CoNLL 2011

CoNLL-2011 Shared Task

Fifteenth Conference on Computational Natural Language Learning

Proceedings of the Shared Task

23-24 June, 2011 Portland, Oregon, USA Production and Manufacturing by Omnipress, Inc. 2600 Anderson Street Madison, WI 53704 USA

©2011 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 acl@aclweb.org

ISBN-139781937284084

Introduction

This volume contains a description of the CoNLL-2011 Shared Task and the participating systems. This year, the shared task was based on the English portion of OntoNotes 4.0 corpus. The goal was to identify anaphoric mentions – both entities and events – and perform coreference resolution to create clusters of mentions representing the same entity or event in the text.

The OntoNotes data spans five genres and multiple layers of annotation in addition to coreference, including parses, semantic roles, word sense, and named entities, making it a rich and diverse corpus. One of the challenges for the shared task participants (though they were limited by the time contraints of the task) and also for continuing research going forward is to find effective ways to bring these multiple layers of information to bear on the coreference task to improve upon the current state of the art.

As is traditional with CoNLL, we had two tracks – an *open* and a *closed* track. Since world knowledge is an important factor in coreference resolution, even in the closed task participants were allowed to use some limited, outside sources, including WordNet and a pre-computed table predicting number and gender information for noun phrases. For the open task, as usual, participants were allowed to use any other source of information, such as Wikipedia, gazetteers, etc., that did not violate the evaluation criteria designed to protect the test set.

A total of 23 participants submitted system outputs and 21 of them submitted system description papers. We hope that this data set will provide a useful benchmark and spur further research in this important sub-field of language processing.

Sameer Pradhan, on behalf of the Shared Task organizers May 22, 2011 Cambridge, MA

Organizers:

Sameer Pradhan (Chair)	BBN Technologies, Cambridge
Mitchell Marcus	University of Pennsylvania, Philadelphia
Martha Palmer	University of Colorado, Boulder
Lance Ramshaw	BBN Technologies, Cambridge
Ralph Weischedel	BBN Technologies, Cambridge
Nianwen Xue	Brandeis University, Waltham

Program Committee:

Jie Cai	Heidelberg Institute for Theoretical Studies, Germany
Claire Cardie	Cornell University
Pascal Denis	INRIA, France
Kadri Hacioglu	Rosetta Stone, Boulder
Alessandro Moschitti	University of Trento, Italy
Vincent Ng	University of Texas, Dallas
Pierre Nugues	Lund University, Sweden
Massimo Poesio	University of Trento, Italy
Vasin Punyakanok	BBN Technologies, Cambridge
Emili Sapena	Universitat Politècnica de Catalunya, Barcelona, Catalunya
Michael Strube	Heidelberg Institute for Theoretical Studies, Germany
Jordi Turmo	Universitat Politècnica de Catalunya, Barcelona, Catalunya

Table of Contents

<i>CoNLL-2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes</i> Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph Weischedel and Nian-
wen Xue1
Stanford's Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared TaskHeeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu and DanJurafsky28
RelaxCor Participation in CoNLL Shared Task on Coreference Resolution Emili Sapena, Lluís Padró and Jordi Turmo 35
<i>Inference Protocols for Coreference Resolution</i> Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya, Nick Rizzolo, Mark Sammons and Dan Roth 40
Exploring Lexicalized Features for Coreference Resolution Anders Björkelund and Pierre Nugues 45
Rule and Tree Ensembles for Unrestricted Coreference Resolution Cicero Nogueira dos Santos and Davi Lopes Carvalho
Unrestricted Coreference Resolution via Global Hypergraph Partitioning Jie Cai, Eva Mujdricza-Maydt and Michael Strube
Multi-metric optimization for coreference: The UniTN / IITP / Essex submission to the 2011 CONLL Shared Task Olga Uryupina, Sriparna Saha, Asif Ekbal and Massimo Poesio
Combining Syntactic and Semantic Features by SVM for Unrestricted Coreference Resolution Huiwei Zhou, Yao Li, Degen Huang, Yan Zhang, Chunlong Wu and Yuansheng Yang
Supervised Coreference Resolution with SUCRE Hamidreza Kobdani and Hinrich Schuetze 71
ETS: An Error Tolerable System for Coreference Resolution Hao Xiong, Linfeng Song, Fandong Meng, Yang Liu, Qun Liu and Yajuan Lv
An Incremental Model for Coreference Resolution with Restrictive Antecedent Accessibility Manfred Klenner and Don Tuggener
Narrative Schema as World Knowledge for Coreference Resolution Joseph Irwin, Mamoru Komachi and Yuji Matsumoto 86
<i>Hybrid Approach for Coreference Resolution</i> Sobha Lalitha Devi, Pattabhi Rao, Vijay Sundar Ram R, M. C S and A. A

Poly-co: a multilayer perceptron approach for coreference detection Eric Charton and Michel Gagnon	97
<i>Mention Detection: Heuristics for the OntoNotes annotations</i> Jonathan K Kummerfeld, Mohit Bansal, David Burkett and Dan Klein	. 102
Coreference Resolution with Loose Transitivity Constraints Xinxin Li, Xuan Wang and Shuhan Qi	. 107
UBIU: A Robust System for Resolving Unrestricted Coreference Desislava Zhekova and Sandra Kübler	. 112
A Machine Learning-Based Coreference Detection System for OntoNotes Yaqin Yang, Nianwen Xue and Peter Anick	. 117
<i>Reconciling OntoNotes: Unrestricted Coreference Resolution in OntoNotes with Reconcile.</i> Veselin Stoyanov, Uday Babbar, Pracheer Gupta and Claire Cardie	. 122
Coreference Resolution System using Maximum Entropy Classifier Weipeng Chen, Muyu Zhang and Bing Qin	127
Link Type Based Pre-Cluster Pair Model for Coreference Resolution Yang Song, Houfeng Wang and Jing Jiang	. 131

Conference Program

Friday, June 24, 2011

8:45–9:00 Opening Remarks

Session I:

- 9:00–9:20 *CoNLL-2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes* Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph Weischedel and Nianwen Xue
- 9:20–9:30 Stanford's Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared Task
 Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu and Dan Jurafsky
- 9:30–9:40 *RelaxCor Participation in CoNLL Shared Task on Coreference Resolution* Emili Sapena, Lluís Padró and Jordi Turmo
- 9:40–9:50 *Inference Protocols for Coreference Resolution* Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya, Nick Rizzolo, Mark Sammons and Dan Roth
- 9:50–10:00 *Exploring Lexicalized Features for Coreference Resolution* Anders Björkelund and Pierre Nugues
- 10:00–10:10 *Rule and Tree Ensembles for Unrestricted Coreference Resolution* Cicero Nogueira dos Santos and Davi Lopes Carvalho
- 10:10–10:20 Unrestricted Coreference Resolution via Global Hypergraph Partitioning Jie Cai, Eva Mujdricza-Maydt and Michael Strube
- 10:20–10:30 Multi-metric optimization for coreference: The UniTN / IITP / Essex submission to the 2011 CONLL Shared Task
 Olga Uryupina, Sriparna Saha, Asif Ekbal and Massimo Poesio

10:30–11:00 Coffee Break

Friday, June 24, 2011 (continued)

Session II:

11:00–12:30 Poster Session

Combining Syntactic and Semantic Features by SVM for Unrestricted Coreference Resolution Huiwei Zhou, Yao Li, Degen Huang, Yan Zhang, Chunlong Wu and Yuansheng Yang

Supervised Coreference Resolution with SUCRE Hamidreza Kobdani and Hinrich Schuetze

ETS: An Error Tolerable System for Coreference Resolution Hao Xiong, Linfeng Song, Fandong Meng, Yang Liu, Qun Liu and Yajuan Lv

An Incremental Model for Coreference Resolution with Restrictive Antecedent Accessibility

Manfred Klenner and Don Tuggener

Narrative Schema as World Knowledge for Coreference Resolution Joseph Irwin, Mamoru Komachi and Yuji Matsumoto

Hybrid Approach for Coreference Resolution Sobha Lalitha Devi, Pattabhi Rao, Vijay Sundar Ram R, M. C S and A. A

Poly-co: a multilayer perceptron approach for coreference detection Eric Charton and Michel Gagnon

Mention Detection: Heuristics for the OntoNotes annotations Jonathan K Kummerfeld, Mohit Bansal, David Burkett and Dan Klein

Coreference Resolution with Loose Transitivity Constraints Xinxin Li, Xuan Wang and Shuhan Qi

UBIU: A Robust System for Resolving Unrestricted Coreference Desislava Zhekova and Sandra Kübler

A Machine Learning-Based Coreference Detection System for OntoNotes Yaqin Yang, Nianwen Xue and Peter Anick

Friday, June 24, 2011 (continued)

Reconciling OntoNotes: Unrestricted Coreference Resolution in OntoNotes with Reconcile.

Veselin Stoyanov, Uday Babbar, Pracheer Gupta and Claire Cardie

Coreference Resolution System using Maximum Entropy Classifier Weipeng Chen, Muyu Zhang and Bing Qin

Link Type Based Pre-Cluster Pair Model for Coreference Resolution Yang Song, Houfeng Wang and Jing Jiang