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Abstract

In this paper, we describe a coreference solver
based on the extensive use of lexical fea-
tures and features extracted from dependency
graphs of the sentences. The solver uses Soon
et al. (2001)’s classical resolution algorithm
based on a pairwise classification of the men-
tions.

We applied this solver to the closed track of
the CoNLL 2011 shared task (Pradhan et al.,
2011). We carried out a systematic optimiza-
tion of the feature set using cross-validation
that led us to retain 24 features. Using this set,
we reached a MUC score of 58.61 on the test
set of the shared task. We analyzed the impact
of the features on the development set and we
show the importance of lexicalization as well
as of properties related to dependency links in
coreference resolution.

1 Introduction

In this paper, we present our contribution to the
closed track of the 2011 CoNLL shared task (Prad-
han et al., 2011). We started from a baseline system
that uses Soon et al. (2001)’s architecture and fea-
tures. Mentions are identified by selecting all noun
phrases and possessive pronouns. Then, the reso-
lution algorithm relies on a pairwise classifier that
determines whether two mentions corefer or not.
Lexicalization has proved effective in numerous
tasks of natural language processing such as part-
of-speech tagging or parsing. However, lexicalized
models require a good deal of annotated data to
avoid overfit. The data set used in the CoNLL 2011
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shared task has a considerable size compared to cor-
pora traditionally used in coreference resolution —
the training set comprises 2,374 documents. See
Pradhan et al. (2007) for a previous work using an
earlier version of this dataset. Leveraging this size,
we investigated the potential of lexicalized features.

Besides lexical features, we created features that
use part-of-speech tags and semantic roles. We also
constructed features using dependency tree paths
and labels by converting the constituent trees pro-
vided in the shared task into dependency graphs.
The final feature set was selected through an au-
tomated feature selection procedure using cross-
validation.

2 System Architecture

During both training and decoding, we employed
the same mention detection and preprocessing steps.
We considered all the noun phrases (NP) and posses-
sive pronouns (PRP$) as mentions. In order to ex-
tract head words from the NP constituents, we con-
verted the constituent trees provided in the data sets
to dependency graphs using the Penn treebank con-
verter of Johansson and Nugues (2007). Using the
dependency tree, we extracted the head word of all
the NPs by taking the word that dominates the sub-
tree constructed from the NP.

The dependency tree is also used later to ex-
tract features of mentions based on dependency tree
paths, which is further described in Sec. 3.

In the preprocessing step, we assigned a number
and a gender to each mention. For the pronominal
mentions, we used a manually compiled lists of pro-
nouns, where we marked the number and gender.
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For nonpronominal mentions, we used the number
and gender data (Bergsma and Lin, 2006) provided
by the task organizers and queried it for the head
word of the mention. In cases of ambiguity (e.g. the
pronoun you), or missing entries in the data for non-
pronominals, we assigned an unknown value.

2.1 Generation of training examples

To create a set of training examples, we used pairs
of mentions following the method outlined by Soon
et al. (2001). For each anaphoric mention m; and
its closest preceding antecedent m;, we built a pos-
itive example: P = {(m;,m;)}. We constructed
the negative examples with noncoreferring pairs of
mentions, where the first term is a mention occur-
ring between m; and m; and the second one is m;:
N = {(mk,mj)|z <k< ])}

The training examples collected from the CoNLL
2011 training set consist of about 5.5% of positive
examples and 94.5% of negative ones.

2.2 Learning method

We evaluated two types of classifiers: decision trees
and logistic regression. We used the decision trees
and the C4.5 algorithm from the Weka distribution
(Hall et al., 2009) for our baseline system. We then
opted for linear logistic regression as it scaled better
with the number of features and feature values.

Logistic regression is faster to train and allowed
us to carry out an automated feature selection, which
is further described in Sec. 3.4. In addition, the lo-
gistic classifiers enabled us to interpret their results
in terms of probabilities, which we used for the de-
coding step. We trained the logistic regression clas-
sifiers using the LIBLINEAR package (Fan et al.,
2008).

2.3 Decoding

The decoding algorithm devised by Soon et al.
(2001) selects the closest preceding mention deemed
to be coreferent by the classifier. This clustering
algorithm is commonly referred to as closest-first
clustering. Ng and Cardie (2002) suggested a dif-
ferent clustering procedure, commonly referred to
as best-first clustering. This algorithm selects the
most likely antecedent classified as coreferent with
the anaphoric mention. During early experiments,
we found that while the best-first method increases
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the performance on nonpronominal anaphoric ex-
pressions, it has the opposite effect on pronominal
anaphoric expressions. Consequently, we settled on
using the closest-first clustering method for pronom-
inal mentions, and the best-first clustering method
otherwise. For the best-first clustering, we used the
probability output from our logistic classifiers and a
threshold of 0.5.

After clustering mentions in a document, we dis-
card all remaining singleton mentions, as they were
excluded from the annotation in the CoNLL 2011
shared task.

2.4 Postprocessing

The initial detection of mentions is a direct mapping
from two categories of constituents: NP and PRPS.
In the postprocessing step, we reclaim some of the
mentions that we missed in the initial step.

The automatically generated constituent trees pro-
vided in the data set contain errors and this causes
the loss of many mentions. Another source of loss
is the bracketing of complex NPs, where the in-
ternal structure uses the tag NML. In a few cases,
these nested nodes participate in coreference chains.
However, when we tried to include this tag in the
mention detection, we got worse results overall.
This is possibly due to an even more skewed dis-
tribution of positive and negative training examples.

In the postprocessing step, we therefore search
each document for sequences of one or more proper
noun tokens, i.e. tokens with the part-of-speech
tags NNP or NNPS. If their common ancestor, i.e.
the parse tree node that encloses all the tokens, is
not already in a mention, we try to match this se-
quence to any existing chain using the binary fea-
tures: STRINGMATCH and ALIAS (cf. Sec. 3). If
either of them evaluates to true, we add this span of
proper nouns to the matched chain.

3 Features

For our baseline system, we started with the feature
set described in Soon et al. (2001). Due to space
limitations, we omit the description of these features
and refer the reader to their paper.

We also defined a large number of feature tem-
plates based on the syntactic dependency tree, as
well as features based on semantic roles. In the fol-



lowing sections, we describe these features as well
as the naming conventions we use. The final feature
set we used is given in Sec. 4.

3.1 Mention-based features

On the mention level, we considered the head word
(HD) of the mention, and following the edges in the
dependency tree, we considered the left-most and
right-most children of the head word (HDLMC and
HDRMC), the left and right siblings of the head word
(HpLs and HDRS), as well as the governor! of the
head word (HDGOV).

For each of the above mentioned tokens, we ex-
tracted the surface form (FORM), the part-of-speech
tag (P0OS), and the grammatical function of the token
(FUN), i.e. the label of the dependency edge of the
token to its parent. For head words that do not have
any leftmost or rightmost children, or left or right
siblings, we used a null-value placeholder.

In each training pair, we extracted these values
from both mentions in the pair, i.e. both the anaphor
and the tentative antecedent. Table 3 shows the fea-
tures we used in our system. We used a naming
nomenclature consisting of the role in the anaphora,
where I stands for antecedent and J for anaphor; the
token we selected from the dependency graph, e.g.
HD or HDLMC; and the value extracted from the
token, e.g. POs or FUN. For instance, the part-of-
speech tag of the governor of the head word of the
anaphor is denoted: J-HDGOVPOS.

The baseline features taken from Soon et al.
(2001) include features such as I-PRONOUN and J-
DEMONSTRATIVE that are computed using a word
list and by looking at the first word in the mention,
respectively. Our assumption is that these traits can
be captured by our new features by considering the
part-of-speech tag of the head word and the surface
form of the left-most child of the head word, respec-
tively.

3.2 Path-based features

Between pairs of potentially coreferring mentions,
we also considered the path from the head word of
the anaphor to the head word of the antecedent in
the syntactic dependency tree. If the mentions are
not in the same sentence, this is the path from the

'We use the term governor in order not to confuse it with
head word of an NP.
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anaphor to the root of its sentence, followed by the
path from the root to the antecedent in its sentence.
We differentiate between the features depending on
whether they are in the same sentence or in different
sentences. The names of these features are prefixed
with SS and Ds, respectively.

Following the path in the dependency tree, we
concatenated either the surface form, the part-of-
speech tag, or the grammatical function label with
the direction of the edge to the next token, i.e. up or
down. This way, we built six feature templates. For
instance, DSPATHFORM is the concatenation of the
surface forms of the tokens along the path between
mentions in different sentences.

Bergsma and Lin (2006) built a statistical model
from paths that include the lemma of the intermedi-
ate tokens, but replace the end nodes with noun, pro-
noun, or pronoun-self for nouns, pronouns, and re-
flexive pronouns, respectively. They used this model
to define a measure of coreference likelihood to re-
solve pronouns within the same sentence. Rather
than building an explicit model, we simply included
these paths as features in our set. We refer to this
feature template as BERGSMALINPATH in Table 3.

3.3 Semantic role features

We tried to exploit the semantic roles that were in-
cluded in the CoNLL 2011 data set. Ponzetto and
Strube (2006) suggested using the concatenation of
the predicate and the role label for a mention that
has a semantic role in a predicate. They introduced
two new features, [ SEMROLE and J_SEMROLE, that
correspond to the semantic roles filled by each of the
mentions in a pair. We included these features in our
pool of feature templates, but we could not see any
contribution from them during the feature selection.

We also introduced a number of feature templates
that only applied to pairs of mentions that occur in
the same semantic role proposition. These templates
included the concatenation of the two labels of the
arguments and the predicate sense label, and vari-
ations of these that also included the head words
of either the antecedent or anaphor, or both. The
only feature that was selected during our feature se-
lection procedure corresponds to the concatenation
of the argument labels, the predicate sense, and the
head word of the anaphor: SEMROLEPROPJHD in
Table 3. In the sentence A lone protestor parked



herself outside the UN, the predicate park has the
arguments A lone protestor, labeled ARGO, and her-
self, labeled ARG1. The corresponding value of this
feature would be ARGO-park.01-ARGI-herself.

3.4 Feature selection

Starting from Soon et al. (2001)’s feature set, we
performed a greedy forward selection. The fea-
ture selection used a 5-fold cross-validation over the
training set, where we evaluated the features using
the arithmetic mean of MUC, BCUB, and CEAFE.
After reaching a maximal score using forward se-
lection, we reversed the process using a backward
elimination, leaving out each feature and removing
the one that had the worst impact on performance.
This backwards procedure was carried out until the
score no longer increased. We repeated this forward-
backward procedure until there was no increase in
performance. Table 3 shows the final feature set.

Feature bigrams are often used to increase the
separability of linear classifiers. Ideally, we would
have generated a complete bigram set from our fea-
tures. However, as this set is quadratic in nature
and due to time constraints, we included only a sub-
set of it in the selection procedure. Some of them,
most notably the bigram of mention head words (I-
HDFORM+J-HDFORM) were selected in the proce-
dure and appear in Table 3.

4 Evaluation

Table 1 shows some baseline figures using the binary
features STRINGMATCH and ALIAS as sole corefer-
ence properties, as well as our baseline system using
Soon et al. (2001)’s features.

MD MUC BCUB
STRINGMATCH 5991 4443 63.65
ALIAS 19.25 16.77 48.07
Soon baseline/LR 60.79 47.50 63.97
Soon baseline/C4.5 58.96 47.02 65.36

Table 1: Baseline figures using string match and alias
properties, and our Soon baseline using decision trees
with the C4.5 induction program and logistic regression
(LR). MD stands for mention detection.
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4.1 Contribution of postprocessing

The postprocessing step described in Sec. 2.4 proved
effective, contributing from 0.21 to up to 1 point to
the final score across the metrics. Table 2 shows the
detailed impacts on the development set.

MD MUC BCUB CEAFE

No postproc. 66.56 54.61 65.93 40.46
With postproc.  67.21 55.62  66.29 40.67
Increase 0.65 1.01 0.36 0.21

Table 2: Impact of the postprocessing step on the devel-
opment set.

4.2 Contribution of features

The lack of time prevented us from running a com-
plete selection from scratch and describing the con-
tribution of each feature on a clean slate. Nonethe-
less, we computed the scores when one feature is
removed from the final feature set. Table 3 shows
the performance degradation observed on the devel-
opment set, which gives an indication of the impor-
tance of each feature. In these runs, no postprocess-
ing was not used.

Toward the end of the table, some features show
a negative contribution to the score on the devel-
opment set. This is explained by the fact that our
feature selection was carried out in a cross-validated
manner over the training set.

4.3 Results on the test set

Table 4 shows the results we obtained on the test set.
The figures are consistent with the performance on
the development set across the three official metrics,
with an increase of the MUC score and a decrease
of both BCUB and CEAFE. The official score in the
shared task is computed as the mean of these three
metrics.

The shared task organizers also provided a test set
with given mention boundaries. The given bound-
aries included nonanaphoric and singleton mentions
as well. Using this test set, we replaced our mention
extraction step and used the given mention bound-
aries instead. Table 4 shows the results with this
setup. As mention boundaries were given, we turned
off our postprocessing module for this run.



Metric\ Corpus Development set Test set Test set with gold mentions
R P Fl1 R P Fl1 R P Fl1
Mention detection 65.68 68.82 6721 | 69.87 68.08 68.96 || 74.18 70.74 72.42
MUC 5526 5598 55.62 | 60.20 57.10 58.61 || 64.33 60.05 62.12
BCUB 65.07 67.56 6629 | 66.74 64.23 65.46 || 68.26 65.17 66.68
CEAFM 5251 5251 5251 | 5145 5145 5145 | 53.84 53.84 53.84
CEAFE 41.02 40.33 40.67 || 38.09 41.06 39.52 || 39.86 44.23 41.93
BLANC 69.6 70.41 70 71.99 7031 71.11 || 72.53 71.04 71.75
Official CoNLL score || 53.78 54.62 54.19 || 55.01 54.13 54.53 || 57.38 56.48 56.91

Table 4: Scores on development set, on the test set, and on the test set with given mention boundaries: recall (R),
precision (P), and harmonic mean (F1). The official CoNLL score is computed as the mean of MUC, BCUB, and

CEAFE.

MD MUC BCUB
All features 66.56 54.61 65.93
I-HDFORM+J-HDFORM  -1.35 -2.66 -1.82
STRINGMATCH' -1.12 132 -1.55
DISTANCE! -0.16 -0.62  -0.59
J-HDGoOVPoOS -0.51  -0.49 -0.13
I-HDRMCFUN -0.27 -0.39 -0.2
ALIAST -047 -036  -0.06
I-HDFORM -042 -0.18 0.04
I-GENDER+J-GENDER -0.3  -0.15 0.05
NUMBERAGREEMENT! 0.01 -0.14 -0.41
I-HDPOS -0.32  -0.14 0.05
J-PRONOUNT -0.25 -0.08  -0.09
I-HDLMCFORM+
J-HDLMCFORM -041 -0.04 0.08
I-HDLSFORM -0.01 0.01 0
SSBERGSMALINPATH -0.04 0.02 -0.13
I-HDGOVFUN -0.09 0.09 0.01
J-HDFUN -0.01 0.13 -0.04
I-HDLMCPOS -0.08 0.13 -0.09
DSPATHFORM -0.03 0.16 -0.02
J-HDGOVFUN -0.04 0.16 -0.05
J-DEMONSTRATIVE' -0.03  0.18 0.03
GENDERAGREEMENT! 0 0.18 -0.01
SEMROLEPROPJHD 0.01 0.2 0.01
I-PRONOUNT 0.01 022 0.04
I-HDFUN 0.05 0.22 -0.06

Table 3: The final feature set and, for each feature, the
degradation in performance when leaving out this feature
from the set. All evaluations were carried out on the de-
velopment set. The features marked with a dagger ' orig-
inate from the Soon et al. (2001) baseline feature set.

5 Conclusions

The main conclusions and contributions of our work
to the CoNLL 2011 shared task concern the detec-
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tion of mention boundaries, feature lexicalization,
and dependency features.

The mention boundaries are relatively difficult to
identify. Although far from perfect, we applied a di-
rect mapping from constituents to extract the men-
tions used in the resolution procedure. We then re-
claimed some mentions involving proper nouns in a
postprocessing step. Using the gold-standard men-
tion boundaries in the test set, we saw an increase in
all metrics with up to 3.51 for the MUC score.

The lexicalization of the feature set brings a sig-
nificant improvement to the scores. By order of per-
formance loss in Table 3, the first feature of our
model is a lexical one. This property does not seem
to have been systematically explored before, possi-
bly because of a tradition of using corpora of modest
sizes in coreference resolution.

Grammatical dependencies seem to play an im-
portant role in the anaphoric expressions. Results in
Table 3 also show this, although in a less pronounced
manner than lexicalization. Features extracted from
dependencies are implicit in many systems, but are
not explicitly mentioned as such. We hope our work
helped clarified this point through a more systematic
exploration of this class of features.
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