modifier which
does not occur in the antecedent and does not con-
tradict the antecedent.

(5) N DSPrn: Two first person pronouns in direct
speeches assigned to different speakers.

(6) N ContraSubjObj: Two mentions are in the
subject and object positions of the same verb, and
the anaphor is a non-possesive pronoun.

4.2 Positive Features

The majority of well studied coreference features
(e.g. Stoyanov et al. (2009)) are actually positive
coreference indicators. In our system, the mentions
which participate in positive relations are included
in the graph representation.

(7) StrMatch Npron & (8) StrMatch Pron: Af-
ter discarding stop words, if the strings of mentions
completely match and are not pronouns, they are put
into edges of theStrMatch Npron type. When the
matched mentions are pronouns, they are put into
theStrMatch Pron type edges.

(9) Alias: After discarding stop words, if men-
tions are aliases of each other (i.e. proper names with

partial match, full names and acronyms, etc.).
(10) HeadMatch: If the syntactic heads of men-

tions match.
(11) Nprn Prn: If the antecedent is not a pro-

noun and the anaphor is a pronoun. This feature is
restricted to a sentence distance of 2. Though it is
not highly weighted, it is crucial for integrating pro-
nouns into the graph.

(12) Speaker12Prn:If the speaker of the second
person pronoun is talking to the speaker of the first
person pronoun. The mentions contain only first or
second person pronouns.

(13) DSPrn: If one of the mentions is the subject
of a speak verb, and other mentions are first person
pronouns within the corresponding direct speech.

(14) ReflexivePrn: If the anaphor is a reflexive
pronoun, and the antecedent is subject of the sen-
tence.

(15) PossPrn: If the anaphor is a possesive pro-
noun, and the antecedent is the subject of the sen-
tence or the subclause.

(16) GPEIsA: If the antecedent is a Named Entity
of GPE entity type (i.e. one of the ACE entity type
(NIST, 2004)), and the anaphor is a definite expres-
sion of the same type.

(17) OrgIsA: If the antecedent is a Named En-
tity of Organization entity type, and the anaphor is a
definite expression of the same type.

4.3 Weak Features

Weak features are weak coreference indicators. Us-
ing them as positive features would introduce too
much noise to the graph (i.e. a graph with too many
singletons). We apply weak features only to men-
tions already integrated in the graph, so that weak
information provides it with a richer structure.

(18) W Speak: If mentions occur with a word
meaningto say in a window size of two words.

(19) W Subject: If mentions are subjects.
(20) W Synonym: If mentions are synonymous

as indicated by WordNet.

5 Results

We submittedCOPA’s results to theopen setting
in the CoNLL shared task on modeling unrestricted
coreference. We used only30% of the training data
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(randomly selected) and the 20 features described in
Section 4.

The stopping criterionα∗ (see Section 3) is tuned
on development data to optimize the final corefer-
ence scores. A value of0.06 is chosen for testing.

COPA’s results on development set (which con-
sists of 202 files) and on testing set are displayed in
Table 1 and Table 2 respectively. TheOverall num-
bers in both tables are the average scores ofMUC,
BCUBED andCEAF (E).

Metric R P F1

MUC 52.69 57.94 55.19
BCUBED 64.26 73.39 68.52
CEAF (M) 54.44 54.44 54.44
CEAF (E) 45.73 40.92 43.19
BLANC 69.78 75.26 72.13
Overall 55.63

Table 1:COPA’s results on CoNLL development set

Metric R P F1

MUC 56.73 58.90 57.80
BCUBED 64.60 71.03 67.66
CEAF (M) 53.37 53.37 53.37
CEAF (E) 42.71 40.68 41.67
BLANC 69.77 73.96 71.62
Overall 55.71

Table 2:COPA’s results on CoNLL testing set

6 Mention Detection Errors

As described in Section 2, our mention detection is
based on automatically extracted information, such
as syntactic parses and basic noun phrase chunks.
Since there is nominimum span information pro-
vided in the OntoNotes data (in constrast to the pre-
vious standard corpus, ACE), exact mention bound-
ary detection is required. A lot of the spurious
mentions in our system are generated due to mis-
matches of ending or starting punctuations, and the
OntoNotes annotation is also not consistent in this
regard. Our current mention detector does not ex-
tract verb phrases. Therefore it misses all theEvent
mentions in the OntoNotes corpus.

We are planning to include idiomatic expression
identification into our mention detector, which will

help to avoid detecting a lot of spurious mentions,
such asGod in the phrasefor God’s sake.

7 COPA Errors

Besides the fact that the currentCOPA is not resolv-
ing anyevent coreferences, our in-house mention de-
tector performs weakly in extractingdate mentions
too. As a result, the system outputs several spuri-
ous coreference sets, for instance a set containing
theSeptember from the mention15th September.

A large amount of the recall loss in our system is
due to the lack of the world knowledge. For exam-
ple, COPA does not resolve the mentionthe Europe
station correctly into the entityRadio Free Europe,
for it has no knowledge that the entity is a station.

Some more difficult coreference phenomena in
OntoNotes data might require a reasoning mecha-
nism. To be able to connect the mentionthe vic-
tim with the mentionthe groom’s brother, the event
of the brother being killed needs to be intepreted by
the system.

We also observed from the experiments that the
resolution of theit mentions are quite inaccurate.
Although our mention detector takes care of dis-
carding pleonasticit’s, there are still a lot of them
left which introduce wrong coreference sets. Since
the it’s do not contain enough information by them-
selves, more features exploring their local syntax are
necessary.

8 Conclusions

In this paper we described a coreference resolution
system,COPA, which implements a global decision
in one step via hypergraph partitioning.COPA’s
hypergraph-based strategy is a general preference
model, where the preference for one mention de-
pends on information on all other mentions.

The system implements three types of relational
features — negative, positive and weak features, and
assigns the edge weights according to the statitics
from the training data. Since the weights are robust
with respect to the amount of training data we used
only 30% of the training data.
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