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Introduction

The requirements of improved access to the massive amount of scientific literature in biomedical
domain - through applications such as semantic search, assisted pathway annotation, and the automatic
identification of specific biomolecular reactions for database curation support - place continuing
demands on the development of methods and resources for advanced biomedical information extraction
and text mining. The BioNLP Shared Task series seeks to advance this development through an
increased focus on detailed structured representations of extracted information, novel corpus resources
with fully text-bound annotation, and precise task definitions, support and evaluation.

The BioNLP Shared Task 2011 is the second in the series, following up on the first event organized in
2009. Seeking to build on the success of the previous event, the task was organized as a collaboration
between several groups in Asia, Europe and the US who defined in total eight specific tasks involving
diverse challenges, including in addition to structured event extraction also relation extraction and
supporting tasks such as coreference resolution. The main theme of the 2011 event was generalization,
and the main tasks further broadened on the 2009 setup in three aspects: text types, subject domains,
and novel event extraction targets.

The task attracted broad interest from the community, and a total of 46 final submissions were received
from 24 groups, maintaining the 2009 task participation numbers while nearly doubling its number
of submissions. In addition to the continued interest from the biomedical text mining community,
we were glad to welcome the participation of many new groups from academia and industry. The
submissions demonstrated substantial progress at the established event extraction task and showed that
event extraction methods generalize well, among other aspects, to full papers, new subject domains such
as infectious diseases and bacterial interactions, and new sets of events such as protein post-translational
modifications.

Thanks to the many excellent manuscripts received from participants and the efforts of the programme
committee, it is our pleasure to present these proceedings describing the task and the participating
systems.
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Abstract

The BioNLP Shared Task 2011, an informa-
tion extraction task held over 6 months up to
March 2011, met with community-wide par-
ticipation, receiving 46 final submissions from
24 teams. Five main tasks and three support-
ing tasks were arranged, and their results show
advances in the state of the art in fine-grained
biomedical domain information extraction and
demonstrate that extraction methods success-
fully generalize in various aspects.

1 Introduction

The BioNLP Shared Task (BioNLP-ST, hereafter)
series represents a community-wide move toward
fine-grained information extraction (IE), in particu-
lar biomolecular event extraction (Kim et al., 2009;
Ananiadou et al., 2010). The series is complemen-
tary to BioCreative (Hirschman et al., 2007); while
BioCreative emphasizes the short-termapplicability
of introduced IE methods for tasks such as database
curation, BioNLP-ST places more emphasis on the
measurabilityof the state-of-the-art andtraceabil-
ity of challenges in extraction through an approach
more closely tied to text.

These goals were pursued in the first event,
BioNLP-ST 2009 (Kim et al., 2009), throughhigh
quality benchmark dataprovided for system devel-
opment anddetailed evaluationperformed to iden-
tify remaining problems hindering extraction perfor-

mance. Also, as the complexity of the task was high
and system development time limited, we encour-
agedfocus on fine-grained IEby providing gold an-
notation for named entities as well as various sup-
porting resources. BioNLP-ST 2009 attracted wide
attention, with 24 teams submitting final results. The
task setup and data since have served as the basis
for numerous studies (Miwa et al., 2010b; Poon and
Vanderwende, 2010; Vlachos, 2010; Miwa et al.,
2010a; Bj̈orne et al., 2010).

As the second event of the series, BioNLP-ST
2011 preserves the general design and goals of the
previous event, but adds a new focus onvariabil-
ity to address a limitation of BioNLP-ST 2009: the
benchmark data sets were based on the Genia corpus
(Kim et al., 2008), restricting the community-wide
effort to resources developed by a single group for
a small subdomain of molecular biology. BioNLP-
ST 2011 is organized as a joint effort of several
groups preparing various tasks and resources, in
which variability is pursued in three primary direc-
tions: text types, event types, andsubject domains.
Consequently,generalizationof fine grained bio-IE
in these directions is emphasized as the main theme
of the second event.

This paper summarizes the entire BioNLP-ST
2011, covering the relationships between tasks and
similar broad issues. Each task is presented in detail
in separate overview papers and extraction systems
in papers by participants.
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2 Main tasks

BioNLP-ST 2011 includes four main tracks (with
five tasks) representing fine-grained bio-IE.

2.1 Genia task (GE)

The GE task (Kim et al., 2011) preserves the task
definition of BioNLP-ST 2009, arranged based on
the Genia corpus (Kim et al., 2008). The data repre-
sents a focused domain of molecular biology:tran-
scription factors in human blood cells. The purpose
of the GE task is two-fold: to measure the progress
of the community since the last event, and to eval-
uate generalization of the technology to full papers.
For the second purpose, the provided data is com-
posed of two collections: theabstract collection,
identical to the BioNLP-ST 2009 data, and the new
full paper collection. Progress on the task is mea-
sured through the unchanged task definition and the
abstract collection, while generalization to full pa-
pers is measured on the full paper collection. In this
way, the GE task is intended to connect the entire
event to the previous one.

2.2 Epigenetics and post-translational
modification task (EPI)

The EPI task (Ohta et al., 2011) focuses on IE for
protein and DNA modifications, with particular em-
phasis on events of epigenetics interest. While the
basic task setup and entity definitions follow those of
the GE task, EPI extends on the extraction targets by
defining 14 new event types relevant to task topics,
including major protein modification types and their
reverse reactions. For capturing the ways in which
different entities participate in these events, the task
extends the GE argument roles with two new roles
specific to the domain,SidechainandContextgene.
The task design and setup are oriented toward the
needs of pathway extraction and curation for domain
databases (Wu et al., 2003; Ongenaert et al., 2008)
and are informed by previous studies on extraction
of the target events (Ohta et al., 2010b; Ohta et al.,
2010c).

2.3 Infectious diseases task (ID)

The ID task (Pyysalo et al., 2011a) concerns the ex-
traction of events relevant to biomolecular mecha-
nisms of infectious diseases from full-text publica-

tions. The task follows the basic design of BioNLP-
ST 2009, and the ID entities and extraction targets
are a superset of the GE ones. The task extends
considerably on core entities, adding to PROTEIN

four new entity types, including CHEMICAL and
ORGANISM. The events extend on the GE defini-
tions in allowing arguments of the new entity types
as well as in introducing a new event category for
high-level biological processes. The task was im-
plemented in collaboration with domain experts and
informed by prior studies on domain information ex-
traction requirements (Pyysalo et al., 2010; Anani-
adou et al., 2011), including the support of systems
such as PATRIC (http://patricbrc.org).

2.4 Bacteria track

The bacteria track consists of two tasks, BB and BI.

2.4.1 Bacteria biotope task (BB)

The aim of the BB task (Bossy et al., 2011) is to ex-
tract the habitats of bacteria mentioned in textbook-
level texts written for non-experts. The texts are
Web pages about the state of the art knowledge about
bacterial species. BB targets general relations,Lo-
calization and PartOf, and is challenging in that
texts contain more coreferences than usual, habitat
references are not necessarily named entities, and,
unlike in other BioNLP-ST 2011 tasks, all entities
need to be recognized by participants. BB is the first
task to target phenotypic information and, as habi-
tats are yet to be normalized by the field community,
presents an opportunity for the BioNLP community
to contribute to the standardization effort.

2.4.2 Bacteria interaction task (BI)

The BI task (Jourde et al., 2011) is devoted to the ex-
traction of bacterial molecular interactions and reg-
ulations from publication abstracts. Mainly focused
on gene transcriptional regulation inBacillus sub-
tilis, the BI corpus is provided to participants with
rich semantic annotation derived from a recently
proposed ontology (Manine et al., 2009) defining
ten entity types such as gene, protein and deriva-
tives as well as DNA sites/motifs. Their interactions
are described through ten relation types. The BI
corpus consists of the sentences of the LLL corpus
(Nédellec, 2005), provided with manually checked
linguistic annotations.
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Task Text Focus #
GE abstracts, full papers domain (HT) 9
EPI abstracts event types 15
ID full papers domain (TCS) 10
BB web pages domain (BB) 2
BI abstracts domain (BS) 10

Table 1: Characteristics of BioNLP-ST 2011 main tasks.
‘#’: number of event/relation types targeted. Domains:
HT = human transcription factors in blood cells, TCS
= two-component systems, BB = bacteria biology, BS =
Bacillus subtilis

2.5 Characteristics of main tasks

The main tasks are characterized in Table 1. From
the text type perspective, BioNLP-ST 2011 gener-
alizes from abstracts in 2009 to full papers (GE and
ID) and web pages (BB). It also includes data collec-
tions for a variety of specific subject domains (GE,
ID, BB an BI) and a task (EPI) whose scope is not
defined through a domain but rather event types. In
terms of the target event types, ID targets a superset
of GE events and EPI extends on the representation
for PHOSPHORYLATIONevents of GE. The two bac-
teria track tasks represent an independent perspec-
tive relatively far from other tasks in terms of their
target information.

3 Supporting tasks

BioNLP-ST 2011 includes three supporting tasks
designed to assist in primary the extraction tasks.
Other supporting resources made available to par-
ticipants are presented in (Stenetorp et al., 2011).

3.1 Protein coreference task (CO)

The CO task (Nguyen et al., 2011) concerns the
recognition of coreferences to protein references. It
is motivated from a finding from BioNLP-ST 2009
result analysis: coreference structures in biomedical
text hinder the extraction results of fine-grained IE
systems. While finding connections between event
triggers and protein references is a major part of
event extraction, it becomes much harder if one is
replaced with a coreferencing expression. The CO
task seeks to address this problem. The data sets for
the task were produced based on MedCO annotation
(Su et al., 2008) and other Genia resources (Tateisi
et al., 2005; Kim et al., 2008).

Event Date Note
Sample Data 31 Aug. 2010
Support. Tasks

Train. Data 27 Sep. 2010 7 weeks for development
Test Data 15 Nov. 2010 4 days for submission
Submission 19 Nov. 2010
Evaluation 22 Nov. 2010

Main Tasks
Train. Data 1 Dec. 2010 3 months for development
Test Data 1 Mar. 2011 9 days for submission
Submission 10 Mar. 2011 extended from 8 Mar.
Evaluation 11 Mar. 2011 extended from 10 Mar.

Table 2: Schedule of BioNLP-ST 2011

3.2 Entity relations task (REL)

The REL task (Pyysalo et al., 2011b) involves the
recognition of two binary part-of relations between
entities: PROTEIN-COMPONENT and SUBUNIT-
COMPLEX. The task is motivated by specific chal-
lenges: the identification of the components of pro-
teins in text is relevant e.g. to the recognition of
Sitearguments (cf. GE, EPI and ID tasks), and re-
lations between proteins and their complexes rele-
vant to any task involving them. REL setup is in-
formed by recent semantic relation tasks (Hendrickx
et al., 2010). The task data, consisting of new anno-
tations for GE data, extends a previously introduced
resource (Pyysalo et al., 2009; Ohta et al., 2010a).

3.3 Gene renaming task (REN)

The REN task (Jourde et al., 2011) objective is to ex-
tract renaming pairs ofBacillus subtilisgene/protein
names from PubMed abstracts, motivated by dis-
crepancies between nomenclature databases that in-
terfere with search and complicate normalization.
REN relations partially overlap several concepts:
explicit renaming mentions, synonymy, and renam-
ing deduced from biological proof. While the task
is related to synonymy relation extraction (Yu and
Agichtein, 2003), it has a novel definition of renam-
ing, one name permanently replacing the other.

4 Schedule

Table 2 shows the task schedule, split into two
phases to allow the use of supporting task results in
addressing the main tasks. In recognition of their
higher complexity, a longer development period was
arranged for the main tasks (3 months vs 7 weeks).

3



Team GE EPI ID BB BI CO REL REN
UTurku 1 1 1 1 1 1 1 1

ConcordU 1 1 1 1 1 1
UMass 1 1 1

Stanford 1 1 1
FAUST 1 1 1

MSR-NLP 1 1
CCP-BTMG 1 1

Others 8 0 2 2 0 4 2 1
SUM 15 7 7 3 1 6 4 3

Table 3: Final submissions to BioNLP-ST 2011 tasks.

5 Participation

BioNLP-ST 2011 received 46 submissions from 24
teams (Table 3). While seven teams participated in
multiple tasks, only one team, UTurku, submitted fi-
nal results to all the tasks. The remaining 17 teams
participated in only single tasks. Disappointingly,
only two teams (UTurku, and ConcordU) performed
both supporting and main tasks, and neither used
supporting task analyses for the main tasks.

6 Results

Detailed evaluation results and analyses are pre-
sented in individual task papers, but interesting ob-
servations can be obtained also by comparisons over
the tasks. Table 4 summarizes best results for vari-
ous criteria (Note that the results shown for e.g. GEa,
GEf and GEp may be from different teams).

The community has made a significant improve-
ment in the repeated GE task, with an over 10%
reduction in error from ’09 to GEa. Three teams
achieved better results than M10, the best previously
reported individual result on the ’09 data. This in-
dicates a beneficial role from focused efforts like
BioNLP-ST. The GEf and ID results show that
generalization to full papers is feasible, with very
modest loss in performance compared to abstracts
(GEa). The results for PHOSPHORYLATION events
in GE and EPI are comparable (GEp vs EPIp), with
the small drop for the EPI result, suggesting that
the removal of the GE domain specificity does not
compromise extraction performance. EPIc results
indicate some challenges in generalization to simi-
lar event types, and EPIf suggest substantial further
challenges in additional argument extraction. The
complexity of ID is comparable to GE, also reflected
to their final results, which further indicate success-

Task Evaluation Results
BioNLP-ST 2009 (’09) 46.73 / 58.48 / 51.95
Miwa et al. (2010b) (M10) 48.62 / 58.96 / 53.29
LLL 2005 (LLL) 53.00 / 55.60 / 54.30
GE abstracts (GEa) 50.00 / 67.53 / 57.46
GE full texts (GEf) 47.84 / 59.76 / 53.14
GE PHOSPHORYLATION(GEp) 79.26 / 86.99 / 82.95
GE LOCALIZATION (GEl) 37.88 / 77.42 / 50.87
EPI full task (EPIf) 52.69 / 53.98 / 53.33
EPI core task (EPIc) 68.51 / 69.20 / 68.86
EPI PHOSPHORYLATION(EPIp) 86.15 / 74.67 / 80.00
ID full task (IDf) 48.03 / 65.97 / 55.59
ID core task (IDc) 50.62 / 66.06 / 57.32
BB 45.00 / 45.00 / 45.00
BB PartOf (BBp) 32.00 / 83.00 / 46.00
BI 71.00 / 85.00 / 77.00
CO 22.18 / 73.26 / 34.05
REL 50.10 / 68.00 / 57.70
REN 79.60 / 95.90 / 87.00

Table 4: Best results for various (sub)tasks (recall / preci-
sion / f-score (%)). GEl: task 2 without trigger detection.

ful generalization to a new subject domain as well
as to new argument (entity) types. The BB task is
in part comparable to GEl and involves a represen-
tation similar to REL, with lower results likely in
part because BB requires entity recognition. The BI
task is comparable to LLL Challenge, though BI in-
volves more entity and event types. The BI result
is 20 points above the LLL best result, indicating a
substantial progress of the community in five years.

7 Discussion and Conclusions

Meeting with wide participation from the commu-
nity, BioNLP-ST 2011 produced a wealth of valu-
able resources for the advancement of fine-grained
IE in biology and biomedicine, and demonstrated
that event extraction methods can successfully gen-
eralize to new text types, event types, and domains.
However, the goal to observe the capacity of sup-
porting tasks to assist the main tasks was not met.
The entire shared task period was very long, more
than 6 months, and the complexity of the task was
high, which could be an excessive burden for partic-
ipants, limiting the application of novel resources.
There have been ongoing efforts since BioNLP-ST
2009 to develop IE systems based on the task re-
sources, and we hope to see continued efforts also
following BioNLP-ST 2011, especially exploring
the use of supporting task resources for main tasks.
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Abstract

The Genia event task, a bio-molecular event
extraction task, is arranged as one of the main
tasks of BioNLP Shared Task 2011. As its sec-
ond time to be arranged for community-wide
focused efforts, it aimed to measure the ad-
vance of the community since 2009, and to
evaluate generalization of the technology to
full text papers. After a 3-month system de-
velopment period, 15 teams submitted their
performance results on test cases. The re-
sults show the community has made a sig-
nificant advancement in terms of both perfor-
mance improvement and generalization.

1 Introduction

The BioNLP Shared Task (BioNLP-ST, hereafter)
is a series of efforts to promote a community-
wide collaboration towards fine-grained informa-
tion extraction (IE) in biomedical domain. The
first event, BioNLP-ST 2009, introducing a bio-
molecular event (bio-event) extraction task to the
community, attracted a wide attention, with 42 teams
being registered for participation and 24 teams sub-
mitting final results (Kim et al., 2009).
To establish a community effort, the organizers

provided the task definition, benchmark data, and
evaluations, and the participants competed in devel-
oping systems to perform the task. Meanwhile, par-
ticipants and organizers communicated to develop a
better setup of evaluation, and some provided their
tools and resources for other participants, making it
a collaborative competition.

The final results enabled to observe the state-of-
the-art performance of the community on the bio-
event extraction task, which showed that the auto-
matic extraction of simple events - those with unary
arguments, e.g. gene expression, localization, phos-
phorylation - could be achieved at the performance
level of 70% in F-score, but the extraction of com-
plex events, e.g. binding and regulation, was a lot
more challenging, having achieved 40% of perfor-
mance level.
After BioNLP-ST 2009, all the resources from the

event were released to the public, to encourage con-
tinuous efforts for further advancement. Since then,
several improvements have been reported (Miwa et
al., 2010b; Poon and Vanderwende, 2010; Vlachos,
2010; Miwa et al., 2010a; Björne et al., 2010).
For example, Miwa et al. (Miwa et al., 2010b)
reported a significant improvement with binding
events, achieving 50% of performance level.
The task introduced in BioNLP-ST 2009 was re-

named to Genia event (GE) task, and was hosted
again in BioNLP-ST 2011, which also hosted four
other IE tasks and three supporting tasks (Kim et al.,
2011). As the sole task that was repeated in the two
events, the GE task was referenced during the devel-
opment of other tasks, and took the role of connect-
ing the results of the 2009 event to the main tasks of
2011. The GE task in 2011 received final submis-
sions from 15 teams. The results show the commu-
nity made a significant progress with the task, and
also show the technology can be generalized to full
papers at moderate cost of performance.
This paper presents the task setup, preparation,

and discusses the results.
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Event Type Primary Argument Secondary Argument
Gene expression Theme(Protein)
Transcription Theme(Protein)
Protein catabolism Theme(Protein)
Phosphorylation Theme(Protein) Site(Entity)
Localization Theme(Protein) AtLoc(Entity), ToLoc(Entity)
Binding Theme(Protein)+ Site(Entity)+
Regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)
Positive regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)
Negative regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)

Table 1: Event types and their arguments for Genia event task. The type of each filler entity is specified in parenthesis.
Arguments that may be filled more than once per event are marked with “+”.

2 Task Definition

The GE task follows the task definition of BioNLP-
ST 2009, which is briefly described in this section.
For more detail, please refer to (Kim et al., 2009).
Table 1 shows the event types to be addressed in

the task. For each event type, the primary and sec-
ondary arguments to be extracted with an event are
defined. For example, a Phosphorylation event is
primarily extracted with the protein to be phospho-
rylated. As secondary information, the specific site
to be phosphorylated may be extracted.
From a computational point of view, the event

types represent different levels of complexity. When
only primary arguments are considered, the first five
event types in Table 1 are classified as simple event
types, requiring only unary arguments. The Bind-
ing and Regulation types are more complex: Bind-
ing requires detection of an arbitrary number of ar-
guments, and Regulation requires detection of recur-
sive event structure.
Based on the definition of event types, the entire

task is divided to three sub-tasks addressing event
extraction at different levels of specificity:

Task 1. Core event extractionaddresses the ex-
traction of typed events together with their pri-
mary arguments.

Task 2. Event enrichment addresses the extrac-
tion of secondary arguments that further spec-
ify the events extracted in Task 1.

Task 3. Negation/Speculation detection
addresses the detection of negations and
speculations over the extracted events.

Task 1 serves as the backbone of the GE task and is
mandatory for all participants, while the other two
are optional.

The failure of p65 translocation to the nucleus …

Protein Localization Location

theme ToLoc

Negated

Figure 1: Event annotation example

Figure 1 shows an example of event annotation.
The event encoded in the text is represented in a
standoff-style annotation as follows:
T1 Protein 15 18
T2 Localization 19 32
T3 Entity 40 46
E1 Localization:T2 Theme:T1 ToLoc:T1
M1 Negation E1

The annotation T1 identifies the entity referred
to by the string (p65) between the character offsets,
15 and 18 to be a Protein. T2 identifies the string,
translocation, to refer to a Localization event. Enti-
ties other than proteins or event type references are
classified into a default class Entity, as in T3. E1
then represents the event defined by the three enti-
ties, as defined in Table 1. Note that for Task 1, the
entity, T3, does not need to be identified, and the
event, E1, may be identified without specification of
the secondary argument, ToLoc:T1:
E1’ Localization:T2 Theme:T1

Finding the full representation of E1 is the goal of
Task 2. In the example, the localization event, E1,
is negated as expressed in the failure of . Finding the
negation, M1 is the goal of Task 3.
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Training Devel Test
Item Abs. Full Abs. Full Abs. Full

Articles 800 5 150 5 260 4
Words 176146 29583 33827 30305 57256 21791
Proteins 9300 2325 2080 2610 3589 1712
Events 8615 1695 1795 1455 3193 1294

Gene expression 1738 527 356 393 722 280
Transcription 576 91 82 76 137 37
Protein catabolism 110 0 21 2 14 1
Phosphorylation 169 23 47 64 139 50
Localization 265 16 53 14 174 17
Binding 887 101 249 126 349 153
Regulation 961 152 173 123 292 96
Positive regulation 2847 538 618 382 987 466
Negative regulation 1062 247 196 275 379 194

Table 2: Statistics of annotations in training, development, and test sets

3 Data preparation

The data sets are prepared in two collections: the
abstract and the full text collections. The abstract
collection includes the same data used for BioNLP-
ST 2009, and is meant to be used to measure the
progress of the community. The full text collection
includes full papers which are newly annotated, and
is meant to be used to measure the generalization
of the technology to full papers. Table 2 shows the
statistics of the annotations in the GE task data sets.
Since the training data from the full text collection is
relatively small despite of the expected rich variety
of expressions in full text, it is expected that ‘gener-
alization’ of a model from the abstract collection to
full papers would be a key technique to get a reason-
able performance.
A full paper consists of several sections includ-

ing the title, abstract, introduction, results, conclu-
sion, methods, and so on. Different sections would
be written with different purposes, which may af-
fect the type of information that are found in the sec-
tions. Table 3 shows the distribution of annotations
in different sections. It indicates that event men-
tions, according to the event definition in Table 1, in
Methods and Captions are much less frequent than
in the other TIAB, Intro. and R/D/C sections. Fig-
ure 2 illustrates the different distribution of anno-
tated event types in the five sections. It is notable
that the Methods section (depicted in blue) shows
very different distribution compared to others: while

Gene_expression

Transcrip.

Binding

Regulation

Pos_regul.

Neg_regul.

TIAB Intro. R/D/C Methods Caption

Figure 2: Event distribution in different sections

Regulation and Positive regulation events are not as
frequent as in other sections, Negative regulation is
relatively much more frequent. It may agree with
an intuition that experimental devices, which will be
explained in Methods sections, often consists of ar-
tificial processes that are designed to cause a nega-
tive regulatory effect, e.g. mutation, addition of in-
hibitor proteins, etc. This observation suggests a dif-
ferent event annotation scheme, or a different event
extraction strategy would be required for Methods
sections.
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Full Paper
Item Abstract Whole TIAB Intro. R/D/C Methods Caption

Words 267229 80962 3538 7878 43420 19406 6720
Proteins 14969 6580 336 597 3980 916 751
(Density: P / W) (5.60%) (8.13%) (9.50%) (7.58%) (9.17%) (4.72%) (11.18%)
Events 13603 4436 272 427 3234 198 278
(Density: E / W) (5.09%) (5.48%) (7.69%) (5.42%) (7.51%) (1.02%) (4.14%)
(Density: E / P) (90.87%) (67.42%) (80.95%) (71.52%) (81.93%) (21.62%) (37.02%)

Gene expression 2816 1193 62 98 841 80 112
Transcription 795 204 7 7 140 30 20
Protein catabolism 145 3 0 0 3 0 0
Phosphorylation 355 137 12 12 101 10 2
Localization 492 47 3 15 22 7 0
Binding 1485 380 16 74 266 6 18
Regulation 1426 371 35 30 281 4 21
Positive regulation 4452 1385 98 131 1087 15 54
Negative regulation 1637 716 39 60 520 46 51

Table 3: Statistics of annotations in different sections of text: the Abstract column is of the abstraction collection
(1210 titles and abstracts), and the following columns are of full paper collection (14 full papers). TIAB = title and
abstract, Intro. = introduction and background, R/D/C = results, discussions, and conclusions, Methods = methods,
materials, and experimental procedures. Some minor sections, supporting information, supplementary material, and
synopsis, are ignored. Density = relative density of annotation (P/W = Protein/Word, E/W = Event/Word, and E/P =
Event/Protein).

4 Participation

In total, 15 teams submitted final results. All 15
teams participated in the mandatory Task 1, four
teams in Task 2, and two teams in Task 3. Only one
team, UTurku, completed all the three tasks.
Table 4 shows the profile of the teams, except-

ing three who chose to remain anonymous. A brief
examination on the team organization (the People
column) suggests the importance of a computer sci-
ence background, C and BI, to perform the GE task,
which agrees with the same observation made in
2009. It is interpreted as follows: the role of com-
puter scientists may be emphasized in part due to
the fact that the task requires complex computational
modeling, demanding particular efforts in frame-
work design and implementation and computational
resources. The ’09 column suggests that previous
experience in the task may have affected to the per-
formance of the teams, especially in a complex task
like the GE task.
Table 5 shows the profile of the systems. A

notable observation is that four teams developed
their systems based on the model of UTurku09
(Björne et al., 2009) which was the winning sys-

tem of BioNLP-ST 2009. It may show an influence
of the BioNLP-ST series in the task. For syntac-
tic analyses, the prevailing use of Charniak John-
son re-ranking parser (Charniak and Johnson, 2005)
using the self-trained biomedical model from Mc-
Closky (2008) (McCCJ) which is converted to Stan-
ford Dependency (de Marneffe et al., 2006) is no-
table, which may also be an influence from the re-
sults of BioNLP-ST 2009. The last two teams,
XABioNLP and HCMUS, who did not use syntactic
analyses could not get a performance comparable to
the others, which may suggest the importance of us-
ing syntactic analyses for a complex IE task like GE
task.

5 Results

5.1 Task 1

Table 6 shows the final evaluation results of Task 1.
For reference, the reported performance of the two
systems, UTurku09 and Miwa10 is listed in the
top. UTurku09 was the winning system of Task 1
in 2009 (Björne et al., 2009), and Miwa10 was
the best system reported after BioNLP-ST 2009
(Miwa et al., 2010b). Particularly, the latter made
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Team ’09 Task People reference
FAUST

√
12- 3C (Riedel et al., 2011)

UMASS
√

12- 1C (Riedel and McCallum, 2011)
UTurku

√
123 1BI (Bjrne and Salakoski, 2011)

MSR-NLP 1-- 4C (Quirk et al., 2011)
ConcordU

√
1-3 2C (Kilicoglu and Bergler, 2011)

UWMadison
√

1-- 2C (Vlachos and Craven, 2011)
Stanford 1-- 3C+1.5L (McClosky et al., 2011)

BMI@ASU
√

12- 3C (Emadzadeh et al., 2011)
CCP-BTMG

√
1-- 3BI (Liu et al., 2011)

TM-SCS 1-- 1C (Bui and Sloot, 2011)
XABioNLP 1-- 4C (Casillas et al., 2011)
HCMUS 1-- 6L (Minh et al., 2011)

Table 4: Team profiles: The ’09column indicates whether at least one team member participated in BioNLP-ST 2009.
In Peoplecolumn, C=Computer Scientist, BI=Bioinformatician, B=Biologist, L=Linguist

NLP Task Other resources
Team Lexical Proc. Syntactic Proc. Trig. Arg. group Dictionary Other
FAUST SnowBall, CNLP McCCJ+SD Stacking (UMASS + Stanford)
UMASS SnowBall, CNLP McCCJ+SD Joint infer., Dual Decomposition
UTurku Porter McCCJ+SD SVM SVM SVM S. cues

MSR-NLP Porter McCCJ+SD, Enju SVM MaxEnt rules Coref(Hobbs)
ConcordU - McCCJ+SD dic rules rules S./N. cues
UWMadison Morpha, Porter MCCCJ+SD Joint infer., SEARN
Stanford Morpha, CNLP McCCJ+SD MaxEnt MSTParser word clusters

BMI@ASU Porter, WordNet Stanford+SD SVM SVM - MeSH
CCP-BTMG Porter, WordNet Stanford+SD Subgraph Isomorphism
TM-SCS Stanford Stanford dic rules rules

XABioNLP KAF - rules
HCMUS OpenNLP - dic, rules rules UIMA

Table 5: System profiles: SnowBall=SnowBall Stemmer, CNLP=Stanford CoreNLP (tokenization), KAF=Kyoto An-
notation Format McCCJ=McClosky-Charniak-Johnson Parser, Stanford=Stanford Parser, SD=Stanford Dependency
Conversion, S.=Speculation, N.=Negation

an impressive improvement with Binding events
(44.41%→52.62%).

The best performance in Task 1 this time is
achieved by the FAUST system, which adopts a
combination model of UMass and Stanford. Its
performance on the abstract collection, 56.04%,
demonstrates a significant improvement of the com-
munity in the repeated GE task, when compared to
both UTurku09, 51.95% and Miwa10, 53.29%.
The biggest improvement is made to the Regulation
events (40.11%→46.97%) which requires a com-
plex modeling for recursive event structure - an
event may become an argument of another event.
The second ranked system, UMass, shows the best
performance on the full paper collection. It suggests
that what FAUST obtained from the model combi-

nation might be a better optimization to abstracts.
The ConcordU system is notable as it is the sole

rule-based system that is ranked above the average.
It shows a performance optimized for precision with
relatively low recall. The same tendency is roughly
replicated by other rule-based systems, CCP-BTMG,
TM-SCS, XABioNLP, and HCMUS. It suggests that
a rule-based system might not be a good choice if a
high coverage is desired. However, the performance
of ConcordU for simple events suggests that a high
precision can be achieved by a rule based system
with a modest loss of recall. It might be more true
when the task is less complex.
This time, three teams achieved better results than

Miwa10, which indicates some role of focused ef-
forts like BioNLP-ST. The comparison between the
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performance on abstract and full paper collections
shows that generalization to full papers is feasible
with very modest loss in performance.

5.2 Task 2

Tables 7 shows final evaluation results of Task 2.
For reference, the reported performance of the task-
winning system in 2009, UT+DBCLS09 (Riedel et
al., 2009), is shown in the top. The first and second
ranked system, FAUST and UMass, which share a
same author with Riedel09, made a significant
improvement over Riedel09 in the abstract col-
lection. UTurku achieved the best performance in
finding sites arguments but did not produce location
arguments. In table 7, the performance of all the
systems in full text collection suggests that finding
secondary arguments in full text is much more chal-
lenging.
In detail, a significant improvement was made for

Location arguments (36.59%→50.00%). A further
breakdown of the results of site extraction, shown
in table 8, shows that finding site arguments for
Phosphorylation, Binding and Regulation events are
all significantly improved, but in different ways.
The extraction of protein sites to be phosphory-
lated is approaching a practical level of performance
(84.21%), while protein sites to be bound or to be
regulated remains challenging to be extracted.

5.3 Task 3

Table 9 shows final evaluation results of Task 3.
For reference, the reported performance of the task-
winning system in 2009, Kilicoglu09(Kilicoglu
and Bergler, 2009), is shown in the top. Among the
two teams participated in the task, UTurku showed
a better performance in extracting negated events,
while ConcordU showed a better performance in
extracting speculated events.

6 Conclusions

The Genia event task which was repeated for
BioNLP-ST 2009 and 2011 took a role of measur-
ing the progress of the community and generaliza-
tion IE technology to full papers. The results from
15 teams who made their final submissions to the
task show that a clear advance of the community in
terms of the performance on a focused domain and

also generalization to full papers. To our disappoint-
ment, however, an effective use of supporting task
results was not observed, which thus remains as fu-
ture work for further improvement.
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Team Simple Event Binding Regulation All
UTurku09 A 64.21 / 77.45 / 70.21 40.06 / 49.82 / 44.41 35.63 / 45.87 / 40.11 46.73 / 58.48 / 51.95
Miwa10 A 70.44 52.62 40.60 48.62 / 58.96 / 53.29

W 68.47 / 80.25 / 73.90 44.20 / 53.71 / 48.49 38.02 / 54.94 / 44.94 49.41 / 64.75 / 56.04
FAUST A 66.16 / 81.04 / 72.85 45.53 / 58.09 / 51.05 39.38 / 58.18 / 46.97 50.00 / 67.53 / 57.46

F 75.58 / 78.23 / 76.88 40.97 / 44.70 / 42.75 34.99 / 48.24 / 40.56 47.92 / 58.47 / 52.67
W 67.01 / 81.40 / 73.50 42.97 / 56.42 / 48.79 37.52 / 52.67 / 43.82 48.49 / 64.08 / 55.20

UMass A 64.21 / 80.74 / 71.54 43.52 / 60.89 / 50.76 38.78 / 55.07 / 45.51 48.74 / 65.94 / 56.05
F 75.58 / 83.14 / 79.18 41.67 / 47.62 / 44.4434.72 / 47.51 / 40.12 47.84 / 59.76 / 53.14
W 68.22 / 76.47 / 72.11 42.97 / 43.60 / 43.28 38.72 / 47.64 / 42.72 49.56 / 57.65 / 53.30

UTurku A 64.97 / 76.72 / 70.36 45.24 / 50.00 / 47.50 40.41 / 49.01 / 44.30 50.06 / 59.48 / 54.37
F 78.18 / 75.82 / 76.98 37.50 / 31.76 / 34.39 34.99 / 44.46 / 39.16 48.31 / 53.38 / 50.72
W 68.99 / 74.30 / 71.54 42.36 / 40.47 / 41.39 36.64 / 44.08 / 40.02 48.64 / 54.71 / 51.50

MSR-NLP A 65.99 / 74.71 / 70.08 43.23 / 44.51 / 43.86 37.14 / 45.38 / 40.85 48.52 / 56.47 / 52.20
F 78.18 / 73.24 / 75.63 40.28 / 32.77 / 36.14 35.52 / 41.34 / 38.21 48.94 / 50.77 / 49.84
W 59.99 / 85.53/ 70.52 29.33 / 49.66 / 36.88 35.72 / 45.85 / 40.16 43.55 / 59.58 / 50.32

ConcordU A 56.51 / 84.56/ 67.75 29.97 / 49.76 / 37.41 36.24 / 47.09 / 40.96 43.09 / 60.37 / 50.28
F 70.65 / 88.03/ 78.39 27.78 / 49.38 / 35.56 34.58 / 43.22 / 38.42 44.71 / 57.75 / 50.40
W 59.67 / 80.95 / 68.70 29.33 / 49.66 / 36.88 34.10 / 49.46 / 40.37 42.56 / 61.21 / 50.21

UWMadison A 54.99 / 79.85 / 65.13 34.87 / 56.81 / 43.21 34.54 / 50.67 / 41.08 42.17 / 62.30 / 50.30
F 74.03 / 83.58 / 78.51 15.97 / 29.87 / 20.81 33.11 / 46.87 / 38.81 43.53 / 58.73 / 50.00
W 65.79 / 76.83 / 70.88 39.92 / 49.87 / 44.34 27.55 / 48.75 / 35.21 42.36 / 61.08 / 50.03

Stanford A 62.61 / 77.57 / 69.29 42.36 / 54.24 / 47.57 28.25 / 49.95 / 36.09 42.55 / 62.69 / 50.69
F 75.58 / 75.00 / 75.29 34.03 / 40.16 / 36.84 26.01 / 46.08 / 33.25 41.88 / 57.36 / 48.41
W 62.09 / 76.55 / 68.57 27.90 / 44.92 / 34.42 22.30 / 40.26 / 28.70 36.91 / 56.63 / 44.69

BMI@ASU A 58.71 / 78.51 / 67.18 26.22 / 47.40 / 33.77 22.99 / 40.47 / 29.32 36.61 / 57.82 / 44.83
F 72.47 / 72.09 / 72.28 31.94 / 40.71 / 35.80 20.78 / 39.74 / 27.29 37.65 / 53.93 / 44.34
W 53.61 / 75.13 / 62.57 22.61 / 49.12 / 30.96 19.01 / 43.80 / 26.51 31.57 / 58.99 / 41.13

CCP-BTMG A 50.93 / 74.50 / 60.50 25.65 / 53.29 / 34.63 19.54 / 43.47 / 26.96 31.87 / 59.02 / 41.39
F 61.82 / 76.77 / 68.49 15.28 / 37.29 / 21.67 17.83 / 44.63 / 25.48 30.82 / 58.92 / 40.47
W 57.33 / 71.34 / 63.57 34.01 / 44.77 / 38.66 16.39 / 25.37 / 19.91 32.73 / 45.84 / 38.19

TM-SCS A 53.65 / 71.66 / 61.36 36.02 / 49.41 / 41.67 18.29 / 27.07 / 21.83 33.36 / 47.09 / 39.06
F 68.57 / 70.59 / 69.57 29.17 / 35.00 / 31.82 12.20 / 21.02 / 15.44 31.14 / 42.83 / 36.06
W 43.71 / 47.18 / 45.38 05.30 / 50.00 / 09.58 05.79 / 26.94 / 09.54 19.07 / 42.08 / 26.25

XABioNLP A 39.76 / 45.90 / 42.61 06.34 / 56.41 / 11.40 04.72 / 23.21 / 07.84 17.91 / 40.74 / 24.89
F 55.84 / 50.23 / 52.89 02.78 / 30.77 / 05.10 08.18 / 33.89 / 13.17 21.96 / 45.09 / 29.54
W 24.82 / 35.14 / 29.09 04.68 / 12.92 / 06.88 01.63 / 10.40 / 02.81 10.12 / 27.17 / 14.75

HCMUS A 22.42 / 37.38 / 28.03 04.61 / 10.46 / 06.40 01.69 / 10.37 / 02.91 09.71 / 27.30 / 14.33
F 32.21 / 31.16 / 31.67 04.86 / 28.00 / 08.28 01.47 / 10.48 / 02.59 11.14 / 26.89 / 15.75

Table 6: Evaluation results (recall / precision / f-score) of Task 1 in (W)hole data set, (A)bstracts only, and (F)ull
papers only. Some notable figures are emphasized in bold.
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Team Sites (222) Locations (66) All (288)
UT+DBCLS09 A 23.08 / 88.24 / 36.59 32.14 / 72.41 / 44.52

W 32.88 / 70.87 / 44.92 36.36 / 75.00 / 48.98 33.68 / 71.85 / 45.86
FAUST A 43.51 / 71.25 / 54.03 36.92 / 77.42 / 50.00 41.33 / 72.97 / 52.77

F 17.58 / 69.57 / 28.07 - 17.39 / 66.67 / 27.59
W 31.98 / 71.00 / 44.10 36.36 / 77.42 / 49.48 32.99 / 72.52 / 45.35

UMass A 42.75 / 70.00 / 53.08 36.92 / 77.42 / 50.00 40.82 / 72.07 / 52.12
F 16.48 / 75.00 / 27.03 - 16.30 / 75.00 / 26.79
W 32.88 / 62.93 / 43.20 22.73 / 83.33 / 35.71 30.56 / 65.67 / 41.71

BMI@ASU A 37.40 / 67.12 / 48.04 23.08 / 83.33 / 36.14 32.65 / 70.33 / 44.60
F 26.37 / 55.81 / 35.82 - 26.09 / 55.81 / 35.56
W 40.09 / 65.44 / 49.72 00.00 / 00.00 / 00.00 30.90 / 65.44 / 41.98

UTurku A 48.09 / 69.23 / 56.76 00.00 / 00.00 / 00.00 32.14 / 69.23 / 43.90
F 28.57 / 57.78 / 38.24 - 28.26 / 57.78 / 37.96

Table 7: Evaluation results of Task 2 in (W)hole data set, (A)bstracts only, and (F)ull papers only

Team Phospho. (67) Binding (84) Reg. (71)
Riedel’09 A 71.43 / 71.43 / 71.43 04.76 / 50.00 / 08.70 12.96 / 58.33 / 21.21

W 71.64 / 84.21 / 77.42 05.95 / 38.46 / 10.31 28.17 / 60.61 / 38.46
FAUST A 71.43 / 81.63 / 76.19 04.76 / 14.29 / 07.14 29.63 / 66.67 / 41.03

F 72.73 / 100.0 / 84.21 06.35 / 66.67 / 11.59 23.53 / 44.44 / 30.77
W 76.12 / 79.69 / 77.86 04.76 / 36.36 / 08.42 22.54 / 64.00 / 33.33

UMass A 76.79 / 76.79 / 76.79 04.76 / 14.29 / 07.14 22.22 / 70.59 / 33.80
F 72.73 / 100.0 / 84.21 04.76 / 75.00 / 08.96 23.53 / 50.00 / 32.00
W 52.24 / 97.22 / 67.96 20.24 / 53.12 / 29.31 29.58 / 43.75 / 35.29

BMI@ASU A 53.57 / 96.77 / 68.97 09.52 / 22.22 / 13.33 31.48 / 51.52 / 39.08
F 45.45 / 100.0 / 62.50 23.81 / 65.22 / 34.88 23.53 / 26.67 / 25.00
W 76.12 / 91.07 / 82.93 21.43 / 51.43 / 30.2528.17 / 44.44 / 34.48

UTurku A 78.57 / 89.80 / 83.81 09.52 / 18.18 / 12.50 31.48 / 54.84 / 40.00
F 63.64 / 100.0 / 77.78 25.40 / 66.67 / 36.78 17.65 / 21.43 / 19.35

Table 8: Evaluation results of Site information for different event types in (A)bstracts

Team Negation Speculation All
Kilicoglu09 A 14.98 / 50.75 / 23.13 16.83 / 50.72 / 25.27 15.86 / 50.74 / 24.17

W 22.87 / 48.85 / 31.15 17.86 / 32.54 / 23.06 20.30 / 39.67 / 26.86
UTurku A 22.03 / 49.02 / 30.40 19.23 / 38.46 / 25.64 20.69 / 43.69 / 28.08

F 25.76 / 48.28 / 33.59 15.00 / 23.08 / 18.18 19.28 / 30.85 / 23.73
W 18.77 / 44.26 / 26.36 21.10 / 38.46 / 27.25 19.97 / 40.89 / 26.83

ConcordU A 18.06 / 46.59 / 26.03 23.08 / 40.00 / 29.27 20.46 / 42.79 / 27.68
F 21.21 / 38.24 / 27.29 17.00 / 34.69 / 22.82 18.67 / 36.14 / 24.63

Table 9: Evaluation results of Task 3 in (W)hole data set, (A)bstracts only, and (F)ull papers only
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Abstract

This paper presents the preparation, resources,
results and analysis of the Epigenetics and
Post-translational Modifications (EPI) task, a
main task of the BioNLP Shared Task 2011.
The task concerns the extraction of detailed
representations of 14 protein and DNA modifi-
cation events, the catalysis of these reactions,
and the identification of instances of negated
or speculatively stated event instances. Seven
teams submitted final results to the EPI task in
the shared task, with the highest-performing
system achieving 53% F-score in the full task
and 69% F-score in the extraction of a simpli-
fied set of core event arguments.

1 Introduction

The Epigenetics and Post-translational Modifica-
tions (EPI) task is a shared task on event extrac-
tion from biomedical domain scientific publications,
first introduced as a main task in the BioNLP Shared
Task 2011 (Kim et al., 2011a).

The EPI task focuses on events relating to epige-
netic change, including DNA methylation and hi-
stone methylation and acetylation (see e.g. (Hol-
liday, 1987; Jaenisch and Bird, 2003)), as well
as other common protein post-translational modi-
fications (PTMs) (Witze et al., 2007). PTMs are
chemical modifications of the amino acid residues
of proteins, and DNA methylation a parallel mod-
ification of the nucleotides on DNA. While these
modifications are chemically simple reactions and
can thus be straightforwardly represented in full de-
tail, they have a crucial role in the regulation of

gene expression and protein function: the modifi-
cations can alter the conformation of DNA or pro-
teins and thus control their ability to associate with
other molecules, making PTMs key steps in protein
biosynthesis for introducing the full range of protein
functions. For instance, protein phosphorylation –
the attachment of phosphate – is a common mecha-
nism for activating or inactivating enzymes by alter-
ing the conformation of protein active sites (Stock
et al., 1989; Barford et al., 1998), and protein ubiq-
uitination – the post-translational attachment of the
small protein ubiquitin – is the first step of a major
mechanism for the destruction (breakdown) of many
proteins (Glickman and Ciechanover, 2002).

Many of the PTMs targeted in the EPI task in-
volve modification of histone, a core protein that
forms an octameric complex that has a crucial role in
packaging chromosomal DNA. The level of methy-
lation and acetylation of histones controls the tight-
ness of the chromatin structure, and only “unwound”
chromatin exposes the gene packed around the hi-
stone core to the transcriptional machinery. Since
histone modification is of substantial current inter-
est in epigenetics, we designed aspects of the EPI
task to capture the full detail in which histone mod-
ification events are stated in text. Finally, the DNA
methylation of gene regulatory elements controls the
expression of the gene by altering the affinity with
which DNA-binding proteins (including transcrip-
tion factors) bind, and highly methylated genes are
not transcribed at all (Riggs, 1975; Holliday and
Pugh, 1975). DNA methylation can thus “switch
off” genes, “removing” them from the genome in a
way that is reversible through DNA demethylation.
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Figure 1: Three views of protein methylation. a)
chemical formula b) event representation c) modification
database entry.

The BioNLP’09 Shared Task on Event Extrac-
tion (Kim et al., 2009), the first task in the present
shared task series, involved the extraction of nine
event types including one PTM type, PHOSPHORY-
LATION. The results of the shared task showed this
PTM event to be the single most reliably extracted
event type in the task, with the best-performing
system for the type achieving 91% precision and
76% recall (83% F-score) in its extraction (Buyko
et al., 2009). The results suggest both that the
event representation is well applicable to PTM ex-
traction and that current extraction methods are ca-
pable of reliable PTM extraction. The EPI task
follows up on these opportunities, introducing spe-
cific, strongly biologically motivated extraction tar-
gets that are expected to be both feasible for high-
accuracy event extraction, relevant to the needs of
present-day molecular biology, and closely appli-
cable to biomolecular database curation needs (see
Figure 1) (Ohta et al., 2010a).

2 Task Setting

The EPI task is an event extraction task in the sense
popularized by a number of recent domain resources
and challenges (e.g. (Pyysalo et al., 2007; Kim et al.,
2008; Thompson et al., 2009; Kim et al., 2009; Ana-
niadou et al., 2010)). In broad outline, the task fo-
cuses on the extraction of information on statements
regarding change in the state or properties of (physi-
cal) entities, modeled using an event representation.

Figure 2: Illustration of the event representation. An
event of type METHYLATION (expressed through the text
“methylation”) with two participants of the types PRO-
TEIN (“histone H3”) and ENTITY (“Lys9”), participating
in the event in Theme and Site roles, respectively.

In this representation, events are typed n-ary asso-
ciations of participants (entities or other events) in
specific roles. Events are bound to specific expres-
sions in text (the event trigger or text binding) and
are primary objects of annotation, allowing them to
be marked in turn e.g. as negated or as participants
in other events. Figure 2 illustrates these concepts.

In its specific formulation, EPI broadly follows
the definition of the BioNLP’09 shared task on event
extraction. Basic modification events are defined
similarly to the PHOSPHORYLATION event type tar-
geted in the ’09 and the 2011 GE and ID tasks (Kim
et al., 2011b; Pyysalo et al., 2011b), with the full
task extending previously defined arguments with
two additional ones, Sidechain and Contextgene.

2.1 Entities
The EPI task follows the general policy of the
BioNLP Shared Task in isolating the basic task of
named entity recognition from the event extraction
task by providing task participants with manually
annotated gene and gene product entities as a start-
ing point for extraction. The entity types follow the
BioNLP’09 Shared Task scheme, where genes and
their products are simply marked as PROTEIN.1

In addition to the given PROTEIN entities, some
events involve other entities, such as the modifica-
tion Site. These entities are not given and must thus
be identified by systems targeting the full task (see
Section 4). In part to reduce the demands of this
entity recognition component of the task, these ad-
ditional entities are not given specific types but are
generically marked as ENTITY.

1While most of the modifications targeted in the task involve
proteins, this naming is somewhat inaccurate for the Themes of
DNA METHYLATION and DNA DEMETHYLATION events and
for Contextgene arguments, which refer to genes. Despite this
inaccuracy, we chose to follow this naming scheme for consis-
tency with other tasks.

17



Type Core arguments Additional arguments
HYDROXYLATION Theme(PROTEIN) Site(ENTITY)
PHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)
UBIQUITINATION Theme(PROTEIN) Site(ENTITY)
DNA METHYLATION Theme(PROTEIN) Site(ENTITY)
GLYCOSYLATION Theme(PROTEIN) Site(ENTITY), Sidechain(ENTITY)
ACETYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
METHYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
CATALYSIS Theme(Event), Cause(PROTEIN)

Table 1: Event types and their arguments. The type of entity allowed as argument is specified in parenthesis. For each
event type except CATALYSIS, the reverse reaction (e.g. DEACETYLATION for ACETYLATION) is also defined, with
identical arguments. The total number of event types in the task is thus 15.

2.2 Relations

The EPI task does not define any explicit relation
extraction targets. However, the task annotation in-
volves one relation type, EQUIV. This is a binary,
symmetric, transitive relation between entities that
defines two entities to be equivalent (Hoehndorf et
al., 2010). The relation is used in the gold annota-
tion to mark local aliases such as the full and abbre-
viated forms of a protein name as referring to the
same real-world entity. While the ’09 task only rec-
ognized equivalent PROTEIN entities, EPI extends
on the scope of EQUIV annotations in allowing enti-
ties of any type to be marked equivalent. In evalua-
tion, references to any of a set of equivalent entities
are treated identically.

2.3 Events

While the EPI task entity definition closely follows
that of the previous shared task, the task introduces
considerable novelty in the targeted events, adding a
total of 14 novel event types and two new participant
roles. Table 1 summarizes the targeted event types
and their arguments.

As in the BioNLP’09 shared task, Theme argu-
ments identify the entity that the event is about, such
as the protein that is acetylated in an acetylation
event. A Theme is always mandatory for all EPI task
events. Site arguments identify the modification site
on the Theme entity, such as a specific residue on a
modified protein or a specific region on a methylated
gene. The Sidechain argument, specific to GLYCO-
SYLATION and DEGLYCOSYLATION among the tar-
geted events, identifies the moiety attached or re-

moved in the event (in glycosylation, the sugar).2 Fi-
nally, the Contextgene argument, specific to ACETY-
LATION and METHYLATION events and their re-
verse reactions, identifies the gene whose expression
is controlled by these modifications. This argument
applies specifically for histone protein modification:
the modification of the histones that form the nu-
cleosomes that structure DNA are key to the epige-
netic control of gene expression. The Site, Sidechain
and Contextgene arguments are not mandatory, and
should only be extracted when explicitly stated.

For CATALYSIS events, representing the cataly-
sis of protein or DNA modification by another pro-
tein, both Theme and Cause are mandatory. While
CATALYSIS is a new event type, it is related to
the ’09 POSITIVE REGULATION type by a class-
subclass relation: any CATALYSIS event is a POS-
ITIVE REGULATION event in the ’09 task terms (but
not vice versa).

2.4 Event modifications

In addition to events, the EPI task defines two
event modification extraction targets: NEGATION

and SPECULATION. Both are represented as simple
binary “flags” that apply to events, marking them as
being explicitly negated (e.g. H2A is not methylated)
or stated in a speculative context (e.g. H2A may be
methylated). Events may be both negated and spec-
ulated.

2Note that while arguments similar to Sidechain could be
defined for other event types also, their extraction would pro-
vide no additional information: the attached molecule is always
acetyl in acetylation, methyl in methylation, etc.
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3 Data

The primary EPI task data were annotated specifi-
cally for the BioNLP Shared Task 2011 and are not
based on any previously released resource. Before
starting this annotation effort, we performed two
preparatory studies using in part previously released
related datasets: in (Ohta et al., 2010a) we consid-
ered the extraction of four protein post-translational
modifications event types with reference to annota-
tions originally created for the Protein Information
Resource3 (PIR) (Wu et al., 2003), and in (Ohta et
al., 2010b) we studied the annotation and extraction
of DNA methylation events with reference to anno-
tations created for the PubMeth4 (Ongenaert et al.,
2008) database. The corpus text selection and anno-
tation scheme were then defined following the un-
derstanding formed in these studies.

3.1 Document selection

The texts for the EPI task corpus were drawn from
PubMed abstracts. In selecting the primary cor-
pus texts, we aimed to gather a representative sam-
ple of all PubMed documents relevant to selected
modification events, avoiding bias toward, for ex-
ample, specific genes/proteins, species, forms of
event expression, or subdomains. We primarily tar-
geted DNA methylation and the “prominent PTM
types” identified in (Ohta et al., 2010a). We de-
fined the following document selection protocol: for
each of the targeted event types, 1) Select a ran-
dom sample of PubMed abstracts annotated with the
MeSH term corresponding to the target event (e.g.
Acetylation) 2) Automatically tag protein/gene
entities in the selected abstracts, removing ones
where fewer than a specific cutoff are found 3) Per-
form manual filtering removing documents not rele-
vant to the targeted topic (optional).

MeSH is a controlled vocabulary of over 25,000
terms that is used to manually annotate each docu-
ment in PubMed. By performing initial document
retrieval using MeSH terms it is possible to se-
lect relevant documents without bias toward specific
expressions in text. While search for documents
tagged with e.g. the Acetylation MeSH term is
sufficient to select documents relevant to the modi-

3http://pir.georgetown.edu
4http://www.pubmeth.org/

fication, not all such documents necessarily concern
specifically protein modification, necessitating a fil-
tering step. Following preliminary experiments, we
chose to apply the BANNER named entity tagger
(Leaman and Gonzalez, 2008) trained on the GENE-
TAG corpus (Tanabe et al., 2005) and to filter docu-
ments where fewer than five entities were identified.
Finally, for some modification types this protocol se-
lected also a substantial number of non-relevant doc-
uments. In these cases a manual filtering step was
performed prior to full annotation to avoid marking
large numbers of non-relevant abstracts.

This primary corpus text selection protocol does
not explicitly target reverse reactions such as
deacetylation, and the total number of these events
in the resulting corpus was low for many types. To
be able to measure the extraction performance for
these types, we defined a secondary selection pro-
tocol that augmented the primary protocol with a
regular expression-based filter removing documents
that did not (likely) contain mentions of reverse re-
actions. This protocol was used to select a secondary
set of test abstracts enriched in mentions of reverse
reactions. Performance on this secondary test set
was also evaluated, but is not part of the primary task
evaluation. Due to space considerations, we only
present the primary test set results in this paper, re-
ferring to the shared task website for the secondary
results.

3.2 Annotation

Annotation was performed manually. The
gene/protein entities automatically detected in
the document selection step were provided to
annotators for reference for creating PROTEIN

annotations, but all entity annotations were checked
and revised to conform to the specific guidelines for
the task.5 For the annotation of PROTEIN entities,
we adopted the GENIA gene/gene product (GGP)
annotation guidelines (Ohta et al., 2009), adding
one specific exception: while the primary guidelines
require that only specific individual gene or gene
product names are annotated, we allowed also the
annotation of mentions of groups of histones or

5This revision was substantial: only approximately 65% of
final PROTEIN annotations exactly match an automatically pre-
dicted one due to differences in annotation criteria (Wang et al.,
2009).
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the entire histone protein family to capture histone
modification events also in cases where only the
group is mentioned.

All event annotations were created from scratch
without automatic support to avoid bias toward spe-
cific automatic extraction methods or approaches.
The event annotation follows the GENIA event cor-
pus annotation guidelines (Kim et al., 2008) as they
apply to protein modifications, with CATALYSIS be-
ing annotated following the criteria for the POSI-
TIVE REGULATION event type with the additional
constraints that the Cause of the event is a gene or
gene product entity and the form of regulation is
catalysis of a modification reaction.

The manual annotation was performed by three
experienced annotators with a molecular biology
background, with one chief annotator with extensive
experience in domain event annotation organizing
and supervising the annotator training and the over-
all process. After completion of primary annotation,
we performed a final check targeting simple human
errors using an automatic extraction system.6 This
correction process resulted in the revision of approx-
imately 2% of the event annotations. To evaluate the
consistency of the annotation, we performed inde-
pendent event annotation (taking PROTEIN annota-
tions as given) for a random sample of 10% of the
corpus documents. Comparison of the two manually
created sets of event annotations under the primary
task evaluation criteria gave an F-score of 82% for
the full task and 89% for the core task.7 We found
that CATALYSIS events were particularly challeng-
ing, showing just 65% agreement for the core task.

Table 2 shows the statistics of the primary task
data. We note that while the corpus is broadly com-
parable in size to the BioNLP’09 shared task dataset
(Kim et al., 2009) in terms of the number of ab-
stracts and annotated entities, the number of anno-
tated events in the EPI corpus is approximately 20%
of that in the ’09 dataset, reflecting the more focused
event types.

6High-confidence system predictions differing from gold
annotations were provided to a human annotator, not used di-
rectly to change corpus data. To further reduce the risk of bias,
we only informed the annotator of the entities involved, not of
the predicted event structure.

7Due to symmetry of precision/recall and the applied crite-
ria, this score was not affected by the choice of which set of
annotations to consider as “gold” for the comparison.

Item Training Devel Test
Abstract 600 200 400

Word 127,312 43,497 82,819
Protein 7,595 2,499 5,096
Event 1,852 601 1,261

Modification 173 79 117

Table 2: Statistics of the EPI corpus. Test set statistics
shown only for the primary test data.

4 Evaluation

Evaluation is instance- and event-oriented and based
on the standard precision/recall/F-score8 metrics.
The primary evaluation criteria are the same as in the
BioNLP’09 shared task, incorporating the “approx-
imate span matching” and “approximate recursive
matching” variants to strict matching. In brief, un-
der these criteria text-bound annotations (event trig-
gers and entities) in a submission are considered to
match a corresponding gold annotation if their span
is contained within the (mildly extended) span of
the gold annotation, and events that refer to other
events as arguments are considered to match if the
Theme arguments of the recursively referred events
match, that is, non-Theme arguments are ignored in
recursively referred events. For a detailed descrip-
tion of these evaluation criteria, we refer to (Kim et
al., 2009).

In addition to the primary evaluation criteria, we
introduced a new relaxed evaluation criterion we
term single partial penalty. Under the primary cri-
teria, when a predicted event matches a gold event
in some of its arguments but lacks one or more ar-
guments of the gold event, the submission is ar-
guably given a double penalty: the predicted event
is counted as a false positive (FP), and the gold
event is counted as a false negative (FN). Under the
single partial penalty evaluation criterion, predicted
events that match a gold event in all their arguments
are not counted as FP, although the corresponding
gold event still counts as FN (the “single penalty”).
Analogously, gold events that partially match a pre-
dicted event are not counted as FN, although the cor-
responding predicted event with “extra” arguments
counts as FP. This criterion can give a more nuanced
view of performance for partially correctly predicted
events.

8Specifically F1. F is used for short throughout.
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NLP Events Other resources
Rank Team Org word parse trigger arg group modif. corpora other
1 UTurku 1BI Porter McCCJ + SD SVM SVM SVM SVM - hedge words

2 FAUST 3NLP
CoreNLP,
SnowBall

McCCJ + SD (UMass+Stanford as features) - - word clusters

3 MSR-NLP
1SDE,
3NLP

Porter,
custom

McCCJ + SD,
Enju

SVM SVM SVM - -
triggers, word
clusters

4 UMass 1NLP
CoreNLP,
SnowBall

McCCJ + SD Joint, dual decomposition - - -

5 Stanford 3NLP custom McCCJ + SD MaxEnt Joint, MSTParser - - word clusters

6 CCP-BTMG 3BI
Porter,
WN-lemma

Stanford + SD Graph extraction & matching - - -

7 ConcordU 2NLP - McCCJ + SD Dict Rules Rules Rules -
triggers and
hedge words

Table 3: Participants and summary of system descriptions. Abbreviations: BI=Bioinformatician, NLP=Natural Lan-
guage Processing researcher, SDE=Software Development Engineer, CoreNLP=Stanford CoreNLP, Porter=Porter
stemmer, Snowball=Snowball stemmer, WN-lemma=WordNet lemmatization, McCCJ=McClosky-Charniak-Johnson
parser, Charniak=Charniak parser, SD=Stanford Dependency conversion, Dict=Dictionary

The full EPI task involves many partially indepen-
dent challenges, incorporating what were treated in
the BioNLP’09 shared task as separate subtasks: the
identification of additional non-Theme event partic-
ipants (Task 2 in ’09) and the detection of negated
and speculated events (Task 3 in ’09). The EPI task
does not include explicit subtasks. However, we
specifies minimal core extraction targets in addition
to the full task targets. Results are reported sepa-
rately for core targets and full task, allowing partic-
ipants to choose to only extract core targets. The
full task results are considered the primary evalua-
tion for the task e.g. for the purposes of determining
the ranking of participating systems.

5 Results

5.1 Participation

Table 3 summarizes the participating groups and the
features of their extraction systems. We note that,
similarly to the ’09 task, machine learning-based
systems remain dominant overall, although there is
considerable divergence in the specific methods ap-
plied. In addition to domain mainstays such as sup-
port vector machines and maximum entropy mod-
els, we find increased application of joint models
(Riedel et al., 2011; McClosky et al., 2011; Riedel
and McCallum, 2011) as opposed to pure pipeline
systems (Björne and Salakoski, 2011; Quirk et al.,
2011) . Remarkably, the application of full pars-

ing together with dependency-based representations
of syntactic analyses is adopted by all participants,
with the parser of Charniak and Johnson (2005) with
the biomedical domain model of McClosky (2009)
is applied in all but one system (Liu et al., 2011) and
the Stanford Dependency representation (de Marn-
effe et al., 2006) in all. These choices may be mo-
tivated in part by the success of systems using the
tools in the previous shared task and the availability
of the analyses as supporting resources (Stenetorp et
al., 2011).

Despite the availability of PTM and DNA methy-
lation resources other than those specifically intro-
duced for the task and the PHOSPHORYLATION an-
notations in the GE task (Kim et al., 2011b), no par-
ticipant chose to apply other corpora for training.
With the exception of externally acquired unlabeled
data such as PubMed-derived word clusters applied
by three groups, the task results thus reflect a closed
task setting in which only the given data is used for
training.

5.2 Evaluation results

Table 4 presents a the primary results by event type,
and Table 5 summarizes these results. We note
that only two teams, UTurku (Björne and Salakoski,
2011) and ConcordU (Kilicoglu and Bergler, 2011),
predicted event modifications, and only UTurku pre-
dicted additional (non-core) event arguments (data
not shown). The other five systems thus addressed
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MSR-
NLP

CCP-
BTMG

Con-
cordUUTurku FAUST UMass Stanford Size

HYDROXYLATION 42.25 10.26 10.20 12.80 9.45 12.84 6.32 139
DEHYDROXYLATION - - - - - - - 1
PHOSPHORYLATION 67.12 51.61 50.00 49.18 40.98 47.06 44.44 130
DEPHOSPHORYLATION 0.00 0.00 0.00 0.00 0.00 50.00 0.00 3
UBIQUITINATION 75.34 72.95 67.88 72.94 67.44 70.87 69.97 340
DEUBIQUITINATION 54.55 40.00 0.00 31.58 0.00 42.11 14.29 17
DNA METHYLATION 60.21 31.21 34.54 23.82 31.02 15.65 8.22 416
DNA DEMETHYLATION 26.67 0.00 0.00 0.00 0.00 0.00 0.00 21
Simple event total 63.05 45.17 44.97 43.01 40.96 40.62 37.84 1067
GLYCOSYLATION 49.43 41.10 38.87 40.00 37.22 25.62 25.94 347
DEGLYCOSYLATION 40.00 35.29 0.00 38.10 30.00 35.29 26.67 27
ACETYLATION 57.22 40.00 41.42 40.25 35.12 37.50 38.19 337
DEACETYLATION 54.90 28.00 31.82 29.17 21.74 24.56 27.27 50
METHYLATION 57.67 24.82 19.57 23.67 18.54 16.99 15.50 374
DEMETHYLATION 35.71 0.00 0.00 0.00 0.00 0.00 0.00 13
Non-simple event total 54.36 33.86 31.85 33.07 29.28 25.06 25.10 1148
CATALYSIS 7.06 6.58 7.75 5.00 2.84 7.58 1.74 238
Subtotal 55.02 36.93 36.17 35.30 32.85 30.58 28.92 2453
NEGATION 18.60 0.00 0.00 0.00 0.00 0.00 26.51 149
SPECULATION 37.65 0.00 0.00 0.00 0.00 0.00 6.82 103
Modification total 28.07 0.00 0.00 0.00 0.00 0.00 16.37 252
Total 53.33 35.03 34.27 33.52 31.22 28.97 27.88 2705
Addition total 59.33 40.27 39.05 38.65 36.03 32.75 31.50 2038
Removal total 44.29 22.41 15.73 22.76 14.41 23.53 17.48 132

Table 4: Primary evaluation F-scores by event type. The “size” column gives the number of annotations of each type
in the given data (training+development). Best result for each type shown in bold. For DEHYDROXYLATION, no
examples were present in the test data and none were predicted by any participant.

Team recall prec. F-score
UTurku 52.69 53.98 53.33
FAUST 28.88 44.51 35.03
MSR-NLP 27.79 44.69 34.27
UMass 28.08 41.55 33.52
Stanford 26.56 37.85 31.22
CCP-BTMG 23.44 37.93 28.97
ConcordU 20.83 42.14 27.88

Table 5: Primary evaluation results

only the core task. For the full task, this differ-
ence in approach is reflected in the substantial per-
formance advantage for the UTurku system, which
exhibits highest performance overall as well as for
most individual event types.

Extraction performance for simple events tak-
ing only Theme and Site arguments is consistently
higher than for other event types, with absolute F-
score differences of over 10% points for many sys-

tems. Similar notable performance differences are
seen between the addition events, for which am-
ple training data was available, and the removal
types for which data was limited. This effect is
particularly noticeable for DEPHOSPHORYLATION,
DNA DEMETHYLATION and DEMETHYLATION,
for which the clear majority of systems failed to pre-
dict any correct events. Extraction performance for
CATALYSIS events is very low despite a relatively
large set of training examples, indicating that the
extraction of nested event structures remains very
challenging. This low performance may also be re-
lated to the fact that CATALYSIS events are often
triggered by the same word as the catalysed mod-
ification (e.g. Figure 1b), requiring the assignment
of multiple event labels to a single word in typical
system architectures.

Table 6 summarizes the full task results with the
addition of the single partial penalty criterion. The
F-scores for the seven participants under this crite-
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Team recall prec. F-score ∆
UTurku 54.79 58.42 56.55 3.22
FAUST 28.88 72.05 41.24 6.21
MSR-NLP 27.79 66.72 39.24 4.97
UMass 28.08 63.28 38.90 5.38
Stanford 26.56 56.83 36.20 4.98
CCP-BTMG 23.44 50.79 32.08 3.11
ConcordU 20.83 60.55 30.99 3.11

Table 6: Full task evaluation results for primary criteria
and with single partial penalty. The ∆ column gives F-
score difference to the primary results.

rion are on average over 4% points higher than un-
der the primary criteria, with the most substantial
increases seen for high-ranking participants only ad-
dressing the core task: for example, the precision
of the FAUST system (Riedel et al., 2011) is nearly
30% higher under the relaxed criterion. These re-
sults provide new perspective deserving further de-
tailed study into the question of what are the most
meaningful criteria for event extraction system eval-
uation.

Table 7 summarizes the core task results. While
all systems show notably higher performance than
for the full task, high-ranking participants focusing
on the core task gain most dramatically, with the
FAUST system core task F-score essentially match-
ing that of the top system (UTurku). For the core
task, all participants achieve F-scores over 50% –
a result achieved by only a single system in the ’09
task – and the top four participants average over 65%
F-score. These results confirm that current event
extraction technology is well applicable to the core
PTM extraction task even when the number of tar-
geted event types is relatively high and may be ready
to address the challenges of exhaustive PTM extrac-
tion (Pyysalo et al., 2011a). The best core tasks re-
sults, approaching 70% F-score, are particularly en-
couraging as the level of performance is comparable
to or better than state-of-the-art results for many ref-
erence resources for protein-protein interaction ex-
traction (see e.g. Tikk et al. (2010))) using the simple
untyped entity pair representation, a standard task
that has been extensively studied in the domain.

6 Discussion and Conclusions

This paper has presented the preparation, resources,
results and analysis of the BioNLP Shared Task

Team recall prec. F-score ∆1 ∆2

UTurku 68.51 69.20 68.86 15.53 12.31
FAUST 59.88 80.25 68.59 33.56 27.35
MSR-NLP 55.70 77.60 64.85 30.58 25.61
UMass 57.04 73.30 64.15 30.63 25.25
Stanford 56.87 70.22 62.84 31.62 26.64
ConcordU 40.28 76.71 52.83 24.95 21.84
CCP-BTMG 45.06 63.37 52.67 23.70 20.59

Table 7: Core task evaluation results. The ∆1 column
gives F-score difference to primary full task results, ∆2

to full task results with single partial penalty.

2011 Epigenetics and Post-translational modifica-
tions (EPI) main task. The results demonstrate that
the core extraction target of identifying statements
of 14 different modification types with the modified
gene or gene product can be reliably addressed by
current event extraction methods, with two systems
approaching 70% F-score at this task. Nevertheless,
challenges remain in detecting statements regarding
the catalysis of these events as well as in resolving
the full detail of such modification events, a task at-
tempted by only one participant and at which perfor-
mance remains at somewhat above 50% in F-score.

Detailed evaluation showed that the highly com-
petitive participating systems differ substantially in
their relative strengths, indicating potential for fur-
ther development at protein and DNA modification
event detection. The task results are available in
full detail from the shared task webpage, http:
//sites.google.com/site/bionlpst/.

In the future, we will follow the example of the
BioNLP’09 shared task in making the data and re-
sources of the EPI task open to all interested par-
ties to encourage further study of event extraction
for epigenetics and post-translational modification
events, to facilitate system comparison on a well-
defined standard task, and to support the develop-
ment of further applications of event extraction tech-
nology in this important area of biomolecular sci-
ence.
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Abstract

This paper presents the preparation, resources,
results and analysis of the Infectious Diseases
(ID) information extraction task, a main task
of the BioNLP Shared Task 2011. The ID
task represents an application and extension
of the BioNLP’09 shared task event extrac-
tion approach to full papers on infectious dis-
eases. Seven teams submitted final results to
the task, with the highest-performing system
achieving 56% F-score in the full task, com-
parable to state-of-the-art performance in the
established BioNLP’09 task. The results in-
dicate that event extraction methods general-
ize well to new domains and full-text publi-
cations and are applicable to the extraction of
events relevant to the molecular mechanisms
of infectious diseases.

1 Introduction

The Infectious Diseases (ID) task of the BioNLP
Shared Task 2011 (Kim et al., 2011a) is an infor-
mation extraction task focusing on the biomolecu-
lar mechanisms of infectious diseases. The primary
target of the task is event extraction (Ananiadou et
al., 2010), broadly following the task setup of the
BioNLP’09 Shared Task (BioNLP ST’09) (Kim et
al., 2009).

The task concentrates on the specific domain of
two-component systems (TCSs, or two-component
regulatory systems), a mechanism widely used by
bacteria to sense and respond to the environment
(Thomason and Kay, 2000). Typical TCSs con-
sist of two proteins, a membrane-associated sensor

kinase and a cytoplasmic response regulator. The
sensor kinase monitors changes in the environment
while the response regulator mediates an adaptive
response, usually through differential expression of
target genes (Mascher et al., 2006). TCSs have many
functions, but those of particular interest for infec-
tious disease researchers include virulence, response
to antibiotics, quorum sensing, and bacterial cell at-
tachment (Krell et al., 2010). Not all TCS functions
are well known: in some cases, TCSs are involved
in metabolic processes that are difficult to precisely
characterize (Wang et al., 2010). TCSs are of in-
terest also as drugs designed to disrupt TCSs may
reduce the virulence of bacteria without killing it,
thus avoiding the potential selective pressure of an-
tibiotics lethal to some pathogenic bacteria (Gotoh
et al., 2010). Information extraction techniques may
support better understanding of these fundamental
systems by identifying and structuring the molecu-
lar processes underlying two component signaling.

The ID task seeks to address these opportuni-
ties by adapting the BioNLP ST’09 event extraction
model to domain scientific publications. This model
was originally introduced to represent biomolecu-
lar events relating to transcription factors in human
blood cells, and its adaptation to a domain that cen-
trally concerns both bacteria and their hosts involves
a variety of novel aspects, such as events concerning
whole organisms, the chemical environment of bac-
teria, prokaryote-specific concepts (e.g. regulons as
elements of gene expression), as well as the effects
of biomolecules on larger-scale processes involving
hosts such as virulence.
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2 Task Setting

The ID task broadly follows the task definition and
event types of the BioNLP ST’09, extending it with
new entity categories, correspondingly broadening
the scope of events, and introducing a new class of
events, high-level biological processes.

2.1 Entities

The ID task defines five core types of entities:
genes/gene products, two-component systems, reg-
ulons/operons, chemicals, and organisms. Follow-
ing the general policy of the BioNLP Shared Task,
the recognition of the core entities is not part of
the ID task. As named entity recognition (NER)
is considered in other prominent domain evaluations
(Krallinger et al., 2008), we have chosen to isolate
aspects of extraction performance relating to NER
from the main task of interest, event extraction, by
providing participants with human-created gold an-
notations for core entities. These annotations are
briefly presented in the following.

Mentions of names of genes and their products
(RNA and proteins) are annotated with a single
type, without differentiating between subtypes, fol-
lowing the guidelines of the GENIA GGP corpus
(Ohta et al., 2009). This type is named PRO-
TEIN to maintain consistency with related tasks
(e.g. BioNLP ST’09), despite slight inaccuracy
for cases specifically referencing RNA or DNA
forms. Two-component systems, consisting of two
proteins, frequently have names derived from the
names of the proteins involved (e.g. PhoP-PhoR
or SsrA/SsrB). Mentions of TCSs are annotated as
TWO-COMPONENT-SYSTEM, nesting PROTEIN an-
notations if present. Regulons and operons are col-
lections of genes whose expression is jointly regu-
lated. Like the names of TCSs, their names may de-
rive from the names of the involved genes and pro-
teins, and are annotated as embedding PROTEIN an-
notations when they do. The annotation does not
differentiate between the two, marking both with a
single type REGULON-OPERON.

In addition to these three classes relating to genes
and proteins, the core entity annotation recognizes
the classes CHEMICAL and ORGANISM. All men-
tions of formal and informal names of atoms, inor-
ganic compounds, carbohydrates and lipids as well

as organic compounds other than amino acid and nu-
cleic acid compounds (i.e. gene/protein-related com-
pounds) are annotated as CHEMICAL. Mentions of
names of families, genera, species and strains as
well as non-name references with comparable speci-
ficity are annotated as ORGANISM.

Finally, the non-specific type ENTITY1 is defined
for marking entities that specify additional details of
events such as the binding site in a BINDING event or
the location an entity moves to in a LOCALIZATION

event. Unlike the core entities, annotations of the
generic ENTITY type are not provided for test data
and must be detected by participants addressing the
full task.

2.2 Relations
The ID task involves one relation, EQUIV, defin-
ing entities (of any of the core types) to be equiv-
alent. This relation is used to annotate abbreviations
and local aliases and it is not a target of extraction,
but provided for reference and applied in evaluation,
where references to any of a set of equivalent entities
are treated identically.

2.3 Events
The primary extraction targets of the ID task are the
event types summarized in Table 1. These are a su-
perset of those targeted in the BioNLP ST’09 and its
repeat, the 2011 GE task (Kim et al., 2011b). This
design makes it possible to study aspects of domain
adaptation by having the same extraction targets in
two subdomains of biomedicine, that of transcrip-
tion factors in human blood cells (GE) and infectious
diseases. The events in the ID task extend on those
of GE in the inclusion of additional entity types
as participants in previously considered event types
and the introduction of a new type, PROCESS. We
next briefly discuss the semantics of these events,
defined (as in GE) with reference to the community-
standard Gene Ontology (Ashburner et al., 2000).
We refer to (Kim et al., 2008; Kim et al., 2009) for
the ST’09/GE definitions.

1In terms of the GENIA ontology, ENTITY is used to mark
e.g. PROTEIN DOMAIN OR REGION references. Specific types
were applied in manual annotation, but these were replaced
with the generic ENTITY in part to maintain consistency with
BioNLP ST’09 data and to reduce the NER-related demands
on participating systems by not requiring the assignment of de-
tailed types.
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Type Core arguments Additional arguments
GENE EXPRESSION Theme(PROTEIN or REGULON-OPERON)
TRANSCRIPTION Theme(PROTEIN or REGULON-OPERON)
PROTEIN CATABOLISM Theme(PROTEIN)
PHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)
LOCALIZATION Theme(Core entity) AtLoc(ENTITY), ToLoc(ENTITY)
BINDING Theme(Core entity)+ Site(ENTITY)+
PROCESS Participant(Core entity)?
REGULATION Theme(Core entity / Event), Cause(Core entity / Event)? Site(ENTITY), CSite(ENTITY)
POSITIVE REGULATION Theme(Core entity / Event), Cause(Core entity / Event)? Site(ENTITY), CSite(ENTITY)
NEGATIVE REGULATION Theme(Core entity / Event), Cause(Core entity / Event)? Site(ENTITY), CSite(ENTITY)

Table 1: Event types and their arguments. The type of entity allowed as argument is specified in parenthesis. “Core en-
tity” is any of PROTEIN, TWO-COMPONENT-SYSTEM, REGULON-OPERON, CHEMICAL, or ORGANISM. Arguments
that can be filled multiple times marked with “+”, non-mandatory core arguments with “?” (all additional arguments
are non-mandatory).

The definitions of the first four types in Table 1
are otherwise unchanged from the ST’09 definitions
except that GENE EXPRESSION and TRANSCRIP-
TION extend on the former definition in recogniz-
ing REGULON-OPERON as an alternative unit of ex-
pression. LOCALIZATION, taking only PROTEIN

type arguments in the ST’09 definition, is allowed
to take any core entity argument. This expanded
definition remains consistent with the scope of the
corresponding GO term (GO:0051179). BINDING

is similarly extended, giving it a scope largely con-
sistent with GO:0005488 (binding) but also encom-
passing GO:0007155 (cell adhesion) (e.g. a bac-
terium binding another) and protein-organism bind-
ing. The three regulation types (REGULATION,
POSITIVE REGULATION, and NEGATIVE REGULA-
TION) likewise allow the new core entity types as
arguments, but their definitions are otherwise un-
changed from those in ST’09, that is, the GENIA on-
tology definitions. As in these resources, regulation
types are used not only for the biological sense but
also to capture statements of general causality (Kim
et al., 2008). As in ST’09, all events of types dis-
cussed above require a Theme argument: only events
involving an explicitly stated theme (of an appropri-
ate type) should be extracted. All other arguments
are optional.

The PROCESS type, new to ID, is used to annotate
high-level processes such as virulence, infection and
resistance that involve infectious organisms. This
type differs from the others in that it has no manda-
tory arguments: the targeted processes should be ex-

tracted even if they have no explicitly stated partici-
pants, reflecting that they are of interest even without
the further specification. When stated, the involved
participants are captured using the generic role type
Participant. Figure 1 shows an illustration of some
of the the ID task extraction targets.

We term the first five event types in Table 1 taking
exactly one Theme argument as their core argument
simple events. In analysis we further differentiate
non-regulation events (the first seven) and regulation
(the last three), which is known to represent partic-
ular challenges for extraction in involving events as
arguments, thus creating nested event structures.

2.4 Event modifications
The ID task defines two event modification ex-
traction targets, NEGATION and SPECULATION.
These modifications mark events as being explic-
itly negated (e.g. virB is not expressed) or stated in
a speculative context (e.g. virB may be expressed).
Both may apply simultaneously. The modification
definitions are identical to the ST’09 ones, includ-
ing the representation in which modifications (un-
like events) are not assigned text bindings.

3 Data

The ID task data were newly annotated for the
BioNLP Shared Task and are not based on any previ-
ously released resource. Annotation was performed
by two teams, one in Tsujii laboratory (University
of Tokyo) and one in Virginia Bioinformatics Insti-
tute (Virginia Tech). The entity and event annotation

28



Figure 1: Example event annotation. The association of a TCS with an organism is captured through an event structure
involving a PROCESS (“virulence”) and POSITIVE REGULATION. Regulation types are used to capture also statements
of general causality such as “is essential for” here. (Simplified from PMC ID 2358977)

Journal # Published
PLoS Pathogens 9 2006–2010
PLoS One 7 2008–2010
BMC Genomics 3 2008–2010
PLoS Genetics 2 2007–2010
Open Microbiology J. 2 2008–2010
BMC Microbiology 2 2008–2009
Other 5 2007–2008

Table 2: Corpus composition. Journals in which selected
articles were published with number of articles (#) and
publication years.

design was guided by previous studies on NER and
event extraction in a closely related domain (Pyysalo
et al., 2010; Ananiadou et al., 2011).

3.1 Document selection

The training and test data were drawn from the pri-
mary text content of recent full-text PMC open ac-
cess documents selected by infectious diseases do-
main experts (Virginia Tech team) as representative
publications on two-component regulatory systems.
Table 2 presents some characteristics of the corpus
composition. To focus efforts on natural language
text likely to express novel information, we excluded
tables, figures and their captions, as well as methods
sections, acknowledgments, authors’ contributions,
and similar meta-content.

3.2 Annotation

Annotation was performed in two primary stages,
one for marking core entities and the other for events
and secondary entities. As a preliminary processing
step, initial sentence segmentation was performed
with the GENIA Sentence Splitter2. Segmentation
errors were corrected during core entity annotation.

Core entity annotation was performed from the
basis of an automatic annotation created using se-
lected existing taggers for the target entities. The

2http://www-tsujii.is.s.u-tokyo.ac.jp/

˜y-matsu/geniass/

Entity type prec. rec. F
PROTEIN 54.64 39.64 45.95
CHEMICAL 32.24 19.05 23.95
ORGANISM 90.38 47.70 62.44
TWO-COMPONENT-SYSTEM 87.69 47.24 61.40

Table 3: Automatic core entity tagging performance.

following tools and settings were adopted, with pa-
rameters tuned on initial annotation for two docu-
ments:

PROTEIN: NeMine (Sasaki et al., 2008) trained on
the JNLPBA data (Kim et al., 2004) with threshold
0.05, filtered to only GENE and PROTEIN types.

ORGANISM: Linnaeus (Gerner et al., 2010) with
“variant matching” for species names variants.

CHEMICAL: OSCAR3 (Corbett and Murray-Rust,
2006) with confidence 90%.

TWO-COMPONENT-SYSTEM: Custom regular ex-
pressions.

Initial automatic tagging was not applied for en-
tities of the REGULON-OPERON type or the generic
ENTITY type (for additional event arguments). All
automatically generated annotations were at least
confirmed through manual inspection, and the ma-
jority of the automatic annotations were revised in
manual annotation. Table 3 summarizes the tag-
ging performance of the automatic tools as measured
against the final human-annotated training and de-
velopment datasets.3

Annotation for the task extraction targets – events
and event modifications – was created entirely man-
ually without automatic annotation support to avoid
any possible bias toward specific extraction meth-
ods or approaches. The Tsujii laboratory team orga-

3It should be noted that these results are low in part due to
differences in annotation criteria (see e.g. (Wang et al., 2009))
and to data tagged using the ID task annotation guidelines not
being applied for training; training on the newly annotated data
is expected to allow notably more accurate tagging.
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Item Train Devel Test Total
Articles 15 5 10 30
Sentences 2,484 709 1,925 5118
Words 74,439 21,225 57,489 153,153
Core entities 6,525 1,976 4,239 12,740
Events 2,088 691 1,371 4150
Modifications 95 45 74 214

Table 4: Statistics of the ID corpus.

nized the annotation effort, with a coordinating an-
notator with extensive experience in event annota-
tion (TO) leading annotator training and annotation
scheme development. Detailed annotation guide-
lines (Pyysalo et al., 2011) extending on the GE-
NIA annotation guidelines were developed jointly
with all annotators and refined throughout the an-
notation effort. Based on measurements of inter-
annotator consistency between annotations indepen-
dently created by the two teams, made throughout
annotator training and primary annotation (exclud-
ing final corpus cleanup), we estimate the consis-
tency of the final entity annotation to be no lower
than 90% F-score and that of the event annotation to
be no lower than 75% F-score for the primary eval-
uation criteria (see Section 4).

3.3 Datasets and statistics
Initial annotation was produced for the selected sec-
tions (see Section 3.1) in 33 full-text articles, of
which 30 were selected for the final dataset as repre-
sentative of the extraction targets. These documents
were split into training, development and test sets of
15, 5 and 10 documents, respectively. Participants
were provided with all training and development set
annotations and test set core entity annotations. The
overall statistics of the datasets are given in Table 4.

As the corpus consists of full-text articles, it con-
tains a somewhat limited number of articles, but in
other terms it is of broadly comparable size to the
largest of the BioNLP ST corpora: the corpus word
count, for example, corresponds to that of a cor-
pus of approximately 800 PubMed abstracts, and the
core entity count is comparable to that in the ST’09
data. However, for reasons that may relate in part to
the domain, the event count is approximately a third
of that for the ST’09 data. In addition to having less
training data, the entity/event ratio is thus consider-
ably higher (i.e. there are more candidates for each

true target), suggesting that the ID data could be ex-
pected to provide a more challenging extraction task.

4 Evaluation

The performance of participating systems was
evaluated in terms of events using the standard
precision/recall/F-score metrics. For the primary
evaluation, we adopted the standard criteria defined
in the BioNLP’09 shared task. In brief, for deter-
mining whether a reference annotation and a pre-
dicted annotation match, these criteria relax exact
matching for event triggers and arguments in two
ways: matching of text-bound annotation (event
triggers and ENTITY type entities) allows limited
boundary variation, and only core arguments need to
match in nested event arguments for events to match.
For details of the matching criteria, please refer to
Kim et al. (2009).

The primary evaluation for the task requires the
extraction of all event arguments (both core and ad-
ditional; see Table 1) as well as event modifications
(NEGATION and SPECULATION). This is termed
the full task. We additionally report extraction re-
sults for evaluation where both the gold standard ref-
erence data and the submission events are reduced
to only core arguments, event modifications are re-
moved, and resulting duplicate events removed. We
term this the core task. In terms of the subtask divi-
sion applied in the BioNLP’09 Shared Task and the
GE task of 2011, the core task is analogous to sub-
task 1 and the full task analogous to the combination
of subtasks 1–3.

5 Results

5.1 Participation
Final results to the task were successfully submitted
by seven participants. Table 5 summarizes the in-
formation provided by the participating teams. We
note that full parsing is applied in all systems, with
the specific choice of the parser of Charniak and
Johnson (2005) with the biomedical domain model
of McClosky (2009) and conversion into the Stan-
ford Dependency representation (de Marneffe et al.,
2006) being adopted by five participants. Further,
five of the seven systems are predominantly machine
learning-based. These can be seen as extensions of
trends that were noted in analysis of the BioNLP
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NLP Events Other resources
Rank Team Org Word Parse Trig. Arg. Group. Modif. Corpora Other

1 FAUST 3NLP
CoreNLP,
SnowBall

McCCJ + SD (UMass+Stanford as features) GE word clusters

2 UMass 1NLP
CoreNLP,
SnowBall

McCCJ + SD Joint, dual dec.+MIRA 1-best - GE -

3 Stanford 3NLP CoreNLP McCCJ + SD MaxEnt Joint, MSTParser - GE word clusters

4 ConcordU 2NLP - McCCJ + SD dict rules rules rules -
triggers and
hedge words

5 UTurku 1BI Porter McCCJ + SD SVM SVM SVM SVM - hedge words

6 PNNL
1CS, 1NLP,
2BI

Porter Stanford SVM SVM rules - GE UMLS, triggers

7 PredX 1CS, 1NLP LGP LGP dict rules rules - - UMLS, triggers

Table 5: Participants and summary of system descriptions. Abbreviations: Trig./Arg./Group./Modif.=event trigger
detection/argument detection/argument grouping/modification detection, BI=Bioinformatician, NLP=Natural Lan-
guage Processing researcher, CS=Computer scientist, CoreNLP=Stanford CoreNLP, Porter=Porter stemmer, Snow-
ball=Snowball stemmer McCCJ=McClosky-Charniak-Johnson parser, LGP=Link Grammar Parser, SD=Stanford De-
pendency conversion, UMLS=UMLS resources (e.g. lexicon, metamap)

ST’09 participation. In system design choices, we
note an indication of increased use of joint models
as opposed to pure pipeline designs, with the three
highest-ranking systems involving a joint model.

Several participants compiled dictionaries of
event trigger words and two dictionaries of hedge
words from the data. Four teams, including the three
top-ranking, used the GE task corpus as supplemen-
tary material, indicating that the GE annotations are
largely compatible with ID ones (see detailed results
below). This is encouraging for future applications
of the event extraction approach: as manual annota-
tion requires considerable effort and time, the ability
to use existing annotations is important for the feasi-
bility of adaptation of the approach to new domains.

While several participants made use of support-
ing syntactic analyses provided by the organizers
(Stenetorp et al., 2011), none applied the analyses
for supporting tasks, such as coreference or entity
relation extraction results – at least in cases due to
time constraints (Kilicoglu and Bergler, 2011).

5.2 Evaluation results

Table 6 presents the primary results by event type,
and Table 7 summarizes these results. The full
task requires the extraction of additional arguments
and event modifications and involves multiple novel
challenges from previously addressed domain tasks
including a new subdomain, full-text documents,
several new entity types and a new event category.

Team recall prec. F-score
FAUST 48.03 65.97 55.59
UMass 46.92 62.02 53.42
Stanford 46.30 55.86 50.63
ConcordU 49.00 40.27 44.21
UTurku 37.85 48.62 42.57
PNNL 27.75 52.36 36.27
PredX 22.56 35.18 27.49

Table 7: Primary evaluation results.

Nevertheless, extraction performance for the top
systems is comparable to the state-of-the-art results
for the established BioNLP ST’09 task (Miwa et al.,
2010) as well as its repetition as the 2011 GE task
(Kim et al., 2011b), where the highest overall result
for the primary evaluation criteria was also 56% F-
score for the FAUST system (Riedel et al., 2011).
This result is encouraging regarding the ability of
the extraction approach and methods to generalize
to new domains as well as their applicability specifi-
cally to texts on the molecular mechanisms of infec-
tious diseases.

We note that there is substantial variation in the
relative performance of systems for different en-
tity types. For example, Stanford (McClosky et
al., 2011) has relatively low performance for simple
events but achieves the highest result for PROCESS,
while UTurku (Björne and Salakoski, 2011) results
show roughly the reverse. This suggests further po-
tential for improvement from system combinations.
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FAUST UMass Stanford ConcordU UTurku PNNL PredX Size
GENE EXPRESSION 70.68 66.43 54.00 56.57 64.88 53.33 0.00 512
TRANSCRIPTION 69.66 68.24 60.00 70.89 57.14 0.00 53.85 77
PROTEIN CATABOLISM 75.00 72.73 20.00 66.67 33.33 11.76 0.00 33
PHOSPHORYLATION 64.00 66.67 40.00 54.55 60.61 64.29 40.00 69
LOCALIZATION 33.33 14.29 31.58 20.00 66.67 20.69 0.00 49
Simple event total 68.47 63.55 52.72 56.78 62.67 43.87 18.18 740
BINDING 31.30 34.62 23.44 40.00 22.22 20.00 28.28 156
PROCESS 65.69 62.26 73.57 67.17 41.57 51.04 53.27 901
Non-regulation total 63.78 60.68 63.59 62.43 46.39 47.34 43.65 1797
REGULATION 35.44 30.49 17.67 19.43 22.96 0.00 2.16 267
POSITIVE REGULATION 47.50 49.49 34.78 23.41 41.28 24.60 21.02 455
NEGATIVE REGULATION 58.86 60.45 44.44 47.96 52.11 25.70 9.49 260
Regulation total 47.07 46.65 33.02 28.87 39.49 18.45 9.71 982

Subtotal 57.28 55.03 52.09 46.60 43.33 37.53 28.38 2779
NEGATION 0.00 0.00 0.00 22.92 32.91 0.00 0.00 96
SPECULATION 0.00 0.00 0.00 3.23 15.00 0.00 0.00 44
Modification total 0.00 0.00 0.00 11.82 26.89 0.00 0.00 140

Total 55.59 53.42 50.63 44.21 42.57 36.27 27.49 2919

Table 6: Primary evaluation F-scores by event type. The “size” column gives the number of annotations of each type
in the given data (training+development). Best result for each type shown in bold.

The best performance for simple events and for
PROCESS approaches or exceeds 70% F-score, ar-
guably approaching a sufficient level for user-facing
applications of the extraction technology. By con-
trast, BINDING and regulation events, found chal-
lenging in ST’09 and GE, remain problematic also
in the ID task, with best overall performance below
50% F-score. Only two teams, UTurku and Con-
cordU (Kilicoglu and Bergler, 2011), attempted to
extract event modifications, with somewhat limited
performance. The difficulty of correct extraction of
event modifications is related in part to the recursive
nature of the problem (similarly as for nested reg-
ulation events): to extract a modification correctly,
the modified event must also be extracted correctly.
Further, only UTurku predicted any instances of sec-
ondary arguments. Thus, teams other than UTurku
and ConcordU addressed only the core task extrac-
tion targets. With the exception of ConcordU, all
systems clearly favor precision over recall (Table 7),
in many cases having over 15% point higher preci-
sion than recall. This a a somewhat unexpected in-
version, as the ConcordU system is one of the two
rule-based in the task, an approach typically associ-
ated with high precision.

The five top-ranking systems participated also in
the GE task (Kim et al., 2011b), which involves a

subset of the ID extraction targets. This allows ad-
ditional perspective into the relative performance of
the systems. While there is a 13% point spread in
overall results for the top five systems here, in GE
all these systems achieved F-scores ranging between
50–56%. The results for FAUST, UMass and Stan-
ford were similar in both tasks, while the ConcordU
result was 6% points higher for GE and the UTurku
result over 10% points higher for GE, ranking third
after FAUST and UMass. These results suggest that
while the FAUST and UMass systems in particular
have some systematic (e.g. architectural) advantage
at both tasks, much of the performance difference
observed here between the top three systems and
those of ConcordU and UTurku is due to strengths
or weaknesses specific to ID. Possible weaknesses
may relate to the treatment of multiple core entity
types (vs. only PROTEIN in GE) or challenges re-
lated to nested entity annotations (not appearing in
GE). A possible ID-specific strength of the three
top-ranking systems is the use of GE data for train-
ing: Riedel and McCallum (2011) report an esti-
mated 7% point improvement and McClosky et al.
(2011) a 3% point improvement from use of this
data; McGrath et al. (2011) estimate a 1% point im-
provement from direct corpus combination. The in-
tegration strategies applied in training these systems
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Team recall prec. F-score ∆
FAUST 50.62 66.06 57.32 1.73
UMass 49.45 62.11 55.06 1.64
Stanford 48.87 56.03 52.20 1.57
ConcordU 50.77 43.25 46.71 2.50
UTurku 38.79 49.35 43.44 0.87
PNNL 29.36 52.62 37.69 1.42
PredX 23.67 35.18 28.30 0.81

Table 8: Core task evaluation results. The ∆ column
gives the F-score difference to the corresponding full task
(primary) result.

could potentially be applied also with other systems,
an experiment that could further clarify the relative
strengths of the various systems. The top-ranking
five systems all participated also in the EPI task
(Ohta et al., 2011), for which UTurku ranked first
with FAUST having comparable performance for the
core task. While this supports the conclusion that
ID performance differences do not reflect a simple
universal ranking of the systems, due to many sub-
stantial differences between the ID and EPI setups it
is not straightforward to identify specific reasons for
relative differences to performance at EPI.

Table 8 summarizes the core task results. There
are only modest and largely consistent differences to
the corresponding full task results, reflecting in part
the relative sparseness of additional arguments: in
the training data, for example, only approximately
3% of instances of event types that can potentially
take additional arguments had at least one additional
argument. While event modifications represent a
further 4% of full task extraction targets not required
for the core task, the overall low extraction perfor-
mance for additional arguments and modifications
limits the practical effect of these annotation cate-
gories on the performance difference between sys-
tems addressing only the core targets and those ad-
dressing the full task.

6 Discussion and Conclusions

We have presented the preparation, resources, re-
sults and analysis of the Infectious Diseases (ID)
task of the BioNLP Shared Task 2011. A corpus
of 30 full-text publications on the two-component
systems subdomain of infectious diseases was cre-
ated for the task in a collaboration of event annota-
tion and domain experts, adapting and extending the

BioNLP’09 Shared Task (ST’09) event representa-
tion to the domain.

Seven teams submitted final results to the ID task.
Despite the novel challenges of full papers, four new
entity types, extension of event scopes and the intro-
duction of a new event category for high-level pro-
cesses, the highest results for the full ID task were
comparable to the state-of-the-art performance on
the established ST’09 data, showing that the event
extraction approach and present systems generalize
well and demonstrating the feasibility of event ex-
traction for the infectious diseases domain. Analy-
sis of results suggested further opportunities for im-
proving extraction performance by combining the
strengths of various systems and the use of other
event resources.

The task design takes into account the needs
of supporting practical applications, and its results
and findings will be adopted in future development
of the Pathosystems Resource Integration Center4

(PATRIC). Specifically, PATRIC will combine do-
main named entity recognition and event extraction
to mine the virulence factor literature and integrate
the results with literature search and retrieval ser-
vices, protein feature analysis, and systems such as
Disease View.5 Present and future advances at the
ID event extraction task can thus assist biologists in
efforts of substantial public health interest.

The ID task will be continued as an open
shared task challenge with data, supporting re-
sources, and evaluation tools freely available from
the shared task site, http://sites.google.

com/site/bionlpst/.
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Abstract

In this paper we describe our approach to
the BioNLP 2011 shared task on biomedical
event extraction from abstracts and full pa-
pers. We employ a joint inference system de-
veloped using the search-based structured pre-
diction framework and show that it improves
on a pipeline using the same features and it is
better able to handle the domain shift from ab-
stracts to full papers. In addition, we report on
experiments using a simple domain adaptation
method.

1 Introduction

The term biomedical event extraction is used to re-
fer to the task of extracting descriptions of actions
and relations among one or more entities from the
biomedical literature. The BioNLP 2011 shared
task GENIA Task1 (BioNLP11ST-GE1) (Kim et al.,
2011) focuses on extracting events from abstracts
and full papers. The inclusion of full papers in the
datasets is the only difference from Task1 of the
BioNLP 2009 shared task (BioNLP09ST1) (Kim et
al., 2009), which used the same task definition and
abstracts dataset. Each event consists of a trigger
and one or more arguments, the latter being proteins
or other events. The protein names are annotated in
advance and any token in a sentence can be a trig-
ger for one of the nine event types. In an exam-
ple demonstrating the complexity of the task, given
the passage “. . . SQ 22536 suppressed gp41-induced
IL-10 production in monocytes”, systems should ex-
tract the three nested events shown in Fig. 1d.

In our submission, we use the event extraction
system of Vlachos and Craven (2011) which em-
ploys the search-based structured prediction frame-
work (SEARN) (Daumé III et al., 2009). SEARN
converts the problem of learning a model for struc-
tured prediction into learning a set of models for
cost-sensitive classification (CSC). In CSC, each
training instance has a vector of misclassification
costs associated with it, thus rendering some mis-
takes in some instances to be more expensive than
others. Compared to other structured prediction
frameworks such as Markov Logic Networks (Poon
and Vanderwende, 2010), SEARN provides high
modeling flexibility but it does not requiring task-
dependent approximate inference.

In this work, we show that SEARN is more accu-
rate than a pipeline using the same features and it is
better able to handle the domain shift from abstracts
to full papers. Furthermore, we report on exper-
iments with the simple domain adaptation method
proposed by Daumé III (2007), which creates a ver-
sion of each feature for each domain. While the re-
sults were mixed, this method improves our perfor-
mance on full papers of the test set, for which little
training data is available.

2 Event extraction decomposition

Figure 1 describes the event extraction decomposi-
tion that is used throughout the paper. Each stage has
its own module to perform the classification needed.

In trigger recognition the system decides whether
a token acts as a trigger for one of the nine event
types or not. We only consider tokens that are tagged
as nouns, verbs or adjectives by the parser, as they
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SQ 22536 suppressed
Neg reg

gp41 -induced
Pos reg

IL-10 production
Gene exp

(a) Trigger recognition

SQ 22536 suppressed
Neg reg

gp41 -induced
Pos reg

IL-10 production
Gene exp

Theme

ThemeTheme

(b) Theme assignment

SQ 22536 suppressed
Neg reg

gp41 -induced
Pos reg

IL-10 production
Gene exp

Theme

Theme

Cause

Theme

(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

(d) Event construction

Figure 1: The stages of our biomedical event extraction system.

cover the majority of the triggers in the data. The
main features used in the classifier represent the
lemma of the token which is sufficient to predict
the event type correctly in most cases. In addition,
we include features that conjoin each lemma with
its part-of-speech tag and its immediate lexical and
syntactic context, which allows us to handle words
that can represent different event types, e.g. “activ-
ity” often denotes a Regulation event but in “binding
activity” it denotes a Binding event instead.

In Theme assignment, we form an agenda of can-
didate trigger-argument pairs for all trigger-protein
combinations in the sentence and classify them as
Themes or not. Whenever a trigger is predicted to be
associated with a Theme, we form candidate pairs
between all the Regulation triggers in the sentence
and that trigger as the argument, thus allowing the
prediction of nested events. Also, we remove candi-
date pairs that could result in directed cycles, as they
are not allowed by the task. In Cause assignment,
we form an agenda of candidate trigger-argument
pairs and classify them as Causes or not. We form
pairs between Regulation class triggers that were as-
signed at least one Theme, and protein names and
other triggers that were assigned at least one Theme.

The features used in these two stages are extracted
from the syntactic dependency path and the textual
string between the trigger and the argument. We
extract the shortest unlexicalized dependency path
connecting each trigger-argument pair using Dijk-
stra’s algorithm, allowing the paths to follow either
dependency direction. One set of features represents

the shortest unlexicalized path between the pair and
in addition we have sets of features representing
each path conjoined with the lemma, the PoS tag and
the event type of the trigger, the type of the argument
and the first and last lemmas in the dependency path.

In the event construction stage, we convert the
predictions of the previous stages into events. If
a Binding trigger is assigned multiple Themes, we
choose to form either one event per Theme or one
event with multiple Themes. For this purpose, we
group the arguments of each nominal Binding trig-
ger according to the first label in their dependency
path and generate events using the cross-product of
these groups. For example, assuming the parse was
correct and all the Themes recognized, “interactions
of A and B with C” results in two Binding events
with two Themes each, A with C, and B with C re-
spectively. We add the exceptions that if two Themes
are part of the same token (e.g. “A/B interactions”),
or the trigger and one of the Themes are part of the
same token, or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.

3 Structured prediction with SEARN

SEARN (Daumé III et al., 2009) forms the struc-
tured output prediction of an instance s as a se-
quence of T multiclass predictions ŷ1:T made by a
hypothesis h. The latter is a weighted ensemble of
classifiers that are learned jointly. Each prediction ŷt

can use features from s as well as from all the pre-
vious predictions ŷ1:t−1, thus taking structure into

37



account. These predictions are referred to as actions
and we adopt this term in order to distinguish them
from the structured output predictions.

The SEARN algorithm is presented in Alg. 1. In
each iteration, SEARN uses the current hypothesis
h to generate a CSC example for each action ŷt cho-
sen to form the prediction for each labeled instance
s (steps 6-12). The cost associated with each action
is estimated using the gold standard according to a
loss function l which corresponds to the task eval-
uation metric (step 11). Using a CSC learning al-
gorithm, a new hypothesis hnew is learned (step 13)
which is combined with the current one according to
the interpolation parameter β (step 14). h is initial-
ized to the optimal policy (step 2) which is derived
from the gold standard. In each iteration SEARN
“corrupts” the optimal policy with the learned hy-
potheses. Thus, each hnew is adapted to the actions
chosen by h instead of the optimal policy. The algo-
rithm terminates when the dependence on the latter
becomes insignificant.

Algorithm 1 SEARN
1: Input: labeled instances S , optimal policy π, CSC

learning algorithm CSCL, loss function `
2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1 . . . ŷT

7: for ŷt in h(s) do
8: Extract features Φt = f(s, ŷ1:t−1)
9: for each possible action yi

t do
10: Predict y′t+1:T = h(s|ŷ1:t−1, y

i
t)

11: Estimate cit = `(ŷ1:t−1, y
i
t, y′t+1:T )

12: Add (Φt, ct) to E
13: Learn a classifier hnew = CSCL(E)
14: h = βhnew + (1− β)h
15: Output: hypothesis h without π

4 Biomedical event extraction with
SEARN

In this section we describe how we learn the event
extraction decomposition described in Sec. 2 under
SEARN. Each instance is a sentence and the hypoth-
esis learned in each iteration consists of a classifier
for each stage of the pipeline, excluding event con-
struction which is rule-based.

SEARN allows us to extract structural features for
each action from the previous ones. During trig-
ger recognition, we add as features the combination
of the lemma of the current token combined with
the event type (if any) assigned to the previous and
the next token, as well as to the tokens that have
syntactic dependencies with it. During Theme as-
signment, when considering a trigger-argument pair,
we add features based on whether the pair forms an
undirected cycle with previously predicted Themes,
whether the trigger has been assigned a protein as a
Theme and the candidate Theme is an event trigger
(and the reverse), and whether the argument is the
Theme of a trigger with the same event type. We
also add a feature indicating whether the trigger has
three Themes predicted already. During Cause as-
signment, we add features representing whether the
trigger has been assigned a protein as a Cause and
the candidate Cause is an event trigger.

Since the features extracted for an action depend
on previous ones, we need to define a prediction or-
der for the actions. In trigger recognition, we pro-
cess the tokens from left to right since modifiers
appearing before nouns tend to affect the meaning
of the latter, e.g. “binding activity”. In Theme
and Cause assignment, we predict trigger-argument
pairs in order of increasing dependency path length,
assuming that, since they are the main source of fea-
tures in these stages and shorter paths are less sparse,
pairs containing shorter ones should be predicted
more reliably. The loss function sums the number of
false positive and false negative events, which is the
evaluation measure of the shared task. The optimal
policy is derived from the gold standard and returns
the action that minimizes the loss over the sentence
given the previous actions and assuming that all fu-
ture actions are optimal.

In step 11 of Alg. 1, the cost of each action is esti-
mated over the whole sentence. While this allows us
to take structure into account, it can result in costs
being affected by a part of the output that is not re-
lated to that action. This is likely to occur in event
extraction, as sentences can often be long and con-
tain disconnected event components in their output
graphs. For this reason we use focused costing (Vla-
chos and Craven, 2011), in which the cost estimation
for an action takes into account only the part of the
output graph connected with that action.
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pipeline (R/P/F) SEARN (R/P/F)
trigger 49.1 64.0 55.6 83.2 28.6 42.6
Theme 43.7 78.6 56.2 63.8 72.0 67.6
Cause 13.9 61.0 22.6 33.9 53.8 41.6
Event 31.7 70.1 43.6 45.8 60.51 52.1

Table 1: Results on the development dataset.

5 Experiments

In our experiments, we perform multiclass CSC
learning using our implementation of the on-
line passive-aggressive (PA) algorithm proposed by
Crammer et al. (2006). The aggressiveness param-
eter and the number of rounds in parameter learn-
ing are set by tuning on 10% of the training data
and we use the variant named PA-II with prediction-
based updates. For SEARN, we set the interpolation
parameter β to 0.3. For syntactic parsing, we use
the output of the parser of Charniak and Johnson
(2005) adapted to the biomedical domain by Mc-
Closky (2010), as provided by the shared task orga-
nizers in the Stanford collapsed dependencies with
conjunct dependency propagation (Stenetorp et al.,
2011). Lemmatization is performed using morpha
(Minnen et al., 2001). No other knowledge sources
or tools are used.

In order to assess the benefits of joint learning un-
der SEARN, we compare it against a pipeline of in-
dependently learned classifiers using the same fea-
tures and task decomposition. Table 1 reports the
Recall/Precision/F-score achieved in each stage, as
well as the overall performance. SEARN obtains
better performance on the development set by 8.5
F-score points. This increase is larger than the 7.3
points reported in Vlachos and Craven (2011) on
the BioNLP09ST1 datasets which contain only ab-
stracts. This result suggests that the gains of joint
inference under SEARN are greater when learning
from the additional data from full papers. Note
that while the classifier learned with SEARN over-
predicts triggers, the Theme and Cause classifiers
maintain relatively high precision with substantially
higher recall as they are learned jointly with it.
As triggers that do not form events are ignored by
the evaluation, trigger overprediction without event
overprediction does not result in performance loss.

The results of our submission on the test

dataset using SEARN were 42.6/61.2/50.2
(Recall/Precision/F-score) which ranked sixth
in the shared task. In the Regulation events which
are considered harder due to nesting, our submis-
sion was ranked fourth. This demonstrates the
potential of SEARN for structured prediction, as the
performance on regulation events depends partly on
the performance on the simple ones on which our
submission was ranked eighth.

After the end of the shared task, we experimented
with the domain adaptation method proposed by
Daumé III (2007), which creates multiple versions
for each feature by conjoining it with the domain la-
bel of the instance it is extracted from (abstracts or
full papers). While this improved the performance
of the pipeline baseline by 0.3 F-score points, the
performance under SEARN dropped by 0.4 points
on the development data. Using the online service
provided by the organizers, we evaluated the perfor-
mance of the domain adapted SEARN-based system
on the test set and the overall performance improved
to 50.72 in F-score (would have ranked 5th). In
particular, domain adaptation improved the perfor-
mance on full papers by 1.22 points, thus reaching
51.22 in F-score. This version of the system would
have ranked 3rd overall and 1st in the Regulation
events in this part of the corpus. We hypothesize
that these mixed results are due to the sparse fea-
tures used in the stages of the event extraction de-
composition, which become even sparser using this
domain adaptation method, thus rendering the learn-
ing of appropriate weights for them harder.

6 Conclusions

We presented a joint inference approach to the
BioNLP11ST-GE1 task using SEARN which con-
verts a structured prediction task into a set of CSC
tasks whose models are learned jointly. Our results
demonstrate that SEARN achieves substantial per-
formance gains over a standard pipeline using the
same features.
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Ohta, Jin-Dong Kim, and Jun’ichi Tsujii. 2011.
BioNLP Shared Task 2011: Supporting Resources. In
Proceedings of the BioNLP 2011 Workshop Compan-
ion Volume for Shared Task.

Andreas Vlachos and Mark Craven. 2011. Search-based
structured prediction applied to biomedical event ex-
traction. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning.

40



Proceedings of BioNLP Shared Task 2011 Workshop, pages 41–45,
Portland, Oregon, USA, 24 June, 2011. c©2011 Association for Computational Linguistics

Event Extraction as Dependency Parsing for BioNLP 2011

David McClosky, Mihai Surdeanu, and Christopher D. Manning
Department of Computer Science

Stanford University
Stanford, CA 94305

{mcclosky,mihais,manning}@stanford.edu

Abstract

We describe the Stanford entry to the BioNLP
2011 shared task on biomolecular event ex-
traction (Kim et al., 2011a). Our framework is
based on the observation that event structures
bear a close relation to dependency graphs.
We show that if biomolecular events are cast
as these pseudosyntactic structures, standard
parsing tools (maximum-spanning tree parsers
and parse rerankers) can be applied to per-
form event extraction with minimum domain-
specific tuning. The vast majority of our
domain-specific knowledge comes from the
conversion to and from dependency graphs.
Our system performed competitively, obtain-
ing 3rd place in the Infectious Diseases track
(50.6% f-score), 5th place in Epigenetics and
Post-translational Modifications (31.2%), and
7th place in Genia (50.0%). Additionally, this
system was part of the combined system in
Riedel et al. (2011) to produce the highest
scoring system in three out of the four event
extraction tasks.

1 Introduction

The distinguishing aspect of our approach is that by
casting event extraction as a dependency parsing, we
take advantage of standard parsing tools and tech-
niques rather than creating special purpose frame-
works. In this paper, we show that with minimal
domain-specific tuning, we are able to achieve com-
petitive performance across the three event extrac-
tion domains in the BioNLP 2011 shared task.

At the heart of our system1 is an off-the-shelf
1nlp.stanford.edu/software/eventparser.shtml

dependency parser, MSTParser2 (McDonald et al.,
2005; McDonald and Pereira, 2006), extended with
event extraction-specific features and bookended by
conversions to and from dependency trees. While
features in MSTParser must be edge-factored and
thus fairly local (e.g., only able to examine a portion
of each event at once), decoding is performed glob-
ally allowing the parser to consider trade-offs. Fur-
thermore, as MSTParser can use n-best decoders,
we are able to leverage a reranker to capture global
features to improve accuracy.

In §2, we provide a brief overview of our frame-
work. We describe specific improvements for the
BioNLP 2011 shared task in §3. In §4, we present
detailed results of our system. Finally, in §5 we give
some directions for future work.

2 Event Parsing
Our system includes three components: (1) anchor
detection to identify and label event anchors, (2)
event parsing to form candidate event structures by
linking entities and event anchors, and (3) event
reranking to select the best candidate event structure.
As the full details on our approach are described in
McClosky et al. (2011), we will only provide an out-
line of our methods here along with additional im-
plementation notes.

Before running our system, we perform basic
preprocessing on the corpora. Sentences need
to be segmented, tokenized, and parsed syntacti-
cally. We use custom versions of these (except
for Infectious Diseases where we use those from
Stenetorp et al. (2011)). To ease event parsing, our

2http://sourceforge.net/projects/mstparser/
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tokenizations are designed to split off suffixes which
are often event anchors. For example, we split the
token RelA-induced into the two tokens RelA and in-
duced3 since RelA is a protein and induced an event
anchor. If this was a single token, our event parser
would be unable to link them since it cannot pre-
dict self-loops in the dependency graph. For syntac-
tic parsing, we use the self-trained biomedical pars-
ing model from McClosky (2010) with the Charniak
and Johnson (2005) reranking parser. We use its ac-
tual constituency tree, the dependency graph created
by applying head percolation rules, and the Stanford
Dependencies (de Marneffe and Manning, 2008) ex-
tracted from the tree (collapsed and uncollapsed).

Anchor detection uses techniques inspired from
named entity recognition to label each token with
an event type or none. The features for this stage
are primarily drawn from Björne et al. (2009). We
reduce multiword event anchors to their syntactic
head.4 We classify each token independently using a
logistic regression classifier with L2 regularization.
By adjusting a threshold parameter, we can adjust
the balance between precision and recall. We choose
to heavily favor recall (i.e., overgenerate event an-
chors) as the event parser can drop extraneous an-
chors by not attaching any arguments to them.

The event anchors from anchor detection and
the included entities (.t1 files) form a “reduced”
sentence, which becomes the input to event pars-
ing. Thus, the only words in the reduced sentence
are tokens believed to directly take part in events.
Note, though, that we use the original “full” sen-
tence (including the various representations of its
syntactic parse) for feature generation. For full de-
tails on this process, see McClosky et al. (2011).
As stated before, this stage consists of MSTParser
with additional event parsing features. There are
four decoding options for MSTParser, depending
on (a) whether features are first- or second-order
and (b) whether graphs produced are projective or
non-projective. The projective decoders have com-
plete n-best implementations whereas their non-
projective counterparts are approximate. Neverthe-

3The dash is removed since a lone dash would further con-
fuse the syntactic parser.

4This does not affect performance if the approximate scorer
is used, but it does impact scores if exact matching of anchor
boundaries is imposed.

less, these four decoders constitute slightly different
views of the same data and can be combined inside
the reranking framework. After decoding, we con-
vert parses back to event structures. Details on this
critical step are given in McClosky et al. (2011).

Event reranking, the final stage of our system, re-
ceives an n-best list of event structures from each
decoder in the event parsing step. The reranker
can use any global features of an event structure to
rescore it and outputs the highest scoring structure.
This is based on parse reranking (Ratnaparkhi, 1999;
Collins, 2000) but uses features on event structures
instead of syntactic constituency structures. We
used Mark Johnson’s cvlm estimator5 (Charniak
and Johnson, 2005) when learning weights for the
reranking model. Since the reranker can incorporate
the outputs from multiple decoders, we use it as an
ensemble technique as in Johnson and Ural (2010).

3 Extensions for BioNLP 2011

This section outlines the changes between our
BioNLP 2011 shared task submission and the sys-
tem described in McClosky et al. (2011). The main
differences are that all dataset-specific portions of
the model have been factored out to handle the ex-
panded Genia (GE) dataset (Kim et al., 2011b) and
the new Epigenetics and Post-translational Modifi-
cations (EPI) and Infectious Diseases (ID) datasets
(Ohta et al., 2011; Pyysalo et al., 2011, respec-
tively). Other changes are relatively minor but doc-
umented here as implementation notes.

Several improvements were made to anchor de-
tection, improving its accuracy on all three do-
mains. The first is the use of distributional sim-
ilarity features. Using a large corpus of abstracts
from PubMed (30,963,886 word tokens of 335,811
word types), we cluster words by their syntactic con-
texts and morphological contents (Clark, 2003). We
used the Ney-Essen clustering model with morphol-
ogy to produce 45 clusters. Using these clusters, we
extended the feature set for anchor detection from
McClosky et al. (2011) as follows: for each lexical-
ized feature we create an equivalent feature where
the corresponding word is replaced by its cluster ID.
This yielded consistent improvements of at least 1
percentage point in both anchor detection and event

5http://github.com/BLLIP/bllip-parser
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extraction in the development partition of the GE

dataset.
Additionally, we improved the head percolation

rules for selecting the head of each multiword event
anchor. The new rules prohibit determiners and
prepositions from being heads, instead preferring
verbs, then nouns, then adjectives. There is also
a small stop list to prohibit the selection of certain
verbs (“has”, “have”, “is”, “be”, and “was”).

In event parsing, we used the morpha lemma-
tizer (Minnen et al., 2001) to stem words instead
of simply lowercasing them. This generally led to
a small but significant improvement in event extrac-
tion across the three domains. Additionally, we do
not use the feature selection mechanism described
in McClosky et al. (2011) due to time restrictions.
It requires running all parsers twice which is espe-
cially cumbersome when operating in a round-robin
frame (as is required to train the reranker).

Also, note that our systems were only trained to
do Task 1 (or “core”) roles for each dataset. This was
due to time restrictions and not system limitations.

3.1 Adapting to the Epigenetics track
For the EPI dataset, we adjusted our postprocessing
rules to handle the CATALYSIS event type. Similar
to REGULATION events in GE, CATALYSIS events do
not accept multiple CAUSE arguments. We handle
this by replicating such CATALYSIS events and as-
signing each new event a different CAUSE argument.
To adapt the ontology features in the parser (Mc-
Closky et al., 2011, §3.3), we created a supertype for
all non-CATALYSIS events since they behave simi-
larly in many respects.

There are several possible areas for improvement
in handling this dataset. First, our internal imple-
mentation of the evaluation criteria differed from
the online scorer, sometimes by up to 6% f-score.
As a result, the reranker optimized a noisy version
of the evaluation criteria and potentially could have
performed better. It is unclear why our evaluator
scored EPI structures differently (it replicated the
scores for GE) but it is worthy of investigation. Sec-
ond, due to time constraints, we did not transfer the
parser or reranker consistency features (e.g., non-
REGULATION events should not take events as argu-
ments) or the type ontology in the reranker to the EPI

dataset. As a result, our results describe our system

with incomplete domain-specific knowledge.

3.2 Adapting to the Infectious Diseases track

Looking only at event types and their arguments, ID

is similar to GE. As a result, much of our domain-
specific processing code for this dataset is based on
code for GE. The key difference is that the GE post-
processing code removes event anchors with zero ar-
guments. Since ID allows PROCESS events to have
zero or one anchors, we added this as an exception.
Additionally, the ID dataset includes many nested
entities, e.g., two-component system entities contain
two other entities within their span. In almost all of
these cases, only the outermost entity takes part in
an event. To simplify processing, we removed all
nested entities. Any events attaching to a nested en-
tity were reattached to its outermost entity.

Given the similarities with GE, we explored sim-
ple domain adaptation by including the gold data
from GE along with our ID training data. To en-
sure that the GE data did not overwhelm the ID data,
we tried adding multiple copies of the ID data (see
Table 1 and the next section).

As in EPI, we adjusted the type ontology in the
parser for this dataset. This included “core enti-
ties” (as defined by the task) and a “PROTEIN-or-
REGULON-OPERON” type (the type of arguments for
GENE EXPRESSION and TRANSCRIPTION events).
Also as in EPI, the reranker did not use the updated
type ontology.

4 Results
For ID, we present experiments on merging GE with
ID data (Table 1). Since GE is much larger than
ID, we experimented with replicating the ID training
partition. Our best performance came from train-
ing on three copies of the ID data and the training
and development sections of GE. However, as the ta-
ble shows, performance is stable for more than two
copies of the ID data. Note that for this shared task
we simply merged the two domains. We did not
implement any domain adaptation techniques (e.g.,
labeling features based on the domain they come
from (Daumé III, 2007)).

Table 2 shows the performance of the various
parser decoders and their corresponding rerankers.
The last line in each domain block lists the score of
the reranker that uses candidates produced by all de-
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coders. This reranking model always outperforms
the best individual parser. Furthermore, the rerank-
ing models on top of individual decoders help in all
but one situation (ID – 2N decoder). To our knowl-
edge, our approach is the first to show that reranking
with features generated from global event structure
helps event extraction. Note that due to approximate
2N decoding in MSTParser, this decoder does not
produce true n-best candidates and generally out-
puts only a handful of unique parses. Because of
this, the corresponding rerankers suffer from insuf-
ficient training data and hurt performance in ID.

Finally, in Table 3, we give our results and rank-
ing on the official test sets. Our results are 6 f
points lower than the best submission in GE and EPI

and 5 points lower in ID. Considering that the we
used generic parsing tools with minimal customiza-
tion (e.g., our parsing models cannot extract directed
acyclic graph structures, which are common in this
data), we believe these results are respectable.

5 Conclusion
Our participation in the BioNLP shared task proves
that standard parsing tools (i.e., maximum-spanning
tree parsers, parse rerankers) can be successfully
used for event extraction. We achieved this by con-
verting the original event structures to a pseudo-
syntactic representation, where event arguments ap-
pear as modifiers to event anchors. Our analysis in-
dicates that reranking always helps, which proves
that there is merit in modeling non-local information
in biomolecular events. To our knowledge, our ap-
proach is the first to use parsing models for biomed-
ical event extraction.

During the shared task, we adapted our system
previously developed for the 2009 version of the
Genia dataset. This process required minimal ef-
fort: we did not add any new features to the pars-
ing model; we added only two domain-specific post-
processing steps (i.e., we allowed events without ar-
guments in ID and we replicated CATALYSIS events
with multiple CAUSE arguments in EPI). Our sys-
tem’s robust performance in all domains proves that
our approach is portable.

A desired side effect of our effort is that we
can easily incorporate any improvements to parsing
models (e.g., parsing of directed acyclic graphs, dual
decomposition, etc.) in our event extractor.

Model Prec Rec f-score
ID 59.3 38.0 46.3
(ID×1) + GE 52.0 40.2 45.3
(ID×2) + GE 52.4 41.7 46.4
(ID×3) + GE 54.8 45.0 49.4
(ID×4) + GE 55.2 43.8 48.9
(ID×5) + GE 55.1 44.7 49.4

Table 1: Impact of merging several copies of ID

training with GE training and development. Scores
on ID development data (2N parser only).

Decoder(s) Parser Reranker
1P 49.0 49.4
2P 49.5 50.5
1N 49.9 50.2
2N 46.5 47.9
All — 50.7 ∗

(a) Genia results (task 1)

Decoder(s) Parser Reranker
1P 62.3 63.3
2P 62.2 63.3
1N 62.9 64.6 ∗
2N 60.8 63.8
All — 64.1

(b) Epigenetics results (core task)

Decoder(s) Parser Reranker
1P 46.0 48.5
2P 47.8 49.8
1N 48.5 49.4
2N 49.4 48.8
All — 50.2 ∗

(c) Infectious Diseases results (core task)

Table 2: Results on development sections in
BioNLP f-scores. “∗” indicates the submission
model for each domain.

Domain (task) Prec Rec f-score Ranking
GE (task 1) 61.1 42.4 50.0 7th
EPI (core) 70.2 56.9 62.8 5th
ID (core) 55.9 46.3 50.6 3rd

Table 3: BioNLP f-scores on the final test set.
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Abstract

We present a joint model for biomedical event
extraction and apply it to four tracks of the
BioNLP 2011 Shared Task. Our model de-
composes into three sub-models that concern
(a) event triggers and outgoing arguments, (b)
event triggers and incoming arguments and
(c) protein-protein bindings. For efficient de-
coding we employ dual decomposition. Our
results are very competitive: With minimal
adaptation of our model we come in second
for two of the tasks—right behind a version
of the system presented here that includes pre-
dictions of the Stanford event extractor as fea-
tures. We also show that for the Infectious
Diseases task using data from the Genia track
is a very effective way to improve accuracy.

1 Introduction

This paper presents the UMass entry to the BioNLP
2011 shared task (Kim et al., 2011a). We introduce
a simple joint model for the extraction of biomedical
events, and show competitive results for four tracks
of the competition. Our model subsumes three
tractable sub-models, one for extracting event trig-
gers and outgoing edges, one for event triggers and
incoming edges and one for protein-protein bind-
ings. Fast and accurate joint inference is provided by
combining optimizing methods for these three sub-
models via dual decomposition (Komodakis et al.,
2007; Rush et al., 2010). Notably, our model con-
stitutes the first joint approach that explicitly pre-
dicts which protein should share the same binding
event. So far this has either been done through post-
processing heuristics (Björne et al., 2009; Riedel et

al., 2009; Poon and Vanderwende, 2010), or through
a local classifier at the end of a pipeline (Miwa et al.,
2010).

Our model is very competitive. For Genia (GE)
Task 1 (Kim et al., 2011b) we achieve the second-
best results. In addition, the best-performing FAUST
system (Riedel et al., 2011) is a variant of the model
presented here. Its advantage stems from the fact
that it uses predictions of the Stanford system (Mc-
Closky et al., 2011a; McClosky et al., 2011b), and
hence performs model combination. The same holds
for the Infectious Diseases (ID) track (Pyysalo et al.,
2011), where we come in as second right behind
the FAUST system. For the Epigenetics and Post-
translational Modifications (EPI) track (Ohta et al.,
2011) we achieve the 4th rank, partly because we did
not aim to extract speculations, negations or cellular
locations. Finally, for Genia Task 2 we rank 3rd—
with the 1st rank achieved by the FAUST system.

In the following we will briefly describe our
model and inference algorithm, as far as this is pos-
sible in limited space. Then we show our results on
the three tasks and conclude. Note we will assume
familiarity with the task, and refer the reader to the
shared task overview paper for more details.

2 Biomedical Event Extraction

Our goal is to extract biomedical events as shown
in figure 1a). To formulate the search for such
structures as an optimization problem, we represent
structures through a set of binary variables. Our rep-
resentation is inspired by previous work (Riedel et
al., 2009; Björne et al., 2009) and based on a projec-
tion of events to a labelled graph over tokens in the
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... phosphorylation of TRAF2 inhibits binding to the CD40 ...
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Regulation
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Figure 1: (a) sentence with target event structure; (b) pro-
jection to labelled graph.

sentence, as seen figure 1b).

We will first present some basic notation to sim-
plify our exposition. For each sentence x we have
a set candidate trigger words Trig (x), and a set of
candidate proteins Prot (x). We will generally use
the indices i and l to denote members of Trig (x), the
indices p, q for members of Prot (x) and the index j
for members of Cand (x) def= Trig (x) ∪ Prot (x).

We label each candidate trigger i with an event
Type t ∈ T (with None ∈ T ), and use the binary
variable ei,t to indicate this labeling. We use binary
variables ai,l,r to indicate that between i and l there
is an edge labelled r ∈ R (with None ∈ R).

The representation so far has been used in previ-
ous work (Riedel et al., 2009; Björne et al., 2009).
Its shortcoming is that it does not capture whether
two proteins are arguments of the same binding
event, or arguments of two binding events with the
same trigger. To overcome this problem, we intro-
duce binary “same Binding” variables bp,q that are
active whenever there is a binding event that has
both p and q as arguments. Our inference algorithm
will also need, for each trigger i and protein pair p, q,
a binary variable ti,p,q that indicates that at i there is
a binding event with arguments p and q. All ti,p,q are
summarized in t.

Constructing events from solutions (e,a,b) can
be done almost exactly as described by Björne et al.
(2009). However, while Björne et al. (2009) group
arguments according to ad-hoc rules based on de-
pendency paths from trigger to argument, we simply
query the variables bp,q.

3 Model

We use the following objective to score the struc-
tures we like to extract:

s (e,a,b) def=
∑

ei,t=1

sT (i, t) +
∑

ai,j,r=1

sR (i, j, r) +

∑
bp,q=1

sB (p, q)

with local scoring functions sT (i, t) def=
〈wT, fT (i, t)〉, sR (i, j, r) def= 〈wR, fR (i, j, r)〉
and sB (p, q) def= 〈wB, fB (p, q)〉.

Our model scores all parts of the structure in isola-
tion. It is a joint model due to the three types of con-
straints we enforce. The first type acts on trigger la-
bels and their outgoing edges. It includes constraints
such as “an active label at trigger i requires at least
one active outgoing Theme argument”. The second
type enforces consistency between trigger labels and
their incoming edges. That is, if an incoming edge
has a label that is not None, the trigger must not be
labelled None either. The third type of constraints
ensures that when two proteins p and q are part of
the same binding (as indicated by bp,q = 1), there
needs to be a binding event at some trigger i that
has p and q as arguments. We will denote the set of
structures (e,a,b) that satisfy all above constraints
as Y .

To learn w we choose the passive-aggressive
online learning algorithm (Crammer and Singer,
2003). As loss function we apply a weighted sum of
false positives and false negative labels and edges.
The weighting scheme penalizes false negatives 3.8
times more than false positives.

3.1 Features
For feature vector fT (i, t) we use a collection of
representations for the token i: word-form, lemma,
POS tag, syntactic heads, syntactic children; mem-
bership in two dictionaries used by Riedel et al.
(2009).For fR (a; i, j, r) we use representations of
the token pair (i, j) inspired by Miwa et al. (2010) .
They contain: labelled and unlabeled n-gram depen-
dency paths; edge and vertex walk features (Miwa et
al., 2010), argument and trigger modifiers and heads,
words in between (for close distance i and j). For
fB (b; p, q) we use a small subset of the token pair
representations in fR.
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Algorithm 1 Dual Decomposition.
require:

R: max. iteration, αt: stepsizes

t← 0 λ← 0 µ← 0
repeat

(ē, ā)← bestIncoming (−λ)
(e,a)← bestOutgoing (cout (λ,µ))
(b, t)← bestBinding

(
cbind (µ)

)
λi,t ← λi,t − αt (ei,t − ēi,t)
λi,j,r ← λi,j,r − αt (ai,j,r − āi,j,r)
µ

trig
i,j,k ←

[
µ

trig
i,j,k − αt (ei,Bind − ti,j,k)

]
+

µ
arg1
i,j,k ←

[
µ

arg1
i,j,k − αt (ai,j,Theme − ti,j,k)

]
+

µ
arg2
i,j,k ←

[
µ

arg2
i,j,k − αt (ai,k,Theme − ti,j,k)

]
+

t ← t + 1
until no λ, µ changed or t > R
return(e,a,b)

3.2 Inference

Inference in our model amounts to solving

arg max
(e,a,b)∈Y

s (e,a,b) . (1)

Our approach to finding the maximizer is dual de-
composition (Komodakis et al., 2007; Rush et al.,
2010), a technique that allows us to exploit effi-
cient search algorithms for tractable substructures
of our problem. We divide the problem into three
sub-problems: (1) finding the highest-scoring trig-
ger labels and edges (e,a) such that constraints on
triggers and their outgoing edges are fulfilled; (2)
finding the highest-scoring trigger labels and edges
(ē, ā) such that constraints on triggers and their in-
coming edges are fulfilled; (3) finding the highest-
scoring pairs of proteins b to appear in the same
binding, and make binding event trigger decisions
t for these. Due to space constraints we only state
that the first two problems can be solved exactly in
O

(
n2 + nm

)
time while the last needs O

(
m2n

)
.

Here n is the number of trigger candidates and m
the number of proteins.

The subroutines to solve these three sub-problems
are combined in algorithm 1—an instantiation of
subgradient descent on the dual of an LP relaxation
of problem 1. In the first three steps in the main
loop of this algorithm, the individual sub-problems

are solved. Note that to each subroutine a parame-
ter is passed. For example, when finding the struc-
ture (ē, ā) that maximizes the objective under the
incoming edge constraints, we pass the parameter
−λ. This parameter represents a set of penalties to
be added to the objective used for the subproblem.
In this case we have penalties −λi,e to be added to
the scores of trigger-label pairs (i, e), and penalties
−λi,j,r to be added for labelled edges i

r→ j.
One way to understand dual decomposition is as

iterative tuning of the penalties such that eventu-
ally all individual solutions are consistent with each
other. In our case this would mean, among other
things, that the solutions (e,a) and (ē, ā) are iden-
tical. This tuning happens in the second part of the
main loop which updates the dual variables λ and µ.
We see, for example, how the penalties λi,e are de-
creased by ei,e− ēi,e scaled by a step-size αt. Effec-
tively this change to λi,e will decrease the score of
ēi,e within bestIn (−λ) by αt if ēi,e was true while
ei,e was false in the current solutions.1 If ēi,e was
false but ei,e was true, the score is increased by αt.
If both agree, no change is needed.

Consistency between solutions also means that
the binding decisions in b and t are consistent
with the rest of the solution. This is achieved in
algorithm 1 through tuning of the dual variables
µ but we omit details for brevity. For complete-
ness we state how the penalties used for solving
the other subproblems are set based on the dual
variables λ and µ. We set cout

i,t (λ,µ) def= λi,t +
δt,Bind

∑
p,q µ

trig
i,p,q; for the case that j ∈ Prot (x) we

get cout
i,j,r (λ,µ) def= λi,j,r +

∑
p µ

arg1
i,j,p +

∑
q µ

arg2
i,q,j ,

otherwise cout
i,j,r (λ,µ) def= λi,j,r . For bestBind (c)

we set cbind
i,p,q (µ) = −µ

trig
i,p,q − µ

arg1
i,,p,q − µ

arg2
i,,p,q.

3.3 Preprocessing

After basic tokenization and sentence segmentation,
we generate a set of protein head tokens Prot (x)
for each sentence x based on protein span defi-
nitions from the shared task. To ensure tokens
contain not more than one protein we split them
at protein boundaries. Parsing is performed using
the Charniak-Johnson parser (Charniak and John-
son, 2005) with the self-trained biomedical parsing

1We refer to Koo et al. (2010) for details on how to set αt.
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SVT BIND REG TOT
Task 1 73.5 48.8 43.8 55.2
Task 1 (abst.) 71.5 50.8 45.5 56.1
Task 1 (full) 79.2 44.4 40.1 53.1
Task 2 71.4 38.6 39.1 51.0

Table 1: Results for the GE track, task 1 and 2;
abst.=abstract; full=full text.

model of McClosky and Charniak (2008). Finally,
based on the set of trigger words in the training data,
we generate a set of candidate triggers Trig (x).

4 Results

We apply the same model to the GE, ID and EPI
tracks, with minor modifications in order to deal
with the different event type sets T and role sets R
of each track. Training and testing together took be-
tween 30 (EPI) to 120 (GE) minutes using a single-
core implementation.

4.1 Genia
Our results for GE task 1 and 2 can be seen in table
1. We also show results for abstracts only (abst.),
and for full text only (full). Note that binding events
(BIND) and general regulation events (REG) seem
to be harder to extract in full text. Somewhat surpris-
ingly, for simple events (SVT) the opposite holds.
We also like to point out that for full text extrac-
tion we rank first—the second best FAUST system
achieves an F1 score of 52.67.

4.2 Infectious Diseases
The Infectious Diseases track differs from the Genia
track in two important ways. First, it introduces the
event type Process that is allowed to have no ar-
guments at all. Second, it comes with significantly
less training data (152 vs 908 documents). We can
accommodate the first difference by making simple
changes in our inference algorithms. For example,
for Process events we do not force the algorithm to
pick a Theme argument.

To compensate for the lack of training data we
simply add data from the GE track. This is reason-
able because annotations overlap quite significantly.
In table 2 we show the impact of mixing different
amounts of ID data (I) and GE data (G) into the
training set. We point out that adding the ID training

I/G BIND REG PRO TOT
DEV 1/0 18.6 27.1 34.3 41.5
DEV 0/1 18.2 26.8 0.00 35.5
DEV 1/1 20.0 33.1 49.3 47.2
DEV 2/1 20.0 34.5 52.0 48.5
TEST 2/1 34.6 46.4 62.3 53.4

Table 2: ID results for different amounts of ID (I) and (G)
training data.

set twice, and the GENIA set once, leads to the best
performance (I/G=2/1). Remarkably, the F1 score
for Process increases by including data, although
this data does not include any such events. This may
stem from a shared model of None arguments that is
improved with more data.

4.3 Epigenetics and Post-translational
Modifications

For this track a different set of events is to be pre-
dicted. However, it is straightforward to adapt our
model and algorithms to this setting. For brevity we
only report our total results here and omit a table
with details. The first metric (ALL) includes nega-
tion, speculation and cellular location targets. We
omitted these in our model and hence our result of
33.52 F1 is relatively weak. For the metric that ne-
glects these aspects (CORE), we achieve 64.15 F1
and come in 4th. Note that in this metric the FAUST
system, based on the model presented here, comes
in as very close second.

5 Conclusion

We have presented a robust joint model for event
extraction from biomedical text that performs well
across all tasks. Remarkably, no feature set or pa-
rameter tuning was necessary to achieve this. We
also show substantial improvements for the ID task
by adding GENIA data into the training set.
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Abstract

We describe the FAUST entry to the BioNLP
2011 shared task on biomolecular event ex-
traction. The FAUST system explores sev-
eral stacking models for combination using
as base models the UMass dual decomposi-
tion (Riedel and McCallum, 2011) and Stan-
ford event parsing (McClosky et al., 2011b)
approaches. We show that using stacking is
a straightforward way to improving perfor-
mance for event extraction and find that it is
most effective when using a small set of stack-
ing features and the base models use slightly
different representations of the input data. The
FAUST system obtained 1st place in three out
of four tasks: 1st place in Genia Task 1 (56.0%
f-score) and Task 2 (53.9%), 2nd place in the
Epigenetics and Post-translational Modifica-
tions track (35.0%), and 1st place in the In-
fectious Diseases track (55.6%).

1 Introduction

To date, most approaches to the BioNLP event ex-
traction task (Kim et al., 2011a) use a single model
to produce their output. However, model combina-
tion techniques such as voting, stacking, and rerank-
ing have been shown to consistently produce higher
performing systems by taking advantage of multi-
ple views of the same data. The Netflix Prize (Ben-
nett et al., 2007) is a prime example of this. System
combination essentially allows systems to regular-
ize each other, smoothing over the artifacts of each
(c.f. Nivre and McDonald (2008), Surdeanu and
Manning (2010)). To our knowledge, the only previ-
ous example of model combination for the BioNLP

shared task was performed by Kim et al. (2009). Us-
ing a weighted voting scheme to combine the out-
puts from the top six systems, they obtained a 4%
absolute f-score improvement over the best individ-
ual system.

This paper shows that using a straightforward
model combination strategy on two competitive
systems produces a new system with substantially
higher accuracy. This is achieved with the frame-
work of stacking: a stacking model uses the output
of a stacked model as additional features.

While we initially considered voting and rerank-
ing model combination strategies, it seemed that
given the performance gap between the UMass and
Stanford systems that the best option was to in-
clude the predictions from the Stanford system into
the UMass system (e.g., as in Nivre and McDon-
ald (2008)). This has the advantage that one model
(Umass) determines how to integrate the outputs of
the other model (Stanford) into its own structure,
whereas in reranking, for example, the combined
model is required to output a complete structure pro-
duced by only one of the input models.

2 Approach

In the following we briefly present both the stacking
and the stacked model and some possible ways of
integrating the stacked information.

2.1 Stacking Model

As our stacking model, we employ the UMass ex-
tractor (Riedel and McCallum, 2011). It is based on
a discriminatively trained model that jointly predicts
trigger labels, event arguments and protein pairs in
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binding. We will briefly describe this model but first
introduce three types of binary variables that will
represent events in a given sentence. Variables ei,t

are active if and only if the token at position i has
the label t. Variables ai,j,r are active if and only if
there is an event with trigger i that has an argument
with role r grounded at token j. In the case of an
entity mention this means that the mention’s head is
j. In the case of an event j is the position of its trig-
ger. Finally, variables bp,q indicate whether or not
two entity mentions at p and q appear as arguments
in the same binding event.

Two parts form our model: a scoring function, and
a set of constraints. The scoring function over the
trigger variables e, argument variables a and binding
pair variables b is

s (e,a,b) def=
∑

ei,t=1

sT (i, t) +
∑

ai,j,r=1

sR (i, j, r) +

∑
bp,q=1

sB (p, q)

with local scoring functions sT (i, t) def=
〈wT, fT (i, t)〉, sR (i, j, r) def= 〈wR, fR (i, j, r)〉
and sB (p, q) def= 〈wB, fB (p, q)〉.

Our model scores all parts of the structure in iso-
lation. It is a joint model due to the nature of the
constraints we enforce: First, we require that each
active event trigger must have at least one Theme ar-
gument; second, only regulation events (or Catalysis
events for the EPI track) are allowed to have Cause
arguments; third, any trigger that is itself an argu-
ment of another event has to be labelled active, too;
finally, if we decide that two entities p and q are part
of the same binding (as indicated by bp,q = 1), there
needs to be a binding event at some trigger i that
has p and q as arguments. We will denote the set of
structures (e,a,b) that satisfy these constraints as
Y .

Stacking with this model is simple: we only
need to augment the local feature functions fT (i, t),
fR (i, j, r) and fB (p, q) to include predictions from
the systems to be stacked. For example, for every
system S to be stacked and every pair of event types
(t′, tS) we add the features

fS,t
′
,tS

(i, t) =

{
1 hS (i) = tS ∧ t′ = t

0 otherwise

to fT (i, t). Here hS (i) is the event label given to to-
ken i according to S. These features allow different
weights to be given to each possible combination of
type t′ that we want to assign, and type tS that S
predicts.

Inference in this model amounts to maximizing
s (e,a,b) over Y . Our approach to solving this
problem is dual decomposition (Komodakis et al.,
2007; Rush et al., 2010). We divide the problem into
three subproblems: (1) finding the best trigger label
and set of outgoing edges for each candidate trigger;
(2) finding the best trigger label and set of incoming
edges for each candidate trigger; (3) finding the best
pairs of entities to appear in the same binding. Due
to space limitations we refer the reader to Riedel and
McCallum (2011) for further details.

2.2 Stacked Model
For the stacked model, we use a system based on an
event parsing framework (McClosky et al., 2011a)
referred to as the Stanford model in this paper. This
model converts event structures to dependency trees
which are parsed using MSTParser (McDonald et
al., 2005).1 Once parsed, the resulting dependency
tree is converted back to event structures. Using the
Stanford model as the stacked model is helpful since
it captures tree structure which is not the focus in
the UMass model. Of course, this is also a limita-
tion since actual BioNLP event graphs are DAGs,
but the model does well considering these restric-
tions. Additionally, this constraint encourages the
Stanford model to provide different (and thus more
useful for stacking) results.

Of particular interest to this paper are the four
possible decoders in MSTParser. These four de-
coders come from combinations of feature order
(first or second) and whether the resulting depen-
dency tree is required to be projective.2 Each de-
coder presents a slightly different view of the data
and thus has different model combination proper-
ties. Projectivity constraints are not captured in the
UMass model so these decoders incorporate novel
information.

To produce stacking output from the Stanford sys-
tem, we need its predictions on the training, devel-

1http://sourceforge.net/projects/mstparser/
2For brevity, the second-order non-projective decoder is ab-

breviated as 2N, first-order projective as 1P, etc.
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UMass FAUST+All
R P F1 R P F1

GE T1 48.5 64.1 55.2 49.4 64.8 56.0
GE T2 43.9 60.9 51.0 46.7 63.8 53.9
EPI (F) 28.1 41.6 33.5 28.9 44.5 35.0
EPI (C) 57.0 73.3 64.2 59.9 80.3 68.6
ID (F) 46.9 62.0 53.4 48.0 66.0 55.6
ID (C) 49.5 62.1 55.1 50.6 66.1 57.3

Table 1: Results on test sets of all tasks we submitted to.
T1 and T2 stand for task 1 and 2, respectively. C stands
for CORE metric, F for FULL metric.

opment and test sets. For predictions on test and de-
velopment sets we used models learned from the the
complete training set. Predictions over training data
were produced using crossvalidation. This helps to
avoid a scenario where the stacking model learns to
rely on high accuracy at training time that cannot be
matched at test time.

Note that, unlike Stanford’s individual submission
in this shared task, the stacked models in this paper
do not include the Stanford reranker. This is because
it would have required making a reranker model for
each crossvalidation fold.

We made 19 crossvalidation training folds for Ge-
nia (GE) (Kim et al., 2011b), 12 for Epigenetics
(EPI), and 17 for Infectious Diseases (ID) (Kim et
al., 2011b; Ohta et al., 2011; Pyysalo et al., 2011,
respectively). Note that while ID is the smallest and
would seem like it would have the fewest folds, we
combined the training data of ID with the training
and development data from GE. To produce predic-
tions over the test data, we combined the training
folds with 6 development folds for GE, 4 for EPI,
and 1 for ID.

3 Experiments

Table 1 gives an overview of our results on the test
sets for all four tasks we submitted to. Note that
for the EPI and ID tasks we show the CORE metric
next to the official FULL metric. The former is suit-
able for our purposes because it does not measure
performance for negations, speculations and cellular
locations—all of these we did not attempt to predict.

We compare the UMass standalone system to the
FAUST+All system which stacks the Stanford 1N,
1P, 2N and 2P predictions. For all four tasks we

System SVT BIND REG TOTAL
UMass 74.7 47.7 42.8 54.8
Stanford 1N 71.4 38.6 32.8 47.8
Stanford 1P 70.8 35.9 31.1 46.5
Stanford 2N 69.1 35.0 27.8 44.3
Stanford 2P 72.0 36.2 32.2 47.4
FAUST+All 76.9 43.5 44.0 55.9
FAUST+1N 76.4 45.1 43.8 55.6
FAUST+1P 75.8 43.1 44.6 55.7
FAUST+2N 74.9 42.8 43.8 54.9
FAUST+2P 75.7 46.0 44.1 55.7
FAUST+All 76.4 41.2 43.1 54.9
(triggers)
FAUST+All 76.1 41.7 43.6 55.1
(arguments)

Table 2: BioNLP f-scores on the development section of
the Genia track (task 1) for several event categories.

observe substantial improvements due to stacking.
The increase is particular striking for the EPI track,
where stacking improves f-score by more than 4.0
points on the CORE metric.

To analyze the impact of stacking further, Ta-
ble 2 shows a breakdown of our results on the Ge-
nia development set. Presented are f-scores for sim-
ple events (SVT), binding events (BIND), regulation
events (REG) and the set of all event types (TOTAL).
We compare the UMass standalone system, various
Stanford-standalone models and stacked versions of
these (FAUST+X).

Remarkably, while there is a 7 point gap between
the best individual Stanford system and the stand-
alone UMass systems, integrating the Stanford pre-
diction still leads to an f-score improvement of 1.
This can be seen when comparing the UMass, Stan-
ford 1N and FAUST+All results, where the latter
stacks 1N, 1P, 2N and 2P. We also note that stack-
ing the projective 1P and 2P systems helps almost
as much as stacking all Stanford systems. Notably,
both 1P and 2P do not do as well in isolation when
compared to the 1N system. When stacked, how-
ever, they do slightly better. This suggests that pro-
jectivity is a missing aspect in the UMass standalone
system.

The FAUST+All (triggers) and FAUST+All (ar-
guments) lines represent experiments to determine
whether it is useful to incorporate only portions of
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the stacking information from the Stanford system.
Given the small gains over the original UMass sys-
tem, it is clear that stacking information is only use-
ful when attached to triggers and arguments. Our
theory is that most of our gains come from when the
UMass and Stanford systems disagree on triggers
and the Stanford system provides not only its trig-
gers but also their attached arguments to the UMass
system. This is supported by a pilot experiment
where we trained the Stanford model to use the
UMass triggers and saw no benefit from stacking
(even when both triggers and arguments were used).

Table 3 shows our results on the development set
of the ID task, this time in terms of recall, precision
and f-score. Here the gap between Stanford-only
results, and the UMass results, is much smaller. This
seems to lead to more substantial improvements for
stacking: FAUST+All obtains a f-score 2.2 points
larger than the standalone UMass system. Also note
that, similarly to the previous table, the projective
systems do worse on their own, but are more useful
when stacked.

Another possible approach to stacking conjoins
all the original features of the stacking model with
the predicted features of the stacked model. The
hope is that this allows the learner to give differ-
ent weights to the stacked predictions in different
contexts. However, incorporating Stanford predic-
tions by conjoining them with all features of the
UMass standalone system (FAUST+2P-Conj in Ta-
ble 3) does not help here.

We note that for our results on the ID task we
augment the training data with events from the GE

training set. Merging both training sets is reasonable
since there is a significant overlap between both in
terms of events as well as lexical and syntactic pat-
terns to express these. When building our training
set we add each training document from GE once,
and each ID training document twice—this lead to
substantially better results than including ID data
only once.

4 Discussion

Generally stacking has led to substantial improve-
ments across the board. There are, however, some
exceptions. One is binding events for the GE task.
Here the UMass model still outperforms the best

System Rec Prec F1
UMass 46.2 51.1 48.5
Stanford 1N 43.1 49.1 45.9
Stanford 1P 40.8 46.7 43.5
Stanford 2N 41.6 53.9 46.9
Stanford 2P 42.8 48.1 45.3
FAUST+All 47.6 54.3 50.7
FAUST+1N 45.8 51.6 48.5
FAUST+1P 47.6 52.8 50.0
FAUST+2N 45.4 52.4 48.6
FAUST+2P 49.1 52.6 50.7
FAUST+2P-Conj 48.0 53.2 50.4

Table 3: Results on the development set for the ID track.

stacked system (see Table 2). Likewise, for full pa-
pers in the Genia test set, the UMass model still does
slightly better with 53.1 f-score compared to 52.7
f-score. This suggests that a more informed com-
bination of our systems (e.g., metaclassifiers) could
lead to better performance.

5 Conclusion

We have presented the FAUST entry to the BioNLP
2011 shared task on biomolecular event extraction.
It is based on stacking, a simple approach for model
combination. By using the predictions of the Stan-
ford entry as features of the UMass model, we sub-
stantially improved upon both systems in isolation.
This helped us to rank 1st in three of the four tasks
we submitted results to. Remarkably, in some cases
we observed improvements despite a 7.0 f-score
margin between the models we combined.

In the future we would like to investigate alter-
native means for model combination such as rerank-
ing, union, intersection, and other voting techniques.
We also plan to use dual decomposition to encourage
models to agree. In particular, we will seek to incor-
porate an MST component into the dual decomposi-
tion algorithm used by the UMass system.
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Abstract 

This paper presents the Bacteria Biotope 

task as part of the BioNLP Shared Tasks 

2011. The Bacteria Biotope task aims at 

extracting the location of bacteria from 

scientific Web pages. Bacteria location is a 

crucial knowledge in biology for phenotype 

studies. The paper details the corpus 

specification, the evaluation metrics, 

summarizes and discusses the participant 

results.  

1 Introduction 

The Bacteria Biotope (BB) task is one of the five 

main tasks of the BioNLP Shared Tasks 2011. The 

BB task consists of extracting bacteria location 

events from Web pages, in other words, citations 

of places where a given species lives. Bacteria 

locations range from plant or animal hosts for 

pathogenic or symbiotic bacteria, to natural 

environments like soil or water. Challenges for 

Information Extraction (IE) of relations in Biology 

are mostly devoted to the identification of bio-

molecular events in scientific papers where the 

events are described by relations between named 

entities, e.g. genic interactions (Nédellec, 2005), 

protein-protein interactions (Pyysalo et al., 2008), 

and more complex molecular events (Kim et al., 

2011). However, this far from reflects the diversity 

of the potential applications of text mining to 

biology. The objective of previous challenges has 

mostly been focused on modeling biological 

functions and processes using the information on 

elementary molecular events extracted from text. 

The BB task is the first step towards linking 

information on bacteria at the molecular level to 

ecological information. The information on 

bacterial habitats and properties of these habitats is 

very abundant in literature, in particular in 

Systematics literature (e.g. International Journal of 

Systematic and Evolutionary Microbiology), 

however it is rarely available in a structured way 

(Hirschman et al., 2008; Tamames and de Lorenzo, 

2009). The NCBI GenBank nucleotide isolation 

source field (GenBank) and the JGI Genome 

OnLine Database (GOLD) isolation site field are 

incomplete with respect to the microbial diversity 

and are expressed in natural language. The two 

critical missing steps in terms of biotope 

knowledge modeling are (1) the automatic 

population of databases with organism/location 

pairs that are extracted from text, and (2) the 

normalization of the habitat name with respect to 

biotope ontologies. The BB task mainly aims at 

solving the first information extraction issue. The 

second classification issue is handled through the 

categorization of locations into eight types. 

2 Context 

According to NCBI statistics there are nearly 900 

bacteria with complete genomes, which account 

for more than 87% of total complete genomes. 

Consequently, molecular studies in bacteriology 

are shifting from species-centered to full diversity 

investigation. The current trend in high-throughput 

experiments targets diversity related fields, 

typically phylogeny or ecology. In this context, 

adaptation properties, biotopes and biotope 

properties become critical information. Illustrative 

questions are: 
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• Is there a phylogenetic correlation between 

species that share the same biotope? 

• What are common metabolic pathways of 

species that live in given conditions, especially 

species that survive in extreme conditions? 

• What are the molecular signaling patterns in 

host relationships or population relationships 

(e.g. in biofilms)? 

Recent metagenomic experiments produce 

molecular data associated with a habitat rather than 

a single species. This raises new challenges in 

computational biology and data integration, such 

as identifying known and new species that belong 

to a metagenome. 

Not only will these studies require 

comprehensive databases that associate bacterial 

species to their habitat, but they also require a 

formal description of habitats for property 

inference. The bacteria biotope description is 

potentially very rich since any physical object, 

from a cell to a continent, can be a bacterial 

habitat. However these relations are much simpler 

to model than with general formal spatial 

ontologies. A given place is a bacterial habitat if 

the bacteria and the habitat are physically in 

contact, while the relative position of the bacteria 

and its dissemination are not part of the BB task 

model.  

The BB Task requires the locations to be 

assigned different types (e.g. soil, water). We view 

location typing as a preliminary step of more fine-

grained modeling in location ontologies. Some 

classifications for bacteria biotopes have been 

proposed by some groups (Floyd et al., 2005; 

Hirschman et al., 2008; Field et al., 2008; 

Pignatelli et al., 2009). The Environment Ontology 

project (EnvO) is developing an ambitious detailed 

environment ontology for supporting standard 

manual annotation of environments of all types of 

organisms and biological samples (Field et al., 

2008). In a similar way, the GOLD group at JGI 

defined a standard classification for bacteria 

population metagenome projects. Developing 

methods for the association of such biotope classes 

to organisms remains an open question. EnvDB 

(Pignatelli et al., 2009) is an attempt to inventory 

isolation sources of bacteria as recorded in 

GenBank and to map them to a three level 

hierarchy of 71 biotope classes. The assignment of 

bacterial samples in one of the EnvDB classes is 

supported by a text-mining tool based on a Naïve 

Bayes (NB) classifier applied to a bag of words 

representing the associated reference title and 

abstract. Unfortunately, the low number of paper 

references associated with the isolation source field 

(46 %) limits the scope of the method. 

The BB task has a similar goal, but directly 

applies to natural language texts thus avoiding the 

issue of database incompleteness. As opposed to 

database-based approaches, biotope information 

density is higher but the task has to include 

bacteria and location identification, as well as 

information extraction to relate them.  

The eight types of locations in the BB task 

capture high-level information for further ontology 

mappings.  The location types are Host, HostPart, 

Geographical and Environmental. Environmental 

is broadly defined to qualify locations that are not 

associated to hosts, in a similar way to what was 

described by Floyd et al. (Floyd et al., 2005). In 

addition, the BB task types exclude artificially 

constructed biotopes (e.g. bacteria growing in labs 

on a specific medium) and laboratory mutant 

bacteria. The Environmental class is divided into 

Food, Medical, Soil and Water. Locations that are 

none of these subtypes are classified as 

Environmental. 

The exact geographical location (e.g. latitude 

and longitude coordinates) has less importance 

here than in eukaryote ecology because most of the 

biotope properties vary along distances smaller 

than the precision of the current positioning 

technologies. Geographical names are only useful 

in bacteria biotope studies when the physico-

chemical properties of the location can be inferred. 

For the sake of simplicity, the locations of bacteria 

host (e.g. the stall of the infected cow) are not 

taken into account despite their richness (Floyd et 

al., 2005). 

The important information conveyed by the 

locations, especially of Environment type, is the 

function of the bacterium in its ecosystem rather 

than the substance of the habitat. Indeed the final 

goal is to extract habitat properties and bacteria 

phenotypes. Beyond the identification of locations, 

their properties (e.g. temperature, pH, salinity, 

oxygen) are of high interest for phenotypes (e.g. 

thermophily, acidophily, halophily) and trophism 

studies. This information is difficult to extract, and 

is often incomplete or even not available in papers 

(Tamames and de Lorenzo., 2009). Hopefully, 

some properties can be automatically retrieved 
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with the help of specialized databases, which give 

the physico-chemical properties of locations, such 

as hosts (plant, animal, human organs), soils (see 

WebSoilSurvey, Corine Land Cover), water, or 

chemical pollutants. 

From a linguistic point of view, the BB task 

differs from other IE molecular biology tasks while 

it raises some issues common to biomedicine and 

more general IE tasks. The documents are 

scientific Web pages intended for non-experts such 

as encyclopedia notices. The information is dense 

compared to scientific papers. Documents are 

structured as encyclopedia pages, with the main 

focus on a single species or a few species of the 

same genus or family. The frequency of anaphora 

and coreferences is unusually high. The location 

entities are denoted by complex expressions with 

semantic boundaries instead of rigid designators.  

3 Task description 

The goal of the BB task is illustrated in Figure 1.  

 

Bifidobacterium longum . This organism is found in 

adult humans  and formula fed infants  as a normal 

component of gut  flora. 

Figure 1. Example of information to be extracted 

in the BB Task. 
 

The entities to be extracted are of two main 

types: bacteria and locations. They are text-bound 

and their position has to be predicted. Relations are 

of type Localization between bacteria and 

locations, and PartOf between hosts and host parts. 

In the example in Figure 1, Bifidobacterium 

longum is a bacterium. adult humans and formula 

fed infants denote host locations for the bacteria. 

gut is also a bacteria location, part of the two hosts 

and thus of type host part.  

Coreference relations between entities denoting 

the same information represent valid alternatives 

for the relation arguments. For example, the three 

taxon names in Figure 2 are equivalent. 
 

 

 

The green sulfur bacteria  (GSB ; Phylum Chlorobi ) 

are commonly found in aquatic environments . 

Figure 2. Coreference example. 
 

The coreference relation between pairs of 

entities is binary, symmetric and transitive. 

Coreference sets are equivalence sets defined as 

the transitive closure of the binary coreference 

relation. Their annotation is provided in the 

training and development sets, but it does not have 

to be predicted in the test set. 

4 Corpus description 

The corpus sources are the following bacteria 

sequencing project Web pages: 

• Genome Projects referenced at NCBI; 

• Microbial Genomics Program at JGI; 

• Bacteria Genomes at EBI; 

• Microorganisms sequenced at Genoscope; 

• Encyclopedia pages from MicrobeWiki. 

The documents are publicly available and quite 

easy to understand by non-experts compared to 

scientific papers on similar topics. From the 2,086 

downloaded documents, 105 were randomly 

selected for the BB task. A quarter of the corpus 

was retained for test evaluation. The rest was split 

into train and development sets. Table 1 gives the 

distribution of the entities and relations per corpus. 

The distribution of the five document sources in 

the test corpus reflects the distribution of the 

training set and no other criteria. Food is therefore 

underrepresented.  
 

 Training+Dev Test 

Document 78 (65 + 13) 27 (26 %) 

Bacteria 538 121 (18 %) 

Environment 62 16 (21 %) 

Host 486 101 (17 %) 

HostPart 217 84 (28 %) 

Geographical 111 25 (18 %) 

Water 70 21 (23 %) 

Food 46 0 (0 %) 

Medical 24 2 (8 %) 

Soil 26 20 (43 %) 

Coreference 484 100 (17 %) 

Total entities 1,580 390 
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 Training+Dev Test 

Localization 998 250 (20 %) 

Part of Host 204 78 (28 %) 

Total relations 1,202 328 

Table 1. Corpus Figures. 

5 Annotation methodology 

HTML tags and irrelevant metadata were stripped 

from the corpus. The Alvis pipeline (Nédellec et 

al., 2009) pre-annotated the species names that are 

potential bacteria and host names. A team of 7 

scientists manually annotated the entities, 

coreferences and relations using the Cadixe XML 

editor (Cadixe). Each document was processed by 

two independent annotators in a double-blind 

manner. Conflicts were automatically detected, 

resolved by annotator negotiation and irrelevant 

documents (e.g. without bacterial location) were 

removed. The remaining inconsistencies among 

documents were resolved by the two annotators 

assisted by a third person acting as an arbitrator. 

The annotator group designed the detailed 

annotation guidelines in two phases. First, they 

annotated a set of 10 documents, discussed the 

options and wrote detailed guidelines with 

representative and illustrative examples. During 

the annotation of the rest of the documents, new 

cases were discussed by email and the guidelines 

amended accordingly. 

Location types. The main issues under debate 

were the definition of location types, boundaries of 

annotations and coreferences. Additional 

annotation specifications concerned the exclusion 

of overly general locations (e.g. environment, 

zone), artificially constructed biotopes and indirect 

effects of bacteria on distant places. For instance, a 

disease symptom occurring in a given host part 

does not imply the presence of the bacteria in this 

place, whereas infection does. Boundaries of types 

were also an important point of discussion since 

the definite formalization of habitat categories was 

at stake. For instance we decided to exclude land 

environment citations (fields, deserts, savannah, 

etc.) from the type Soil, and thus enforced a strict 

definition of soil bacteria. The most controversial 

type was host parts. We decided to include fluids, 

secretions and excretions (which are not strictly 

organs). Therefore, the host parts category required 

specifications to determine at which point of 

dissociation from the original host is a habitat not a 

host part anymore (e.g. mother’s milk vs. industrial 

milk, rhizosphere as host part instead of soil). 

Boundaries. The bacteria name boundaries do 

not include any external modifiers (e.g. two A. 

baumannii strains). Irrelevant modifiers of 

locations are considered outside the annotation 

boundaries (e.g. responsible for a hospital 

epidemic). All annotations are contiguous and span 

on a single fragment in the same way as the other 

BioNLP Shared Tasks. This constraint led us to 

consider cases where several annotations occur 

side by side. The preferred approach was to have 

one distinct annotation for each different location 

(e.g. contact with infected animal products or 

through the air). In the case of head or modifier 

factorization, the annotation depends on the 

information conveyed by the factorized part. If the 

head is not relevant to determine the location type, 

then each term is annotated separately (e.g. 

tropical and temperate zones). Conversely, if the 

head is the most informative with regards to the 

location type, a single annotation spans the whole 

fragment (fresh and salt water). 

Coreferences. Two expressions are considered 

as coreferential and thus valid solution alternatives, 

if they convey the same information. For instance, 

complete taxon names and non-ambiguous 

abbreviations are valid alternatives (e.g. Borrelia 

garinii vs. B. garinii), while ambiguous anaphora 

ellipses are not (e.g. as in “[..] infected with 

Borrelia duttonii. Borrelia then multiplies [..]”). 

The ellipsis of the omitted specific name 

(dutotonii) leaves the ambiguous generic name 

(Borrelia). 

The full guidelines document is available for 

download on the BioNLP Shared Task Bacteria 

Biotope page
1
. 

6 Evaluation procedure 

6.1 Campaign organization 

The training and development corpora with the 

reference annotations were made available to the 

participants by December 1
st
 2010 on the BioNLP 

Shared Tasks pages together with the evaluation 

software. The test corpus, which does not contain 

                                                   
1 https://sites.google.com/site/bionlpst/home/bacteria-biotopes/ 

BioNLP-ST_2011_Bacteria_Biotopes_Guidelines.pdf 
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any annotation, was made available by March, 1
st
 

2011. The participants sent the predicted 

annotations to the BioNLP Shared Task organizers 

by March 10th. Each participant submitted a single 

final prediction set. The detailed evaluation results 

were computed, provided to the participants and 

published on the BioNLP website by March, 11
th
.  

6.2 Evaluation metrics 

The evaluation metrics are based on precision, 

recall and the F-measure. In the following section, 

the PartOf and Localization relations will both be 

referred to as events. The metrics measure the 

accuracy of the participant prediction of events 

with respect to the reference annotation of the test 

corpus. Predicted entities that are not event 

arguments are ignored and they do not penalize the 

score. Each event Er in the reference set is matched 

to the predicted event Ep that maximizes the event 

similarity function S. The recall is the sum of the S 

results divided by the number of events in the 

reference set. Each event Ep in the predicted set is 

matched to the reference event Er that maximizes 

S. The precision is the sum of the S results divided 

by the number of events in the predicted set. 

Participants were ranked by the F-score defined as 

the harmonic mean between precision and recall. 

Eab, the event similarity between a reference 

Localization event a and a predicted Localization 

event b, is defined as: 

Eab = Bab . Tab . Jab 

• Bab is the bacteria boundary component defined 

as: if the Bacterium arguments of both the 

predicted and reference events have exactly the 

same boundaries, then Bab = 1, otherwise Bab = 

0. Bacteria name boundary matching is strict 

since boundary mistakes usually yield a 

different taxon. 

• Tab is the location type prediction component 

defined as: if the Location arguments of both 

the predicted and reference events are of the 

same type, then Tab = 1, otherwise Tab = 0.5. 

Thus type errors divide the score by two. 

• Jab is the location boundary component defined 

as: if the Location arguments of the predicted 

and reference events overlap, then 

1−
+

=
ab

ba

ab
OV

LENLEN
J  

where LENa and LENb are the length of the 

Localization arguments of predicted and 

reference events, and OVab is the length of the 

overlapping segment between the Localization 

arguments of the predicted and reference 

events. If the arguments do not overlap, then Jab 

is 0. This formula is a Jaccard index applied to 

overlapping segments. Location boundary 

matching is relaxed, though the Jaccard index 

rewards predictions that approach the reference. 

For PartOf events between Hosts and HostParts, 

the matching score Pab is defined as: if the Host 

arguments of the reference and predicted events 

overlap and the Part arguments of the reference 

and predicted events overlap, then Pab = 1, 

otherwise Pab = 0. Boundary matching of PartOf 

arguments is relaxed, since boundary mistakes are 

already penalized in Eab. 

Arguments belonging to the same coreference 

set are strictly equivalent. In other words, the 

argument in the predicted event is correct if it is 

equal to the reference entity or to any item in the 

reference entity coreference set. 

7 Results  

7.1 Participating systems 

Three teams submitted predictions to the BB task. 

The first team is from the University of Turku 

(UTurku); their system is generic and produced 

predictions for every BioNLP Shared Task. This 

system uses ML intensely, especially SVMs, for 

entity recognition, entity typing and event 

extraction. UTurku adapted their system for the BB 

task by using specific NER patterns and external 

resources (Björne and Salakoski, 2011). 

The second team is from the Japan Advanced 

Institute of Science and Technology (JAIST); their 

system was specifically designed for this task. 

They used CRF for entity recognition and typing, 

and classifiers for coreference resolution and event 

extraction (Nguyen and Tsuruoka, 2011). 

The third team is from Bibliome INRA; their 

system was specifically designed for this task 

(Ratkovik et al., 2011). This team has the same 

affiliation as the BB Task authors, however great 

care was taken to prevent communication on the 

subject between task participants and the test set 

annotators. 
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The results of the three submissions according to 

the official metrics are shown in Table 2. The 

scores are micro-averaged: Localization and 

PartOf relations have the same weight. Given the 

novelty and the complexity of the task, these first 

results are quite encouraging. Almost half of the 

relations are correctly predicted. The Bibliome 

team achieved the highest F-measure with a 

balanced recall and precision (45%). 
 

 Recall Precision F-score 

Bibliome 45 45 45 

JAIST 27 42 33 

UTurku 17 52 26 
 

Table 2. Bacteria Biotope Task results. 

7.2 Systems description and result analysis 

All three systems perform the same distinct sub-

tasks: bacteria name detection, detection and 

typing of locations, coreference resolution and 

event extraction. The following description of the 

approaches used by the three systems in each 

subtask will be supported by intermediate results. 

Bacteria name detection. Interestingly the three 

participants used three different resources for the 

detection of bacteria names: the List of Prokaryotic 

Names with Standing in Nomenclature (LPNSN) 

by UTurku, names in the genomic BLAST page of 

NCBI by JAIST and the NCBI Taxonomy by 

Bibliome. 

 

Bibliome 84 

JAIST 55 

UTurku 16 

Table 3. Bacteria entity recall. 

 

Table 3 shows a disparity in the bacteria entity 

recall of participants. The merits of each resource 

cannot be deduced directly from these figures since 

they have been exploited in different manners. 

UTurku and JAIST systems injected the resource 

as features in a ML algorithm, whereas Bibliome 

directly projected the resource on the corpus with 

additional rule-based abbreviation detection. 

However there is some evidence that the 

resources have a major impact on the result. 

According to Sneath and Brenner (1992) LPNSN 

is necessarily incomplete. NCBI BLAST only 

contains names of species for which a complete 

genome has been published. The NCBI Taxonomy 

used by INRA only contains names of taxa for 

which some sequence was published. It appears 

that all the lists are incomplete. However, the 

bacteria referenced by the sequencing projects, 

which are mentioned in the corpus should all be 

recorded by the NCBI Taxonomy. 

Location detection and typing. As stated before, 

locations are not necessarily denoted by rigid 

designators. This was an interesting challenge that 

called for the use of external resources and 

linguistic analysis with a broad scope. 

UTurku and JAIST both used WordNet, a 

sensible choice since it encompasses a wide 

vocabulary and  is also structured with synsets and 

hyperonymy relations. The WordNet entries were 

injected as features in the participant ML-based 

entity recognition and typing subsystems. 

It is worth noting that JAIST also used word 

clustering based on MEMM for entity detection. 

This method has things in common with 

distributional semantics. JAIST experiments 

demonstrated a slight improvement using word 

clustering, but further exploration of this idea may 

prove to be valuable. 

Alternatively, the Bibliome system extracted 

terms from the corpus using linguistic criteria 

classified them as locations and predicted their 

type, by comparing them to classes in a habitat-

specific ontology. This prediction uses both 

linguistic analysis of terms and the hierarchical 

structure of the ontology. Bibliome also used 

additional resources for specific types: the NCBI 

Taxonomy for type Host and Agrovoc countries 

for type Geographical. 

 Bibliome JAIST UTurku 

Host 82 49 28 

Host part 72 36 28 

Geo. 29 60 53 

Environment 53 10 11 

Water 83 32 2 

Soil 86 37 34 

Table 4. Location entity recall by type. The 

number of entities of type Food and Medical in the 

test set is too low to be significant. The scores are 

computed using Tab and Jab. 
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The location entity recall in Table 4 shows that 

Bibliome consistently outperformed the other 

groups for all types except for Geographical. This 

demonstrates the strength of exploiting a resource 

with strong semantics (ontology vs. lexicon) and 

with mixed semantic and linguistic rules. 

In order to evaluate the impact of Location entity 

boundaries and types, we computed the final score 

by relaxing Tab and Jab measures. We re-defined Tab 

as always equal to 1, in other words the type of the 

localization was not evaluated. We also re-defined 

Jab as: if the Location arguments overlap, then Jab = 

1, otherwise Jab = 0. This means that boundaries 

were relaxed. The relaxed scores are shown in 

Table 5. While the difference is not significant for 

JAIST and UTurku, the Bibliome results exhibit a 

9 point increase. This demonstrates that the 

Bibliome system is efficient at predicting which 

entities are locations, while the other participants 

predict more accurately the boundaries and types. 

 Recall Prec. F-score Diff. 

Bibliome 54 54 54 +9 

JAIST 29 45 35 +2 

UTurku 19 56 28 +2 

Table 5. Participants score using relaxed location 

boundaries and types. 

Coreference resolution. The corpus exhibits an 

unusual number of anaphora, especially bacteria 

coreferences since a single bacterium species is 

generally the central topic of a document. The 

Bibliome submission is the only one that 

performed bacteria coreference resolution. Their 

system is rule-based and dealt with referential “it”, 

bi-antecedent anaphora and more importantly 

sortal anaphora. The JAIST system has a bacteria 

coreference module based on ML. However the 

submission was done without coreference 

resolution since their experiments did not show 

any performance improvement. 

 

Event extraction. Both UTurku and JAIST 

approached the event extraction as a classification 

task using ML (SVM). Bibliome exploited the co-

occurrence of arguments and the presence of 

trigger words from a predefined list. Both UTurku 

and Bibliome generate events in the scope of a 

sentence, whereas JAIST generates events in the 

scope of a paragraph. 

As shown in Table 6, UTurku achieved the best 

score for PartOf events. For all participants, the 

prediction is often correct (between 60 and 80%) 

while the recall is rather low (20 to 32%). 

 

  Recall Precis. F-score 

 Host 61 48 53 

 Host part 53 42 47 

 Geo. 13 38 19 

B. Env. 29 24 26 

 Water 60 55 57 

 Soil 69 59 63 

 Part-of 23 79 36 

 Host 30 43 36 

 Host part 18 68 28 

 Geo. 52 35 42 

J. Env. 5 0 0 

 Water 19 27 23 

 Soil 21 42 28 

 Part-of 31 61 41 

 Host 15 51 23 

 Host part 9 40 15 

 Geo. 32 40 36 

U. Env. 6 50 11 

 Water 1 7 2 

 Soil 12 21 15 

 Part-of 32 83 46 

Table 6. Event extraction results per type. 
 

Conversely, the score of the Localization relation 

by UTurku has been penalized by its low 

recognition of bacteria names (16%). This strongly 

affects the score of Localizations since the 

bacterium is the only expected agent argument. 

The good results of Bibliome are partly explained 

by its high bacteria name recall of 84%. 

The lack of coreference resolution might penalize 

the event extraction recall. To test this hypothesis, 

we computed the recall by taking only into account 

events where both arguments occur in the same 

sentence. The goal of this selection is to remove 

most events denoted through a coreference. The 

recall difference was not significant for Bibliome 

and JAIST, however UTurku recall raised by 12 

points (29%). That experiment confirms that 

UTurku low recall is explained by coreferences 
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rather than the quality of event extraction. The 

paragraph scope chosen by JAIST probably 

compensates the lack of coreference resolution. 

As opposed to Bibliome, the precision of the 

Localization relation prediction by JAIST and 

UTurku, is high compared to the recall, with a 

noticeable exception of geographical locations. 

The difference between participants seems to be 

caused by the geographical entity recognition step 

more than the relation itself. This is shown by the 

difference between the entity and the event recall 

(Table 4 and 6 respectively).. The worst predicted 

type is Environment, which includes diverse 

locations, such as agricultural, natural and 

industrial sites and residues. This reveals 

significant room for improvement for Water, Soil 

and Environment entity recognition. 

8 Discussion 

The participant papers describe complementary 

methods for tackling BB Task’s new goals. The 

novelty of the task prevents participants from 

deeply investing in all of the issues together. 

Depending on the participants, the effort was 

focused on different issues with various 

approaches: entity recognition and anaphora 

resolution based on extensive use of background 

knowledge, and relation prediction based on 

linguistic analysis of syntactic dependencies. 

Moreover, these different approaches revealed to 

be complementary with distinct strengths and 

limitations. In the future, one may expect that the 

integration of these promising approaches will 

improve the current score. 

The corpus of BioNLP BB Task 2011 consists 

of a set of Web pages that were selected for their 

readability. However, some corpus traits make the 

IE task more difficult compared to scientific 

papers. For example, the relaxed style of some 

pages tolerates some typographic errors (e.g. 

morrow instead of marrow) and ambiguous 

anaphora. The genome sequencing project 

documents aim at justifying the sequencing of 

bacteria. This results in abundant descriptions of 

potential uses and locations that should not be 

predicted as actual locations. Their correct 

prediction requires complex analysis of modalities 

(possibility, probability, negation). Some pages 

describe the action of hosted bacteria at the 

molecular level, such as cellular infection. Terms 

related to the cell are ambiguous locations because 

they may refer to either bacteria or host cells. 

Scientific papers form a much richer source of 

bacterial location information that is exempt from 

such flaws. However, as opposed to Web pages, 

most of them are not publicly available and they 

are in PDF format. 

The typology of locations was designed 

according to the BB Task corpus with a strong bias 

towards natural environments since bioremediation 

and plant growth factor are important motivations 

for bacteria sequencing. It could be necessary to 

revise it according to a broader view of bacterial 

studies where pathogenicity and more generally 

human and animal health are central issues. 

9 Conclusion 

The Bacteria Biotope Task corpus and objectives 

differ from molecular biology text-mining of 

scientific papers. The annotation strategy and the 

analysis of the participant results contributed to the 

construction of a preliminary review of the nature 

and the richness of its linguistic specificities. The 

participant results are encouraging for the future of 

the Bacteria Biotope issue. The degree of 

sophistication of participating systems shows that 

the community has technologies, which are mature 

enough to address this crucial biology question. 

However, the results leave a large room for 

improvement. 

The Bacteria Biotope Task was an opportunity 

to extend molecular biology text-mining goals 

towards the support of bacteria biodiversity studies 

such as metagenomics, ecology and phylogeny. 

The prediction of bacterial location information is 

the very first step in this direction. The abundance 

of scientific papers dealing with this issue and 

describing location properties form a potentially 

rich source for further extensions. 
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1Mathématique, Informatique et 2PredictiveDB 3LIPN – Université Paris-Nord/
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Abstract

We present two related tasks of the BioNLP
Shared Tasks 2011: Bacteria Gene Renam-
ing (Rename) and Bacteria Gene Interactions
(GI). We detail the objectives, the corpus spec-
ification, the evaluation metrics, and we sum-
marize the participants’ results. Both issued
from PubMed scientific literature abstracts,
the Rename task aims at extracting gene name
synonyms, and the GI task aims at extracting
genic interaction events, mainly about gene
transcriptional regulations in bacteria.

1 Introduction

The extraction of biological events from scientific
literature is the most popular task in Information Ex-
traction (IE) challenges applied to molecular biol-
ogy, such as in LLL (Nédellec, 2005), BioCreative
Protein-Protein Interaction Task (Krallinger et al.,
2008), or BioNLP (Demner-Fushman et al., 2008).
Since the BioNLP 2009 shared task (Kim et al.,
2009), this field has evolved from the extraction of a
unique binary interaction relation between proteins
and/or genes towards a broader acceptation of bio-
logical events including localization and transforma-
tion (Kim et al., 2008). In the same way, the tasks
Bacteria Gene Interactions and Bacteria Gene Re-
naming deal with the extraction of various molecu-
lar events capturing the mechanisms relevant to gene
regulation in prokaryotes. The study of bacteria has
numerous applications for health, food and indus-
try, and overall, they are considered as organisms
of choice for the recent integrative approaches in
systems biology, because of their relative simplicity.

Compared to eukaryotes, they allow easier and more
in-depth analysis of biological functions and of their
related molecular mechanisms.

Processing literature on bacteria raises linguis-
tic and semantic specificities that impact text anal-
ysis. First of all, gene renaming is a frequent phe-
nomenon, especially for model bacteria. Hence, the
abundance of gene synonyms that are not morpho-
logical variants is high compared to eukaryotes. The
history of bacterial gene naming has led to drastic
amounts of homonyms and synonyms which are of-
ten missing (or worse, erroneous) in gene databases.
In particular, they often omit old gene names that
are no longer used in new publications, but that are
critical for exhaustive bibliography search. Poly-
semy makes the situation even worse, as old names
frequently happen to be reused to denote different
genes. A correct and complete gene synonym table
is crucial to biology studies, for instance when inte-
grating large scale experimental data using distinct
nomenclatures. Indeed this information can save a
lot of bibliographic research time. The Rename Task
is a new task in text-mining for biology that aims at
extracting explicit mentions of renaming relations.
It is a critical step in gene name normalization that
is needed for further extraction of biological events
such as genic interactions.

Regarding stylistics, gene and protein interactions
are not formulated in the same way for eukary-
otes and prokaryotes. Descriptions of interactions
and regulations in bacteria include more knowledge
about their molecular actors and mechanisms, com-
pared to the literature on eukaryotes. Typically in
bacteria literature, the genic regulations are more
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likely expressed by direct binding of the protein,
while in eukaryote literature, non-genic agents re-
lated to environmental conditions are much more
frequent. The bacteria GI Task is based on (Manine
et al., 2010) which is a semantic re-annotation of the
LLL challenge corpus (Nédellec, 2005), where the
description of the GI events in a fine-grained rep-
resentation includes the distinction between expres-
sion, transcription and other action events, as well as
different transcription controls (e.g. regulon mem-
bership, promoter binding). The entities are not only
protein agent and gene target but extend to families,
complexes and DNA sites (binding sites, promoters)
in order to better capture the complexity of the reg-
ulation at a molecular level. The task consists in re-
lating the entities with the relevant relations.

2 Rename Task Description

The goal of the Rename task is illustrated by Figure
1. It consists in predicting renaming relations be-
tween text-bound gene names given as input. The
only type of event isRenamingwhere both argu-
ments are of typeGene. The event is directed, the
former and the new names are distinguished. Genes
and proteins were not distinguished because of the
high frequency of metonymy in renaming events.
The relation to predict between genes is aRenam-
ing of a former gene name into a new one. In the
example of Figure 1, YtaA, YvdP and YnzH are the
former names of three proteins renamed CotI, CotQ
and CotU, respectively.

Figure 1: Examples of relations to be extracted.

2.1 Rename Task corpus

The Rename Task corpus is a set of 1,836 PubMed
references of bacterial genetic and genomic studies,
including title and abstract. A first set of 23,000 doc-
uments was retrieved, identifying the presence of the
bacteriumBacillus subtilisin the text and/or in the
MeSH terms.B. subtilisdocuments are particularly
rich in renaming mentions. Many genes were re-

named in the middle of the nineties, so that the new
names matched those of theEscherichia colihomo-
logues. The 1,843 documents the most susceptible
to mention renaming were automatically filtered ac-
cording to two non exclusive criteria:

1. Either the document mentions at least two gene
synonyms as recorded in the fusion of sevenB.
subtilis gene nomenclatures. This led to a set
of 703 documents.

2. Or the document contains a renaming expres-
sion from a list that we manually designed and
tested (e.g. rename, also known as). It is an ex-
tension of a previous work by (Weissenbacher,
2004). A total of 1,140 new documents not in-
cluded in the first set match this criteria.

About 70% of the documents (1,146) were kept in
the training data set. The rest was split into the de-
velopment and test sets, containing 246 and 252 doc-
uments respectively. Table 1 gives the distribution
of genes and renaming relations per corpus. Gene
names were automatically annotated in the docu-
ments with the nomenclature ofB. subtilis. Gene
names involved in renaming acts were manually cu-
rated. Among the 21,878 gene mentions in the three
corpus, 680 unique names are involved in renaming
relations which represents 891 occurrences of genes.

Training + Dev. Test
Documents (1,146 + 246) 1,392 252 (15%)
Gene names 18,503 3,375 (15%)
Renamings 373 88 (24%)

Table 1: Rename Task corpus content.

2.2 Rename Task annotation and guidelines

Annotation procedure The corpus was annotated
in a joint effort of MIG/INRA and INIST/CNRS.
The reference annotation of the Rename Task cor-
pus was done in two steps, a first annotation step
by science information professionals of INIST with
MIG initial specifications, a second checking step by
people at MIG. Two annotators and a project man-
ager were in charge of the task at INIST. The docu-
ments were annotated using the Cadixe editor1. We

1http://caderige.imag.fr/Articles/
CADIXEXML-Annotation.pdf
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provided to them detailed annotation guidelines that
were largely modified in the process. A subset of
100 documents from the first set of 703 was anno-
tated as a training session. This step was used to re-
fine the guidelines according to the methodology de-
scribed in (Bonneau-Maynard et al., 2005). Several
inter-annotator agreements coefficients were com-
puted to measure the discrepancy between annota-
tors (Fort et al., 2009). With akappaandpi scores
(for more details on those, see (Artstein and Poesio,
2008)), the results can be considered satisfactory.
The manual analysis of the 18 discrepancies led to
enrich the annotation guidelines. The first hundreds
of documents of the second set did not mention any
renaming, leading to concentrate the annotation ef-
forts on the first set. These documents actually con-
tained renamings, but nearly exclusively concerning
other kinds of biological entities (protein domains,
molecules, cellular ultrastructures, etc.).

Guidelines In order to simplify the task, only
short names of gene/protein/groups inB. subtilis
were considered. Naming conventions set short
names of four letters long with an upper case let-
ter at the end for all genes (e.g. gerE) and the same
names with the upper case of the initial letter (e.g.
GerE) and long names for the proteins (e.g. Spore
germination protein gerE). But many irregular gene
names exist (e.g. tuf), which are considered as well.
It also happens that gene or protein name lists are
abbreviated by factorization to form a sequence. For
instance queCDEF is the abbreviation of the list of
gene names queC, queD, queE and queF. Such ag-
gregations are acceptable gene names as well. In any
case, these details were not needed by the task par-
ticipants since the corpus was provided with tagged
gene names.

Most renaming relations involve couples of the
same type, genes, proteins or aggregations. Only
18 relations link mixed couples of genes and pro-
teins. In case of ambiguity, annotators would consult
international gene databases and an internal INRA
database to help them determine whether a given
couple of names were actually synonyms.

Multiple occurrences of the same renaming rela-
tion were annotated independently, and had to be
predicted. The renaming pairs are directed, the for-
mer and the new forms have to be distinguished.

When the renaming order was not explicit in the
document, the rule was to annotate by default the
first member of the couple as the new form, and the
second one as the former form. Figure 2 presents the
most common forms of renaming.

Figure 2: Common types of relations to be extracted.

Revised annotations INIST annotations were
systematically checked by two experts in Bioinfor-
matics from INRA. Mainly, encoding relations (e.g.
the gene encoding sigma K (sigK)) that are not re-
naming cases were purged. Given the number of
ambiguous annotations, we designed a detailed ty-
pology in order to justify acceptance or rejection
decisions in seven different sub-cases hereafter pre-
sented. Three positive relations figure in Table 2,
where the underlined names are the former names
and the framed names are the new ones. Explicit re-
naming relations occur in 261 sentences, synonymy-
like relations in 349 sentences, biological proof-
based relations in 76 sentences.

Explicit renaming relation is the easiest positive
case to identify. In the example, the aggregation of
gene names ykvJKLM is clearly renamed by the au-
thors as queCDEF. Although the four genes are con-

Explicit renaming
PMID 15767583: Genetic analysis of ykvJKLMmu-
tants in Acinetobacter confirmed that each was essen-
tial for queuosine biosynthesis, and the genes were re-
named queCDEF.

Implicit renaming
PMID 8002615: Analysis of a suppressor mutation
ssb( kinC ) of sur0B20 (spo0A) mutation inBacil-
lus subtilis reveals that kinC encodes a histidine pro-
tein kinase.

Biological proof
PMID 1744050: DNA sequencing established that
spoIIIFand spoVB are a single monocistronic locus
encoding a 518-amino-acid polypeptide with features
of an integral membrane protein.

Table 2: Positive examples of the Rename Task.
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catenated, there is no evidence mentioned of them
acting as an operon. Furthermore, despite the con-
text involving mutants of Acinetobacter, the aggre-
gation belongs correctly toB. subtilis.

Implicit renaming is an asymmetric relation
since one of the synonyms is intended to replace the
other one in future uses. The example presents two
renaming relations between former names ssb and
spo0A, and new names kinC and sur0B20, respec-
tively. The renaming relation between ssb and kinC
has a different orientation due to additional informa-
tion in the reference. Like in the preceding example,
the renaming is a consequence of a genetic mutation
experiment. Mutation names represent an important
transversal issue that is discussed below.

Biological proof is a renaming relation induced
by an explicit scientific conclusion while the renam-
ing is not, as in the example where experiments re-
veal that two loci spoIIIF and spoVB are in fact the
same one and then become synonyms. Terms such
as “allelic to” or “identical to” usually qualify such
conclusions. Predicting biological proof-based rela-
tions requires some biological modeling.

The next three cases are negative (Table 3). Un-
derlined gene and protein names are involved in a
relation which is not a renaming relation.

Protein encodingrelation occurs between a gene
and the protein it codes for. Some mentions may
look like renaming relations. The example presents
the gene yeaC coding for MoxR. No member of the
couple is expected to replace the other one.

Homology measures the similarity between gene
or protein sequences. Most of the homology men-
tions involve genes or proteins from different species

Protein encoding
PMID 8969499:The putative products of ORFs yeaB
(Czd protein), yeaC(MoxR), yebA (CNG-channel and
cGMP-channel proteins from eukaryotes),

Genetic homology
PMID 10619015: Dynamic movement of the ParA-
like Soj protein ofB. subtilis and its dual role in nu-
cleoid organization and developmental regulation.

Operon | Regulon| Family
PMID 3127379: Three promoters direct transcription
of the sigA(rpoD) operon inBacillus subtilis.

Table 3: Negative examples of the Rename Task.

(orthologues). The others compare known gene or
protein sequences of the same species (paralogues).
This may be misleading since the similarity men-
tion may look like biological proof-based relations,
as between ParA and Soj in Table 3.

Operon, regulon or family renaming involves
objects that may look like genes, proteins or sim-
ple aggregations of gene or protein names but that
are perceptibly different. The objects represent more
than one gene or protein and the renaming does not
necessarily affect all of them. More problematic,
their name may be the same as one of the genes or
proteins they contain, as in the example where sigA
and rpoD are operons but are also known as gene
names. Here, sigA (and so rpoD) represents at least
two different genes. For the sake of clarity, oper-
ons, regulons and families are rejected, even if all
the genes are clearly named, as in an aggregation.

The last point concernsmutation which are fre-
quent in Microbiology for revealing gene pheno-
types. They carry information about the original
gene names (e.g., rvtA11 is a mutant name created
by adding 11 to rvtA). But partial names cannot be
partially annotated, that is to say, the original part
(rvtA) should not be annotated in the mutation name
(rvtA11). Most of these names are local names, and
should not be annotated because of their restricted
scope. It may happen so that the mutation name
is registered as a synonym in several international
databases. To avoid inconsistencies, all renamings
involving a mutation referenced in a database were
accepted, and only biological proof-based and ex-
plicit renamings involving a strict non-null unrefer-
enced mutation (a null mutation corresponds to a to-
tal suppression of a gene) were accepted.

2.3 Rename Task evaluation procedure

The evaluation of the Rename task is given in terms
of recall, precision and F-score of renaming rela-
tions. Two set of scores are given: the first set is
computed by enforcing strict direction of renaming
relations, the second set is computed with relaxed
direction. Since the relaxed score takes into ac-
count renaming relations even if the arguments are
inverted, it will necessarily be greater or equal than
the strict score. The participant score is the relaxed
score, the strict score is given for information. Re-
laxed scores are informative with respect to the ap-
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plication goal. The motivation of the Rename task
is to keep bacteria gene synonyms tables up to date.
The choice of the canonical name among synonyms
for denoting a gene is done by the bacteriology com-
munity, and it may be independent of the anteriority
or novelty of the name. The annotation of the ref-
erence corpus showed that the direction was not al-
ways decidable, even for a human reader. Thus, it
would have been unfair to evaluate systems on the
basis of unsure information.

2.4 Results of the Rename Task participants

Final submissions were received from three teams,
the University of Turku (Uturku), the University of
Concordia (Concordia) and the Bibliome team from
MIG/INRA. Their results are summarized in Table
4. The ranking order is given by the overall F-score
for relations with relaxed argument order.

Team Prec. Recall F-score
Univ. of Turku 95.9 79.6 87.0
Concordia Univ. 74.4 65.9 69.9
INRA 57.0 73.9 64.4

Table 4: Participant scores at the Rename Task.

Uturku achieved the best F-score with a very high
precision and a high recall. Concordia achieved the
second F-score with balanced precisions and recalls.
Bibliome is five points behind with a better recall
but much lower precision. Both UTurku and Con-
cordia predictions rely on dependencies (Charniak-
Johnson and Stanford respectively, using McClosky
model), whereas Bibliome predictions rely on bag of
words. This demonstrates the high value of depen-
dency parsing for this task, in particular for the pre-
cision of predictions. We notice that UTurku system
uses machine learning (SVM) and Concordia uses
rules based on trigger words. The good results of
UTurku confirms the hypothesis that gene renam-
ing citations are highly regular in scientific litera-
ture. The most frequently missed renamings belong
to the Biological Proof category (see Table 2). This
is expected because the renaming is formulated as a
reasoning where the conclusion is only implicit.

2.5 Discussion

The very high score of Uturku method leads us to
conclude that the task can be considered as solved

by a linguistic-based approach. Whereas Bib-
liome used an extensive nomenclature considered
as exhaustive and sentence filtering using a SVM,
Uturku used only two nomenclatures in synergy but
with more sophisticated linguistic-based methods,
in particular syntactic analyses. Bibliome methods
showed that a too high dependence to nomenclatures
may decrease scores if they contain compromised
data. However, the use of an extensive nomencla-
ture as done by Bibliome may complement Uturku
approach and improve recall. It is also interesting
that both systems do not manage renamings cross-
ing sentence boundaries.

The good results of the renaming task will be ex-
ploited to keep synonym gene lists up to date with
extensive bibliography mining. In particular this
will contribute to enriching SubtiWiki, a collabora-
tive annotation effort onB. subtilis (Flórez et al.,
2009; Lammers et al., 2010).

3 Gene Interactions Task description

The goal of the Bacteria GI Task is illustrated by
Figure 3. The genes cotB and cotC are related to
their two promoters, not named here, by the rela-
tion PromoterOf. The protein GerE is related to
these promoters by the relationBindTo. As a con-
sequence, GerE is related to cotB and cotC by anIn-
teractionrelation. According to (Kim et al., 2008),
the need to define specialized relations replacing one
unique and general interaction relation was raised in
(Manine et al., 2009) for extracting genic interac-
tions from text. An ontology describes relations and
entities (Manine et al., 2008) catching a model of
gene transcription to which biologists implicitly re-
fer in their publications. Therefore, the ontology is
mainly oriented towards the description of a struc-
tural model of genes, with molecular mechanisms
of their transcription and associated regulations.

The corpus roughly contains three kinds of genic

Figure 3: Examples of relations to be extracted.
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interaction mentions, namely regulations, regulon
membership and binding. The first case corresponds
to interactions the mechanism of which is not explic-
itly given in the text. The mention only tells that the
transcription of a given gene is influenced by a given
protein, either positively (activation), negatively (in-
hibition) or in an unspecified way. The second kind
of genic interaction mention (regulon membership)
basically conveys the same information, using the
regulon term/concept. The regulon of a gene is the
set of genes that it controls. In that case, the interac-
tion is expressed by saying that a gene is a member
of some regulon. The third and last kind of mention
provides with more mechanistic details on a regula-
tion, since it describes the binding of a protein near
the promoter of a target gene. This motivates the in-
troduction ofPromoterandSite entities, which cor-
respond to DNA regions. It is thus possible to extract
the architecture of a regulatory DNA region, linking
a protein agent to its gene target (see Figure 3).

The set of entity types is divided into two main
groups, namely 10 genic entities and 3 kinds of ac-
tion (Table 5). Genic entities represent biological
objects like a gene, a group of genes or a gene prod-
uct. In particular, aGeneComplexannotation corre-
sponds to an operon, which is a group of genes that
are contiguous in the genome and under the control
of the same promoter. The annotationGeneFamily
is used to denote either genes involved in the same
biological function or genes with sequence homolo-
gies. More importantly,PolymeraseComplexanno-
tations correspond to the protein complex that is re-
sponsible for the transcription of genes. This com-
plex includes several subunits (components), com-
bined with a sigma factor, that recognizes specific
promoters on the DNA sequence.

The second group of entities are phrases express-
ing either molecular processes (e.g. sequestration,
dephosphorylation, etc.) or the molecular state of
the bacteria (e.g. presence, activity or level of a pro-
tein). They represent some kind of action that can
be performed on a genic entity. Note that transcrip-
tion and expression events were tagged as specific
actions, because they play a specific part in certain
relations (see below).

The annotation of entities and actions was pro-
vided to the participants, and the task consisted in
extracting the relations listed in Table 6.

Name Example
Gene cotA
GeneComplex sigX-ypuN
GeneFamily class III heat shock genes
GeneProduct yvyD gene product
Protein CotA
PolymeraseComplex SigK RNA polymerase
ProteinFamily DNA-binding protein
Site upstream site
Promoter promoter regions
Regulon regulon
Action activity | level | presence
Expression expression
Transcription transcription

Table 5: List of molecular entities and actions in GI.

Name Example
ActionTarget expressionof yvyD
Interaction ComK negatively regulates

degRexpression
RegulonDependence sigmaBregulon
RegulonMember yvyDis member of sigmaB

regulon
BindTo GerE adheres to thepro-

moter
SiteOf -35 sequenceof the pro-

moter
PromoterOf thearaEpromoter
PromoterDependence GerE-controlledpromoter
TranscriptionFrom transcription from the up-

stream site
TranscriptionBy transcription of cotD by

sigmaK RNA polymerase

Table 6: List of relations in GI.

The relations are binary and directed, and rely the
entities defined above. The three kinds of interac-
tions are represented with anInteractionannotation,
linking an agent to its target. The other relations
provide additional details on the regulation, like ele-
mentary components involved in the reaction (sites,
promoters) and contextual information (mainly pro-
vided by theActionTargetrelations). A formal def-
inition of relations and relation argument types can
be found on the Bacteria GI Task Web page.

3.1 Bacteria Gene Interactions corpus

The source of the Bacteria GI Task corpus is a set
of PubMed abstracts mainly dealing with the tran-
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scription of genes inBacillus subtilis. The semantic
annotation, derived from the ontology of (Manine et
al., 2008), contains 10 molecular entities, 3 different
actions, and 10 specialized relations. This is applied
to 162 sentences from the LLL set (Nédellec, 2005),
which are provided with manually checked linguis-
tic annotations (segmentation, lemmatization, syn-
tactic dependencies). The corpus was split into 105
sentences for training, 15 for development and 42
for test. Table 7 gives the distribution of the entities
and actions per corpus and Table 8 gives the distri-
bution of the relations per corpus.

3.2 Annotation procedures and guidelines

The semantic annotation scheme was developed by
two annotators through a series of independent an-
notations of the corpus, followed by reconciliation
steps, which could involve concerted modifications
(Manine et al., 2010). As a third and final stage, the

Entity or action Train. + Dev. Test
Documents (105+15) 120 42
Protein 219 85
Gene 173 56
Transcription 53 21
Promoter 49 10
Action 45 22
PolymeraseComplex 43 14
Expression 29 6
Site 22 8
GeneComplex 19 4
ProteinFamily 12 3
Regulon 11 2
GeneProduct 10 3
GeneFamily 6 5

Table 7: Distribution of entities and actions in GI.

Relation Train. + Dev. Test
Interaction 208 64
ActionTarget 173 47
PromoterOf 44 8
BindTo 39 4
PromoterDependence 36 4
TranscriptionBy 36 8
SiteOf 23 6
RegulonMember 17 2
TranscriptionFrom 14 2
RegulonDependence 12 1

Table 8: Distribution of relations in GI.

corpus was reviewed and the annotation simplified
to make it more appropriate to the contest. The final
annotation contains 748 relations distributed in nine
categories, 146 of them belonging to the test set.

The annotation scheme was generally well suited
to accurately represent the meaning of the sentences
in the corpus, with one notable exception. In the cor-
pus, there is a common phrasing telling that a pro-
tein P regulates the transcription of a gene G by a
given sigma factor S. In that case, the only anno-
tated interactions are between the couples (P, G) and
(S, G). This representation is not completely satis-
factory, and a ternary relation involving P, S and G
would have been more adequate.

Additional specific rules were needed to cope
with linguistic issues. First, when the argument of a
relation had coreferences, the relation was repeated
for each maximally precise coreference of the argu-
ment. Second, in case of a conjunction like “sig-
maA and sigmaX holoenzymes”, there should ide-
ally be two entities (namely “sigmaA holoenzyme”
and “sigmaX holoenzyme”); however, this is not
easy to represent using the BioNLP format. In this
situation, we grouped the two entities into a single
one. These cases were rare and unlikely affected the
feasibility of the task, since entities were provided
in the test set.

3.3 Gene Interactions evaluation procedure

The training and development corpora with the ref-
erence annotations were made available to partici-
pants by December, 1st on the BioNLP shared Task
pages together with evaluation software. The test
corpus with the entity annotations has been made
available by March, 1st. The participants sent the
predicted annotations to the BioNLP shared Task
organizers by March, 10th. The evaluation results
were computed and provided to the participants and
on the Web site the same day. The participants are
evaluated and ranked according to two scores: F-
score for all event types together, and F-score for
the Interactionevent type. In order for a predicted
event to count as a hit, both arguments must be the
same as in the reference in the right order and the
event type must be the same as in the reference.
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3.4 Results of GI Task participants

There was only one participant, whose results are
shown in Tables 9 and 10. Some relations were
not significantly represented in the test set and thus
the corresponding results should be considered with
caution. This is the case forRegulonMemberand
TranscriptionFrom, only represented two times each
in the test. The lowest recall, 17%, obtained for the
SiteOf relation is explained by its low representa-
tion in the corpus: most of the test errors come from
a difficult sentence with coreferences.

The recall of 56% for theInteractionrelation cer-
tainly illustrates the heterogeneity of this category,
gathering mentions of interactions at large, as well
as precise descriptions of gene regulations. For in-
stance, Figure 4 shows a complex instance where all
of the interactions were missed. Surprisingly, we
also found false negatives in rather trivial examples
(“ykuD was transcribed bySigK RNA polymerase
from T4 of sporulation.”). Uturku used an SVM-
based approach for extraction, and it is thus delicate
to account for the false negatives in a simple and
concise way.

Event U. Turku scores
Global Precision 85
Global Recall 71
Global F-score 77
Interaction Precision 75
Interaction Recall 56
Interaction F-score 64

Table 9: University of Turku global scores.

Event Prec. Rec. F-score
Global 85 71 77
ActionTarget 94 92 93
BindTo 75 75 75
Interaction 75 56 64
PromoterDependence 100 100 100
PromoterOf 100 100 100
RegulonDependence 100 100 100
RegulonMember 100 50 67
SiteOf 100 17 29
TranscriptionBy 67 50 57
TranscriptionFrom 100 100 100

Table 10: University of Turku scores for each relation.

Figure 4: Examples of three missed interactions.

3.5 Discussion

The GI corpus was previously used in a relation
extraction work (Manine et al, 2009) based on In-
ductive Logic Programming (Muggleton and Raedt,
1994). However a direct comparison of the results
is not appropriate here since the annotations were
partially revised, and the evaluation setting was dif-
ferent (leave-one-out in Manine’s work, test set in
the challenge).

Nevertheless, we note similar tendencies if we
compare relative results between relations. In partic-
ular, it was also found in Manine’s paper thatSiteOf,
TranscriptionByand Interactionare the most diffi-
cult relations to extract. It is also worth to mention
that both approaches rely on syntactic dependencies,
and use the curated dependencies provided in the
corpus. Interestingly, the approach by the University
of Turku reports a slightly lower F-measure with de-
pendencies calculated by the Charniak parser (about
1%, personal communication). This information is
especially important in order to consider a produc-
tion setting.

4 Conclusion

The quality of results for both challenges suggests
that current methods are mature enough to be used
in semi-automatic strategies for genome annotation,
where they could efficiently assist biological experts
involved in collaborative annotation efforts (Lam-
mers et al., 2010). However, the false positive rate,
notably for theInteractionrelation, is still too high
for the extraction results to be used as a reliable
source of information without a curation step.
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Abstract

This paper summarizes the Protein Coref-
erence Resolution task of BioNLP Shared
Task 2011. After 7 weeks of system devel-
opment period, the task received final sub-
missions from 6 teams. Evaluation results
show that state-of-the-art performance on the
task can find 22.18% of protein coreferences
with the precision of 73.26%. Analysis of
the submissions shows that several types of
anaphoric expressions including definite ex-
pressions, which occupies a significant part of
the problem, have not yet been solved.

1 Introduction

While named entity recognition (NER) and relation
or event extraction are regarded as standard tasks
of information extraction (IE), coreference resolu-
tion (Ng, 2010; Bejan and Harabagiu, 2010) is more
and more recognized as an important component of
IE for a higher performance. Without coreference
resolution, the performance of IE is often substan-
tially limited due to an abundance of coreference
structures in natural language text, i.e. information
pieces written in text with involvement of a corefer-
ence structure are hard to be captured (Miwa et al.,
2010). There have been several attempts for coref-
erence resolution, particularly for newswire texts
(Strassel et al., 2008; Chinchor, 1998). It is also one
of the lessons from BioNLP Shared Task (BioNLP-
ST, hereafter) 2009 that coreference structures in
biomedical text substantially hinder the progress of
fine-grained IE (Kim et al., 2009).

To address the problem of coreference resolution
in molecular biology literature, the Protein Corefer-
ence (COREF) task is arranged in BioNLP-ST 2011

as a supporting task. While the task itself is not
an IE task, it is expected to be a useful compo-
nent in performing the main IE tasks more effec-
tively. To establish a stable evaluation and to observe
the effect of the results of the task to the main IE
tasks, the COREF task particularly focuses on find-
ing anaphoric protein references.

The benchmark data sets for developing and test-
ing coreference resolution system were developed
based on various manual annotations made to the
Genia corpus (Ohta et al., 2002). After 7 weeks of
system development phase, for which training and
development data sets with coreference annotation
were given, six teams submitted their prediction of
coreferences for the test data. The best system ac-
cording to our primary evaluation criteria is evalu-
ated to find 22.18% of anaphoric protein references
at the precision of 73.26%.

This paper presents overall explanation of the
COREF task, which includes task definition (Sec-
tion 2), data preparation (Section 4), evaluation
methods (Section 5), results (Section 7), and thor-
ough analyses (Section 8) to figure out what are
remaining problems for coreference resolution in
biomedical text.

2 Problem Definition

This section provides an explanation of the corefer-
ence resolution task in our focus, through examples.

Figure 1 shows an example text segmented into
four sentences, S2 - S5, where anaphoric corefer-
ences are illustrated with colored extends and ar-
rows. In the figure, protein names are highlighted in
purple, T4 - T10, and anaphoric protein references,
e.g. pronouns and definite noun phrases, are high-
lighted in red, T27, T29, T30, T32, of which the an-
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Figure 1: Protein coreference annotation

tecedents are indicated by arrows if found in the text.
In the example, the definite noun phrase (NP), this
transcription factor (T32), is a coreference to p65
(T10). Without knowing the coreference structure,
it becomes hard to capture the information written
in the phrase, nuclear exclusion of this transcription
factor, which is localization of p65 (out of nucleus)
according to the framework of BioNLP-ST.

A standard approach would include a step to find
candidate anaphoric expressions that may refer to
proteins. In this task, pronouns, e.g. it or they, and
definite NPs that may refer to proteins, e.g. the tran-
scription factor or the inhibitor are regarded as can-
didates of anaphoric protein references. This step
corresponds to markable detection and anaphoric-
ity determination steps in the jargon of MUC. The
next step would be to find the antecedents of the
anaphoric expressions. This step corresponds to
anaphora resolution in the jargon of MUC.

3 Task Setting

In the task, the training, development and test data
sets are provided in three types of files: the text, the
protein annotation, and the coreference annotation
files. The text files contain plain texts which are tar-
get of annotation. The protein annotation files pro-
vide gold annotation for protein names in the texts,
and the coreference annotation files provide gold an-
notation for anaphoric references to those protein
names. The protein annotation files are given to the
participants, together with all the training, develop-
ment and test data sets. The coreference annotation
files are not given with the test data set, and the task
for the participants is to produce them automatically.

In protein annotation files, annotations for protein
names are given in a stand-off style encoding. For

example, those highlighted in purple in Figure 1 are
protein names, which are given in protein annotation
files as follows:

T4 Protein 275 278 p65
T5 Protein 294 297 p50
T6 Protein 367 372 v-rel
T7 Protein 406 409 p65
T8 Protein 597 600 p50
T9 Protein 843 848 MAD-3
T10 Protein 879 882 p65

The first line indicates there is a protein reference
in the span that begins at 275th character and ends
before 278th character, of which the text is “p65”,
and the annotation is identified by the id, “T4”

The coreference annotation files include three sort
of annotations. First, annotations for anaphoric pro-
tein references are given. For example, those in red
in Figure 1 are anaphoric protein references:

T27 Exp 179 222 the N.. 215 222 complex
T29 Exp 307 312 which
T30 Exp 459 471 this .. 464 471 complex
T32 Exp 1022 1047 this .. 1027 1047 tra..

The first line indicates that there is an anaphoric
protein reference in the specified span, of which the
text is “the NF-kappa B transcription factor com-
plex” (truncated due to limit of space), and that its
minimal expression is “complex”. Second, noun
phrases that are antecedents of the anaphoric refer-
ences are also given in the coreference annotation
file. For example, T28 and T31 (highlighted in blue)
are antecedents of T29 and T32, respectively, and
thus given in the file:

T28 Exp 264 297 NF-ka..
T31 Exp 868 882 NF-ka..

Third, the coreference relation between the
anaphoric expressions and their antecedents are
given in predicate-argument expressions1:

R1 Coref Ana:T29 Ant:T28 [T5, T4]
R2 Coref Ana:T30 Ant:T27
R3 Coref Ana:T32 Ant:T31 [T10]

The first line indicates there is a coreference rela-
tion, R1, of which the anaphor is T29 and the an-
tecedent is T28, and the relation involves two protein
names, T5 and T4.

Note that, sometimes, an anaphoric expression,
e.g. which (T29), is connected to more than one
protein names, e.g. p65 (T4) and p50 (T5). Some-
times, coreference structures do not involve any spe-
cific protein names, e.g. T30 and T27. In order

1Due to limitation of space, argument names are abbrevi-
ated, e.g. “Ana” for “Anaphora”, and “Ant” for “Antecedent”
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to establish a stable evaluation, our primary evalu-
ation will focus only on coreference structures that
involve specific protein names, e.g. T29 and T28,
and T32 and T31. Among the three, only two, R1
and R3, involves specific protein references, T4 and
T5, and T10. Thus, finding of R2 will be ignored
in the primary evaluation. However, those not in-
volving specific protein references are also provided
in the training data to help system development,
and will be considered in the secondary evaluation
mode. See section 5 for more detail.

4 Data Preparation
The data sets for the COREF task are produced
based on three resources: MedCO coreference an-
notation (Su et al., 2008), Genia event annotation
(Kim et al., 2008), and Genia Treebank (Tateisi et
al., 2005). Although the three have been developed
independently from each other, they are annotations
made to the same corpus, the Genia corpus (Kim et
al., 2008). Since COREF was focused on finding
anaphoric references to proteins (or genes), only rel-
evant annotations were extracted from the MedCO
corpus though the following process:

1. From MedCo annotation, coreference entities that
were pronouns and definite base NPs were ex-
tracted, which became candidate anaphoric expres-
sions. The base NPs were determined by consulting
Genia Tree Bank.

2. Among the candidate anaphoric expressions, those
that could not be protein references were filtered
out. This process was done by checking the head
noun of NPs. For example, definite NPs with “cell’
as their head noun were filtered out. The remaining
ones became candidate protein coreferences.

3. The candidate protein coreferences and their an-
tecedents according to MedCo annotation were in-
cluded in the data files for COREF task.

4. The protein name annotations from Genia event
annotation were added to the data files to deter-
mine which coreference expressions involve protein
name references.

Table 1 summarizes the coreference entities in the
training, development, and test sets for COREF task.
In the table, the anaphoric entities are classified into
four types as follows:

RELAT indicates relative pronouns or relative adjec-
tives, e.g. that, which, or whose.

PRON indicates pronouns, e.g. it.

Type Train Dev Test
RELAT 1193 254 349
PRON 738 149 269

Anaphora DNP 296 58 91
APPOS 9 1 3
N/C 11 1 2

Antecedent 2116 451 674
TOTAL 4363 914 1388

Table 1: Statistics of coreference entities in COREF data
sets: N/C = not-classified.

DNP indicates definite NPs or demonstrative NPs, e.g.
NPs that begin with the, this, etc.

APPOS indicates coreferences in apposition.

5 Evaluation

The coreference resolution performance is evaluated
in two modes.

The Surface coreference mode evaluates the per-
formance of finding anaphoric protein references
and their antecedents, regardless whether the an-
tecedents actually embed protein names or not. In
other words, it evaluates the ability to predict the
coreference relations as provided in the gold coref-
erence annotation file, which we call surface coref-
erence links.

The protein coreference mode evaluates the per-
formance of finding anaphoric protein references
with their links to actual protein names (protein
coreference links). In the implementation of the
evaluation, the chain of surface coreference linkes
is traced until an antecedent embedding a protein
name is found. If a protein-name-embedding an-
tecedent is connected to an anaphora through only
one surfs link, we call the antecedent a direct pro-
tein antecedent. If a protein-name-embedding an-
teceden is connected to an anaphora through more
than one surface link, we call it an indirect protein
antecedent, and the antecedents in the middle of the
chain intermediate antecedents. The performance
evaluated in this mode may be directly connected
to the potential performance in main IE tasks: the
more the (anaphoric) protein references are found,
the more the protein-related events may be found.
For this reason, the protein coreference mode is cho-
sen as the primary evaluation mode.

Evaluation results for both evaluation modes are
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given in traditional precision, recall and f-score,
which are similar to (Baldwin, 1997).

5.1 Surface coreference
A response expression is matched with a gold ex-
pression following partial match criterion. In par-
ticular, a response expression is considered cor-
rect when it covers the minimal boundary, and is
included in the maximal boundary of expression.
Maximal boundary is the span of expression anno-
tation, and minimal boundary is the head of ex-
pression, as defined in MUC annotation schemes
(Chinchor, 1998). A response link is correct when
its two argument expressions are correctly matched
with those of a gold link.

5.2 Protein coreference
This is the primary evaluation perspective of the pro-
tein coreference task. In this mode, we ignore coref-
erence links that do not reference to proteins. Inter-
mediate antecedents are also ignored.

Protein coreference links are generated from the
surface coreference links. A protein coreference link
is composed of an anaphoric expression and a pro-
tein reference that appears in its direct or indirect
antecedent. Below is an example.
Example:
R1 Coref Ana:T29 Ant:T28 [T5, T4]
R2 Coref Ana:T30 Ant:T27
R3 Coref Ana:T32 Ant:T31 [T10]
R4 Coref Ana:T33 Ant:T32

In this example, supposing that there are four surface
links in the coreference annotation file (T29,T28),
(T30,T27), (T32,T31), and (T33, T32), in which
T28 contains two protein mentions T5, T4, and T31
contains one protein mention T10; thus, the protein
coreference links generated from these surface links
are (T29,T4), (T29,T5), (T32,T10), and (T33, T10).
Notice that T33 is connected with T10 through the
intermediate expression T32.

Response expressions and generated response re-
sult links are matched with gold expressions and
links correspondingly in a way similar to the surface
coreference evaluation mode.

6 Participation

We received submissions from six teams. Each team
was requested to submit a brief description of their
team, which was summarized in Table 2.

Team Member Approach & Tools
UU 1 NLP ML (Yamcha SVM,

Reconcile)
UZ 5 NLP RB (-)
CU 2 NLP RB (-)
UT 1 biochemist ML (SVM-Light)
US 2 AI ML (SVM-Light)
UC 3 NLP, 1 BioNLP ML (Weka SVM)

Table 2: Participation. UU = UofU, UZ = UZH,
CU=ConcordU, UT = UTurku, UZ = UZH, US =
Uszeged, UC = UCD SCI, RB = Rule-based, ML = Ma-
chine learning-based.

TEAM RESP C P R F
UU 86 63 73.26 22.18 34.05
UZ 110 61 55.45 21.48 30.96
CU 87 55 63.22 19.37 29.65
UT 61 41 67.21 14.44 23.77
US 259 9 3.47 3.17 3.31
UC 794 2 0.25 0.70 0.37

Table 3: Protein coreference results. Total num-
ber of gold link = 284. RESP=response, C=correct,
P=precision, R=recall, F=fscore

The tool column shows the external tools used
in resolution processing. Among these tools,
there is only one team used an external coref-
erence resolution framework, Reconcile, which
achieved the state-of-the-art performance for super-
vised learning-based coreference resolution (Stoy-
anov et al., 2010b).

7 Results

7.1 Protein coreference results

Evaluation results in the protein coreference mode
are shown in Table 3. The UU team got the high-
est f-score 34.05%. The UZ and CU teams are
the second- and third-best teams with 30.96% and
29.65% f-score correspondingly, which are compa-
rable to each other. Unfortunately, two teams, US
and UC could not produce meaningful results, and
the other four teams show performance optimized
for high precision. It was expected that the 22.18%
of protein coreferences may contribute to improve
the performance on main task, which was not ob-
served this time, unfortunately.

The first ranked system by UU utilized Recon-
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TEAM RESP C P R F
UU 360 43 11.94 20.48 15.09
UZ 736 51 6.93 24.29 10.78
CU 365 36 9.86 17.14 12.52
UT 452 50 11.06 23.81 15.11
US 259 4 1.54 1.90 1.71
UC 797 1 0.13 0.48 0.20

Table 4: Surface coreference results. Total num-
ber of gold link = 210. RESP=response, C=correct,
P=precision, R=recall, F=fscore

UU UT
S-correct & P-missing 8 29
S-missing & P-correct 16 5

Table 5: Count of anaphors that have different status in
different evaluation modes. S = surface coreference eval-
uation mode, P = protein coreference evaluation mode

cile which was originally developed for newswire
domain. It supports the hypothesis that machine
learning-based coreference resolution tool trained
on different domains can be helpful for the bio med-
ical domain; however, it still requires some adapta-
tions.

7.2 Surface coreference results

Table 4 shows the evaluation results in the surface
link mode. The overall performances of all the sys-
tems are low, in which recalls are much higher than
the precisions. One possible reason of the low re-
sults is because most of the teams focus on resolv-
ing pronominal coreference; however, they failed to
solve some difficult types of pronoun such as “it”,
“its”, “these”, “them”, and “which”, which occupy
the majority of anaphoric pronominal expressions
(Table 1). Definite anaphoric expressions were ig-
nored by almost all of the systems (except one sub-
mission).

The results show that the protein coreference res-
olution is not a trivial task; and many parts remains
challenging. In next section, we analyze about po-
tential reason of the low results, and discuss possible
directions for further improvement.

Ex 1 GOLD
T5 DQalpha and DQbeta trans heterodimeric

HLA-DQ molecules
T6 such trans-dimers
T7 which
R1 T6 T5 [T3, T4]
R2 T7 T6

RESP
T5 such trans-dimers
T6 which
R1 T6 T5
Ex 2 GOLD
T18 Five members of this family

(MYC, SCL, TAL-2, LYL-1 and E2A)
T20 their
R3 T20 T18 [T3, T2, T5, T4]

RESP
T19 Five members
T20 their
R2 T20 T19

Table 6: Example of surface-correct & protein-missing
cases. Protein names are underlined, and the min-values
are in italic.

8 Analysis

8.1 Why the rankings based on the two
evaluation methods are not the same?

Comparing with the protein coreference mode, we
can see the rankings based on two evaluation meth-
ods are different. In order to find out what led to
this interesting difference, we further analyzed the
submissions from the two teams UT and UU. The
UT team achieved the highest f-score in the surface
evaluation mode, but was in the fourth rank in the
protein evaluation mode. Meanwhile, the score of
UU team was slightly less than the UT team in the
former mode, but got the highest in the later (Table
3 and Table 4). In other words, there is no clear cor-
relation between the two evaluation results.

Because the two precisions in surface evaluation
mode are not much different, the recalls were the
main contribution in the difference of f-score. An-
alyzing the correct and missing examples in both
evaluation modes, we found that there are anaphors
whose surface links are correct, while the protein
links with the same anaphors are evaluated as miss-
ing; and vice versa with missing surface links and
correct protein links. Counts of anaphors of each
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type are shown in Table 5. In this table, the cell
at column UT and row S-correct and P-missing can
be interpreted as following. There are 29 anaphors
in the UT response whose surface links are correct
but protein links are missing, which contributes pos-
itively to the recall in surface coreference mode, and
negatively to that in protein coreference mode.

Table 6 shows two examples of S-correct and
P-missing. In the first example, we can see that
the gold antecedent proteins are contained in an in-
direct antecedent. Therefore, when the interme-
diate antecedent is correctly detected by the sur-
face link R1, but the indirect antecedent is not de-
tected, the anaphor is not linked to it antecedent
proteins “DQalpha” and “DQbeta”. Another reason
is because response antecedents do not include an-
tecedent proteins. This is actually the problem of
expression boundary detection. An example of this
is example 2 (Table 6), in which the response sur-
face link R2 is correct, but the protein links to the
four proteins are not detected, because the response
antecedent “five members” does not include the pro-
tein mentions “SCL, TAL-2, LYL-1 and E2A”. How-
ever, the response antecedent expression is correct
because it contains the minimal boundary “mem-
bers”.

For S-missing and P-correct, we found that
anaphors are normally directly linked to antecedent
proteins. In other words, expression boundary is
same as protein boundary. Another case is that re-
sponse antecedents contain the antecedent proteins,
but are evaluated as incorrect because the expres-
sion boundary of the response expression is larger
than the gold expression. An example is shown in
Table 7 where the response expression “a second
GCR, termed GCRbeta” includes the gold expres-
sion “GCRbeta”. Therefore, although the surface
link is incorrect because the response expression is
evaluated as incorrect, the protein coreference link
receives a full score .

The difference reflects the characteristics of the
two evaluation methods. The analysis result also
shows the affect of markable detection or expression
detection on the resolution evaluation result.

8.2 Protein coreference analysis
We want to see how well each system performs on
each type of anaphor. However, the type information

Ex 3 GOLD
T17 GCRbeta
T18 which
R2 T18 T17 [T4]

RESP
T16 a second GCR, termed GCRbeta
T19 which
R2 T19 T16

Table 7: Examples of S-missing and P-correct

is not explicitly included in the response, so it has
to be induced automatically. We done this by find-
ing the first word of anaphoric expression; then, we
combine it with 1 if the expression is a single-word
expression, or 2 if the expression is multi-word, to
create a sub type value for each anaphor of both
gold and response anaphors. After that, subtypes are
mapped with the anaphor types specified in Section
4 using the mapping in Table 10.

Protein coreference resolution results by sub type
are given in Table 9 and 8. It can be easily seen in
Table 9 which team performed well on which type
of anaphor. In particular, the CU system was good at
resolving the RELAT, APPOS and other types. The
UU team performed well on the DNP type. And for
the PRON type, UZ was the best team. In theory,
knowing this, we can combine strengths of the teams
to tackle all the types.

We analyzed false positive protein anaphora links
to see what types of anaphora are solved by each
system. The recalls in Table 11 are calculated based
on the anaphor type information manually annotated
in the gold data. Comparing with those in Table 9,
there is a small difference due to the automatic in-
duction of anaphoric types based on sub types. It
can be seen in the table 11 that only 77.5 percent of
RELAT-typed anaphora links were resolved (by CU
team), although this type is supposed to be the eas-
iest type. Examining the output data, we found that
the system tends to choose the nearest expression
as the antecedent of a relative pronoun; however,
this is not always correct, as in the following exam-
ples from the UofU submission: “We also identified
functional Aiolos-binding sites1a in the Bcl-2 pro-
moter1b, which1 are able to activate the luciferase
reporter gene.”, and “Furthermore, the analysis of
IkappaBalpha turnover demonstrated an increased
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PRON P- P- P- P- P- P- DNP D- RELAT R-
both-2 it-1 its-1 one-2 that-1 their-1 these-2 this-2 those-1 which-1 whose-1 N/C

UU 36.4 64.4 2 13.3 18.2 62 5 30.8
UZ 46.2 35.7 53.3 7.1 12.5 5.4 59 66.7 15.4
CU 62 70.9 5 42.1
UT 9.5 36.8 10 34.6 9.5 5 30.8
US 13.9 22.9
UC 28.6 9.1

Table 8: Fine-grained results (f-score, %)

Team PRON P- P- DNP D- D- RELAT R- R- Others O- O-
P R F P R F P R F P R F

UU 79.0 11.5 20.1 66.7 5.9 10.8 71.3 56.0 62.7 100.0 18.3 30.8
UZ 62.9 16.9 26.7 12.5 4.4 6.5 71.4 46.7 56.5 50.0 9.1 15.4
CU 64.6 68.0 66.2 50.0 36.4 42.1
UT 72.7 12.3 21.1 14.3 1.5 2.7 73.3 29.3 41.9 100.0 18.2 30.8
US 27.3 6.9 11.0
UC 9.1 1.5 2.6

Table 9: Protein coreference results by coreference type (fscore, %). P = precision, R = recall, F = f-score. O = Others.

TEAM A R D P O
UU 0.0 62.0 5.7 11.1 0.0
UZ 0.0 49.3 4.3 17.0 0.0
CU 0.0 77.5 0.0 0.0 0.0
UT 0.0 32.4 1.4 11.9 14.3
US 0.0 0.0 0.0 6.7 0.0
UC 0.0 0.0 1.4 0.7 0.0

Table 11: Exact recalls by anaphor type, based on man-
ual type annotation. A=APPOS, R=RELAT, D=DNP,
P=PRON, O=OTHER

degradation of IkappaBalpha2a in HIV-1-infected
cells2b that2 may account for the constitutive DNA
binding activity.”. Expressions with the same index
are coreferential expressions. The a subscript indi-
cates correct antecedent, and b subscript indicates
the wrong one. In these examples, the relative pro-
noun that and which are incorrectly linked with the
nearest expression, which is actually part of post-
modifier or the correct antecedent expression.

For the DNP type, recall of the best system is less
than 6 percent (Table 11), although it is an impor-
tant type which occupies almost one fifth of all pro-
tein links (Table 1). There is only one team, the UC
team, attempted to tackle the anaphor; however, it
resulted in many spurious links. The other teams
did not make any prediction on this type. A possi-

ble reason of this is because there are much more
non-anaphoric definite noun phrases than anaphoric
ones, which making it difficult to train an effective
classier for anaphoricity determination. We have to
seek for a better method for solving the DNP links,
in order to significantly improve protein coreference
resolution system.

Concerning the PRON type, Table 8 shows that
except for that-1, no other figures are higher than
50 percent f-score. This is an interesting obser-
vation because pronominal anaphora problem has
been reported with much higher results on other
domains(Raghunathan et al., 2010), and also on
other bio data (hsiang Lin and Liang, 2004). One
of the reasons for the low recall is because target
anaphoric pronouns in the bio domain are neutral-
gender and third-person pronouns(Nguyen and Kim,
2008), which are difficult to resolve than other types
of pronouns(Stoyanov et al., 2010a).

8.3 Protein coreference analysis - Intermediate
antecedent

As mentioned in the task setting, anaphors can di-
rectly link to their antecedent, or indirectly link via
one or more intermediate antecedents. We counted
the numbers of correct direct and indirect protein
coreference links in each submission (Table 12).
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Sub type Type Count Sub type Type Count Sub type Type Count
both 1 PRON 2 both 2 PRON 4 either 1 PRON 0

it 1 PRON 17 its 1 PRON 61 one 2 PRON 1
such 2 DNP 2 that 1 RELAT 37 the 2 DNP 20
their 1 PRON 27 them 1 PRON 1 these 1 PRON 1
these 2 DNP 26 they 1 PRON 5 this 1 PRON 1
this 2 DNP 20 those 1 PRON 9 which 1 RELAT 37

whose 1 RELAT 1 whose 2 RELAT 0 (others) N/C 11

Table 10: Mapping from sub type to coreference type. Count = number of anaphors

TEAM A R R D D P P O
Di Di In Di In Di In Di

UU 44 4 15
UZ 35 2 1 23
CU 54 1
UT 22 1 1 16 1
US 8 1
UC 1 1
Total 1 64 7 65 5 126 9 7

Table 12: Numbers of correct protein coreference links
by anaphor type and by number of antecedents, based on
manual type annotation. A=APPOS, R=RELAT, D=DNP,
P=PRON, O=Others. Di=direct, In=indirect.

APPOS and Others types do not have any intermedi-
ate antecedent, thus there is only one column marked
with D (direct protein coreference link). We can
see in this table that very few indirect links were
detected. Therefore, there is place to improve our
resolution system by focusing on detection of such
links.

8.4 Surface coreference results
Because inclusion of all expressions was not a re-
quirement of shared task submission, the submitted
results may not contain expressions that do not in-
volve in any coreference links. Therefore, it is un-
fair to evaluate expression detection based on the re-
sponse expressions.

Evaluation results for anaphoricity determination
are shown in Table 13. The calculation is performed
as following. Supposing that every anaphor has a
response link, the number of anaphors is number
of distinct anaphoric expressions inferred from the
response links, which is given in the first column.
The total number of gold anaphors are also calcu-
lated in similar way. Since response expressions
are lined with gold expressions before evaluation,

Team Resp Align P R F
UU 360 94.2 19.4 33.3 24.6
UZ 736 75.8 22.0 77.1 34.2
CU 365 89.6 15.3 26.7 19.5
UT 452 92.0 18.1 39.0 24.8
US 259 9.3 6.2 7.6 6.8
UC 797 6.8 1.1 4.3 1.8

Table 13: Anaphoricity determination results. Total num-
ber of gold anaphors = 210. Resp = number of response
anchors, Align = alignment rate(%), P = precision (%), R
= recall (%), F = f-score (%)

we provided the alignment rate for reference in the
second column of the table. The third and forth
columns show the precisions and recalls. In theory,
low anaphoricity determination precision results in
many spurious response links, while low recall be-
comes the bottle neck for the overall coreference
resolution recall. Therefore, we can conclude that
the low performance of anaphoricity determination
contribute to the low coreference evaluation results
(Table 4, Table 3).

9 Conclusion

The coreference resolution supporting task of
BioNLP Shared Task 2011 has drawn attention from
researchers of different interests. Although the over-
all results are not good enough to be helpful for the
main shared tasks as expected, the analysis results in
this paper shows the coreference types which have
and have not yet been successfully solved. Tack-
ling the remained problems in expression bound-
ary detection, anaphoricity determination and reso-
lution algorithms for difficult types of anaphors such
as definite noun phrases should be the future work.
Then, it would be interesting to see how much coref-
erence can contribute to event extraction.
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Abstract

This paper presents the Entity Relations
(REL) task, a supporting task of the BioNLP
Shared Task 2011. The task concerns the ex-
traction of two types of part-of relations be-
tween a gene/protein and an associated en-
tity. Four teams submitted final results for the
REL task, with the highest-performing system
achieving 57.7% F-score. While experiments
suggest use of the data can help improve event
extraction performance, the task data has so
far received only limited use in support of
event extraction. The REL task continues as
an open challenge, with all resources available
from the shared task website.

1 Introduction

The BioNLP Shared Task 2011 (BioNLP ST’11)
(Kim et al., 2011a), the follow-up event to the
BioNLP’09 Shared Task (Kim et al., 2009), was
organized from August 2010 (sample data release)
to March 2011. The shared task was divided into
two stages, with supporting tasks carried out be-
fore the main tasks. The motivation for this task
setup drew in part from analysis of the results of the
previous shared task, which suggested that events
that involve coreference or entity relations repre-
sent particular challenges for extraction. To help ad-
dress these challenges and encourage modular ex-
traction approaches, increased sharing of successful
solutions, and an efficient division of labor, the two
were separated into independent supporting tasks on
Coreference (CO) (Nguyen et al., 2011) and Entity
Relations in BioNLP ST’11. This paper presents the
Entity Relations (REL) supporting task.

2 Task Setting

In the design of the REL task, we followed the gen-
eral policy of the shared task in assuming named
entity recognition (NER) as a given starting point:
participants were provided with manually annotated
gold standard annotations identifying gene/protein
names in all of the training, development, and final
test data. By limiting effects due to NER perfor-
mance, the task remains more specifically focused
on the key challenge studied.

Following the results and analysis from previous
studies (Pyysalo et al., 2009; Ohta et al., 2010), we
chose to limit the task specifically to relations in-
volving a gene/protein named entity (NE) and one
other entity. Fixing one entity involved in each re-
lation to an NE helps assure that the relations are
“anchored” to real-world entities, and the specific
choice of the gene/protein NE class further pro-
vides a category with several existing systems and
substantial ongoing efforts addressing the identifica-
tion of those referents through named entity recog-
nition and normalization (Leaman and Gonzalez,
2008; Hakenberg et al., 2008; Krallinger et al., 2008;
Morgan et al., 2008; Wermter et al., 2009). The
recognition of biologically relevant associations of
gene/protein NEs is a key focus of the main event
extraction tasks of the shared task. By contrast, in
the REL task setting, only one participant in each
binary relation is a gene/protein NE, while the other
can be either a non-name reference such as promoter
or the name of an entity not of the gene/protein type
(e.g. a complex).1 Motivated in part by the relatively
limited number of existing methods for the detec-

1Pronominal references are excluded from annotation scope.
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Figure 1: Simple REL annotation example showing a
PROTEIN-COMPONENT (PR-CO) relation between “hi-
stone H3” and “lysine 9”. An associated METHYLATION
event and its arguments (shaded, not part of the REL task
targets) shown for context.

tion of such entity references, their detection is in-
cluded in the task: participants must recognize these
secondary entities in addition to extracting the rela-
tions they participate in. To limit the demands of this
NER-type task, these entities are not assigned spe-
cific types but rather the generic type ENTITY, and
exact matching of their boundaries is not required
(see Section 4).

The general task setting encompasses a rich set
of potential relation extraction targets. For the task,
we aimed to select relations that minimize overlap
between the targets of other tasks while maintain-
ing relevance as a supporting goal. As the main
tasks primarily target events (“things that happen”)
involving change in entities, we chose to focus in
the REL task on what we have previously termed
“static relations” (Pyysalo et al., 2009), that is, rela-
tions such as part-of that hold between entities with-
out necessary implication of causality or change. A
previous study by Van Landeghem et al. (2010) in-
dicated that this class of relations may benefit event
extraction. We based our choice of specific target
relation on previous studies of entity relations do-
main texts (Pyysalo et al., 2009; Ohta et al., 2010),
which indicated that part-whole relations are by far
the most frequent class of relevant relations for the
task setting and proposed a classification of these
relations for biomedical entities. We further found
that – in terms of the taxonomy of Winston et al.
(1987) – object-component and collection-member
relations account for the the great majority of part-
of relations relevant to the domain. For REL, we
chose to omit collection-member relations in part to
minimize overlap with the targets of the coreference
task. Instead, we focused on two specific types of
object-component relations, that holding between a
gene or protein and its part (domain, regions, pro-
moters, amino acids, etc.) and that between a protein

Item Training Devel Test
Abstract 800 150 260
Word 176,146 33,827 57,256
Protein 9,297 2,080 3,589
Relation 1,857 480 497

PROTEIN-COMPONENT 1,302 314 334
SUBUNIT-COMPLEX 555 166 163

Table 1: REL dataset statistics.

and a complex that it is a subunit of. Following the
biological motivation and the general practice in the
shared task to term genes and gene products PRO-
TEIN for simplicity, we named these two relations
PROTEIN-COMPONENT and SUBUNIT-COMPLEX.
Figure 1 shows an illustration of a simple relation
with an associated event (not part of REL). Events
with Site arguments such as that shown in the figure
are targeted in the GE, EPI, and ID tasks (Kim et al.,
2011b; Ohta et al., 2011; Pyysalo et al., 2011) that
REL is intended to support.

3 Data

The task dataset consists of new annotations for
the GENIA corpus (Kim et al., 2008), building on
the existing biomedical term annotation (Ohta et
al., 2002), the gene and gene product name annota-
tion (Ohta et al., 2009) and the syntactic annotation
(Tateisi et al., 2005) of the corpus. The general fea-
tures of the annotation are presented by Pyysalo et
al. (2009), describing a previous release of a subset
of the data. The REL task annotation effort extended
the coverage of the previously released annotation to
all relations of the targeted types stated within sen-
tence scope in the GENIA corpus.

For compatibility with the BioNLP ST’09 and its
repeat as the GE task in 2011 (Kim et al., 2011b),
the REL task training/development/test set division
of the GENIA corpus abstracts matches that of the
BioNLP ST’09 data. The statistics of the corpus are
presented in Table 1. We note that both in terms of
training examples and the data available in the given
development set, the number of examples of the
PROTEIN-COMPONENT relation is more than twice
that for SUBUNIT-COMPLEX. Thus, at least for
methods based on machine learning, we might gen-
erally expect to find higher extraction performance
for the former relation.
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NLP Extraction Other resources
Rank Team Org Word Parse Entities Relations Corpora Other
1 UTurku 1BI Porter McCCJ + SD SVM SVM - -
2 VIBGhent 1NLP, 1ML, 1BI Porter McCCJ + SD SVM SVM GENIA, PubMed word similarities
3 ConcordU 2NLP - McCCJ + SD Dict Rules - -
3 HCMUS 6L OpenNLP OpenNLP Dict Rules - -

Table 2: Participants and summary of system descriptions. Abbreviations: BI=Bioinformatician, NLP=Natural
Language Processing researcher, ML=Machine Learning researcher, L=Linguist, Porter=Porter stemmer,
McCCJ=McClosky-Charniak-Johnson parser, SD=Stanford Dependency conversion, Dict=Dictionary

UTurku VIBGhent ConcordU HCMUS
PROTEIN-COMPONENT 50.90 / 68.57 / 58.43 47.31 / 36.53 / 41.23 23.35 / 52.05 / 32.24 20.96 / 21.63 / 21.29

SUBUNIT-COMPLEX 48.47 / 66.95 / 56.23 47.85 / 38.12 / 42.43 26.38 / 39.81 / 31.73 4.91 / 66.67 / 9.14
Total 50.10 / 68.04 / 57.71 47.48 / 37.04 / 41.62 24.35 / 46.85 / 32.04 15.69 / 23.26 / 18.74

Table 3: Primary evaluation results for the REL task. Results given as recall / precision / F-score.

4 Evaluation

The evaluation of the REL task is relation-based and
uses the standard precision/recall/F1-score metrics.
Similarly to the BioNLP’09 ST and most of the 2011
main tasks, the REL task relaxes the equality criteria
for matching text-bound annotations: for a submis-
sion entity to match an entity in the gold reference
annotation, it is sufficient that the span of the sub-
mitted entity (i.e. its start and end positions in text)
is entirely contained within the span of the gold an-
notation. This corresponds largely to the approxi-
mate span matching criterion of the 2009 task (Kim
et al., 2009), although the REL criterion is slightly
stricter in not involving testing against an extension
of the gold entity span. Relation matching is exact:
for a submitted relation to match a gold one, both its
type and the related entities must match.

5 Results

5.1 Participation

Table 2 summarizes the participating groups and ap-
proaches. We find a remarkable number of sim-
ilarities between the approaches of the systems,
with all four utilizing full parsing and a depen-
dency representation of the syntactic analysis, and
the three highest-ranking further specifically the
phrase structure parser of Charniak and Johnson
(2005) with the biomedical domain model of Mc-

Closky (2009), converted into Stanford Dependency
form using the Stanford tools (de Marneffe et al.,
2006). These specific choices may perhaps be influ-
enced by the success of systems building on them
in the 2009 shared task (e.g. Björne et al. (2009)).
While UTurku (Björne and Salakoski, 2011) and
VIBGhent (Van Landeghem et al., 2011) further
agree in the choice of Support Vector Machines for
the recognition of entities and the extraction of rela-
tions, ConcordU (Kilicoglu and Bergler, 2011) and
HCMUS (Le Minh et al., 2011) pursue approaches
building on dictionary- and rule-based extraction.
Only the VIBGhent system makes use of resources
external to those provided for the task, extracting
specific semantic entity types from the GENIA cor-
pus as well as inducing word similarities from a
large unannotated corpus of PubMed abstracts.

5.2 Evaluation results

Table 3 shows the results of the REL task. We find
that the four systems diverge substantially in terms
of overall performance, with all pairs of systems
of neighboring ranks showing differences approach-
ing or exceeding 10% points in F-score. While
three of the systems notably favor precision over re-
call, VIBGhent shows a decided preference for re-
call, suggesting a different approach from UTurku in
design details despite the substantial similarities in
overall system architecture. The highest-performing
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system, UTurku, shows an F-score in the general
range of state-of-the-art results in the main event
extraction task, which could be taken as an indica-
tion that the reliability of REL task analyses created
with presently available methods may not be high
enough for direct use as a building block for the
main tasks. However, the emphasis of the UTurku
system on precision is encouraging for such ap-
plications: nearly 70% of the entity-relation pairs
that the system predicts are correct. The two top-
ranking systems show similar precision and recall
results for the two relation types. The submission of
HCMUS shows a decided advantage for PROTEIN-
COMPONENT relation extraction as tentatively pre-
dicted from the relative numbers of training exam-
ples (Section 3 and Table 1), but their rule-based
approach suggests training data size is likely not
the decisive factor. While the limited amount of
data available prevents strong conclusions from be-
ing drawn, overall the lack of correlation between
training data size and extraction performance sug-
gests that performance may not be primarily limited
by the size of the available training data.

6 Discussion

The REL task was explicitly cast in a support role
for the main event extraction tasks, and REL par-
ticipants were encouraged to make their predictions
of the task extraction targets for the various main
task datasets available to main task participants. The
UTurku team responded to this call for supporting
analyses, running their top-ranking REL task sys-
tem on all main task datasets and making its output
available as a supporting resource (Stenetorp et al.,
2011). In the main tasks, we are so far aware of
one application of this data: the BMI@ASU team
(Emadzadeh et al., 2011) applied the UTurku REL
predictions as part of their GE task system for re-
solving the Site arguments in events such as BIND-
ING and PHOSPHORYLATION (see Figure 1). While
more extensive use of the data would have been de-
sirable, we find this application of the REL analyses
very appropriate to our general design for the role of
the supporting and main tasks and hope to see other
groups pursue similar possibilities in future work.

7 Conclusions

We have presented the preparation, resources, re-
sults and analysis of the Entity Relations (REL) task,
a supporting task of the BioNLP Shared Task 2011
involving the recognition of two specific types of
part-of relations between genes/proteins and associ-
ated entities. The task was run in a separate early
stage in the overall shared task schedule to allow
participants to make use of methods and analyses for
the task as part of their main task submissions.

Of four teams submitting finals results, the
highest-performing system, UTurku, achieved a pre-
cision of 68% at 50% recall (58% F-score), a
promising level of performance given the relative
novelty of the specific extraction targets and the
short development period. Nevertheless, challenges
remain for achieving a level of reliability that would
allow event extraction systems to confidently build
on REL analyses to address the main information
extraction tasks. The REL task submissions, repre-
senting four independent perspectives into the task,
are a valuable resource for further study of both the
original task data as well as the relative strengths and
weaknesses of the participating systems. In future
work, we will analyse this data in detail to better
understand the challenges of the task and effective
approached for addressing them.

The UTurku team responded to a call for sup-
porting analyses by providing predictions from their
REL system for all BioNLP Shared Task main task
datasets. These analyses were adopted by at least
one main task participant as part of their system,
and we expect that this resource will continue to
serve to facilitate the study of the position of part-
of relations in domain event extraction. The REL
task will continue as an open shared challenge, with
all task data, evaluation software, and analysis tools
available to all interested parties from http://
sites.google.com/site/bionlpst/.
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Abstract 

To participate in the Protein Coreference 
section of the BioNLP 2011 Shared Task, we 
use Reconcile, a coreference resolution engine, 
by replacing some pre-processing components 
and adding a new mention detector. We got 
some improvement from training two separate 
classifiers for detecting anaphora and 
antecedent mentions. Our system yielded the 
highest score in the task, F-score 34.05% in 
partial mention, protein links, and system recall 
mode. We witnessed that specialized mention 
detection is crucial for coreference resolution in 
the biomedical domain.  

1 Introduction 

Coreference resolution is a mechanism that groups 
entity mentions in a text into coreference chains 
based on whether they refer to the same real-world 
entity or concept. Like other NLP applications, 
which must meet the need for aggressive and 
sophisticated methods of detecting valuable 
information in emerging domains, numerous 
coreference resolvers have been developed, 
including JavaRap (Qiu et al., 2004), GuiTaR 
(Poesio and Kabadjov, 2004) and BART (Versley 
et al., 2008). Our research uses a recently released 
system, Reconcile (Stoyanov et al, 2009; 2010a; 
2010b), which was designed as a general 
architecture for coreference resolution that can be 
used to easily create learning-based coreference 
resolvers. Reconcile is based on supervised 
learning approaches to coreference resolution and 

has showed relatively good performance compared 
with similar types of systems.  

As a first step to adapting Reconcile for the 
biomedical domain, specifically the BioNLP 
Shared Task 2011 (Kim et al., 2011), we modified 
several subcomponents in Reconcile and revised 
the feature set for this task. Most importantly, we 
created a specialized mention detector trained for 
biomedical text. We trained separate classifiers for 
detecting anaphor and antecedent mentions, and 
experimented with several clustering techniques to 
discover the most suitable algorithm for producing 
coreference chains in this domain. 

2 BioNLP 2011 Shared Task  

Our system was developed to participate in a 
Protein Coreference (COREF) task (Nguyen et al., 
2011), one of the supporting tasks in the BioNLP 
Shared Task 2011. The COREF task is to find all 
mentions participating in the coreference relation 
and to connect the anaphora-antecedent pairs. The 
corpus is based on the Genia-Medco coreference 
corpus. The Genia-Medco corpus was produced for 
the biomedical domain, and some comparative 
analysis with this corpus and other newswire 
domain data have been performed (Yang et al., 
2004a; 2004b; Nguyen and Kim, 2008; Nguyen et 
al., 2008).  

The COREF corpus consists of 800 text files for 
training, 150 for development, and 260 for testing, 
which all have gene/protein coreference 
annotations. The training set has 2,313 pairs of 
coreference links with 4,367 mentions. 2,117 
mentions are antecedents, with an average of 4.21 
tokens each (delimited by white space), and 2,301 
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mentions are anaphora, with an average of 1.28 
tokens each. The anaphora are much shorter 
because many of them are pronouns. The five most 
frequent anaphora are that (686 times), which 
(526), its (270), their (130), and it (100).  

3 Our Coreference Resolver 

Reconcile was designed to be a research testbed 
capable of implementing the most current 
approaches to coreference resolution. Reconcile is 
written in Java, to be portable across platforms, 
and was designed to be easily reconfigurable with 
respect to sub-components, feature sets, parameter 
settings, etc. A mention detector and an anaphora-
antecedent pairs generator are added for the 
COREF task. 

3.1 Preprocessing 

For pre-processing, we used the Genia Tagger 
(Tsuruoka and Tsujii. 2005) for sentence splitting, 
tokenizing, and part-of-speech (POS) tagging. For 
parsing, we used the Enju parser (Miyao and 
Tsujii, 2008). 

We replaced Reconcile’s mention detection 
module with new classifiers because of poor 
performance on the biomedical domain with the 
provided classifiers. We reformatted the training 
data with IOB tags and trained a sequential 
classifier using CRF++ (Kudoh, 2007). For this 
sequence tagging, we borrowed the features 
generally used for named entity recognition in the 
biomedical literature (Finkel et al., 2005; Zhou et 
al., 2005; McDonald and Pereira, 2005), including 
word, POS, affix, orthographic features and 
combinations of these features. We extracted 
features from the target word, as well as two words 
to its left and two words to its right. Two versions 
of mention detectors were developed. The first 
(MD-I) trained one model without differentiating 
between anaphora and antecedents. For this 
method, we chose the longest mentions when 
multiple mentions overlapped. The other detector 
(MD-II) used two different models for the 
antecedent and anaphor, classifying them 
separately. MD-II’s classification result was used 
when generating the anaphora-antecedent pairs. 
Table 1 shows the performance of exact matching 
by these detectors compared with the performance 
of the Genia Noun Phrase (NP) chunker. Our 
classifiers did much better, 81.31% precision and 

64.78% recall (MD-II), than the Genia chunker, 
6.58% precision and 72.67% recall. Only an 
average of six mentions occurred in each text, 
while the Genia chunker detected 66.27 noun 
phrases on average. The Genia annotation scheme 
was not limited to specific types of concepts, so the 
Genia NP chunker identifies every possible 
concept. In contrast, the COREF shared task only 
involves a subset of the concepts. Mention 
boundaries were also frequently mismatched. For 
example, “its” was annotated as a mention in the 
COREF task when it appears as a possessive inside 
a noun phrase (e.g., “its activity”), but the Genia 
NP Chunker tags the entire noun phrase as a 
mention. 
 
 Prec Rec F 

Genia NP Chunker   6.58 72.67 12.07 
Mention Detector-I 80.85 63.33 71.03 
Mention Detector-II 81.31 64.78 72.11 
    Antecedent 65.48 41.35 50.69 
    Anaphor 91.72 85.07 88.27 

Table 1:Mention Detection Results on Dev. Set 

3.2 Feature Generation 

We used the following four types of features: 
Lexical: String-based comparisons of the two 

mentions, such as exact string matching and head 
noun matching.  

Proximity: Sentence measures of the distance 
between two mentions.   

Grammatical: A wide variety of syntactic 
properties of the mentions, either individually or in 
pairs. These features are based on part-of-speech 
tags, or parse trees.  

Semantic: Semantic information about one or 
both mentions, such as tests for gender 
and animacy.  

Due to the unavailability of paragraph 
information in our training data, we excluded 
Reconcile’s paragraph features. Also, named entity 
and dependency parsing features were not used for 
training. Table 2 shows the complete feature set 
used for this task. In total, we excluded nine 
existing Reconcile features, mostly semantic 
features: WordNetClass, WordNetDist, WordNetSense, 
Subclass, ParNum, SameParagraph, IAntes, Prednom, 
WordOverlap. Full descriptions of these features can 
be found in Stoyanov (2010a).  
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Lexical HeadMatch, PNStr, PNSubstr, ProStr, 
SoonStr, WordsStr, WordsSubstr 

Proximity ConsecutiveSentences, SentNum, 
SameSentence  

Syntactic Binding, BothEmbedded, 
BothInQuotes, BothPronouns, 
BothProperNouns, BothSubjects, 
ContainsPN, Contraindices, Definite1, 
Definite2, Demonstrative2, 
Embedded1, Embedded2, Indefinite, 
Indefinite1, InQuote1, InQuote2, 
MaximalNP, Modifier, PairType, 
Pronoun, Pronoun1, Pronoun2, 
ProperNoun, ProResolve, 
RuleResolve, Span, Subject1, 
Subject2, Syntax 

Semantic Agreement, Alias, AlwaysCompatible, 
Animacy, Appositive, ClosestComp, 
Constraints, Gender, instClass, 
Number, ProComp, ProperName, 
Quantity, WNSynonyms  

Table 2: Feature Set for Coreference Resolution 

3.3 Clustering 

After Reconcile makes pairwise decisions linking 
each anaphor and antecedent, it produces a 
clustering of the mentions in a document to create 
coreference chains. Because the format of the 
COREF task submission was not chains but 
anaphora-antecedent pairs, it would have been 
possible to submit the direct results of Reconcile’s 
pairwise decisions. However, it was easier to use 
Reconcile as a black-box and post-process the 
chains to reverse-engineer coreferent pairs from 
them. Reconcile supports three clustering 
algorithms: 

Single-link Clustering (SL) (Transitive 
Closure) groups together all mentions that are 
connected by a path of coreferent links.  

Best-first (BF) clustering uses the classifier’s 
confidence value to cluster each noun phrase with 
its most confident antecedent. 

Most Recent First (MRF) pairs each noun 
phrase with the single most recent antecedent that 
is labeled as coreferent.  

Table 3 shows the MUC scores of each 
clustering method with gold standard mentions and 
with the mentions automatically detected by each 
of our two mention detectors. Not surprisingly, 
using gold mentions produced the highest score of 
87.32%. Automatically detected mentions yielded 
much lower performance. MD-I performed best, in 
this evaluation, achieving 49.65%. The most recent 

first clustering algorithm produced the best results 
for both gold mentions and MD-I. The single link 
clustering algorithm, which is the default method 
used by Reconcile, produced the lowest results for 
both gold mentions and MD-I. 

 
 SL BF MRF 

Gold Mention 85.34 86.87 87.32 
Mention Detector-I 48.64 48.82 49.65 
Mention Detector-II 48.31 48.62 48.07 

Table 3: MUC Scores of Dev. Set by Three 
Different Clustering Methods (SL: Single-link, 

BF: Best-first, MRF: Most recent first) 

3.4 Pair Generation from Chains 

Reconcile generates coreference chains, but the 
output for the shared task required anaphora-
antecedent pairs. Therefore, we needed to extract 
individual pairs from the chains. We used the 
chains produced by the most recent first clustering 
algorithm for pair generation. When using MD-I 
output, we took the earliest mention (i.e., the one 
occurring first in the source document) in the chain 
and paired it with each of the subsequent mentions 
in the same chain. Thus, each chain of size N 
produced N-1 pairs. When using the MD-II 
predictions, the classifiers gave us two separate 
lists of antecedent and anaphora mentions. In this 
case, we paired each anaphor in the chain with 
every antecedent in the same chain that preceded it 
in the source document.  

3.5 Evaluation and Analysis 

The mention linking can be evaluated using 
three different scores: atom coreference links, 
protein coreference links, and surface coreference 
links. In the atom link option, only links containing 
given gene/protein annotations are considered 
while in the surface link option, every link is a 
target for the evaluation. Protein links are similar 
to atom links but loosen the boundary of 
gene/protein annotations. There were 202 protein 
links out of 469 surface links in development set.  

For mention detection, exact match and partial 
match are supported in the task evaluation. Recall 
is measured in two modes. In system mode, every 
link is calculated for the linking evaluation. In 
algorithm mode, only links with correctly detected 
mentions are considered for evaluation. For 
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detailed information refer to Nguyen et al. (2011) 
or the task web site.1 Table 4 shows the mention 
linking results (F-score) for the COREF task 
evaluation using partial match and system recall. 
The surface link score on gold mentions reached 
90.06%. For automatic mention detection, MD-I 
achieved a score of 45.38% score, but MD-II 
produced a substantially better score of 50.41%. 
MD-II, which was trained separately for 
antecedent and anaphora detection, performed 
about 5% higher than MD-I in every link mode.  

 
 Atom Protein Surface 

Gold Mention 84.09 84.09 90.06 
Mention Detector-I 28.67 34.41 45.38 
Mention Detector-II 33.45 39.27 50.41 

Table 4: Dev. Set Results by Three Different 
Evaluation Options 

Table 5 shows the recall and precision breakdown 
for the protein evaluation results. Looking behind 
the composite F-score reveals that our system 
produced higher precision than recall. Looking 
back at Table 1, we saw that our anaphor detector 
performed much better than our antecedent 
detector. Since every coreference link requires one 
of each, the relatively poor performance of 
antecedent detection (especially in terms of recall) 
is a substantial bottleneck.  
  

 Prec Rec F 

Gold Mention 98.67 73.27 84.09 
Mention Detector-I 62.34 23.76 34.41 
Mention Detector-II 73.97 26.73 39.27 

Table 5: Precision and Recall Breakdown for 
Protein Evaluation Coreference Links 

3.6 Results: Submission for COREF Task 

We merged the training and development sets to 
use as training data for Reconcile. We used MD-II 
for mention detection and the most recent first 
algorithm for clustering to submit the final output 
on the test data. Table 6 shows the results of our 
final submission along with the five other 
participating teams for the protein evaluation 
coreference links (Nguyen et al., 2011). Our 

                                                             
1 http://sites.google.com/site/bionlpst/home/protein-gene-
coreference-task 

system produced a 34.05% F-score (73.26% 
precision and 22.18% recall) in protein coreference 
links and 25.41% F-score in atom links.  
 

Team  Prec  Rec F 

University of Utah 73.26 22.18 34.05 
University of Zurich 55.45 21.48 30.96 
Concordia University 63.22 19.37 29.65 
University of Turku 67.21 14.44 23.77 
University of Szeged   3.47   3.17   3.31 
University College Dublin   0.25   0.70   0.37 

Table 6: Evaluation Results of Final 
Submissions (Protein Coreference Links) 

4 Conclusions 

The effort to tame Reconcile as a coreference 
engine for the biomedical domain was successful 
and our team’s submission obtained satisfactory 
results. However, there is ample room for 
improvement in coreference resolution. We 
observed that mention detection is crucial - the 
MUC score reached 87.32% with gold mentions on 
the development set but only 49.65% with 
automatically detected mentions (Table 3). One 
possible avenue for future work is to develop 
domain-specific features to better identify 
mentions in biomedical domains. 
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Abstract

This paper describes our event extraction sys-
tem that participated in the bacteria biotopes
task in BioNLP Shared Task 2011. The sys-
tem performs semi-supervised named entity
recognition by leveraging additional informa-
tion derived from external resources including
a large amount of raw text. We also perform
coreference resolution to deal with events hav-
ing a large textual scope, which may span over
several sentences (or even paragraphs). To
create the training data for coreference resolu-
tion, we have manually annotated the corpus
with coreference links. The overall F-score of
event extraction was 33.2 at the official eval-
uation of the shared task, but it has been im-
proved to 33.8 thanks to the refinement made
after the submission deadline.

1 Introduction

In this paper, we present a machine learning-based
approach for bacteria biotopes extraction of the
BioNLP Shared Task 2011 (Bossy et al. , 2011).
The task consists of extracting bacteria localization
events, namely, mentions of given species and the
place where it lives. Places related to bacteria lo-
calization events range from plant or animal hosts
for pathogenic or symbiotic bacteria to natural envi-
ronments like soil or water1. This task also targets
specific environments of interest such as medical en-
vironments (hospitals, surgery devices, etc.), pro-
cessed food (dairy) and geographical localizations.

1https://sites.google.com/site/bionlpst/
home/bacteria-biotopes

The task of extracting bacteria biotopes involves
two steps: Named Entity Recognition (NER) and
event detection. The current dominant approach to
NER problems is to use supervised machine learning
models such as Maximum Entropy Markov Models
(MEMMs), Support Vector Machines (SVMs) and
Conditional Random Fields (CRFs). These models
have been shown to work reasonably well when a
large amount of training data is available (Nadeau
and Sekine, 2007). However, because the anno-
tated corpus delivered for this particular subtask in
the shared task is very small (78 documents with
1754 sentences), we have decided to use a semi-
supervised learning method in our system. Our NER
module uses a CRF model with enhanced features
created from external resources. More specifically,
we use additional features created from the output
of HMM clustering performed on a large amount of
raw text, and word senses from WordNet for tag-
ging.

The target events in this shared task are divided
into two types. The first is Localization events
which relates a bacterium to the place where it lives.
The second is PartOf events which denotes an or-
gan that belongs to an organism. As in Bossy et
al. (2010), the largest possible scope of the men-
tion of a relation is the whole document, and thus
it may span over several sentences (or even para-
graphs). This observation motivated us to perform
coreference resolution as a pre-processing step, so
that each event can be recognized within a narrower
textual scope. There are two common approaches to
coreference resolution: one mainly relies on heuris-
tics, and the other employs machine learning. Some
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instances of the heuristics-based approach are de-
scribed in (Harabagiu et al., 2001; Markert and
Nissim, 2005; Yang and Su, 2007), where they
use lexical and encyclopedic knowledge. Machine
learning-based methods (Soon and Ng, 2001; Ng
and Cardie, 2002; Yang et al. , 2003; Luo et al.
, 2004; Daume and Marcu, 2005) train a classi-
fier or search model using a corpus annotated with
anaphoric pairs. In our system, we employ the sim-
ple supervised method presented in Soon and Ng
(2001). To create the training data, we have man-
ually annotated the corpus with coreference infor-
mation about bacteria.

Our approach, consequently, has three processes:
NER, coreference resolution of bacterium entities,
and event extraction. The latter two processes can be
formulated as classification problems. Coreference
resolution is to determine the relation between can-
didate noun phrases and bacterium entities, and the
event extraction is to detect the relation between two
entities. It should be noted that our official submis-
sion in the shared task was carried out without using
a coreference resolution module, and the system has
been improved after the submission deadline.

Our contribution in this paper is two-fold. In the
methodology aspect, we use an unsupervised learn-
ing method to create additional features for the CRF
model and perform coreference resolution to narrow
the scope of events. In the resource aspect, the man-
ual annotations for training our coreference resolu-
tion module will be made available to the research
community.

The remainder of this paper is organized as fol-
lowed. Section 2, 3 and 4 describe details about the
implementation of our system. Section 5 presents
the experimental results with some error analysis.
Finally, we conclude our approach and discuss fu-
ture work in section 6.

2 Semi-supervised NER

According to the task description, the NER task
consists of detecting the phrases that denote bacte-
rial taxon names and localizations which are bro-
ken into eight types: Host, HostPart, Geographical,
Food, Water, Soil, Medical and Environment. In
this work, we use a CRF model to perform NER.
CFRs (Lafferty et. al., 2001) are a sequence model-

ing framework that not only has all the advantages
of MEMMs but also solves the label bias problem
in a principled way. This model is suitable for la-
beling sequence data, especially for NER. Based on
this model, our CRF tagger is trained with a stochas-
tic gradient descent-based method described in Tsu-
ruoka et al. (2009), which can produce a compact
and accurate model.

Due to the small size of the training corpus and
the complexity of their category, the entities cannot
be easily recognized by standard supervised learn-
ing. Therefore, we enhance our learning model by
incorporating related information from other exter-
nal resources. On top of the lexical and syntactic
features, we use two additional types of information,
which are expected to alleviate the data sparseness
problem. In summary, we use four types of features
including lexical and syntactic features, word clus-
ter and word sense features as the input for the CRF
model.

2.1 Word cluster features

The idea of enhancing a supervised learning model
with word cluster information is not new. Kamaza
et. al. (2001) use a hidden Markov model (HMM)
to produce word cluster features for their maximum
entropy model for part-of-speech tagging. Koo et al.
(2008) implement the Brown clustering algorithm
to produce additional features for their dependency
parser. For our NER task, we use an HMM to pro-
duce word cluster features for our CRF model.

We employed an open source library2 for learn-
ing HMMs with the online Expectation Maximiza-
tion (EM) algorithm proposed by Liang and Klein
(2009). The online EM algorithm is much more ef-
ficient than the standard batch EM algorithm and al-
lows us to use a large amount of data. For each hid-
den state, words that are produced by this state with
the highest probability are written. We use this result
of word clustering as a feature for NER. The optimal
number of hidden states is selected by evaluating its
effectiveness on NER using the development set.

To prepare the raw text for HMM clustering, we
downloaded 686 documents (consisting of both full
documents and abstracts) about bacteria biotopes

2http://www-tsujii.is.s.u-tokyo.ac.jp/

˜hillbig/ohmm.htm
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Figure 1: Sample of HMM clustering result.

from MicrobeWiki, JGI Genome Portal, Genoscope,
2Can bacteria pages at EBI and NCBI Genome
Project (the training corpus is also downloaded from
these five webpages). In addition, we use the
100,000 latest MEDLINE abstracts containing the
string “bacteri” in our clustering. In total, the raw
text consists of more than 100,000 documents with
more than 2 million sentences.

A part of the result of HMM clustering is shown
in Figure 1. According to this result, the word “Bi-
fidobacterium” belongs to cluster number 9, and its
feature value is “Cluster-9”. The word cluster fea-
tures of the other words are extracted in the same
way.

2.2 Word sense features

We used WordNet to produce additional features on
word senses. Although WordNet3 is a large lexi-
cal database, it only comprises words in the general
genre, to which only the localization entities belong.
Since it does not contain the bacterial taxon names,
the most important entities in this task, we used an-
other dictionary for bacteria names. The dictionary
was extracted from the genomic BLAST page of
NCBI 4. To connect these two resources, we simply
place all entries from the NCBI dictionary under the
‘bacterium’ sense of WordNet. Table 1 illustrates
some word sense features employed in our model.

2.3 Pre-processing for bacteria names

In biomedical documents, the bacteria taxon names
are written in many forms. For example, they are

3http://wordnet.princeton.edu/
4http://www.ncbi.nlm.nih.gov/sutils/

genom_table.cgi

Word POS Sense
chromosome NN body
colonize VBP social
detected VBN perception
fly NN animal
gastrointestinal JJ pert
infant NN person
longum FW bacterium
maintaining VBG stative
milk NN food
onion NN plant
proterins NNS substance
USA NNP location

Table 1: Sample of word sense features given by Word-
Net and NCBI dictionary.

presented in a full name like “Bacillius cereus”, or
in a short form such as “B. cereus”, or even in an ab-
breviation as “GSB” (green sulfur bacteria). More-
over, the bacteria names are often modified with
some common strings such as “strain”, “spp.”, “sp.”,
etc. “Borrelia hermsii strain DAH”, “Bradyrhizo-
bium sp. BTAi1”, and “Spirochaeta spp.” are ex-
amples of this kind. In order to tackle this prob-
lem, we apply a pre-processing step before NER. Al-
though there are many previous studies solving this
kind of problem, in our system, we apply a simple
method for this step.

• Retrieving the full form of bacteria names. We
assume that (a) both short form and full form
must occur in the same document; (b) a token
is considered as an abbreviation if it is writ-
ten in upper case and its length is shorter than
4 characters. When a token satisfies condition
(b) (which means it is an abbreviation), the pro-
cessing retrieves its full form by identifying all
sequences containing tokens initialized by its
abbreviated character. In case of short form
like “B. cereus”, the selected sequence must in-
clude the right token (which is “cereus” in “B.
cereus”).

• Making some common strings transparent. As
our observation on the training data, there are
8 common strings in bacteria names, including
“strain”, “str”, “str.”, “subsp”, “spp.”, “spp”,
“sp.”, “sp”. All of these strings will be removed
before NER and recovered after that.
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3 Coreference Resolution as Binary
Classification

Coreference resolution is the process of determin-
ing whether different nominal phrases are used to
refer to the same real world entity or concept. Our
approach basically follows the learning method de-
scribed in Soon and Ng (2001). In this approach,
we build a binary classifier using the coreferring en-
tities in the training corpus. The classifier takes a
pair of candidates and returns true if they refer to
the same real world entity and false otherwise. In
this paper, we limit our module to detecting the bac-
teria’s coreference, and hence the candidates consist
of noun phrases (NPs) (starting by a determiner),
pronouns, possessive adjective and name of bacte-
ria.

In addition to producing the candidates, the pre-
processing step creates a set of features for each
anaphoric pair. These features are used by the clas-
sifier to determine if two candidates have a corefer-
ence relation or not.

The following features are extracted from each
candidate pair.

• Pronoun: 1 if one of the candidates is a pro-
noun; 0 otherwise.

• Exact or Partial Match: 1 if the two strings of
the candidates are identical, 2 if they are partial
matching; 0 otherwise.

• Definite Noun Phrase: 1 if one of the candi-
dates is a definite noun phrases; 0 otherwise.

• Demonstrative Noun Phrase: 1 if one of the
candidates is a demonstrative noun phrase; 0
otherwise.

• Number Agreement: 1 if both candidates are
singular or plural; 0 otherwise.

• Proper Name: 1 if both candidates are bac-
terium entities or proper names; 0 otherwise.

• Character Distance: count the number of the
characters between two candidates.

• Possessive Adjective: 1 if one of the candidates
is possessive adjective; 0 otherwise.

Figure 2: Example of annotating coreference resolution.
T16 is a bacterium which is delivered in *.a2 file, T24
and T25 are anaphoric expressions. There are two coref-
erence relations of T16 and T24, T16 and T25.

• Exist in Coreference Dictionary: 1 if the candi-
date exists in the dictionary extracted from the
training data; 0 otherwise. This feature aims to
remove noun phrases which are unlikely to be
related to the bacterium entities.

The first five features are exactly the same as those
in Soon and Ng (2001), while the others are refined
or added to make it suitable for our specific task.

In the testing phase, we used the best-first
clustering as in Ng and Cardie (2002). Rather
than performing a right-to-left search from each
anaphoric NP for the first coreferent NP, a right-to-
left search for a highly likely antecedent was per-
formed. Hence, the classifier was modified to select
the antecedent of NP with the coreference likelihood
score above a threshold. This threshold was tuned by
evaluating it on the development set.

3.1 Corpus annotation

To create the training data for coreference resolu-
tion, we have manually annotated the corpus based
on the gold-standard named entity annotations deliv-
ered by the organizer. Due to our decision to focus
on bacteria names, only the coreference of these en-
tities are labeled. We use a format similar to those of
the organizer, i.e. the standoff presentation and text-
bound annotations. The coreference annotation file
consists of two parts, one part for anaphoric expres-
sions and the other for coreference relation. Figure 2
shows an example of a coreference annotation with
the original text.
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4 Event Extraction

The bacteria biotopes, as mentioned earlier, are di-
vided into two types. The first type of events,
namely localization events, relates a bacterium to
the place where it lives, and has two mandatory ar-
guments: a Bacterium type and a localization type.
The second type of events, i.e. PartOf events, de-
note an organ that belongs to an organism, and has
two mandatory arguments of type HostPart and Host
respectively. We view this step as determining the
relationship between two specific entities. Because
of no ambiguity between the two types of event, the
event extraction can be solved as the binary classifi-
cation of pairs of entities. The classifier is trained on
the training data with four types of feature extracted
from the context between two entities: distance in
sentences, the number of entities, the nearest left and
right verbs.

Generating Training Examples. Given the
coreference information on bacterium entities, the
system considers all the entities belonging to the
coreference chains as real bacteria and generates
event instances. Since about 96% of all annotated
events occur in the same paragraph, we restrict our
method to detecting events within one paragraph.

• Localization Event. The system creates a rela-
tionship between a bacterium and a localization
entity with minimum distance between them
by the following priorities:

(1) The bacterium precedes the localization en-
tity in the same sentence.

(2) The bacterium precedes the localization en-
tity in the same paragraph.

• PartOf Event. All possible relationships be-
tween Host and HostPart entities are generated
if they are in the same paragraph.

5 Experiments and Discussion

The training and evaluation data used in these exper-
iments are provided by the shared task organizers.
The token and syntactic information are extracted
from the supporting resources (Stenetorp et. al. ,
2011). More detail, the tokenized text was done by
GENIA tools, and the syntactic analyses was cre-
ated by the McClosky-Charinak parser (McClosky

Experiment Acc. Pre. Re. F-score
Baseline 94.28 76.32 35.51 48.47
Word cluster 94.46 78.23 39.59 52.57
Word sense 94.63 74.15 44.49 55.61
All Features 94.70 77.62 45.31 57.22

Table 2: Performance of Named Entity Recognition in
terms of Accuracy, Precision, Recall and F-score with
different features on the development set.

and Charniak, 2008), trained on the GENIA Tree-
bank corpus (Tateisi et al., 2005), which is one of the
most accurate parsers for biomedical documents.

For both classification of anaphoric pairs in coref-
erence resolution and determining relationship of
two entites, we used the SVMlight library 5, a state-
of-the-art classifier, with the linear kernel.

In order to find the best parameters and features
for our final system, we conducted a series of exper-
iments at each step of the approach.

5.1 Named Entity Recognition

We evaluated the impact of additional featues on
NER by running four experiments. The Baseline ex-
periment was conducted by using the original CRF
tagger, which did not use any additional features de-
rived from external resources. The other three ex-
periments were conducted by incrementally adding
more features to the CRF tagger. Table 2 shows the
results on the development set6.

Through these experiments we have realized that
using the external resources is very effective. The
word cluster and word sense features are used like
a dictionary. The first one can be considered as the
dictionary of specific classes of entity in the same
domain with this task, which mainly supports the
precision, whereas the latter is a general dictionary
boosting the recall. With regard to F-score, the word
sense features outperform the word cluster features.
When we combine all of them, the F-score is im-
proved significantly by nearly 9 points.

The detailed results of individual classes in Ta-
ble 3 show that the Environment entities are the
hardest to recognize. Because of their general char-
acteristic, these entities are often confused with Host

5http://svmlight.joachims.org/
6These scores were generated by using the CoNLL 2000

evaluation script.
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Class Gold Pre. Re. F-score
Bacterium 86 70.00 40.23 51.09
Host 78 78.57 56.41 65.67
HostPart 44 91.67 50.00 64.71
Geographical 8 71.43 62.50 66.67
Environment 8 0.00 0.00 0.00
Food 0 N/A N/A N/A
Medical 2 100.00 50.00 66.67
Water 17 100.00 17.65 30.00
Soil 1 100.00 100.00 100.00
All 244 77.62 45.31 57.22

Table 3: Results of NER using all features on the de-
velopment set. The “Gold” column shows the number
of entities of that class in the gold-standard corpus. The
score of Food entities is not available because there is no
positive instance in the development set.

Detection Linking
Precision 24.18 20.48
Recall 91.36 33.71
F-score 38.24 25.48

Table 4: Result of coreference resolution on the develop-
ment set achieved with gold-standard named entity anno-
tations.

or Water. In contrast, the Geographical category is
easier than the others if we have gazetteers and ad-
ministrative name lists.

5.2 Coreference Resolution
We next evaluated the accuracy of coreference reso-
lution for bacterium entities. The evaluation7 is car-
ried out in two steps: evaluation of mention detec-
tion, and evaluation of mention linking to produce
coreference links. The exact matching criterion was
used when evaluating the accuracy of the two steps.
Table 4 shows the performance of the coreference
resolution module when taking annotated entites as
input. As mentioned in section 3, the first step of this
module considers all NPs beginning with a deter-
miner and bacterium entities as candidates. There-
fore, the number of the candidate NPs is vastly larger
than that of the positive ones. This is the reason
why the precision of mention detection is low, while
the recall is high. This high recall leads to a large
number of generated linkings and raises the com-

7http://sites.google.com/site/bionlpst/
home/protein-gene-coreference-task

Experiment Pre. Re. F-score
No Coref. 42.11 27.34 33.15
With Coref. 43.40 27.64 33.77

Table 5: Comparative results of event extraction with and
without coreference information on the test set.

Type of event Num. of addition Num. of ruled out
True False True False

Localization 17 1 6 20
PartOf 6 5 1 0
Total 29 27

Table 6: Contribution of coreference resolution to event
extraction.

plexity of linking detection. In order to obtain more
accurate results, we had to remove weak linkings
whose classification score is under 0.7 (this is the
best threshold on the development set). However, as
shown in Table 4, the performance of mention link-
ing was not satisfactory.

5.3 Event Extraction
Finally, we carried out two experiments on the test
set to investigate the effect of coreference resolution
on event extraction. The results shown in Table 5 in-
dicate that the contribution of coreference resolution
in this particular experiment is not significant. The
coreference information helps the module to add 29
more events (23 true and 6 false events) and rule out
27 events (20 false and 7 true events) compared with
the experiment with no coreference resolution. De-
tail about this contribution is presented in Table 6.

We further analyzed the result of event extraction
and found that there exist two kinds of Localization
events, which we call direct and indirect events. The
direct events are the ones that are easily recogniz-
able on the surface level of textual expressions. The
three Localization events in Figure 3 belong to this
type. Our module is able to detect most of the di-
rect events, especially when we have the coreference
information on bacteria – it is straight-forward be-
cause the two arguments of the event occur in the
same sentence. In constrast, the indirect events
are more complicated. They appear implicitly in the
document and we need to infer them through an in-
termediate agent. For example, a bacterium causes
a disease, and this disease infects the humans or an-

99



Figure 3: Example of direct events. The solid line is the
Localization event, the dash line is the PartOf event.

Figure 4: Example of indirect events. The solid line is
the Localization event, the arrow shows the causative re-
lation.

imals. Therefore, it can be considered that the bac-
terium locates in the humans or animals. Figure 4
illustrates this case. In this example, the Bacillus
anthracis causes Anthrax, Humans contract the dis-
ease (which refers to Anthrax), and the Bacillus an-
thracis locates in Humans. These events are very
difficult to recognize since, in this context, we do
not have any information about the disease. Events
of this type provide an interesting challenge for bac-
teria biotopes extraction.

6 Conclusion and Future Work

We have presented our machine learning-based ap-
proach for extracting bacteria biotopes. The system
is implemented with modules for three tasks: NER,
coreference resolution and event extraction.

For NER, we used a CRF tagger with four types
of features: lexical and syntactic features, the word
cluster and word sense extracted from the external
resources. Although we achieved a significant im-
provement by employing WordNet and the HMM
clustering on raw text, there is still much room for
improvement. For example, because all extracted
knowledge used in this NER module belongs to the
general knowlegde, its performance is not as good as
our expectation. We envisage that the performance
of the module will be improved if we can find useful
biological features.

We have attempted to use the information ob-
tained from the coreference resolution of bacteria to
narrow the event’s scope. On the test set, although it
does not improve the system significantly, the coref-

erence information has shown to be useful in event
extraction. 8

In this work, we simply used binary classifiers
with standard features for both coreference resolu-
tion and event detection. More advanced machine
learning approaches for structured prediction may
lead to better performance, but we leave it for future
work.
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Abstract 

This paper describes the system of the 
INRA Bibliome research group applied to 
the Bacteria Biotope (BB) task of the Bi-
oNLP 2011 shared tasks. Bacteria, geo-
graphical locations and host entities were 
processed by a pattern-based approach and 
domain lexical resources. For the extraction 
of environment locations, we propose a 
framework based on semantic analysis sup-
ported by an ontology of the biotope do-
main. Domain-specific rules were devel-
oped for dealing with Bacteria anaphora. 
Official results show that our Alvis system 
achieves the best performance of participat-
ing systems. 

1 Introduction 

Given a set of Web pages, the information extrac-
tion goal of the Bacteria Biotope (BB) task is to 
precisely identify bacteria and their locations and 
to relate them. The type of the predicted locations 
has to be selected among eight types. Among them 
the host and host-part locations have to be related 
by the part-of relation. Three teams participated in 
the challenge. 
 
BB task example 
Ureaplasma parvum is a mycoplasma and a pathogenic 

ureolytic mollicute which colonises 

 the urogenital tracts of humans. 

 

One of the specificities of the BB task is that the 
bacteria location vocabulary is very large and vari-
ous as opposed to protein subcellular locations in 

biology challenges (Kim et al., 2010) and geo-
graphical locations (Zhou et al., 2005). Locations 
include natural environments and hosts as well as 
food and medical locations. In order to deal with 
this heterogeneity, we propose a framework based 
on a term analysis of the test corpus and a shallow 
mapping of these terms to a bacteria biotope (BB) 
termino-ontology. This mapping derives the type of 
location terms and filters out non-location terms. 
Large external dictionaries of host names (i.e. 
NCBI taxonomy) and geographical names (i.e. 
Agrovoc thesaurus) complete the lexical resources. 

The high frequency of bacteria anaphora and 
ambiguous antecedent candidates in the corpus was 
also a difficulty. Our Alvis system implements an 
anaphora resolution algorithm that takes into con-
sideration the anaphoric distance and the position 
of the antecedent in the sentence. Alvis predicts the 
bacteria names and their relation to the locations 
with the help of hand-made patterns based on lin-
guistic analysis and lexical resources.  

The methods for predicting and typing locations 
(section 2) and bacteria (section 3) are first de-
scribed. Section 4 details the method for relating 
them. Section 5 comments the experimental results. 

2 Location  

Our system handles separately the recognition of 
host and geographical names by dictionary map-
pings, while the recognition of locations of the en-
vironment and host part types is based on linguistic 
analysis and ontology inference.  

Host names and geographical names appeared to 
be easier to predict by using a named-entity recog-
nition strategy than the other types of location. 
They are less subject to variation than environ-
mental locations, which can include any physical 
feature. For host name extraction, we used the 
NCBI taxonomy as the major source. Only the eu-
karyote subtree was considered for host detection. 

Localization 

Part-of 
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Our system filters out the ambiguous names such 
as Indicator (honeyguides) or Dialysis (xylophage 
insect) by comparing them to a list of common 
words in English. The host name list was enriched 
with additional common names including non-
taxonomic host groups (e.g. herbivores), progeny 
names (e.g. calf) and human categories (e.g. pa-
tient). The resulting host name list contains more 
than 1,800,000 scientific names and 60,000 com-
mon names. The geographical name recognition 
component uses a small dictionary of all geo-
graphic terms from the Agrovoc thesaurus sub-
vocabularies. At first, we considered using the very 
rich resource GeoNames. However, it contains too 
many ambiguous names to be directly usable by 
short-term development. 

2.1 Location of Environment type 

The identification of environment locations is done 
in two steps. First, the automatic extraction of all 
candidate terms from the test corpus, then the as-
signment of a location type to these terms with the 
help of the Bacteria Biotope (BB) termino-
ontology. The type assigned to a given term is the 
type of the closest concept label in the ontology. 
Since the BB termino-ontology was originally not 
structured according to the eight types, in order to 
be usable it first had to be enriched by the new 
concepts and then mapped to this topology.  

Corpus term extraction. The corpus terms were 
automatically extracted by the AlvisNLP/ML pipe-
line (Nedellec et al., 2008) with BioYatea (Nedel-
lec et al., 2010). BioYatea is the version of Yatea 
(Hamon & Aubin, 2006) adapted to the biology 
domain. We modified BioYatea setting according 
to the training dataset study. We observed that 
most of the location terms in the training dataset 
are noun phrases with adjective modifiers (e.g. ro-
dent nests) while prepositional phrases are rather 
rare (e.g. breaks in the skin). We set the term 
boundaries of BioYatea to include all prepositions 
except the of preposition. Considering other prepo-
sitions such as with may yield syntactic attachment 
errors, thus we prefer the risk of incomplete terms 
to incorrect prepositional attachments. 

Bacteria Biotope ontology. We used the Bacte-
ria Biotope (BB) termino-ontology for typing the 
extracted terms. It is under development for the 
study of bacteria phenotypes and habitats. The high 
level of the habitat part is structured in a manner 
similar to that proposed by the one level classifica-

tion by Floyd (Floyd et al., 2005). It has a fine-
grained structure with the same goal as the general-
ist EnvO habitat ontology (Field et al., 2008), but it 
focuses on bacteria phenotype and biotope model-
ing. It includes a terminological level that records 
lexical forms of the concepts including terms, 
synonyms and variations. 

For the purpose of the challenge, the initial on-
tology was manually completed using location 
concepts. The training corpus, as well as the habitat 
and isolation site fields of the GOLD database on 
sequenced prokaryotes (Liolios et al., 2009) are the 
main sources of location terms and synonyms. The 
analysis of the training corpus mainly led to the 
addition of adjectival forms of host parts (e.g. lym-
phatic, intracellular) and human references (e.g. 
patient, infant, progeny).  

The GOLD database isolation site field is a very 
rich source of bacteria location terms. It is filled by 
natural language descriptions of matters, natural 
habitats, hosts and geographical locations. For in-
stance, the isolation site of Anoxybacillus flavi-
thermus bacterium is waste water drain at the 
Wairakei geothermal power station in New Zea-
land. The term analysis of GOLD isolation site en-
tries yielded 3,415 location terms including 1,050 
geographical names. Hundreds of these terms were 
manually added to the BB termino-ontology. The 
lack of time as well as the full sentence structure of 
the GOLD resource prevented us from correctly 
handling them in a fully automatic way. We are 
currently developing a method for the automatic 
alignment of the terms extracted from GOLD to the 
BB termino-ontology. Additionally, the GOLD 
habitat field provided around a hundred different 
terms that have been directly integrated into the BB 
termino-ontology. 

The current version of the habitat subpart of the 
BB termino-ontology contains 1,247 concepts and 
266 synonyms.  

Location types in Bacteria Biotope ontology. 
The BB termino-ontology has been developed pre-
vious to the BB task and the structure of its habitat 
subpart does not reflect the eight location types of 
the task. In order to reuse the ontology for the BB 
task, we assigned types to each location concept. 
We manually associated the high level nodes of the 
location hierarchies to the eight BB task types. The 
types of the lower level concepts were then auto-
matically inferred. For instance, the concept 
aquatic environment is tagged Water in the ontol-
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ogy and all of its descendants lake, sea, ocean are 
of type Water as well. Local type exceptions were 
manually tagged. For instance, the waste tree in-
cludes water-carried wastes of type Water and solid 
industrial residues of type Environment. This way 
all concepts in the resulting typed ontology were 
assigned a unique type. The concept types are then 
propagated to their associated term classes at the 
terminological level. For instance, underground 
water and its synonym subterranean water are both 
typed as Water. The resulting typed BB termino-
ontology is then usable for deriving the types of the 
terms extracted from the test corpus. 

Derivation of location type. The BB termino-
ontology scope is too limited for the correct predic-
tion of all candidate term types by Boolean and 
exact comparison. From the 2,290 candidate terms 
of the test corpus, only 152 belong as such to the 
BB termino-ontology. We propose a method based 
on the head comparison of the candidate and BB 
terms for the derivation of the candidate term type.  

The quality of the ontology-based annotation 
depends to a large extent on an accurate match be-
tween the resource and the terms extracted from the 
corpus. Our method targets the syntactic structure 
of terms (candidate and BB terms) in order to gath-
er the most of semantically similar terms. This 
approach differs from the ontology alignment and 
population methods that also use the information 
from the ontology structure in order to infer seman-
tic relationships (e.g. hyponyms, meronyms) (Eu-
zenat, 2007). It also differs from semantic annota-
tion supported by context analysis such as distribu-
tional semantics (Grefenstette, 1994) or Hearst pat-
terns (Hearst, 1992). It belongs to the class of 
methods that focus on the morphology of the cor-
pus terms, which use string-based (Levensthein, 
1966, Jaro, 1989) or linguistic-based methods (Jac-
quemin & Tzoukermann, 1999).  

Even though the context-based approach should 
produce very good results, we chose a less time-
consuming method that is easier and faster to set 
up, which is based on morphosyntactic analysis.  In 
our case, string similarity measures turn out to be 
irrelevant (laboratory rat does not mean rat labo-
ratory). We observed that in candidate and BB 
terms, the head is very often the most informative 
element. Thus, the linguistic-based analysis of 
terms, in particular the head-similarity analysis 
(Hamon & Nazarenko, 2001), represents a promis-
ing alternative. Our method is inspired by 

MetaMap (Aronson, 2001). MetaMap tags bio-
medical corpora with the UMLS Metathesaurus by 
syntactic analysis that takes into account lexical 
heads of terms. The similarity scores computed by 
linguistically-based metrics are higher for terms 
whose heads have previously been analyzed.  

The MetaMap method includes a variant compu-
tation that maps acronyms, abbreviations, syno-
nyms as well as derivational, inflectional and spell-
ing variants. Our term typing method is less sophis-
ticated and uses a few lexical variants due to the 
lack of a complete resource. Some ontology en-
richment applications also use head-supported term 
matching, as in Desmontils (Desmontils et all, 
2003). In Desmontils, new concepts belonging to 
WordNet (Fellbaum, 1998) are automatically added 
to the ontology in order to improve the indexing 
process. However, the analysis of the results shows 
that a great number of concepts found in the texts 
are not considered because they do not exist in 
WordNet. Our typing task uses a similar head-
based method, but only for type derivation.  

Our system derives the location type of candi-
date terms in several steps. First, if there is a term 
in the BB termino-ontology that is strictly equal to 
the candidate term, it is assigned the same type. 
Then, the other candidate terms are assigned types 
according to the comparison of their heads to the 
BB term heads. We assume that in most of the 
cases the term head conveys the information about 
the type and is non-ambiguous. A given head H is 
non-ambiguous if all BB terms with head H are of 
the same type. The location term head set is the set 
of all habitat term heads found in the BB termino-
ontology. The current version contains 693 differ-
ent heads. Let Te denote the extracted term to be 
typed. If the head of Te does not belong to the BB 
term head set, then the type of Te is simply not Lo-
cation (e.g. high metabolic diversity). If Te head 
does belong to the BB term head set and the head is 
non-ambiguous, then Te is assigned the associated 
type. For instance, the head of the extracted term 
stratified lake is lake. The type of all the BB terms 
with lake head is Water (e.g. meromictic lake). 
Stratified lake is therefore typed as Water.  

Specific processing is applied to terms with am-
biguous heads. The associative set of BB term 
heads and types exhibits some cases of ambiguous 
heads with multiple types that we analyzed in de-
tail. There are two kinds of ambiguities that were 
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processed in different ways. In the first, multiple 
types reflect different roles of the same object. In 
the second, the head is non-informative with re-
spect to the type.  In the latter case the type is con-
veyed by the subterm (term after head removal). 
We qualify non-informative BB term heads as neu-
tral. They mainly denote habitats (habitat, envi-
ronment, medium, zone) and extracts (sample, sur-
face, isolate, material, content). In this case, the 
type is derived from the subterm. For instance, the 
head isolate of the extracted term marine isolate is 
neutral. After head removal, it is assigned the type 
Water since marine is of type Water. Freshwater 
has the same type as freshwater medium or fresh-
water environment since medium and environment 
are neutral heads.  

Some heads have more than one type although 
they denote specific locations. Their multiple types 
reflect different uses or states. For instance, the 
head bottle has two types: Food and Medical. The 
type Food is derived from the BB concept water 
bottle and the type Medical is derived from bedside 
water bottles in a hospital environment. The correct 
type for the extracted terms is then selected by a set 
of patterns based on the context of the term in the 
document. For instance, many vegetables and 
meats could be either of type Host or Food. The 
type is Host by default. One pattern states that if a 
term includes or is preceded by a food processing-
related word (e.g. cooked, grilled, fermented), then 
the term is reassigned the type Food. Another pat-
tern states that if a host is preceded by a death-
related adjective (dead, decaying), then its type 
should be revised as Environment.  

Our system currently includes nine disambigua-
tion/retyping patterns. The first version of the type 
derivation method was automatically applied to the 
1,263 GOLD terms after head analysis. Manual 
examination of the results yielded an extension of 
the two lists of neutral heads and heads with am-
biguous types. There are 20 neutral heads and 21 
ambiguous heads in the current version of the BB 
termino-ontology. The head-matching algorithm 
appears to be quite productive for the biotope 
terms. The procedure applied to the test corpus 
yielded the following figures: BioYatea extracted 
2,290 terms. 416 terms matching the post-
processing filters were discarded. This includes 
terms which are too general (i.e. approach, diver-
sity), terms containing irrelevant or non desirable 
adjectives (i.e. numerous deficiencies, known spe-

cies) and terms containing forbidden words accord-
ing to the annotation location rules (i.e. bacteria, 
pathogen, contaminated, parasite). Finally, 1,873 
candidate terms were kept. 
Among these figures:  
- 152  terms belong to the BB termino-ontology  
- 90  terms were typed using the ontology heads 
- 6 terms with several types were handled by 

disambiguation patterns. 
We plan to extend the list of neutral heads and dis-
criminate adjectives for type disambiguation by 
machine learning classification applied to the BB 
termino-ontology modifiers. 

Location entity boundary. The analysis of term 
extraction result from the training corpus shows 
that the predicted boundaries of locations were not 
fully consistent with the task annotation guidelines. 
Post-processing adjusts incorrect boundaries by 
filtering irrelevant words, packing and merging 
terms. Irrelevant words (e.g. contaminated, in-
fected, host species, disease, inflammation) were 
removed from the location candidate terms inde-
pendently of their types (e.g. contaminated Bach-
man Road site vs. Bachman Road ; host plant vs. 
plant). Note that BioYatea extracts not only the 
maximum terms (e.g. contaminated Bachman Road 
site), but also their constituents (Bachman Road 
site, Bachman Road and site). Boundary adjust-
ment often consists in selecting the relevant alter-
native among the subterms.  

Other boundary issues are handled by several 
patterns, which are applied after the typing stage. 
These patterns are type-dependent: each pattern 
only applies to one type or a subset of location 
types. When necessary, they shift the boundaries in 
order to include relevant modifiers.  They also split 
location terms or join adjacent location terms. 
BioYatea may have missed relevant modifiers be-
cause of POS-tagging errors. For instance, if a na-
tionality name precedes a location, then it is in-
cluded (e.g. German oil field). Also, it frequently 
happens that hosts are modifiers of host parts (e.g. 
insect gut). BioYatea extracts the whole term and 
its constituents. The term is correctly typed as 
Host-part and the host modifier as Host. In order to 
avoid embedded locations, a specific pattern is de-
voted to the splitting of these terms. In this way 
insect gut (Host-part) becomes insect (Host) and 
gut (Host-part). 

Most of these patterns involve several specific 
lexicons, including cardinal directions, relevant and 
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irrelevant modifiers for each type of location, as 
well as types, which can be merged and split. The 
current resources were manually built by examin-
ing the location terms of the training set and GOLD 
isolation fields. The acquisition of relevant and 
irrelevant modifiers could be automated by ma-
chine learning. Some linguistic phenomena could 
be better handled by the customization of BioYa-
tea. For instance BioYatea considers the preposi-
tion with as a term boundary so it cannot extract 
terms containing with, like areas with high sulfur 
and salt concentrations.  

3 Extraction of Bacteria names  

We observed in the training corpus that not only 
were bacteria names tagged, but also higher level 
taxa (families) and lower level taxa (strains). We 
used the NCBI taxonomy as the main bacteria tax-
on resource since it includes all organism levels 
and is kept up-to-date. This bacteria dictionary was 
enriched by taxa from the training corpus, in par-
ticular by non standard abbreviations (e.g. Chl. = 
Chlorobium, ssp. = subsp) and plurals, (Vibrios as 
the plural for Vibrio) that were hopefully rather 
rare. 

Determining the boundaries of the bacteria 
names was one of the main issues because corpus 
strain names do not always follow conventional 
nomenclature rules.  Also, the recognition of bacte-
ria name is evaluated using a strict exact match. 
Patterns were developed to account for such cases. 
They handle inversion (LB400 of Burkholderia xe-
novorans instead of Burkholderia xenovorans 
LB400) and parenthesis (Tropheryma whipplei (the 
Twist strain) instead of Tropheryma whipplei strain 
Twist).  The corpus also mentions names of bacte-
ria that contain modifiers not found in the NCBI 
dictionary, such as antimicrobial-resistant C. coli 
or L. pneumophila serogroup 1. Such cases, as well 
as abbreviations (e.g. GSB for green sulfur bacte-
ria) and partial strain names (e.g. strain DSMZ 245 
T for Chlorobium limicola strain DSMZ 245 T) 
were also specifically handled. 

The main source of error in bacteria name pre-
diction is due to the mixture of family names and 
strain name abbreviations in the same text. It fre-
quently happens that the strain name is abbreviated 
into the first word of the name. For instance Bar-
tonella henselae is abbreviated as Bartonella. Un-
fortunately, Bartonella is a genus mentioned in the 

same text, thus yielding ambiguities between the 
anaphora and the family name, which are identical. 

3.1 Bacteria anaphora resolution 

Anaphors are frequent in the text, especially for 
bacteria reference and to a smaller extent for host 
reference. Our effort focused on bacteria anaphora 
resolution ignoring host anaphora. The extraction 
method of location relations (section 4) assumes 
that the relation arguments, location and bacterium 
(or anaphora of the bacterium) occur in the same 
sentence. From a total of 2,296 sentences in the 
training corpus, only 363 sentences contain both 
the location and the explicit bacterium, while 574 
mention only the location. Two thirds of the loca-
tions do not co-occur with bacteria. This demon-
strates the importance of recovering the bacteria for 
these cases, which is potentially referred to by an 
explicit anaphora.  

The manual examination of the training corpus 
showed that the most frequent anaphora of bacteria 
are not pronouns but higher level taxa, often pre-
ceded by a demonstrative determinant, (i.e. This 
bacteria, This Clostridium) and sortal anaphora 
(i.e. genus, organism, species and strain), both of 
which are commonly found in biological texts 
(Torri & Vijay-Shanker, 2007). The style of some 
of the documents is rather relaxed and the antece-
dent may be ambiguous even for a human reader. 
We observed three types of anaphora in the corpus. 
First, the standard anaphora which includes both 
pronouns and sortal anaphora, which requires a 
unique bacterial antecedent. Second, bi-anaphora 
or an anaphora that requires two bacteria antece-
dents. This happens when the properties of two 
strains are compared in the document. Finally, the 
case of a higher taxon being used to refer to a 
lower taxon, which we named name taxon anaph-
ora. 
 

Anaphora with a unique antecedent 
C. coli is pathogenic in animals and humans. Peo-
ple usually get infected by eating poultry that con-
tained the bacteria, eating raw food, drinking raw 

milk, and drinking bottle water […]. 
 

Anaphora with two antecedents 
C. coli is usually found hand in hand with its bac-
teria relative, C. jejuni. These two organisms are 

recognized as the two most leading causes of acute 
inflammation of intestine in the United States and 

other nations. 
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Name taxon anaphora 
Ticks become infected with Borrelia duttonii while 
feeding on an infected rodent. Borrelia then multi-

plies rapidly, causing a generalized infection 
throughout the tick. 

 

For anaphora detection and resolution a pattern-
based approach was preferred to machine learning 
because the constraints for relating anaphora to 
antecedent candidates of the same taxonomy level 
were mainly semantic and domain-dependent and 
the annotation of anaphora was not provided in the 
training corpus.  

Anaphora detection consists of identifying po-
tential anaphora in the corpus, given a list of pro-
nouns, sortal anaphora and taxa and then filtering 
out irrelevant cases (Segura-Bedmar et al., 2010, 
Lin & Lian, 2004) before anaphora resolution. Not 
all the pronouns, sortal anaphora terms and higher 
taxon bacteria are anaphoric. For example, if a 
higher taxon is preceded or followed by the word 
genus, this signals that it is not anaphoric but that 
the text is actually about the higher taxon.  
 
Non-anaphoric higher taxon 

Burkholderia cenocepacia HI2424[…] 
The genus Burkholderia consists of some 35 bacte-

rial species, most of which are soil saprophytes 
and phytopathogens that occupy a wide range of 

environmental niches. 
 

The anaphora resolution algorithm takes into ac-
count two features: the distance to the antecedent 
candidate and its position in the sentence. The an-
tecedent is usually found in proximity to the ana-
phora, in order to maintain the coherence of the 
text. Therefore, our method ranks the antecedent 
candidates according to the anaphoric distance 
counted in sentences.  

If more than one bacterium is found in a given 
sentence, their position is discriminate. Centering 
theory states that in a sentence the most prominent 
entities and therefore the most probable antecedent 
candidates are in the order: subject > object > other 
position (Grosz et al., 1995). In English, due to the 
SVO order of the language the subject is most of-
ten found at the beginning of the sentence, fol-
lowed by the object and the others. Therefore, the 
method retains the leftmost bacterium in the sen-
tence when searching for the best antecedent can-
didate. 

More precisely, the method selects the first ante-
cedent that it finds according to the following pre-
cedence list: 

- First bacterium in the current sentence (s) 
- First bacterium in the previous sentence  

  (s-1) 
- First bacterium in sentence s-2 
- First bacterium in sentence s-3 
- First bacterium in the current paragraph 
- Last bacterium in the previous paragraph 
- First bacterium in the first sentence of the 

document 
- The first bacterium ever mentioned. 

-  

The method only relates anaphora to antecedents 
that are found before. It does not handle cataphors 
since they are rarely found in the corpus. For ana-
phors that require two antecedents we use the same 
criteria but search for two bacteria in each sentence 
or paragraph, instead of one. For taxon anaphora 
we look for the presence of a lower taxon in the 
document found before the anaphora that is com-
patible according to the species taxonomy. 
The counts of anaphora detected by the patterns are 
given in Table 1.  
 

Corpus Single ante Bi ante Taxon ante 
Train 933 4 129 
Dev 204 3 22 
Test 240 0 18 
Total 1,377 7 169 

 

Table 1. The count of the types of anaphora per corpus. 
 

The anaphora resolution algorithm allowed us to 
retrieve more sentences that contain both a bacte-
rium and a location.  Out of the 574 sentences that 
contain only a location, 436 were found to contain 
an anaphora related to at least one bacterium. The 
remaining 138 sentences are cases where there is 
no bacterial anaphora or the bacterium name is im-
plicit. It frequently happens that the bacterium is 
referred to through its action. For example in the 
sentence below, the bacterium name could be de-
rived from the name of the disease that it causes.  
 

In the 1600s anthrax was known as the "Black 
bane" and killed over 60,000 cows. 

 

One of the questions we had about the resolution 
of anaphora is whether anaphora that are found in 
the same sentence together with a bacterium (there-
fore potentially its antecedent) should be consid-
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ered or not.  We tested this on the development set. 
We found that removing such anaphora from con-
sideration improved the overall score. It yielded an 
F-score of 53.22% (precision: 46.17%, recall: 
62.81%), compared to the original F-score of 
50.15% (precision: 41.06%, recall: 64.44%). This 
improvement in F-score is solely due to an increase 
in precision, which shows that while resolving 
anaphora is important and required, the incorrect 
recognition of terms as anaphora and incorrect 
anaphora resolution can introduce noise. 

4 Relation extraction 

In this work we concentrated most of our effort on 
the prediction of entities. For the prediction of 
events we used a strategy based on the co-
occurrence of  arguments and trigger words within 
a sentence: 
- If a bacteria name, a location and a trigger word 

are present in a sentence, then the system pre-
dicts a Localization event between the bacte-
rium and the location. 

- If a bacteria anaphora, a location and a trigger 
word are present in a sentence, then the system 
predicts a Localization event between each ana-
phora antecedent and the location. 

- If a host, a host part, a bacterium and at least 
one trigger word are present in a sentence, then 
the system predicts a PartOf event between the 
host and the host part. 

 

The list of trigger words contains 20 verbs (e.g. 
inhabit, colonize, but also discover, isolate), 16 
disease markers (e.g. chronic, pathogen) and 19 
other relevant words (e.g. ingest, environment, 
niche). This list was designed by ranking words in 
the sentences of the training corpus containing both 
a bacteria name and a location. The ranking crite-
rion used was the information gain with respect to 
whether the sentence contained an event or not. 
The ranked list was adjusted by removing spurious 
words and adding domain knowledge words. 

By removing the constraint of the occurrence of 
a trigger word in the sentence, we can determine 
that the maximum recall the method can achieve 
with this strategy is 47% (precision: 41%, F-score: 
44%). The selected trigger word list yielded a re-
call close to the maximum, thus it seems that the 
trigger words do not affect the recall and are suit-
able for the task.  

5 Results 

Table 2 summarizes the official scores that the Bib-
liome Alvis system achieved for the Bacteria 
Biotope Task. It ranked first among three partici-
pants. The first column gives the recall of entity 
prediction. The prediction of hosts and bacteria 
named-entities achieved a good recall of 84 and 82, 
respectively.  
 

 Entity 
recall 

Event 
recall 

Event 
Precis. F-score 

Bacteria 84 - - - 
Host 82 61 48 53 
Host part 72 53 42 47 
Env. 53 29 24 26 
Geo. 29 13 38 19 
Food - - 29 41 
Medical 100 50 33 40 
Water 83 60 55 57 
Soil 86 69 59 63 
Total  45 45 45 

 

Table 2. Bibliome system scores at Bacteria Biotope 
Task in BioNLP shared tasks 2011. 

 

However, geographical locations based on a similar 
strategy were poorly predicted (29%). Our system 
predicted only 15 countries. A more appropriate 
resource of geographical names than the Agrovoc 
thesaurus would certainly increase the recall of 
geographical locations.  

The host parts, medical, water and soil locations 
predicted with the same ontology-based method 
were surprisingly good with a recall of 72, 100, 83 
and 86, respectively. The small size of the ontology 
and the small number of different term heads (i.e. 
51 different heads) initially appeared as a limitation 
factor for reuse on new corpora. The good recall 
shows that the location vocabulary of the test set 
has similarities with the training set compared to 
potential space of location names.  The potential 
space is reflected by the richness of the GOLD iso-
lation site field. This demonstrates the robustness 
of the type derivation approach based on term 
heads. The correctness of the derivation type can-
not be calculated without a corpus where all the 
locations and not only bacteria ones are annotated. 
The recall of the environment location prediction is 
a little bit lower, 53%. The environment type in-
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cludes many different types that cannot all be an-
ticipated. Therefore the coverage of the BB ter-
mino-ontology environment part is limited except 
for water and soil, which are more focused topics.  

The localization event recall (column 2) is on 
average 20% lower for all types than the location 
entity recall. The regularity of the difference may 
suggest that once the argument is identified, the 
localization relation is equally harder to find by our 
method independently of the type. The localization 
event precision (column 3) is more difficult to ana-
lyze because many sources of error may be in-
volved, such as an incorrect arguments, incorrect 
anaphora resolution, relation to the wrong bacte-
rium among several or the absence of a relation.  

The prediction precision of localization events 
involving soil, water and host is better than envi-
ronment and food. The manual analysis of the test 
corpus shows that in some cases environmental 
locations were mentioned as potential sources of 
industrial applications without actually being bac-
teria isolation places. For instance, in Other fields 
of application for thermostable enzymes are starch-
processing, organic synthesis, diagnostics, waste 
treatment, pulp and paper manufacture, and ani-
mal feed and human food, the Alvis system errone-
ously predicted waste treatment, paper manufac-
ture, animal feed and human food.  This is due to 
the fact that the system does not handle modalities. 
Such hypotheses are specific to the BB task text 
genre, i.e. Bacteria sequencing projects. Such pro-
jects contain details for potential industrial applica-
tions, which are absent from academic literature. 

Ambiguous types are also a source of error. De-
spite the host dictionary cleaning, some ambigui-
ties remained. For example, the head canal in tooth 
root canal is erroneously typed as water and should 
be disambiguated with its tooth host-part modifier.  

After test publication we measured the gain of 
anaphora resolution by using the on-line service. 
The anaphora resolution algorithm was found to 
have a strong impact on the final result.  Running 
the test set using all of the modules except for the 
anaphora resolution algorithm yielded a decrease in 
the F-score by almost 13% (F-score: 32.5%, preci-
sion: 48.5%, 24.4%).  This shows that the addition 
of an anaphora resolution algorithm significantly 
increases the precision and that a resolution algo-
rithm adapted to the Bacteria domain is necessary 
for the Biotope corpus. 

The part-of event prediction relies on the strict 
co-occurrence of a bacterium, trigger word, host 
and host part within a sentence. An additional run 
with the more relaxed constraint where the bacte-
rium can be denoted by an anaphora as well 
yielded a gain of 6 recall points, a loss of 5 preci-
sion points with a net benefit of 1 F-measure point. 

6 Discussion 

The use of trigger words for the selection of sen-
tences for relation extraction does not take into ac-
count the structure or syntax of the sentence for the 
prediction of relation arguments. The system pre-
dicts all combinations of bacteria and locations as 
localization events and all combination of host and 
host parts as part-of event. This has a negative ef-
fect on the precision measure since some pairs are 
irrelevant as in the sentence below. 
 

Baumannia cicadellinicola. This newly discovered or-
ganism is an obligate endosymbiont of the leafhopper 

insect Homalodisca coagulata (Say), also known as the 
Glassy-Winged Sharpshooter, which feeds on the xylem 

of plants. 
 

It has been shown that the use of syntactic de-
pendencies to extract biological events (such as 
protein-protein interactions) improves the results of 
such systems (Erkan et al., 2007, Manine et al., 
2008, Airola et al. 2008). The use of syntactic de-
pendencies could offer a more in depth examina-
tion of the syntax and the semantics and therefore 
allow for a more refined extraction of bacteria-
localization and host-host part relations.   

Term extraction appears to be a good method for 
predicting locations including unseen terms, but it 
is limited by the typing strategy that filters out all 
terms with unknown heads (with respect to the BB 
termino-ontology). In the future, we will study the 
effect of linguistic markers such as enumeration 
and exemplification structures for recovering addi-
tional location terms. For instance, in heated or-
ganic materials such as compost heaps, rotting 
hay, manure piles or mushroom growth medium, 
our system has correctly typed heated organic ma-
terials as environment but not the other examples 
because of their unknown heads. 
The promising performance of the Alvis system on 
the BB task shows that a combination of semantic 
analysis and domain-adapted resources is a good 
strategy for information extraction in the biology 
domain. 
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Abstract

This paper describes the supporting resources
provided for the BioNLP Shared Task 2011.
These resources were constructed with the
goal to alleviate some of the burden of sys-
tem development from the participants and al-
low them to focus on the novel aspects of con-
structing their event extraction systems. With
the availability of these resources we also seek
to enable the evaluation of the applicability of
specific tools and representations towards im-
proving the performance of event extraction
systems. Additionally we supplied evaluation
software and services and constructed a vi-
sualisation tool, stav, which visualises event
extraction results and annotations. These re-
sources helped the participants make sure that
their final submissions and research efforts
were on track during the development stages
and evaluate their progress throughout the du-
ration of the shared task. The visualisation
software was also employed to show the dif-
ferences between the gold annotations and
those of the submitted results, allowing the
participants to better understand the perfor-
mance of their system. The resources, evalu-
ation tools and visualisation tool are provided
freely for research purposes and can be found
at http://sites.google.com/site/bionlpst/

1 Introduction

For the BioNLP’09 Shared Task (Kim et al., 2009),
the first in the ongoing series, the organisers pro-
vided the participants with automatically generated
syntactic analyses for the sentences from the anno-
tated data. For evaluation purposes, tools were made

publicly available as both distributed software and
online services. These resources were well received.
A majority of the participants made use of one or
more of the syntactic analyses, which have remained
available after the shared task ended and have been
employed in at least two independent efforts study-
ing the contribution of different tools and forms of
syntactic representation to the domain of informa-
tion extraction (Miwa et al., 2010; Buyko and Hahn,
2010). The evaluation software for the BioNLP’09
Shared Task has also been widely adopted in subse-
quent studies (Miwa et al., 2010; Poon and Vander-
wende, 2010; Björne et al., 2010).

The reception and research contribution from pro-
viding these resources encouraged us to continue
providing similar resources for the BioNLP Shared
Task 2011 (Kim et al., 2011a). Along with the
parses we also encouraged the participants and ex-
ternal groups to process the data with any NLP (Nat-
ural Language Processing) tools of their choice and
make the results available to the participants.

We provided continuous verification and evalua-
tion of the participating systems using a suite of in-
house evaluation tools. Lastly, we provided a tool
for visualising the annotated data to enable the par-
ticipants to better grasp the results of their experi-
ments and to help gain a deeper understanding of
the underlying concepts and the annotated data. This
paper presents these supporting resources.

2 Data

This section introduces the data resources provided
by the organisers, participants and external groups
for the shared task.
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Task Provider Tool

CO University of Utah Reconcile
CO University of Zürich UZCRS
CO University of Turku TEES
REL University of Turku TEES

Table 1: Supporting task analyses provided, TEES
is the Turku Event Extraction System and UZCRS
is the University of Zürich Coreference Resolution
System

2.1 Supporting task analyses

The shared task included three Supporting Tasks:
Coreference (CO) (Nguyen et al., 2011), Entity re-
lations (REL) (Pyysalo et al., 2011b) and Gene re-
naming (REN) (Jourde et al., 2011). In the shared
task schedule, the supporting tasks were carried out
before the main tasks (Kim et al., 2011b; Pyysalo
et al., 2011a; Ohta et al., 2011; Bossy et al., 2011)
in order to allow participants to make use of analy-
ses from the systems participating in the Supporting
Tasks for their main task event extraction systems.

Error analysis of BioNLP’09 shared task sub-
missions indicated that coreference was the most
frequent feature of events that could not be cor-
rectly extracted by any participating system. Fur-
ther, events involving statements of non-trivial rela-
tions between participating entities were a frequent
cause of extraction errors. Thus, the CO and REL
tasks were explicitly designed to support parts of
the main event extraction tasks where it had been
suggested that they could improve the system per-
formance.

Table 1 shows the supporting task analyses pro-
vided to the participants. For the main tasks, we
are currently aware of one group (Emadzadeh et al.,
2011) that made use of the REL task analyses in their
system. However, while a number of systems in-
volved coreference resolution in some form, we are
not aware of any teams using the CO task analyses
specifically, perhaps due in part to the tight sched-
ule and the somewhat limited results of the CO task.
These data will remain available to allow future re-
search into the benefits of these resources for event
extraction.

2.2 Syntactic analyses

For syntactic analyses we provided parses for all
the task data in various formats from a wide range
of parsers (see Table 2). With the exception of
the Pro3Gres1 parser (Schneider et al., 2007), the
parsers were set up and run by the task organisers.
The emphasis was put on availability for research
purposes and variety of parsing models and frame-
works to allow evaluation of their applicability for
different tasks.

In part following up on the results of Miwa et al.
(2010) and Buyko and Hahn (2010) regarding the
impact on performance of event extraction systems
depending on the dependency parse representation,
we aimed to provide several dependency parse for-
mats. Stanford Dependencies (SD) and Collapsed
Stanford Dependencies (SDC), as described by de
Marneffe et al. (2006), were generated by convert-
ing Penn Treebank (PTB)-style (Marcus et al., 1993)
output using the Stanford CoreNLP Tools2 into the
two dependency formats. We also provided Confer-
ence on Computational Natural Language Learning
style dependency parses (CoNLL-X) (Buchholz and
Marsi, 2006) which were also converted from PTB-
style output, but for this we used the conversion
tool3 from Johansson and Nugues (2007). While
this conversion tool was not designed with convert-
ing the output from statistical parsers in mind (but
rather to convert between treebanks), it has previ-
ously been applied successfully for this task (Miyao
et al., 2008; Miwa et al., 2010).

The text from all documents provided were split
into sentences using the Genia Sentence Splitter4

(Sætre et al., 2007) and then postprocessed using a
set of heuristics to correct frequently occurring er-
rors. The sentences were then tokenised using a to-
kenisation script created by the organisers intended
to replicate the tokenisation of the Genia Tree Bank
(GTB) (Tateisi et al., 2005). This tokenised and
sentence-split data was then used as input for all
parsers.

We used two deep parsers that provide phrase
structure analysis enriched with deep sentence struc-

1https://files.ifi.uzh.ch/cl/gschneid/parser/
2http://nlp.stanford.edu/software/corenlp.shtml
3http://nlp.cs.lth.se/software/treebank converter/
4http://www-tsujii.is.s.u-tokyo.ac.jp/�y-matsu/geniass/
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Name Format(s) Model Availability BioNLP’09

Berkeley PTB, SD, SDC, CoNLL-X News Binary, Source No
C&C CCG, SD Biomedical Binary, Source Yes
Enju HPSG, PTB, SD, SDC, CoNLL-X Biomedical Binary No
GDep CoNLL-X Biomedical Binary, Source Yes
McCCJ PTB, SD, SDC, CoNLL-X Biomedical Source Yes
Pro3Gres Pro3Gres Combination – No
Stanford PTB, SD, SDC, CoNLL-X Combination Binary, Source Yes

Table 2: Parsers, the formats for which their output was provided and which type of model that was used. The
availability column signifies public availability (without making an explicit request) for research purposes

tures, for example predicate-argument structure for
Head-Driven Phrase Structure Grammar (HPSG).
First we used the C&C Combinatory Categorial
Grammar (CCG) parser5 (C&C) by Clark and Cur-
ran (2004) using the biomedical model described in
Rimell and Clark (2009) which was trained on GTB.
Unlike all other parsers for which we supplied SD
and SDC dependency parses, the C&C output was
converted from its native format using a separate
conversion script provided by the C&C authors. Re-
grettably we were unable to provide CoNLL-X for-
mat output for this parser due to the lack of PTB-
style output. The other deep parser used was the
HPSG parser Enju6 by Miyao and Tsujii (2008), also
trained on GTB.

We also applied the frequently adopted Stanford
Parser7 (Klein and Manning, 2003) using a mixed
model which includes data from the biomedical do-
main, and the Charniak Johnson re-ranking parser8

(Charniak and Johnson, 2005) using the self-trained
biomedical model from McClosky (2009) (McCCJ).

For the BioNLP’09 shared task it was observed
that the Bikel parser9 (Bikel, 2004), which used a
non-biomedical model and can be argued that it uses
the somewhat dated Collins’ parsing model (Collins,
1996), did not contribute towards event extraction
performance as strongly as other parses supplied for
the same data. We therefore wanted to supply a
parser that can compete with the ones above in a do-
main which is different from the biomedical domain
to see whether conclusions could be drawn as to the

5http://svn.ask.it.usyd.edu.au/trac/candc/
6http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
7http://nlp.stanford.edu/software/lex-parser.shtml
8ftp://ftp.cs.brown.edu/pub/nlparser/
9http://www.cis.upenn.edu/�dbikel/software.html

importance of using a biomedical model. For this
we used the Berkeley parser10 (Petrov et al., 2006).
Lastly we used a native dependency parser, the GE-
NIA Dependency parser (GDep) by Sagae and Tsujii
(2007).

At least one team (Choudhury et al., 2011) per-
formed experiments on some of the provided lexi-
cal analyses and among the 14 submissions for the
EPI and ID tasks, 13 submissions utilised tools for
which resources were provided by the organisers of
the shared task. We intend to follow up on whether
or not the majority of the teams ran the tools them-
selves or used the provided analyses.

2.3 Other analyses

The call for analyses was open to all interested par-
ties and all forms of analysis. In addition to the Sup-
porting Task analyses (CO and REL) and syntactic
analyses provided by various groups, the University
of Antwerp CLiPS center (Morante et al., 2010) re-
sponded to the call providing negation/speculation
analyses in the BioScope corpus format (Szarvas et
al., 2008).

Although this resource was not utilised by the par-
ticipants for the main task, possibly due to a lack of
time, it is our hope that by keeping the data available
it can lead to further development of the participat-
ing systems and analysis of BioScope and BioNLP
ST-style hedging annotations.

3 Tools

This section presents the tools produced by the or-
ganisers for the purpose of the shared task.

10http://code.google.com/p/berkeleyparser/
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1 10411007-E1 Regulation <Exp>regulate[26-34] <Theme>TNF-alpha[79-88] ê

ë<Excerpt>[regulate] an enhancer activity in the third intron of [TNF-alpha]
2 10411007-E2 Gene_expression <Exp>activity[282-290] <Theme>TNF-alpha[252-261] ê

ë<Excerpt>[TNF-alpha] gene displayed weak [activity]
3 10411007-E3 +Regulation <Exp>when[291-295] <Theme>E2 <Excerpt>[when]

Figure 1: Text output from the BioNLP’09 Shared Event Viewer with line numbering and newline markings

Figure 2: An illustration of collective (sentence 1)
and distributive reading (sentence 2). “Theme” is
abbreviated as “Th” and “Protein” as “Pro” when
there is a lack of space

3.1 Visualisation

The annotation data in the format specified by the
shared task is not intended to be human-readable –
yet researchers need to be able to visualise the data
in order to understand the results of their experi-
ments. However, there is a scarcity of tools that can
be used for this purpose. There are three available
for event annotations in the BioNLP ST format that
we are aware of.

One is the BioNLP’09 Shared Task Event
Viewer11, a simple text-based annotation viewer: it
aggregates data from the annotations, and outputs it
in a format (Figure 1) that is meant to be further pro-
cessed by a utility such as grep.

Another is What’s Wrong with My NLP12, which
visualises relation annotations (see Figure 3a) – but
is unable to display some of the information con-
tained in the Shared Task data. Notably, the distribu-
tive and collective readings of an event are not dis-
tinguished (Figure 2). It also displays all annotations
on a single line, which makes reading and analysing
longer sentences, let alone whole documents, some-
what difficult.

The last one is U-Compare13 (Kano et al., 2009),

11http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
downloads.shtml

12http://code.google.com/p/whatswrong/
13http://u-compare.org/bionlp2009.html

which is a comprehensive suite of tools designed for
managing NLP workflows, integrating many avail-
able services. However, the annotation visualisation
component, illustrated in Figure 3b, is not optimised
for displaying complex event structures. Each anno-
tation is marked by underlining its text segment us-
ing a different colour per annotation type, and a role
in an event is represented by a similarly coloured arc
between the related underlined text segments. The
implementation leaves some things to be desired:
there is no detailed information added in the display
unless the user explicitly requests it, and then it is
displayed in a separate panel, away from the text it
annotates. The text spacing makes no allowance for
the annotations, with opaque lines crossing over it,
with the effect of making both the annotations and
the text hard to read if the annotations are above a
certain degree of complexity.

As a result of the difficulties of these existing
tools, in order to extract a piece of annotated text
and rework it into a graph that could be embedded
into a publication, users usually read off the annota-
tions, then create a graph from scratch using vector
drawing or image editing software.

To address these issues, we created a visualisa-
tion tool named stav (stav Text Annotation Visual-
izer), that can read the data formatted according to
the Shared Task specification and aims to present it
to the user in a form that can be grasped at a glance.
Events and entities are annotated immediately above
the text, and the roles within an event by labelled
arcs between them (Figure 3c). In a very complex
graph, users can highlight the object or association
of interest to follow it even more easily. Special fea-
tures of annotations, such as negation or speculation,
are shown by unique visual cues, and more in-depth,
technical information that is usually not required can
be requested by floating the mouse cursor over the
annotation (as seen in Figure 5).

We took care to minimise arc crossovers, and to
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(a) Visualisation using What’s Wrong with My NLP

(b) Visualisation using U-Compare

(c) Visualisation using stav

Figure 3: Different visualisations of complex textual annotations of Dickensheets et al. (1999)
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Figure 4: A screenshot of the stav file-browser

keep them away from the text itself, in order to main-
tain text readability. The text is spaced to accommo-
date the annotations between the rows. While this
does end up using more screen real-estate, it keeps
the text legible, and annotations adjacent to the text.
The text is broken up into lines, and each sentence
is also forced into a new line, and given a numer-
ical identifier. The effect of this is that the text is
laid out vertically, like an article would be, but with
large spacing to accomodate the annotations. The
arcs are similarly continued on successive lines, and
can easily be traced – even in case of them spanning
multiple lines, by the use of mouseover highlight-
ing. To preserve the distributionality information of
the annotation, any event annotations are duplicated
for each event, as demonstrated in the example in
Figure 2.

stav is not limited to the Shared Task datasets with
appropriate configuration settings, it could also vi-
sualise other kinds of relational annotations such as:
frame structures (Fillmore, 1976) and dependency
parses (de Marneffe et al., 2006).

To achieve our objectives above, we use the Dy-
namic Scalable Vector Graphics (SVG) functional-
ity (i.e. SVG manipulated by JavaScript) provided
by most modern browsers to render the WYSIWYG
(What You See Is What You Get) representation of
the annotated document. An added benefit from
this technique is that the installation process, if any,
is very simple: although not all browsers are cur-
rently supported, the two that we specifically tested

against are Safari14 and Google Chrome15; the for-
mer comes preinstalled with the Mac OS X oper-
ating system, while the latter can be installed even
by relatively non-technical users. The design is kept
modular using a dispatcher pattern, in order to al-
low the inclusion of the visualiser tool into other
JavaScript-based projects. The client-server archi-
tecture also allows centralisation of data, so that ev-
ery user can inspect an uploaded dataset without the
hassle of downloading and importing into a desktop
application, simply by opening an URL which can
uniquely identify a document, or even a single an-
notation. A screenshot of the stav file browser can
be seen in Figure 4.

3.2 Evaluation Tools

The tasks of BioNLP-ST 2011 exhibit very high
complexity, including multiple non-trivial subprob-
lems that are partially, but not entirely, independent
of each other. With such tasks, the evaluation of par-
ticipating systems itself becomes a major challenge.
Clearly defined evaluation criteria and their precise
implementation is critical not only for the compari-
son of submissions, but also to help participants fol-
low the status of their development and to identify
the specific strengths and weaknesses of their ap-
proach.

A further challenge arising from the complexity
of the tasks is the need to process the relatively in-
tricate format in which annotations are represented,
which in turn carries a risk of errors in submissions.
To reduce the risk of submissions being rejected or
the evaluation showing poor results due to format-
ting errors, tools for checking the validity of the file
format and annotation semantics are indispensable.

For these reasons, we placed emphasis in the or-
ganisation of the BioNLP-ST’11 on making tools for
format checking, validation and evaluation available
to the participants already during the early stages of
system development. The tools were made avail-
able in two ways: as downloads, and as online ser-
vices. With downloaded tools, participants can per-
form format checking and evaluation at any time
without online access, allowing more efficient op-
timisation processes. Each task in BioNLP-ST also

14http://www.apple.com/safari
15http://www.google.com/chrome
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Figure 5: An example of a false negative illustrated by the evaluation tools in co-ordination with stav

maintained an online evaluation tool for the develop-
ment set during the development period. The online
evaluation is intended to provide an identical inter-
face and criteria for submitted data as the final on-
line submission system, allowing participants to be
better prepared for the final submission. With on-
line evaluation, the organisers could also monitor
submissions to ensure that there were no problems
in, for example, the evaluation software implemen-
tations.

The system logs of online evaluation systems
show that the majority of the participants submit-
ted at least one package with formatting errors, con-
firming the importance of tools for format checking.
Further, most of the participants made use of the on-
line development set evaluation at least once before
their final submission.

To enhance the evaluation tools we drew upon the
stav visualiser to provide a view of the submitted re-
sults. This was done by comparing the submitted
results and the gold data to produce a visualisation
where errors are highlighted, as illustrated in Fig-
ure 5. This experimental feature was available for
the EPI and ID tasks and we believe that by doing so
it enables participants to better understand the per-
formance of their system and work on remedies for
current shortcomings.

4 Discussion and Conclusions

Among the teams participating in the EPI and ID
tasks, a great majority utilised tools for which re-
sources were made available by the organisers. We
hope that the continued availability of the parses will
encourage further investigation into the applicability
of these and similar tools and representations.

As for the analysis of the supporting analyses pro-
vided by external groups and the participants, we are
so far aware of only limited use of these resources
among the participants, but the resources will re-
main available and we are looking forward to see
future work using them.

To enable reproducibility of our resources, we
provide a publicly accessible repository containing
the automated procedure and our processing scripts
used to produce the released data. This repository
also contains detailed instructions on the options and
versions used for each parser and, if the software li-
cense permits it, includes the source code or binary
that was used to produce the processed data. For the
cases where the license restricts redistribution, in-
structions and links are provided on how to obtain
the same version that was used. We propose that us-
ing a multitude of parses and formats can benefit not
just the task of event extraction but other NLP tasks
as well.

We have also made our evaluation tools and visu-
alisation tool stav available along with instructions
on how to run it and use it in coordination with the
shared task resources. The responses from the par-
ticipants in relation to the visualisation tool were
very positive, and we see this as encouragement to
advance the application of visualisation as a way to
better reach a wider understanding and unification
of the concept of events for biomedical event extrac-
tion.

All of the resources described in this paper are
available at http://sites.google.com/site/bionlpst/.
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Abstract

The Bacteria Gene Renaming (RENAME)
task is a supporting task in the BioNLP Shared
Task 2011 (BioNLP-ST’11). The task con-
sists in extracting gene renaming acts and gene
synonymy reminders in scientific texts about
bacteria. In this paper, we present in details
our method in three main steps: 1) the doc-
ument segmentation into sentences, 2) the re-
moval of the sentences exempt of renaming act
(false positives) using both a gene nomencla-
ture and supervised machine learning (feature
selection and SVM), 3) the linking of gene
names by the target renaming relation in each
sentence. Our system ranked third at the of-
ficial test with 64.4% of F-measure. We also
present here an effective post-competition im-
provement: the representation as SVM fea-
tures of regular expressions that detect com-
binations of trigger words. This increases the
F-measure to 73.1%.

1 Introduction

The Bacteria Gene Renaming (Rename) supporting
task consists in extracting gene renaming acts and
gene synonymy reminders in scientific texts about
bacteria. The history of bacterial gene naming has
led to drastic amounts of homonyms and synonyms
that are often missing in gene databases or even
worse, erroneous (Nelson et al., 2000). The auto-
matic extraction of gene renaming proposals from
scientific papers is an efficient way to maintain gene
databases up-to-date and accurate. The present work
focuses on the recognition of renaming acts in the
literature between gene synonyms that are recorded

in the Bacillus subtilis gene databases. We assume
that renaming acts do not involve unknown gene
names. Instead, our system verifies the accuracy of
synonymy relations as reported in gene databases by
insuring that the literature attests these synonymy re-
lations.

1.1 Example
This positive example of the training corpus is rep-
resentative of the IE task:
”Thus, a separate spoVJ gene as defined by the 517
mutation does not exist and is instead identical with
spoVK.”

There are 2 genes in this sentence:

ID Start End Name
T1 17 22 spoVJ
T2 104 109 spoVK

Table 1: Example of provided data.

There is also a renaming act: R1 Renaming For-
mer:T1 New:T2

Given all gene positions and identifications (Tn),
the Rename task consists in predicting all renaming
acts (Rn) between Bacillus subtilis genes in multi-
sentence documents. The gene names involved are
all acronyms or short names. Gene and protein
names often have both a short and a long form. Link-
ing short to long names is a relatively well-known
task but linking short names together remains lit-
tle explored (Yu et al., 2002). Moreover, specifying
some of these synonymy relations as renaming ap-
pears quite rare (Weissenbacher, 2004). This task
relates to the more general search of relations of
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synonymous nicknames, aliases or pseudonyms of
proper nouns from definitory contexts in encyclope-
dia or dictionaries. For instance, in Alexander III
of Macedonia commonly known as Alexander the
Great the synonymy relation is supported by com-
monly known as between the proper noun Alexan-
der III of Macedonia and the nickname Alexander
the Great. Renaming act extraction differs from the
search of coreferences or acronyms by the linguistic
markers involved.

1.2 Datasets
The renaming corpus is a set of 1,648 PubMed refer-
ences of bacterial genetics and genome studies. The
references include the title and the abstract. The
annotations provided are: the position and name of
genes (see Table 1) for all sets and the renaming acts
in the training and the development sets only.

Train Dev. Test
Documents 1146 246 252
Genes 14372 3331 3375
Unique Genes 3415 1017 1126
New genes 0 480 73
Relations 308 65 88
Words / Doc 209 212 213
Genes / Doc 12.5 12.7 13.4
Unique Genes / Doc 3.0 4.1 4.5
Relations / Doc 0.27 0.26 0.35

Table 2: Datasets of the Rename task corpus.

2 Methods

An early finding is that renaming acts very seldom
span several sentences (i.e. former and new are in
the same sentence). For the training set, 95.4% of
the relations verify this claim and in the develop-
ment set, 96.1%. Thus, it is decided to first segment
the documents into sentences and then to look for re-
naming acts inside independent sentences. Thus the
maximum expected recall is then 96.1% on the de-
velopment set. This is done by automatically filter-
ing all the sentences out that do not contain evidence
of a renaming act and then to relate the gene names
occurring in the renaming sentences. The AlvisNLP
pipeline (Nédellec et al., 2009) is used throughout
this process (see Fig. 1).

List based filtering

Machine learning based filtering

Attribute selection on lemmas
(AnnotationClassifierAttributeSelection)

Classification: grid search
(AnnotationClassifierTrain)

Selection of best parameters

Bacteria 
Nomenclature

Tagging
(AnnotationClassifierTag)

Lemmatization
(TreeTagger)

Gene search

.a2 files

Fix forms
(SimpleContentProjector)

Word segmentation
(WoSMIG)

Sentence segmentation
(SeSMIG)

Genes
Species

Molecules
Acronyms (imp)

Abreviations (imp)
Bacteria (imp)

Stop words
Bacteria

Regular 
expressions (imp)

Figure 1: Flowchart: Notes represent the resources used
and (imp) represent later improvements not used for the
official submission.

2.1 Word and sentence segmentation
Word and sentence segmentation is achieved by the
Alvis NLP pipeline. Named entity recognition sup-
plements general segmentation rules.

2.1.1 Derivation of boundaries from named
entities

Named entities often contains periods that should
not be confused with sentence ends. Species abbre-
viations with periods are specially frequent in the
task corpus. First, dictionaries of relevant named
entities from the molecular biology domain (e.g.
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genes, species and molecules) are projected onto
the documents before sentence segmentation, so
that periods that are part of named entities are dis-
ambiguated and not interpreted as sentence ends.
Moreover, named enties are frequently multi-word.
Named entity recognition prior to segmentation pre-
vents irrelevant word segmentation. For example,
the projection of named entity dictionaries on the ex-
cerpt below reveals the framed multi-word entities:
”Antraformin, a new inhibitor of Bacillus subtilis
transformation. [...] During this screening program,
Streptomyces sp. 7725-CC1 was found to produce

a specific inhibitor of B. subtilis transformation.”

2.1.2 Word segmenter

The word segmenter (WosMIG in Fig. 1) has the
following properties: 1) primary separator: space,
2) punctuation isolation: customized list, 3) custom
rules for balanced punctuation, 4) fixed words: not
splittable segments The following list of terms is
obtained from the example:
[’Antraformin’ , ’,’, ’a’, ’new’, ’inhibitor’, ’of’,
’ Bacillus subtilis ’, ’transformation’, ’.’, [...],
’During’, ’this’, ’screening’, ’program’, ’,’,
’ Streptomyces sp. ’, ’ 7725-CC1 ’, ’was’, ’found’,
’to’, ’produce’, ’a’, ’specific’, ’inhibitor’, ’of’,
’ B. subtilis ’, ’transformation’, ’.’]

2.1.3 Sentence segmenter

The sentence segmenter (SeSMIG in Fig. 1) has
the following properties: 1) strong punctuation:
customized list; 2) tokens forcing the end of a
sentence (e.g. etc...); 3) an upper case letter must
follow the end of a sentence. The system works
very well but could be improved with supervised
machine learning to improve the detection of
multi-word named entities. Finally, the list of words
is split into sentences:
[[’Antraformin’ , ’,’, ’a’, ’new’, ’inhibitor’, ’of’,
’ Bacillus subtilis ’, ’transformation’, ’.’],
[...],
[’During’, ’this’, ’screening’, ’program’, ’,’,
’ Streptomyces sp. ’, ’ 7725-CC1 ’, ’was’, ’found’,
’to’, ’produce’, ’a’, ’specific’, ’inhibitor’, ’of’,
’ B. subtilis ’, ’transformation’, ’.’]]

2.2 Sentence filtering

Once the corpus is segmented into sentences, the
system filters out the numerous sentences that most
likely do not contain any renaming act. This way,
the further relation identification step focuses on rel-
evant sentences and increases the precision of the
results (Nedellec et al., 2001). Before the filtering,
the recall is maximum (not 100% due to few renam-
ing acts spanning two sentences), but the precision
is very low. The sentence filters aim at keeping the
recall as high as possible while gradually increasing
the precision. It is composed of two filters. The first
filter makes use of an a priori knowledge in the form
of a nomenclature of known synonyms while the
second filter uses machine learning to filter the re-
maining sentences. In the following, the term Bacil-
lus subtilis gene nomenclature is used in the sense of
an exhaustive inventory of names for Bacillus sub-
tilis genes.

2.2.1 Filtering with a gene nomenclature
We developed a tool for automatically building

a nomenclature of Bacillus subtilis gene and pro-
tein names. It aggregates the data from various
gene databases with the aim of producing the most
exhaustive nomenclature. The result is then used
to search for pairs of synonyms in the documents.
Among various information on biological sequences
or functions, the entries of gene databases record
the identifiers of the genes and proteins as asserted
by the biologist community of the species. Bacil-
lus subtilis community as opposed to other species
has no nomenclature committee. Each database cu-
rator records unilateral naming decisions that may
not reported elsewhere. The design of an exhaus-
tive nomenclature require the aggregation of multi-
ple sources.

Databases Our sources for the Bacillus subtilis
nomenclature are six publicly available databases
plus an in-house database. The public databases
are generalist (1 to 3) or devoted to Bacillus subtilis
genome (4 to 6) (see Table 3):

GenBank The genetic sequence database managed
by the National Center for Biotechnology In-
formation (NCBI) (Benson et al., 2008). It con-
tains the three official versions of the annotated
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genome of B. subtilis with all gene canonical
names;

UniProt the protein sequence database managed by
the Swiss Institute of Bioinformatics (SIB),
the European Bioinformatics Institute (EBI)
and the Protein Information Resource (PIR)
(Bairoch et al., 2005). It contains man-
ual annotated protein sequences (Swiss-Prot)
and automatically annotated protein sequences
(TrEMBL (Bairoch and Apweiler, 1996)). Its
policy is to conserve a history of all informa-
tion relative to these sequences and in particu-
lar all names of the genes that code for these
sequences.

Genome Reviews The genome database managed
by the European Bioinformatics Institute (EBI)
(Sterk et al., 2006). It contains the re-annotated
versions of the two first official versions of the
annotated genome of B. subtilis;

BSORF The Japanese Bacillus subtilis genome
database (Ogiwara et al., 1996);

Genetic map the original genetic map of Bacillus
subtilis;

GenoList A multi-genome database managed by
the Institut Pasteur (Lechat et al., 2008). It con-
tains an updated version of the last official ver-
sion of the annotated genome of B. subtilis;

SubtiWiki A wiki managed by the Institute for Mi-
crobiology and Genetics in Göttingen (Flórez
et al., 2009) for Bacillus subtilis reannotation.
It is a free collaborative resource for the Bacil-
lus community;

EA List a local lexicon manually designed from
papers curation by Anne Goelzer and Élodie
Marchadier (MIG/INRA) for Systems Biology
modeling (Goelzer et al., 2008).

Nomenclature merging We developed a tool for
periodically dumping the content of the seven source
databases through Web access. With respect to gene
naming the entries of all the databases contain the
same type of data per gene:

• a unique identifier (required);

• a canonical name, which is the currently rec-
ommended name (required);

• a list of synonyms considered as deprecated
names (optional).

The seven databases are handled one after the
other. The merging process follows the rules:

• the dump of the first database (SubtiWiki, see
Table 3 for order) in the list is considered the
most up-to-date and is used as the reference
for the integration of the dumps of the other
databases;

• for all next dumps, if the unique gene identifier
is new, the whole entry is considered as new
and the naming data of the entry is added to the
current merge;

• else, if the unique identifier is already present
into the merge, the associated gene names are
compared to the names of the merge. If the
name does not exist in the merge, it is added to
the merge as a new name for this identifier and
synonym of the current names. The synonym
class is not ordered.

Order Databases AE AN
1 SubtiWiki 4 261 5920
2 GenoList 0 264
3 EA List 33 378
4 BSORF 0 42
5 UniProt 0 74
6 Genome 0 0

Reviews
7 GenBank 0 7
8 Genetic Map 0 978

Total 4 294 7 663

Table 3: Database figures. AE: number of added entries,
AN: number of added names.

Synonym pair dictionary: The aggregated
nomenclature is used to produce a dictionary of all
combinations of pairs in the synonym classes.
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Sentence filtering by gene cooccurrence: For
each sentence in the corpus, if a pair of gene syn-
onyms according to the lexicon is found inside then
the sentence is kept for the next stage. Other-
wise, it is definitively discarded. The comparison
is a case-insensitive exact match preserving non al-
phanumeric symbols. The recall at this step is re-
spectively 90.9% and 90.2% on the train and devel-
opment sets. The recall loss is due to typographic
errors in gene names in the nomenclature. The pre-
cision at this stage is respectively 38.9% and 38.1%
on the train and development sets. There are still
many false positives due to gene homologies or re-
naming acts concerning other species than Bacillus
subtilis for instance.

2.2.2 Sentence filtering by SVM

Feature selection The second filtering step aims
at improving the precision by machine learning clas-
sification of the remaining sentences after the first
filtering step. Feature selection is applied to enhance
the performances of the SVM as it is shown to suffer
from high dimensionality (Weston et al., 2001). Fea-
ture selection is applied to a bag-of-word representa-
tion using the Information Gain metrics of the Weka
library (Hall et al., 2009). Words are lemmatized by
TreeTagger (Schmid, 1994). A manual inspection
of the resulting sorting highly ranks words such as
formerly or rename and parentheses while ranking
other words such as cold or encode surprisingly cer-
tainly due to over-fitting. Although the feature se-
lection is indeed not particularly efficient compared
to the manual selection of relevant features but does
help filtering out unhelpful words and then drasti-
cally reducing the space dimension from 1919 to
141 for the best run.

Sentence classification and grid search: A SVM
algorithm (LibSVM) with a RBF kernel is applied
to the sentences encoded as bag of words. The two
classes are: ”contains a renaming act” (True) or not
(False). There are 4 parameters to tune: 1) the num-
ber of features to use (N ∈ 1, 5, 10, ..., 150) mean-
ing the N first words according to the feature selec-
tion, 2) the weight of the classes: True is fixed to 1
and False is tuned (W ∈ 0.2, 0.4, ..., 5.0), 3) the er-
rors weight (C ∈ 2−5,−7,...,9), 4) the variance of the
Gaussian kernel (G ∈ 2−11,−9,...,1). Thus, to find

the best combination of parameters for this problem,
#N ∗#W ∗#C ∗#G = 31 ∗ 25 ∗ 8 ∗ 7 = 43, 400
models are trained using 10-fold cross-validation on
the training and development sets together (given
the relatively small size of the training set) and
ranked by F-measure. This step is mandatory be-
cause the tuning of C and G alone yield variations
of F-measure from 0 to the maximum. The grid
search is run on a cluster of 165 processors and takes
around 30 minutes. The best model is the model
with the highest F-measure found by the grid search.

Test sentence filtering: Finally the test set is sub-
mitted to word and sentence segmentation, feature
filtering and tagged by the best SVM model (Anno-
tationClassifierTag in Fig. 1). The sentences that are
assumed to contain a renaming act are kept and the
others are discarded (see Fig. 2).

2.3 Gene position searching

At this step, all remaining sentences are assumed to
be true positives. They all contain at least one pair
of genes that are synonymous according to our gene
nomenclature. The other gene names are not con-
sidered. The method for relating gene candidates by
a renaming relation, relies on the assumption that
all gene names are involved in at least one relation.
Most of the time, sentences contain only two genes.
We assume in this case that they are related by a re-
naming act. When there are more than two genes
in a sentence, the following algorithm is applied: 1)
compute all combinations of couples of genes; 2)
look-up the lexicon for those couples and discard
those that are not present; 3) if a given gene in a
couple has multiple occurrences, take the nearest in-
stance from the other gene involved in the renaming
act.

3 Discussion

The system ranks 3rd/3 among three participants
in the Rename task official evaluation with a F-
measure of 64.4% (see Fig. 4), five points behind the
second. The general approach we used for this task
is pragmatic: 1) simplify the problem by focusing on
sentences instead of whole documents for a minimal
loss, 2) then use a series of filters to improve the pre-
cision of the sentence classification while keeping
the recall to its maximum, 3) and finally relate gene
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names known to be synonymous inside sentences for
a minimal loss (around 2% of measure). As opposed
to what is observed in Gene Normalization tasks
(Hirschman et al., 2005), the Rename task is char-
acterised by the lack of morphological resemblance
of gene synonyms. The gene synonyms are not ty-
pographic variants and the recognition of renaming
act requires gene context analysis. The clear bottle-
neck of our system is the sentence filtering part and
in particular the feature selection that brings a lot
of noise by ranking statistically spurious terms. On
the plus side, the whole system is fully automated
to the exception of the resources used for the word
segmentation that were designed manually for other
tasks. Moreover, our strategy does not assume that
the gene pairs from the nomenclature may be men-
tioned for other reasons than renaming, it then tends
to overgeneralize. However, many occurrences of
the predicted gene pairs are not involved in renaming
acts because the reasons for mentioning synonyms
may be different than renaming. In particular, equiv-
alent genes of other species (orthologues) with high
sequence similarities may have the same name as in
Bacillus subtilis. An obvious improvement of our
method would consists in first relating the genes to
their actual species before relating the only Bacillus
subtilis gene synonyms by the renaming relation.

Team Pre. Rec. F-M.
U. of Turku 95.9 79.6 87.0
Concordia U. 74.4 65.9 69.9
INRA 57.0 73.9 64.4

Table 4: Official scores in percentage on the test set.

3.1 Method improvement by IE patterns

After the official submission and given the result of
our system compared to competitors, a simple mod-
ification of the feature selection was tested with sig-
nificant benefits: the addition of regular expressions
as additional features. Intuitively there are words or
patterns that strongly appeal to the reader as impor-
tant markers of renaming acts. For example, vari-
ations of rename or adverbs such originally or for-
merly would certainly be reasonable candidates. Fif-
teen such shallow patterns were designed (see Table
5) supplemented by six more complex ones, orig-

inally designed to single out gene names. In ap-
pendix A, one of them is presented, the precision
of which is 95.3% and recall 27.5%. That is, more
than a quarter of renaming acts in the training and
development sets together. Interestingly, in table
5 the word formerly (3rd in feature selection rank-
ing) alone recalls 10.7% of the renaming acts with
a precision of 96.9%. In contrast, the words origi-
nally and reannotated although having 100% preci-
sion are respectively ranked 33rd and 777th. In total,
21 patterns are represented as boolean features of
the classification step in addition to the ones selected
by feature selection. Unsurprisingly, the best classi-
fiers, according to the cross-validation F-measure af-
ter the grid search, only used the regular expressions
as features neglecting the terms chosen by feature
selection. A significant improvement is achieved:
+8.7% of F-measure on the test set (see Fig. 2).

Pattern Pre. Rec. F-M.
(reannotated) 100.0 0.4 0.7
(also called) 100.0 0.4 0.7
(formerly) 96.9 10.7 19.2
(originally) 100.0 1.4 2.8
((also)? known as) 100.0 1.8 3.4
(were termed) 100.0 0.4 0.7
(identity of) 100.0 0.7 1.4
(be referred (to|as)?) 100.0 0.4 0.7
(new designation) 100.0 0.4 0.7
( allel\w+) 80.0 2.8 5.4
(split into) 100.0 0.4 0.7
( rename ) 83.4 1.8 3.4
( renamed ) 88.5 8.0 14.6
( renaming ) 100.0 0.4 0.7
(E(\.|scherichia) coli) 11.3 4.5 6.4

Table 5: Handwritten patterns. Scores are in percentage
on the training and development sets together after the
gene nomenclature filtering step. A very low precision
means the pattern could be used to filter out rather than
in.

3.2 Error analysis
The false positive errors of the sentence filter-
ing step, using hand-written patterns can be clas-
sified as follows: 1) omission: Characteriza-
tion of abn2 (yxiA), encoding a Bacillus subtilis
GH43 arabinanase, Abn2, and its role in arabino-
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Figure 2: Evolution of F-measure at different measure
points for the Rename task. Dev: training on train set
and testing on dev set. Test: training on train + dev sets
and testing on test set (no intermediary measure). 64.4%
is the official submitted score. 73.1% is the best score
achieved by the system on the test set.

polysaccharide degradation. (PMID 18408032). In
this case the sentence has been filtered out by the
SVM and then the couple abn2/yxia was not an-
notated as a renaming act, 2) incorrect informa-
tion in the nomenclature: These results substanti-
ate the view that sigE is the distal member of a
2-gene operon and demonstrate that the upstream
gene (spoIIGA) is necessary for sigma E forma-
tion. (PMID 2448286). Here, the integration of
the Genetic Map to the nomenclature has introduced
a wrong synonymy relation between spoIIGA and
sigE, 3) homology with another species: We report
the cloning of the wild-type allele of divIVB1 and
show that the mutation lies within a stretch of DNA
containing two open reading frames whose pre-
dicted products are in part homologous to the prod-
ucts of the Escherichia coli minicell genes minC and
minD. (PMID 1400224). The name pair actually
exists in the nomenclature but here, divIVB1 is a
gene of B. subtilis and minC is a gene of E. Coli,
4) another problem linked to the lexicon is the fact
the synonym classes are not disjoint. Some depre-
cated names of given genes are reused as canoni-
cal names of other genes. For example, purF and
purB referred to two different genes of B. subtilis

but purB was also formerly known as purF: The
following gene order has been established: pbuG-
purB-purF-purM-purH-purD-tre (PMID 3125411).
Hence, purF and purB are uncorrectly recognized
as synonyms while they refer to two different genes
in this context. Possible solutions for improving the
system could be: 1) the inclusion of species names
as SVM features, 2) the removal of some couples
from the nomenclature (PurF/purB for instance),
3) evaluate the benefits of each resource part of the
nomenclature.

4 Conclusion

Our system detects renaming acts of Bacillus sub-
tilis genes with a final F-measure of 64.4%. Af-
ter sentence segmentation, the emphasis is on sen-
tence filtering using an exhaustive nomenclature and
a SVM. An amelioration of this method using pat-
terns as features of the machine learning algorithm
was shown to improve significantly (+8.7%) the fi-
nal performance. It was also shown that the bag of
words representation is sub-optimal for text classi-
fication experiments (Fagan, 1987; Caropreso and
Matwin, 2006) With the use of such patterns, the fil-
tering step is now very efficient. The examination
of the remaining errors showed the limits of the cur-
rent shallow system. A deeper linguistic approach
using syntactic parsing seems indicated to improve
the filtering step further.
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A Gene or operon couple matching pattern

Pattern that uses bacteria gene naming rules (3 lower
case + 1 upper case letters), short genes (3 lower
case letters), long gene names, factorized operons
(3 lower case + several upper case letters), gene
names including special and/or numerical characters
in presence or not of signal words such as named,
renamed, formerly, formally, here, herein, here-
after, now, previously, as, designated, termed and/or
called, only if the pattern does not begin with and
or orf. Although this pattern could be used to di-
rectly filter in sentences containing a renaming act,
its recall is too low thus it is used as a feature of the
classifier instead.

and|orf\
GENE|OPERON-fact\
[|((now|as|previously|formerly|formally|here(in|after))\
((re)named|called|designated|termed) (now|as|previously|formerly|formally|here(in|after))\
GENE|OPERON-fact)|]

Table 6: Long pattern used for gene pair matching.

Terms matched Pattern PMID
short-GENE (short-GENE) cotA (formerly pig) 8759849
long-GENE (long-GENE) cotSA (ytxN) 10234840
fact-OPERON (fact-OPERON) ntdABC (formally yhjLKJ) 14612444
spe-GENE (spe-GENE) lpa-8 (sfp) 10471562
GENE (GENE) cwlB [lytC] 8759849
GENE (now designated GENE) yfiA (now designated glvR) 11489864
GENE (previously GENE) nhaC (previously yheL) 11274110
GENE (formerly called GENE) bkdR (formerly called yqiR) 10094682
GENE (now termed GENE) yqgR (now termed glcK) 9620975
GENE (GENE) other forms fosB(yndN) 11244082
GENE (hereafter renamed GENE) yhdQ (hereafter renamed cueR) 14663075
GENE (herein renamed GENE) yqhN (herein renamed mntR) 10760146
GENE (formally GENE) ntdR (formally yhjM) 14612444
GENE (formerly GENE) mtnK (formerly ykrT) 11545674
GENE (renamed GENE) yfjS (renamed pdaA) 12374835
GENE (named GENE) yvcE (named cwlO) 16233686
GENE (GENE) pdaA (yfjS) 14679227

Table 7: Examples matched with the long pattern.
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Abstract

Building on technical advances from the
BioNLP 2009 Shared Task Challenge, the
2011 challenge sets forth to generalize tech-
niques to other complex biological event ex-
traction tasks. In this paper, we present the
implementation and evaluation of a signature-
based machine-learning technique to predict
events from full texts of infectious disease
documents. Specifically, our approach uses
novel signatures composed of traditional lin-
guistic features and semantic knowledge to
predict event triggers and their candidate argu-
ments. Using a leave-one out analysis, we re-
port the contribution of linguistic and shallow
semantic features in the trigger prediction and
candidate argument extraction. Lastly, we ex-
amine evaluations and posit causes for errors
in our complex biological event extraction.

1 Introduction

The BioNLP 2009 Shared Task (Kim et al., 2009)
was the first shared task to address fine-grained in-
formation extraction for the bio-molecular domain,
by defining a task involving extraction of event
types from the GENIA ontology. The BioNLP 2011
Shared Task ( (Kim et al., 2011)) series generalized
this defining a series of tasks involving more text
types, domains and target event types. Among the
tasks for the new series is the Infection Disease task,
proposed and investigated by (Pyysalo et al., 2011;
Pyysalo et al., 2010; Bjorne et al., 2010).

Like the other tasks for the BioNLP Shared Task
series, the goal is to extract mentions of relevant
events from biomedical publications. To extract

an event, the event trigger and all arguments must
be identified in the text by exact offset and typed
according to a given set of event and argument
classes (Miwa et al., 2010). Entity annotations are
given for a set of entity types that fill many of the
arguments.

Here we describe Pacific Northwest National Lab-
oratory’s (PNNL) submission to the BioNLP 2011
Infectious Disease shared task. We describe the ap-
proach and then discuss results, including an analy-
sis of errors and contribution of various features.

2 Approach

Our system uses a signature-based machine-learning
approach. The system is domain-independent,
using a primary task description vocabulary and
training data to learn the task, but domain re-
sources can be incorporated as additional features
when available, as described here. The approach
can be broken down into 4 components: an au-
tomated annotation pipeline to provide the basis
for features, classification-based trigger identifica-
tion and argument identification components, and a
post-processing component to apply semantic con-
straints. The UIMA framework1 is used to integrate
the components into a pipeline architecture.

2.1 Primary Tasks

A definition of the events to be extracted is used to
define candidates for classification and post-process
the results of the classification. First a list of
domain-specific entity classes is given. Entities of

1http://uima.apache.org/
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Event Class Arguments
Gene expression Theme(Protein|Regulon-operon)
Transcription Theme(Protein|Regulon-operon)
Protein catabolism Theme(Protein)
Phosphorylation Theme(Protein), Site(entity)?
Localization Theme(core entity), AtLoc(entity)?, ToLoc(entity)?
Binding Theme(core entity)+, Site(entity)*
Regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Positive regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Negative regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Process Participant(core entity)?

Table 1: Summary of the target events. Type restrictions on fillers of each argument type are shown in parenthesis.
Multiplicity of each argument type is also marked (+ = one-to-many, ? = zero-to-one, * = zero-to-many, otherwise =
one).

these classes are assumed to be annotated in the data,
as is the case for the Infectious Disease task. Then,
each event class is given, with a list of argument
types for each. Each argument is marked with its
multiplicity, indicating how many of this argument
type is valid for each event, either: one – exactly one
is required, one-to-many – one or more is required,
zero-to-one – one is optional, and zero-to-many –
one or many are optional. Also, restrictions on the
classes of entities that can fill each argument are
given, by listing: one or more class names – indicat-
ing the valid domain-specific entity classes from the
definition, core entity – indicating that any domain-
specific entity in the definition is valid, event – indi-
cating that any event in the definition is valid, or en-
tity – indicating that any span from the text is valid.
Table 1 shows the summary of the event extraction
tasks for the Infectious Disease track.

2.2 Annotation

Linguistic and domain annotations are automatically
applied to the document to be used for trigger and
argument identification in framing the tasks for clas-
sification and generating features for each instance.
Linguistic annotations include sentence splits, to-
kens, parts of speech, tree parses, typed dependen-
cies (deMarneffe et al., 2006; MacKinlay et al.,
2009), and stems. For the Infectious Disease task,
the parses from the Stanford Parser (Klein and Man-
ning, 2003) provided by the Supporting Analysis
(Stenetorp et al., 2011) was used to obtain all of
these linguistic annotations, except for the stems,
which were obtained from the Porter Stemmer (van

Rijsbergen et al., 1980).
For the Infectious Disease task, two sets of do-

main specific annotations are included: known
trigger words for each event class and semantic
tags from the Unified Medical Language System
(UMLS) (Bodenreider, 2004). Annotations for
known trigger words are created using a dictionary
of word stem-event class pairs created from anno-
tated training data. An entry is created in the dictio-
nary every time a new stem is seen as a trigger for
an event class. When a word with one of these stems
is seen during processing, it is annotated as a typical
trigger word for that event class.

Semantic tags are calculating using MetaMap
2010 (Aronson and Lang, 2010). MetaMap provides
semantic tags for terms in a document with up to
three levels of specificity, from most to least spe-
cific: concept, type and group (Torii et al., 2011).
Word sense disambiguation is used to identify the
best tags for each term. For example, consider the
tags identified by MetaMap for the phrase Human
peripheral B cells:

Human
concept: Homo sapiens
type: Human
group: Living Beings

Peripheral
type: Spatial Concept
group: Concepts & Ideas

B-Cells
concept: B-Lymphocytes
type: Cell
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group: Anatomy

In this example, semantic mappings were found for
three terms: Human, Peripheral and B-Cells. Hu-
man and B-Cells were mapped to specific concepts,
but Peripheral was mapped to a more general group.

Entities are also annotated at this point. For the
Infectious Disease task, annotations for five entity
types are given: Protein, Two-component system,
Chemical, Organism, or Regulon/Operon.

2.3 Trigger Identification
Triggers are identified using an SVM classifier (Vap-
nik, 1995; Joachims, 1999). Candidate triggers are
chosen from the words in the text by part-of-speech.
Based on known triggers seen in the training data, all
nouns, verbs, adjectives, prepositions and adverbs
are selected as candidates. A binary model is trained
for each event type, and candidate triggers are tested
against each classifier.

The following features are used to classify candi-
date event triggers:

• term – the candidate trigger
• stem – the stem of the term
• part of speech – the part of speech of the term
• capitalization – capitalization of the term
• punctuation – individual features for the pres-

ence of different punctuation types
• numerics – the presence of a number in the

term
• ngrams – 4-grams of characters from the term
• known trigger types – tags from list of known

trigger terms for each event type
• lexical context – terms in the same sentence
• syntactic dependencies – the type and role

(governor or dependent) of typed dependencies
involving the trigger
• semantic type – type mapping from MetaMap
• semantic group – group mapping from

MetaMap

For training data, both the Infectious Disease
training set and the GENIA training set were used.
Although the GENIA training set represents a dif-
ferent genre and is annotated with a slightly differ-
ent vocabulary than the Infectious Disease task data,

it is similar enough to provide some beneficial su-
pervision. The Infectious Disease training data is
relatively small at 154 documents so including the
larger GENIA training set at 910 documents results
in a much more larger training set. Testing on the
Infectious Disease development data, a 1 point im-
provement in fscore in overall results is seen with
the additional training data.

2.4 Argument Identification

Arguments are also identified using an SVM classi-
fier. For each predicted trigger, candidate arguments
are selected based on the argument types. For ar-
guments that are restricted to being filled by some
set of specific entity and event types, each anno-
tated entity and predicted event is selected as a can-
didate. For arguments that can be filled by any span
of text, each span corresponding to a constituent of
the tree parse is selected as a candidate. Each pair
of an event trigger and a candidate argument serves
as an instance for the classification. A binary model
is trained for each event type, and each pair is tested
against each classifier.

Many of the features used are inspired by those
used in semantic role labeling systems (Gildea and
Jurafsky, 2002). Given an event trigger and a can-
didate argument, the following features are used to
classify event arguments:

• trigger type – the predicted event type of the
trigger
• argument terms – the text of the argument
• argument type – entity or event type annota-

tion on the argument
• argument super-type – core entity or core ar-

gument
• trigger and argument stems – the stems of

each
• trigger and argument parts of speech – the

part of speech of each
• parse tree path – from the trigger to argument

via least common ancestor in tree parse, as a
list of phrase types
• voice of sentence – active or passive
• trigger and argument partial paths – from

the trigger or argument to the least common an-
cestor in tree parse, as a list of phrase types
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• relative position of argument to trigger – be-
fore or after
• trigger sub-categorization – representation of

the phrase structure rule that describes the rela-
tionship between the trigger, its parent and its
siblings.

The training data used is the same as for trig-
ger identification: the Infectious Disease training set
plus the Genia training set.

2.5 Post-processing
A post-processing component is used to turn output
from the various classifiers into semantically valid
output according to the target task. For each pre-
dicted trigger, the positive predictions for each argu-
ment model are collected, and the set is compared to
the argument restrictions in the target task descrip-
tion.

For example, the types on argument predictions
are compared to the argument restrictions in the
target task, and non-conforming ones are dropped.
Then the multiplicity of the arguments for each pre-
dicted event is checked against the task vocabulary.
Where there were not sufficient positive argument
predictions to make a full event, the best negative
predictions from the model are tried. When a com-
pliant set of arguments can not be created for a pre-
dicted event, it is dropped.

3 Results and Discussion

Results for the system on both the development data
and the official test data for the task are shown in
Table 2 and Table 5, respectively. For the develop-
ment data, a system using gold-standard event trig-
gers is included, to isolate the performance of argu-
ment identification. In all cases, the total fscore for
non-regulation events were much higher than regula-
tion events. On the official test data, the system per-
formed the best in predicting Phosphorylation (fs-
core = 71.43), Gene Expression (fscore = 53.33) and
Process events (fscore = 51.04), but was unable to
find any Transcription and Regulation events. This
is also evident in the results on the development data
using predicted triggers; additionally, no matches
were found for localization and binding events. The
total fscore on the development data using gold trig-
gers was 55.33, more than 13 points higher than

when using predicted triggers. In the discussion that
follows, we detail the importance of individual fea-
tures and their contribution to evaluation fscores.

3.1 Feature Importance

The effect of each argument and trigger feature type
on the Infectious Disease development data was de-
termined using a leave-one-out approach. The ar-
gument and trigger feature effect results are shown
in Table 3 and Table 4, respectively. In a series of
experiments, each feature type is left out of the full
feature set one-by-one. The difference in fscore be-
tween each of these systems and the full feature set
system is the effect of the feature type; a high nega-
tive effect indicates a significant contribution to the
system since the removal of the feature resulted in a
lower fscore.

Features fscore effect
all features 41.66
w/o argument terms 36.16 -5.50
w/o argument type 39.50 -2.16
w/o trigger partial path 40.65 -1.01
w/o argument part of speech 40.98 -0.68
w/o argument partial path 41.16 -0.50
w/o trigger sub-categorization 41.45 -0.21
w/o argument stem 41.48 -0.18
w/o argument super-type 41.63 -0.03
w/o trigger type 41.63 -0.03
w/o trigger part of speech 41.81 0.15
w/o trigger stem 41.81 0.15
w/o voice of sentence 41.85 0.19
w/o relative position 42.21 0.55
w/o parse tree path 42.67 1.01

Table 3: Effect of each argument feature type on Infec-
tious Disease development data.

Within the argument feature set system, the parse
tree path feature had a notable positive effect of
1.01. The features providing the greatest contribu-
tion were argument terms and argument type with
effects of -5.50 and -2.16, respectively. Within the
trigger feature set system, the lexical context and
syntactic dependencies features showed the highest
negative effect signifying positive contribution to the
system. The text and known trigger types features
showed a negative contribution to the system.
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Using Gold Triggers Using Predicted Triggers
Event Class gold/ans./match recall prec. fscore gold/ans./match recall prec. fscore

Gene expression 134 / 110 / 100 74.63 90.00 81.60 134 / 132 / 85 64.18 64.39 64.29
Transcription 35 / 26 / 23 65.71 88.46 75.41 25 / 0 / 0 0.00 0.00 0.00

Protein catabolism 0 / 0 / 0 0.00 0.00 0.00 0 / 0 / 0 0.00 0.00 0.00
Phosphorylation 13 / 13 / 13 100.00 100.00 100.00 13 / 14 / 13 100.00 92.86 96.30

Localization 1 / 1 / 0 0.00 0.00 0.00 1 / 10 / 0 0.00 0.00 0.00
Binding 17 / 6 / 0 0.00 0.00 0.00 17 / 3 / 0 0.00 0.00 0.00
Process 206 / 180 / 122 59.22 67.78 63.21 207 / 184 / 108 52.17 58.70 55.24

Regulation 81 / 61 / 20 24.69 32.79 28.17 80 / 0 / 0 0.00 0.00 0.00
Positive regulation 113 / 91 / 36 31.86 39.56 35.29 113 / 42 / 13 11.50 30.95 16.77
Negative regulation 90 / 71 / 32 35.56 45.07 39.75 90 / 42 / 11 12.22 26.19 16.67

TOTAL 690 / 559 / 346 50.14 61.72 55.33 680 / 427 / 230 33.97 53.86 41.66

Table 2: Results on Infectious Disease development data. The system is compared to a system using gold standard
triggers to isolate performance of argument identification.

Features fscore effect
all features 41.66
w/o lexical context 40.14 -1.52
w/o syntactic dependencies 40.28 -1.38
w/o ngrams 40.88 -0.78
w/o part of speech 41.48 -0.18
w/o capitalization 41.51 -0.15
w/o numerics 41.51 -0.15
w/o semantic group 41.55 -0.11
w/o punctuation 41.59 -0.07
w/o stem 41.74 0.08
w/o semantic type 41.82 0.16
w/o known trigger types 42.11 0.45
w/o text 42.31 0.65

Table 4: Effect of each trigger feature type on Infectious
Disease development data.

3.2 Transcription and Regulation events

Lastly, we present representative examples of errors
(e.g., false positive, false negative, poor recall) pro-
duced by our system in the Infectious Disease track
core tasks. The discussion herein will cover eval-
uations where our system did not correctly predict
(transcription and regulation) any events or partially
predicted (binding and +/- regulation) event triggers
and arguments. In the text examples that follow, trig-
gers are underlined and arguments are italicized.

The following are transcription events from the
document PMC1804205-02-Results-03 in the devel-
opment data.

• In contrast to the phenotype of the pta ackA
double mutant, pbgP transcription was reduced

in the pmrD mutant (Fig. 3).

• Growth at pH 5.8 resulted in pmrD
transcript levels that were approximately3.5-
fold higher than in organisms grown at pH 7.7
(Fig. 4A).

In both the development and test data evaluations,
our system did not predict any transcription events,
resulting in a 0.0 fscore; however, the system
achieved 75.41 fscore when the gold-standard trig-
gers were provided to the evaluation. Because ar-
gument prediction performed well, the system will
benefit most by improving transcription event trig-
ger prediction.

The following are regulation events from the doc-
ument PMC1804205-02-Results-01in the develop-
ment data.

• . . . we grew Salmonella cells harbouring chro-
mosomal lacZYA transcriptional fusions to the
PmrA-regulated genes pbgP, pmrC and ugd
(Wosten and Groisman, 1999) in N-minimal
media buffered at pH 5.8 or 7.7.

• We determined that Chelex 100 was effective at
chelating iron because expression of the pmrA-
independent iron-repressed iroA gene . . .

Similar to the transcription task, our system did not
predict any regulation events, resulting in a 0.0 fs-
core. Unlike transcription events though, our sys-
tem performed poorly on both argument identifica-
tion and trigger prediction. The system achieved a
28.17 fscore when gold-standard triggers were used
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Event Class gold (match) answer (match) recall prec. fscore
Gene expression 152 80 148 80 52.63 54.05 53.33

Transcription 50 0 0 0 0.00 0.00 0.00
Protein catabolism 5 1 12 1 20.00 8.33 11.76

Phosphorylation 16 10 12 10 62.50 83.33 71.43
Localization 7 4 22 4 57.14 18.18 27.59

Binding 56 7 14 7 12.50 50.00 20.00
Regulation 193 0 0 0 0.00 0.00 0.00

Positive regulation 193 34 87 34 17.62 39.08 24.29
Negative regulation 181 32 68 32 17.68 47.06 25.70

Process 516 234 401 234 45.35 58.35 51.04
TOTAL 1369 402 764 402 29.36 52.62 37.69

Table 5: Official results on Infectious Disease test data

in the evaluation. Hypotheses for poor performance
on candidate argument prediction are addressed in
the following sections.

We posit that false negative trigger identifications
are due to the limited full text training data (i.e. tran-
scription events) and the inability of our system to
predict non-verb triggers (i.e. second transcription
example above). The SVM classifier was unable
to distinguish between true transcription event trig-
gers and transcription-related terms and ultimately,
did not predict any transcription event in the devel-
opment or test evaluations. To improve transcrip-
tion event prediction, immediate effort should fo-
cus on 1) providing additional training data (e.g.,
BioCreativec̃iteBioCreative) and 2) introduce a trig-
ger word filter that defines a subset of event triggers
that have the best hit rate in the corpus. The hit rate
is the number of occurrences of the word in a sen-
tence per event type, divided by the total count in the
gold standard (Nguyen et al., 2010).

3.3 +/-Regulation and Binding

The following positive regulation event is from doc-
ument PMC1874608-03-RESULTS-03 in the devel-
opment data.

• Invasiveness for HEp-2 cells was reduced to
39.1% of the wild-type level by mlc mutation,
whereas it was increased by 1.57-fold by hilE
mutation (Figure 3B).

In the preceding example, our system correctly
predicted the +regulation trigger and the theme hilE;

however, the correct argument was a gene expres-
sion event, not the entity. Many errors in the positive
and negative regulation events were of this type; the
predicted argument was a theme and not an event.

Evaluation of our system’s binding event predic-
tions resulted in low recall (12.50 or 0.0) in the
test and development evaluations. The proceeding
binding events are from document PMC1874608-
03-RESULTS-05 in the development data. In both
of the examples, our system correctly predicted the
trigger binding; however, no arguments were pre-
dicted. Evaluation on the development data with
gold standard triggers also resulted in an fscore of
0.0; thus, further algorithm refinement is needed to
improve binding scores.

• Mlc directly represses hilE by binding to the P3
promoter

• These results clearly demonstrate that Mlc
can regulate directly the hilE P3 promoter by
binding to the promoter.

The following binding event is from document
PMC1874608-01-INTRODUCTION in the devel-
opment data and is representative of errors across
many of the tasks. Here, the trigger is correctly pre-
dicted; however, the candidate arguments did not
match with the reference data. Upon closer look,
the arguments were drawn from the entire sentence,
rather than an independent clause. The syntactic
parse feature was not sufficient to prevent over-
predicting arguments for the trigger, a potential so-
lution is to add the arguments syntactic dependency
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to the trigger as a feature to the candidate argument
selection.

• Using two-hybrid analysis, it has been shown
that HilE interacts with HilD, which suggests
that HilE represses hilA expression by inhibit-
ing the activity of HilD through a protein-
protein interaction (19,20).

4 Summary

This article reports Pacific Northwest National Lab-
oratory’s entry to the BioNLP Shared Task 2011 In-
fectious Disease track competition. Our system uses
a signature-based machine-learning approach incor-
porating traditional linguistic features and shallow
semantic concepts from NIH’s METAMAP The-
saurus. We examine the contribution of each of
the linguistic and semantic features to the over-
all fscore for our system. This approach performs
well on gene expression, process and phosphoryla-
tion event prediction. Transcription, regulation and
binding events each achieve low fscores and war-
rant further research to improve their effectiveness.
Lastly, we present a performance analysis of the
transcription, regulation and binding tasks. Future
work to improve our system’s performance could in-
clude pre-processing using simple patterns (Nguyen
et al., 2010), information extraction from figure cap-
tions (Kim and Yu, 2011) and text-to-text event ex-
traction. The last suggested improvement is to add
semantic features to the candidate argument predic-
tion algorithm in addition to using rich features, such
as semantic roles (Torii et al., 2011).
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Abstract

In this paper we describe a rule-based sys-
tem developed for the BioNLP 2011 GENIA
event detection task. The system applies Ky-
bots (Knowledge Yielding Robots) on anno-
tated texts to extract bio-events involving pro-
teins or genes. The main goal of this work is to
verify the usefulness and portability of the Ky-
bot technology to the domain of biomedicine.

1 Introduction

The aim of the BioNLP’11 Genia Shared Task (Kim
et al., 2011b) concerns the detection of molecular
biology events in biomedical texts using NLP tools
and methods. It requires the identification of events
together with their gene or protein arguments. Nine
event types are considered: localization, binding,
gene expression, transcription, protein catabolism,
phosphorylation, regulation, positive regulation and
negative regulation.

When identifying the events related to the given
proteins, it is mandatory to detect also the event
triggers, together with its associated event-type, and
recognize their primary arguments. There are “sim-
ple” events, concerning an event together with its
arguments (Theme, Site, ...) and also “complex”
events, or events that have other events as secundary
arguments. Our system did not participate in the op-
tional tasks of recognizing negation and speculation.

The training dataset contained 909 texts together
with a development dataset of 259 texts. 347 texts
were used for testing the system.

The main objective of the present work was to ver-
ify the applicability of a new Information Extraction

(IE) technology developed in the KYOTO project1

(Vossen et al., 2008), to a new specific domain. The
KYOTO system comprises a general and extensible
multilingual architecture for the extraction of con-
ceptual and factual knowledge from texts, which has
already been applied to the environmental domain.

Currently, our system follows a rule-based ap-
proach (i.e. (Kim et al., 2009), (Kim et al., 2011a),
(Cohen et al., 2011) or (Vlachos, 2009)), using a set
of manually developed rules.

2 System Description

Our system proceeds in two phases. Firstly, text doc-
uments are tokenized and structured using an XML
layered structure called KYOTO Annotation Format
(KAF) (Bosma et al., 2009). Secondly, a set of Ky-
bots (Knowledge Yielding Robots) are applied to de-
tect the biological events of interest occurring in the
KAF documents. Kybots form a collection of gen-
eral morpho-syntactic and semantic patterns on se-
quences of KAF terms. These patterns are defined
in a declarative format using Kybot profiles.

2.1 KAF

Firstly, basic linguistic processors apply segmenta-
tion and tokenization to the text. Additionally, the
offset positions of the proteins given by the task or-
ganizers are also considered. The output of this ba-
sic processing is stored in KAF, where words, terms,
syntactic and semantic information can be stored in
separate layers with references across them.

Currently, our system only considers a minimal
amount of linguistic information. We are only using

1http://www.kyoto-project.eu/
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the word form and term layers. Figure 1 shows an
example of a KAF document where proteins have
been annotated using a special POS tag (PRT). Note
that our approach did not use any external resource
apart of the basic linguistic processing.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<KAF xml:lang="en">

<text>

...
<wf wid="w210" sent="10">phosphorylation</wf>

<wf wid="w211" sent="10">of</wf>

<wf wid="w212" sent="10">I</wf>

<wf wid="w213" sent="10">kappaB</wf>

<wf wid="w214" sent="10">alpha<...
</text>

<term tid="t210" type="open" lemma="phosphorylation"
start="1195" end="1210" pos="W">

<span><target id="w210"/></span>

</term>

<term tid="t211" type="open" lemma="of"
start="1211" end="1213" pos="W">

<span><target id="w211"/></span>

</term>

<term tid="T5" type="open" lemma="I kappaB alpha"
start="1214" end="1228" pos="PRT">

<span><target id="w212"/></span>

<target id="w213"/>

<target id="w214"/></span>

</term>...
</terms>

</KAF>

Figure 1: Example of a document in KAF format.

2.2 Kybots

Kybots (Knowledge Yielding Robots) are abstract
patterns that detect actual concept instances and re-
lations in KAF. The extraction of factual knowledge
by the mining module is done by processing these
abstract patterns on the KAF documents. These pat-
terns are defined in a declarative format using Kybot
profiles, which describe general morpho-syntactic
and semantic conditions on sequences of terms. Ky-
bot profiles are compiled to XQueries to efficiently
scan over KAF documents uploaded into an XML
database. These patterns extract and rank the rele-
vant information from each match.

Kybot profiles are described using XML syn-
tax and each one consists of three main declarative
parts:

• Variables: In this part, the entities and its prop-
erties are defined

• Relations: This part specifies the positional re-
lations among the previously defined variables

• Events: describes the output to be produced for
every matching

Variables (see the Kybot section variables in fig-
ure 2) describe the term variables used by the Kybot.
They have been designed with the aim of being flex-
ible enough to deal with many different information
associated with the KAF terms including semantic
and ontological statements.

Relations (see the Kybot section relations in fig-
ure 2) define the sequence of variables the Kybot
is looking for. For example, in the Kybot in fig-
ure 2, the variable named Phosphorylation
is the main pivot, the variable Of must follow
Phosphorylation (immediate is true indi-
cating that it must be the next term in the sequence),
and a variable representing a Proteinmust follow
Of. Proteins and genes are identified with the PRT
tag.

Events (expressions marked as events in figure 2)
describes the output template of the Kybot. For ev-
ery matched pattern, the kybot produces a new event
filling the template structure with the selected pieces
of information. For example, the Kybot in figure 2
selects some features of the event represented with
the variable called Phosphorylation: its term-
identification (@tid), its lemma, part of speech and
offset. The expression also describes that the vari-
able Protein plays the role of being the “Theme”
of the event. The output obtained when aplying the
Kybot in figure 2 is shown in figure 3. Comparing
the examples in table 1 and in figure 3 we observe
that all the features needed for generating the files
for describing the results are also produced by the
Kybot.

<doc shortname="PMID-9032271.kaf">

<event eid="e1" target="t210" kybot="phosphorylation of P"
type="Phosphorylation"
lemma="phosphorylation" start="1195" end="1210" />

<role target="T5" rtype="Theme"
lemma="I kappaB alpha" start="1214" end="1228" />

</doc>

Figure 3: Output obtained after the application of the Ky-
bot in figure 2.

3 GENIA Event Extraction Task and
Results

We developed a set of basic auxiliary pro-
grams to extract event patterns from the train-
ing corpus. These programs obtain the struc-
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<?xml version="1.0" encoding="utf-8"?>

<!-- Sentence: phosphorylation of Protein
Event1: phosphorylation
Role: Theme Protein -->

<Kybot id="bionlp">

<variables>

<var name="Phosphorylation" type="term" lemma="phosphorylat*>

<var name="Of" type="term" lemma="of"/>

<var name="Protein" type="term" pos="PRT"/>

</variables>

<relations>

<root span="Phosphorylation"/>

<rel span="Of" pivot="Phosphorylation" direction="following" immediate="true"/>

<rel span="Protein" pivot="Of" direction="following" immediate="true"/>

</relations>

<events>

<event eid="" target="$Phosphorylation/@tid" kybot="phosphorylation of P"
type="Phosphorylation" lemma="$Phosphorylation/@lemma"
pos="$Phosphorylation/@pos" start="$Phosphorylation/@start" end="$Phosphorylation/@end"/>

<role target="$Protein/@tid" rtype="Theme" lemma="$Protein/@lemma" start="$Protein/@start"
end="$Protein/@end"/>

</events>

</Kybot>

Figure 2: Example of a Kybot for the pattern Event of Protein.

.a1 file
T5 Protein 1214 1228 I kappaB alpha

.a2 file
T20 Phosphorylation 1195 1210 phosphorylation
E7 Phosphorylation:T20 Theme:T5

Table 1: Results in the format required in the GENIA
shared task.

ture of the events, their associated trigger words
and their frequency. For example, in the
training corpus, a pattern of the type Event
of Protein appears 35 times, where the
Event is further described as phosporylation,
phosphorylated.... Taking the most fre-
quently occurring patterns in the training data into
account, we manually developed the set of Kybots
used to extract the events from the development and
test corpora. For example, in this way we wrote the
Kybot in figure 2 that fulfils the conditions of the
pattern of interest.

The two phases mentioned in section 2, corre-
sponding to the generation of the KAF documents
and the application of Kybots, have different input
files depending on the type of event we want to
detect: simple or complex events. When extract-
ing simple events (see figure 4), we used the in-
put text and the files containing protein annotations
(“.a1” files in the task) to generate the KAF docu-
ments. These KAF documents and Kybots for sim-
ple events are provided to the mining module. In
the case of complex events (events that have other

KAF generator


.txt
 .a1


.kaf


Kybot processor


Kybots

(Simple)


.a2


Figure 4: Application of Kybots. Simple events.

events as arguments), the identifiers of the detected
simple events are added to the KAF document in the
first phase. A new set of Kybots describing complex
events and KAF (now with annotations of the simple
events) are used to obtain the final result (see figure
5).

For the evaluation, we also developed some pro-
grams for adapting the output of the Kybots (see fig-
ure 3) to the required format (see table 1).

We used the development corpus to improve the
Kybot performance. We developed 65 Kybots for
detecting simple events. Table 2 shows the number
of Kybots for each event type. Complex events rela-
tive to regulation (also including negative and posi-
tive regulations) were detected using a set of 24 Ky-
bots.

The evaluation of the task was based on the output
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(with simple events)
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Figure 5: Application of Kybots. Complex events.

Event Class Simple Kyb. Complex Kyb.
Transcription 10
Protein Catabolism 5
Binding 5
Regulation 3
Negative Regulation 5 4
Positive Regulation 3 17
Localization 7
Phosphorylation 18
Gene Exrpesion 12

Total 65 24

Table 2: Number of Kybots generated for each event.

of the system when applied to the test dataset of 347
previously unseen texts. Table 3 shows in the Gold
column the number of instances for each event-type
in the test corpus. R, P and F-score columns stand
for the recall, precision and f-score the system ob-
tained for each type of event. As a consequence of
the characteristics of our system, precision is primed
over recall. For example, the system obtains 95%
and 97% precision on Phosphorylation an Localiza-
tion events, respectively, although its recall is con-
siderably lower (41% and 19%).

4 Conclusions and Future work

This work presents the first results of the applica-
tion of the KYOTO text mining system for extracting
events when ported to the biomedical domain. The
KYOTO technology and data formats have shown to
be flexible enough to be easily adapted to a new task
and domain. Although the results are far from satis-
factory, we must take into account the limited effort
we dedicated to adapting the system and designing
the kybots, which can be roughly estimated in two

Event Class Gold R P F-score
Localization 191 19.90 97.44 33.04
Binding 491 5.30 50.00 9.58
Gene Expression 1002 54.19 42.22 47.47
Transcription 174 13.22 62.16 21.80
Protein catabolism 15 26.67 44.44 33.33
Phosphorylation 185 41.62 95.06 57.89
Non-reg total 2058 34.55 47.27 39.92
Regulation 385 7.53 9.63 8.45
Positive regulation 1443 6.38 62.16 11.57
Negative regulation 571 3.15 26.87 5.64
Regulatory total 2399 5.79 26.94 9.54

All total 4457 19.07 42.08 26.25

Table 3: Performance analysis on the test dataset.

person/months.

After the final evaluation, our system obtained the
thirteenth position out of 15 participating systems
in the main task (processing PubMed abstracts and
full paper articles), obtaining 19.07%, 42.08% and
26.25 recall, precision an f-score, respectively, far
from the best competing system (49.41%, 64.75%
and 56.04%). Although they are far from satisfac-
tory, we must take into account the limited time we
dedicated to adapting the system and designing the
kybots. Apart from that, due to time restrictions,
our system did not make use of the ample set of
resources available, such as named entities, corefer-
ence resolution or syntactic parsing of the sentences.
On the other hand, the system, based on manually
developed rules, obtains reasonable accuracy in the
task of processing full paper articles, obtaining 45%
precision and 21% recall, compared to 59% and 47%
for the best system, which means that the rule-based
approach performs more robustly when dealing with
long texts (5 full texts correspond to approximately
150 abstracts). As we have said before, our main
objective was to evaluate the capabilities of the KY-
OTO technology without adding any additional in-
formation. The use of more linguistic information
will probably facilitate our work and will benefit the
system results. In the near future we will study the
application of machine learning techniques for the
automatic generation of Kybots from the training
data. We also plan to include additional linguistic
and semantic processing in the event extraction pro-
cess to exploit the current semantic and ontological
capabilities of the KYOTO technology.
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Abstract 

This paper describes a novel approach pre-
sented to the BioNLP’11 Shared Task on 
GENIA event extraction. The approach con-
sists of three steps. First, a dictionary is auto-
matically constructed based on training 
datasets which is then used to detect candidate 
triggers and determine their event types. Sec-
ond, we apply a set of heuristic algorithms 
which use syntactic patterns and candidate 
triggers detected in the first step to extract 
biological events. Finally, a post-processing is 
used to resolve regulatory events. We 
achieved an F-score of 43.94% using the 
online evaluation system. 

1 Introduction 

The explosive growth of biomedical scientific 
literature has attracted a significant interest on de-
veloping methods to automatically extract biologi-
cal relations in texts. Until recently, most research 
was focused on extracting binary relations such as 
protein-protein interactions (PPIs), gene-disease, 
and drug-mutation relations. However, the ex-
tracted binary relations cannot fully represent the 
original biomedical data. Therefore, there is an 
increasing need to extract fine-grained and com-
plex relations such as biological events (Miwa et 
al., 2010). The BioNLP’09 Shared Task (Kim et 
al., 2009) was the first shared task that provided a 
consistent data set and evaluation tools for extrac-
tion of such biological relations.  

Several approaches to extract biological events 
have been proposed for this shared task. Based on 
their characteristics, these approaches can be di-
vided into 3 groups. The first group uses a rule-
based approach which implements a set of manu-
ally defined rules developed by experts or auto-
matically learned from training data. These rules 

are then applied on dependency parse trees to ex-
tract biological events (Kaljurand et al., 2009; Kil-
icoglu and Bergler, 2009). The second group uses a 
machine learning (ML)-based approach which ex-
ploits various specific features and learning algo-
rithms to extract events (Björne at al., 2009; Miwa 
et al., 2010). The third group uses hybrid methods 
that combine both rule- and ML-based approaches 
to solve the problem (Ahmed et al., 2009; Móra et 
al., 2009). Among these proposed approaches, the 
ML achieved the best results, however, it is non-
trivial to apply. 

In this paper, we propose a rule-based approach 
which uses two syntactic patterns derived from a 
parse tree. The proposed approach consists of the 
following components: a dictionary to detect trig-
gers, text pre-processing, and event extraction.  

2 System and method 

2.1 Dictionary for event trigger detection 
The construction of the dictionary consists of the 
following steps: grouping annotated triggers, filter-
ing out irrelevant triggers, and calculating suppor-
tive scores. First, we collect all annotated triggers 
in the training and development datasets, convert 
them to lowercase format and group them based on 
their texture values and event types. For each trig-
ger in a group, we count its frequency being anno-
tated as trigger and its frequency being found in 
the training datasets to compute a confident score.  

Next, we create a list of non-trigger words from 
the training dataset which consists of a list of prep-
ositions (e.g. to, by), and a list of adjectives (e.g. 
high, low). We then filter out triggers that belong 
to the non-trigger list as well as triggers that con-
sist of more than two words as suggested in the 
previous studies (Kilicoglu and Bergler, 2009). We 
further filter out more triggers by setting a fre-
quency threshold for each event type. Triggers that 
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have a frequency lower than a given threshold 
(which is empirically determined for each event 
type) are excluded.  

In addition, for each binding trigger (i.e. trigger 
of binding event) we compute a t2score which is 
the ratio of having a second argument.  For each 
regulatory trigger we compute an escore which is 
the ratio of having an event as the first argument 
(theme) and a cscore is the ratio of having a second 
argument (cause).  

2.2 Text preprocessing 
Text preprocessing includes splitting sentences, 

replacing protein names with place-holders, and 
parsing sentences using the Stanford Lexical Par-
ser1. First, we split the input text (e.g. title, ab-
stract, paragraph) into single sentences using 
LingPipe sentence splitter2. Sentences that do not 
contain protein names are dropped.  Second, we 
replace protein names with their given annotated 
IDs in order to prevent the parser from segmenting 
multiple word protein names. Finally, the sen-
tences are parsed with the Stanford parser to pro-
duce syntactic parse trees. All parse trees are 
stored in a local database for later use. 

Detection of event trigger and event type: For 
each input sentence, we split the sentence into to-
kens and use the dictionary to detect a candidate 
trigger and determine its event type (hereafter we 
referred to as ‘trigger’ type). After this step, we 
obtain a list of candidate triggers and their related 
scores for each event type.  

2.3 Event extraction 
To extract the biological events from a parse 

tree after obtaining a list of candidate triggers, we 
adapt two syntactic patterns based on our previous 
work on extracting PPIs (Bui et al., 2011). These 
patterns are applied for triggers in noun, verb, and 
adjective form. In the following sections we de-
scribe the rules to extract events in more detail. 

 
Rule 1: Extracting events from a noun phrase (NP) 
If the candidate trigger is a noun, we find a NP 
which is a joined node of this trigger and at least 
one protein from the parse tree. There are two NP 
patterns that can satisfy the given condition which 
are shown in Figure 1. In the first case (form1), NP 
                                                           
1 http://nlp.stanford.edu/software/lex-parser.shtml 
2 http://alias-i.com/lingpipe/ 

does not contain a PP tag, and in the second case 
(form2), the trigger is the head of this NP. Depend-
ing on the trigger type (simple, binding or regula-
tory event), candidate events are extracted by the 
following rules as shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Event 
type 

Conditions and Actions 

Simple  
or 
Regula-
tory 

NP in form1: extract all proteins on the 
left of the trigger from NP. Form event 
pairs <trigger, protein>. 
NP in form2: extract all proteins on the 
right of the trigger from NP. Form event 
pairs <trigger, protein>. 

Binding 
  

NP in form1: If proteins are in compound 
form i.e. PRO1/PRO2, PRO1-PRO2 then 
form an event triple <trigger, protein1, 
protein2>. Otherwise, form events pairs 
<trigger, protein>. 
NP in form2: If NP contains one of the 
following preposition pairs: between/and, 
of/with, of/to, and the trigger’ t2score >0.2 
then split the proteins from NP into two 
lists: list1 and list2 based on the second 
PP (preposition phrase) or CC (conjunc-
tion). Form triples <trigger, protein1, pro-
tein2>, in which protein1 from list1 and 
protein2 from list2. Otherwise, form 
events the same way as simple event case. 

 
Table 1: Conditions and actions to extract events from a 
NP. Simple and regulatory events use the same rules. 
 
Rule 2: Extracting events from a verb phrase (VP) 
If the candidate trigger is a verb, we find a VP 
which is a direct parent of this trigger from the 
parse tree and find a sister NP immediately preced-
ing this VP. Next, candidate events are extracted 
by the following rules as shown in Table 2. 
 

NP 

PRO1 

NN NN 

expression 

NN 

NP 

IN NP 

PP 

NP 

PRO0 PRO1 and 

NN CC 

DT NN 

interaction the between 

Form 2 

Form 1 

Figure 1: NP patterns containing trigger 
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The event trigger is an adjective: For a candidate 
trigger which is an adjective, if the trigger is in a 
compound form (e.g. PRO1-mediated), we apply 
rule1 to extract events. In this case, the compound 
protein (e.g. PRO1) is used as cause argument. 
Otherwise, we apply rule 2 to extract.   

2.4 Post-processing 
Post-processing includes determination of an 

event type for a shared trigger and checking cross-
references of regulatory events. For each extracted 
event which has a shared trigger3, this event is ver-
ified using a list of modified words (e.g. gene, 
mRNA) to determine final event type. For regula-
tory events, the post-processing is used to find 
cross reference events. The post-processing is 
shown in Algorithm 1.  

 

 
Table 2: Conditions and actions to extract events from a 
VP 

2.5 Algorithm to extract events 
The whole process of extracting biological event is 
shown in Algorithm 1 

                                                           
3 A shared trigger is a trigger that appears in more than one 
group, see section 2.1. 

Algorithm 1. // Algorithm to extract biological events 
from sentence. 
Input: pre-processing sentence, parse tree, and lists 
of candidate triggers for each event type 
Output: lists of candidate events of corresponding 
event type 
Init: found_list = null // store extracted events for 
reference later 
 
Step 1: Extracting events 

For each event type  
    For each trigger of the current event type 
        Extract candidate events using extraction rules 
        If candidate event found 
              Store this event to the found_list 
         End if 
    End for 
End for 

 
Step 2: Post-preprocessing 

For each extracted event from found_list  
    If event has a shared trigger 
        Verify this event with the modified words 
        If not satisfy 
              Remove this event from found_list 
         End if 
    End if 
    If event is a regulatory event and escore>0.3 
       Check its argument (protein) for cross-reference 
       If found 
             Replace current protein with found event 
        End if 
    End if 
End for 

3 Results and discussion 

Table 3 shows the latest results of our system 
obtained from the online evaluation system (the 
official evaluation results are 38.19%). The results 
show that our method performs well on simple and 
binding events with an F-score of 63.03%. It out-
performs previously proposed rule-based systems 
on these event types despite the fact that part of the 
test set consists of full text sentences. In addition, 
our system adapts two syntactic patterns which 
were previously developed for PPIs extraction. 
This means that the application of syntactic infor-
mation is still relevant to extract biological events. 
In other words, there are some properties these ex-
traction tasks share. However, the performance 

Event type Conditions and Actions  
Simple If VP contains at least one protein then 

extract all proteins which have a posi-
tion on the right of the trigger from the 
VP to create a protein list. Otherwise, 
extract all proteins that belong to the 
NP. Form event pairs <trigger, protein> 
with the obtained protein list. 

Binding If VP contains at least one protein then 
extract all proteins which have a posi-
tion on the right of the trigger from VP 
to create a protein list1. Extracting all 
proteins that belong to the NP to create 
protein list2. If both list1 and list2 are 
not empty then form triples <trigger, 
protein1, protein2>, in which protein1 
from list1 and protein2 from list2. Oth-
erwise, form event pairs <trigger, pro-
tein> from the non-empty protein list. 

Regulatory If trigger’ cscore>0.3 then extract the 
same way as for the binding event, in 
which protein from list1 is used for 
cause argument. Otherwise follows the 
rule of the simple event. 
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significantly decreases on regulatory events with 
an F-score of 26.61%.  

Analyzing the performance of our system on 
regulatory events reveals that in most of false posi-
tive cases, the errors are caused by not resolving 
reference events properly. These errors can be re-
duced if we have a better implementation of the 
post-processing phase. Another source of errors is 
that the proposed method did not take into account 
the dependency among events. For example, most 
transcription events occurred when the regulatory 
events occurred (more than 50% cases). If associa-
tion rules are applied here then the precision of 
both event types will increase.  

 

 

To improve the overall performance of the sys-
tem, there are many issues one should take into 
account. The first issue is related to the distance or 
the path length from the joined node between an 
event trigger and its arguments. By setting a 
threshold for the distance for each event type we 
increase the precision of the system. The second 
issue is related to setting thresholds for the extrac-
tion rules (e.g. t2score, cscore) which is done by 
using empirical data. Many interesting challenges 
remain to be solved, among which are the co-
reference, anaphora resolution, and cross sentence 
events. Furthermore, the trade-off between recall 
and precision needs to be taken into account, set-
ting high thresholds for a dictionary might increase 
the precision, but could however drop the recall 
significantly.   

4 Conclusion 

In this paper we have proposed a novel system 
which uses syntactic patterns to extract biological 
events from a text. Our method achieves promising 
results on simple and binding events. The results 
also indicate that syntactic patterns for extracting 
PPIs and biological events share some common 
properties. Therefore systems developed for ex-
tracting PPIs can potentially be used to extract bio-
logical events. 
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Event Class Recall Precision Fscore 
Gene_expression 67.27 75.82 71.29 
Transcription 46.55 79.41 58.70 
Protein_catabolism 40.00 85.71 54.55 
Phosphorylation 74.05 80.59 77.18 
Localization 44.50 81.73 57.63 
Binding 35.23 51.18 41.74 
EVT-TOTAL 56.17 71.80 63.03 
Regulation 19.22 27.11 22.49 
Positive_regulation 22.52 33.89 27.06 
Negative_regulation 24.34 33.74 28.28 
REG-TOTAL 22.43 32.73 26.61 
ALL-TOTAL 38.01 52.06 43.94 

Table 3: Evaluation results on test set 
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Abstract

Recently, the focus in the BioNLP domain
has shifted from binary relations to more ex-
pressive event representations, largely owing
to the international popularity of the BioNLP
Shared Task (ST) of 2009. This year, the
ST’11 provides a further generalization on
three key aspects: text type, subject domain,
and targeted event types. One of the sup-
porting tasks established to provide more fine-
grained text predictions is the extraction of en-
tity relations. We have implemented an ex-
traction system for such non-causal relations
between named entities and domain terms, ap-
plying semantic spaces and machine learning
techniques. Our system ranks second of four
participating teams, achieving 37.04% preci-
sion, 47.48% recall and 41.62% F-score.

1 Introduction

Understanding complex noun phrases with embed-
ded gene symbols is crucial for a correct interpre-
tation of text mining results (Van Landeghem et al.,
2010). Such non-causal relations between a noun
phrase and its embedded gene symbol are referred
to as entity relations. As a supporting task for
the BioNLP ST’11, we have studied two types of
such entity relations: Subunit-Complex and Protein-
Component. These relationships may occur within
a single noun phrase, but also between two different
noun phrases. A few examples are listed in Table 1;
more details on the datasets and definitions of entity
relations can be found in (Pyysalo et al., 2011).

Valid entity relations involve one GGP (gene or
gene product) and one domain term (e.g. “pro-

moter”) and they always occur within a single sen-
tence. In the first step towards classification of entity
relations, we have calculated the semantic similar-
ity between domain terms (Section 2). Supervised
learning techniques are then applied to select sen-
tences likely to contain entity relations (Section 3).
Finally, domain terms are identified with a novel
rule-based system and linked to the corresponding
GGP in the sentence (Section 4).

2 Semantic analysis

To fully understand the relationship between a GGP
and a domain term, it is necessary to account for
synonyms and lexical variants. We have imple-
mented two strategies to capture this textual varia-
tion, grouping semantically similar words together.

The first method takes advantage of manual anno-
tations of semantic categories in the GENIA event
corpus. This corpus contains manual annotation of
various domain terms such as promoters, complexes
and other biological entities in 1000 PubMed arti-
cles (Kim et al., 2008).

The second method relies on statistical proper-
ties of nearly 15.000 articles, collected by search-
ing PubMed articles involving human transcription
factor blood cells. From these articles, we have
then calculated a semantic space using latent seman-
tic analysis (LSA) as implemented by the S-Space
Package (Jurgens and Stevens, 2010). The algo-
rithm results in high-dimensional vectors that rep-
resent word contexts, and similar vectors then re-
fer to semantically similar words. We have applied
the Markov Cluster algorithm (MCL) (van Dongen,
2000) to group semantically similar terms together.

147



Type of relation Examples
Subunit-Complex “the c-fos content of [AP-1]” / “c-jun, a component of the transcription factor [AP-1]”
Protein-Component “the [IL-3 promoter]” / “the activating [ARRE-1 site] in the IL-2 promoter”

Table 1: Examples of entity relations. GGPs are underlined and domain terms are delimited by square brackets.

3 Machine learning framework

Our framework tries to define for each GGP in the
data whether it is part of any of the two entity re-
lations, by analysing the sentence context. To cap-
ture the lexical information for each sentence, we
have derived bag-of-word features. In addition, 2-
and 3-grams were extracted from the sentence. Fi-
nally, the content of the gene symbol was also used
as lexical information. All lexical information in
the feature vectors has undergone generalization by
blinding the gene symbol with “protx” and all other
co-occurring gene symbols with “exprotx”. Further-
more, terms occurring in the semantic lexicons de-
scribed in Section 2 were mapped to the correspond-
ing cluster number or category. For each generaliza-
tion, a blinded and a non-blinded variant is included
in the feature vector.

Dependency graphs were further analysed for the
extraction of grammatical patterns consisting of two
nodes (word tokens) and their intermediate edge
(grammatical relation). For the nodes, the same gen-
eralization rules as in the previous paragraph are ap-
plied. Finally, similar patterns are generated with
the nodes represented by their part-of-speech tag.

The final feature vectors, representing sentences
with exactly one tagged gene symbol, are classified
using an SVM with a radial basis function as kernel.
An optimal parameter setting (C and gamma) for
this kernel was obtained by 5-fold cross-validation
on the training data.

4 Entity detection

Once a sentence with a gene symbol is classified as
containing a certain type of entity relation, it is nec-
essary to find the exact domain term that is related
to that gene symbol. To this end, we have designed
a pattern matching algorithm that searches within a
given window (number of tokens) around the gene
symbol. The window size is increased to a prede-
fined maximum as long as a maximal number of do-
main terms was not found.

Within the search window, a rule-based algorithm
decides whether a given token qualifies as a relevant
domain term, employing first a high-precision dic-
tionary and then high-recall dictionaries.

5 Results

Our system achieves a global performance of
37.04% precision, 47.48% recall and 41.62% F-
score, coming in second place after the university
of Turku who obtained an F-score of 57.71%, and
ranking before Concordia University who scores
32.04%. It remains an open question why the final
results of the top ranked systems differ so much.
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Abstract 

We describe our approach for the GENIA 
Event Extraction in the Main Task of BioNLP 
Shared Task 2011.  There are two important 
parts in our method: Event Trigger Annotation 
and Event Extraction. We use rules and dic-
tionary to annotate event triggers. Event ex-
traction is based on patterns created from 
dependent graphs. We apply UIMA Frame-
work to support all stages in our system. 

1 Introduction 

BioNLP Shared Task 2011 has been the latest 
event following the first attracted event in 2009-
2010. We enrolled and submitted the results of En-
tity Relations Supporting Task and GENIA Event 
Extraction. In brief, the GENIA task requires the 
recognition of 9 biological events on genes or gene 
products described in the biomedical literature. 
Participants are required to extract and classify 9 
kinds of event with appropriate arguments.   

First time joining biomedical domain, we aim 
to learn current problems and approaches in bio-
medical research. Therefore, we have chosen sim-
ple approaches such as rule-based and pattern-
based. In the following section, we will explain our 
work on GENIA Event Extraction Task (GENIA) 
in details. Finally, we will analyze and discuss re-
sults. 

2 Our approach 

The project uses UIMA Framework 1 , an open 
source framework for analyzing unstructured in-
formation, to develop all analysis components. 
Events bounded in a sentence are 94.4% in training 
                                                           
1 Available at http://uima.apache.org/   

corpus. Consequently, sentences are processed in 
succession at each step. We divide the whole sys-
tem into 3 parts: Preprocessing, Event Trigger an-
notation and Event annotation. 

2.1 Preprocessing 
At this step, the input documents are converted 
into objects of the framework. All analysis compo-
nents will process objects and put results into 
them. Then we go through natural language pro-
cesses that include sentence splitting, tokenizing 
and POS tagging by OpenNLP library. Lastly, the 
given Protein concepts are annotated.  

2.2 Event Trigger annotation 

According to our statistics in the training corpus, 
the percentage of single token trigger is 91.8%. To 
simplify it, we focus on triggers which span on one 
token. At this stage, rule-based and dictionary-
based approaches are combined. 

We choose tokens which are near a protein and 
have appropriate POS tags. Heuristic rules extract-
ed from training corpus are used to identify candi-
date triggers. Those rules are, for instance, 
NN/NNS + of + PROTEIN, VBN + PROTEIN and 
so on. 

Event triggers are diverse in lexical and ambig-
uous in classification (Björne et al. (2009) and 
Buyko et al. (2009)). Candidate triggers are classi-
fied by a dictionary. The dictionary containing 
words of triggers with their corresponding classes 
is built from training corpus. For ambiguous trig-
ger classes, the class that has the highest rate of 
appearance is chosen. 

2.3 Event annotation 
Basing on the number of arguments and type of 
arguments, we categorize 9 event classes into 3 
groups. The first group including Gene expression, 
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Transcription and Protein catabolism has only one 
Protein as the argument. The second group con-
tains events with Protein and Entity as argument. 
Phosphorylation, Localization and Binding belong 
to that group. The third group has the most com-
plex types, i.e. Regulation, Positive regulation and 
Negative regulation. These events can have other 
events as their argument.  

Our method of event detection is using depend-
ency graph as results of deep syntactic parsing. We 
prune parse tree and assign concept to nodes. Next, 
sub-trees which contains only conceptual node as 
patterns are extracted and represented as string 
form. We travel breadth-first and write conceptual 
labels to the string pattern. The pattern list is built 
from training data.  

Firstly, for each sentence contains at least one 
trigger, we get the parse tree of the sentence. We 
prune nodes which contain only one child and that 
child node has zero or one descendant. It reduces 
the complexity and retains important and general 
parts of the parse tree.  

Secondly, candidate arguments of events are 
identified by combining Protein, Entity and Event 
Trigger in that sentence. The number of combina-
tion can be huge, so we restrict it by the following 
conditions. Each combination has at least one 
Event Trigger with one Protein or Event. The 
number of argument depends on types of events 
and is usually less than 5. In addition, the differ-
ence of depth on tree between arguments has to be 
under a threshold.  

Thirdly, concepts of arguments in each combi-
nation are assigned to parse tree nodes. The as-
signment bases on the span of argument and 
content of nodes. The pattern is extracted from the 
parse tree and examined whether it belongs to the 
pattern list. In order to increase the precision, we 
discard patterns having the depth of the tree greater 
than a threshold. The threshold is chosen by count-
ing on the training corpus. 

Finally, we classify events and determine role 
of arguments for each event. The type of the event 
is chosen by the type of the trigger of that event. 
We still simply assign roles of arguments in a fixed 
order of arguments.  

3 Results and conclusions 

Our fully official result in GENIA main task is de-
scribed in Table 1. The F-score is only 14,75% and 

we were ranked 13th among 14 participants. It re-
flects many shortcomings in our system. We obtain 
a lot of experience. 

In general, the patterns which we built are still 
generic. Besides, the OpenNLP library still en-
countered errors when processing documents, thus 
affected our result. For example, there are some 
sentences that OpenNLP parsed or tokenized 
wrongly and raised errors. In the step of Event 
Trigger annotation, there are a few rules to cover 
cases. The result of Regulation, Positive regulation 
and Negative regulation has the lowest result be-
cause we only process recursion with simple 
events.  
 
Approach recall precision f-score 
Gene expression 26.45 39.73 31.76 
Transcription 16.09 14.58 15.30 
Protein catabolism 33.33 50.00 40.00 
Phosphorylation 32.43 47.62 38.59 
Localization 16.23 27.68 20.46 
Binding 4.68 12.92 6.88 
Regulation 0.26 1.35 0.44 
Positive regulation 2.08 13.04 3.59 
Negative regulation 1.40 11.27 2.49 
All Total 10.12 27.17 14.75 
Table 1: Our final result in GENIA BioNLP’11 Shared 
Task with approximately span and recursive matching 
 

For future work, we intend to apply hybrid ap-
proach. We combine other methods such as ma-
chine learning in Event Trigger and Event 
annotation parts. We consider other NLP library to 
improve the performance of all steps relating to 
NLP processing. Rules from domain professions 
will be added to existent heuristic rules. We will 
try to add more features to improve the patterns. 
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Abstract

We introduce our incremental coreference res-
olution system for the BioNLP 2011 Shared
Task on Protein/Gene interaction. The benefits
of an incremental architecture over a mention-
pair model are: a reduction of the number
of candidate pairs, a means to overcome the
problem of underspecified items in pair-wise
classification and the natural integration of
global constraints such as transitivity. A fil-
tering system takes into account specific fea-
tures of different anaphora types. We do not
apply Machine Learning, instead the system
classifies with an empirically derived salience
measure based on the dependency labels of the
true mentions. The OntoGene pipeline is used
for preprocessing.

1 Introduction
The Coreference Resolution task of BioNLP fo-
cused on finding anaphoric references to proteins
and genes. Only antecedent-anaphora pairs are con-
sidered in evaluation and not full coreference sets.
Although it might not seem to be necessary to gen-
erate full coreference sets, anaphora resolution still
benefits from their establishment. Our incremental
approach (Klenner et al., 2010) naturally enforces
transitivity constraints and thereby reduces the num-
ber of potential antecedent candidates. The system
achieved good results in the BioNLP 2011 shared
task (Fig. 1)

Team R P F1
A 22.18 73.26 34.05
Our model 21.48 55.45 30.96
B 19.37 63.22 29.65
C 14.44 67.21 23.77
D 3.17 3.47 3.31
E 0.70 0.25 0.37

Figure 1: Protein/Gene Coreference Task

2 Preprocessing: The OntoGene Pipeline
OntoGene’s text mining system is based on an
internally-developed fast, broad-coverage, deep-

syntactic parsing system (Schneider, 2008). The
parser is wrapped into a pipeline which uses a num-
ber of other NLP tools. The parser is a key compo-
nent in a pipeline of NLP tools (Rinaldi et al., 2010),
used to process input documents. First, in a pre-
processing stage, the input text is transformed into
a custom XML format, and sentences and tokens
boundaries are identified. The OntoGene pipeline
also includes a step of term annotation and disam-
biguation, which are not used for the BioNLP shared
task, since relevant terms are already provided in
both the training and test corpora. The pipeline also
includes part-of-speech taggers, a lemmatizer and a
syntactic chunker.

When the pipeline finishes, each input sentence
has been annotated with additional information,
which can be briefly summarized as follows: sen-
tences are tokenized and their borders are detected;
each sentence and each token has been assigned an
ID; each token is lemmatized; tokens which be-
long to terms are grouped; each term is assigned a
normal-form and a semantic type; tokens and terms
are then grouped into chunks; each chunk has a
type (NP or VP) and a head token; each sentence
is described as a syntactic dependency structure. All
this information is represented as a set of predicates
and stored into the Knowledge Base of the system,
which can then be used by different applications,
such as the OntoGene Relation Miner (Rinaldi et al.,
2006) and the OntoGene Protein-Protein Interaction
discovery tool (Rinaldi et al., 2008).

3 Our Incremental Model for Coreference
Resolution

1 for i=1 to length(I)
2 for j=1 to length(C)
3 rj := virtual prototype of coreference set Cj
4 Cand := Cand ⊕ rj if compatible(rj , mi)
5 for k= length(B) to 1
6 bk:= the k-th licensed buffer element
7 Cand := Cand ⊕ bk if compatible(bk, mi)
8 if Cand = {} then B := B ⊕mi
9 if Cand 6= {} then
10 antei := most salient element of Cand
11 C := augment(C,antei,mi)

Figure 2: Incremental model: base algorithm

151



Fig. 2 shows the base algorithm. Let I be the
chronologically ordered list of NPs, C be the set
of coreference sets and B a buffer, where NPs are
stored, if they are not anaphoric (but might be valid
antecedents). Furthermore mi is the current NP and
⊕ means concatenation of a list and a single item.
The algorithm proceeds as follows: a set of an-
tecedent candidates is determined for each NP mi

(steps 1 to 7) from the coreference sets (rj) and the
buffer (bk). A valid candidate rj or bk must be com-
patible with mi. The definition of compatibility de-
pends on the POS tags of the anaphor-antecedent
pair. The most salient available candidate is selected
as antecedent for mi.

3.1 Restricted Accessibility of Antecedent
Candidates

In order to reduce underspecification, mi is com-
pared to a virtual prototype of each coreference set
(similar to e.g. (Luo et al., 2004; Yang et al., 2004;
Rahman and Ng, 2009)). The virtual prototype bears
morphologic and semantic information accumulated
from all elements of the coreference set. Access to
coreference sets is restricted to the virtual prototype.
This reduces the number of considered pairs (from
the cardinality of a set to 1).

3.2 Filtering based on Anaphora Type
Potentionally co-refering NPs are extracted from the
OntoGene pipeline based on POS tags. We then ap-
ply filtering based on anaphora type: Reflexive pro-
nouns must be bound to a NP that is governed by the
same verb. Relative pronouns are bound to the clos-
est NP in the left context. Personal and possessive
pronouns are licensed to bind to morphologically
compatible antecedent candidates within a window
of two sentences. Demonstrative NPs containing the
lemmata ’protein’ or ’gene’ are licensed to bind to
name containing mentions. Demonstrative NPs not
containing the trigger lemmata can be resolved to
string matching NPs preceding them1.

3.3 Binding Theory as a Filter
We know through binding theory that ’modulator’
and ’it’ cannot be coreferent in the sentence ”Over-
expression of protein inhibited stimulus-mediated
transcription, whereas modulator enhanced it”.
Thus, the pair ’modulator’-’it’ need not be consid-
ered at all. We have not yet implemented a full-

1As we do not perform anaphoricity determination of nom-
inal NPs, we do not consider bridging anaphora (anaphoric
nouns that are connected to their antecedents through seman-
tic relations and cannot be identified by string matching).

blown binding theory. Instead, we check if the an-
tecedent and the anaphor are governed by the same
verb.

4 An Empirically-based Salience Measure

Our salience measure is a partial adaption of the
measure from (Lappin and Leass, 1994). The
salience of a NP is solely defined by the salience
of the dependency label it bears. The salience of a
dependency label, D, is estimated by the number of
true mentions (i.e. co-refering NPs) that bear D (i.e.
are connected to their heads with D), divided by the
total number of true mentions (bearing any D). The
salience of the label subject is thus calculated by:

Number of true mentions bearing subject

Total number of truementions

We get a hierarchical ordering of the dependency la-
bels (subject > object > pobject > ...) according to
which antecedents are ranked and selected.
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Abstract

This paper presents our approach (referred to
as BioEvent) for protein-level complex event
extraction, developed for the GENIA task
(Kim et al., 2011b) of the BioNLP Shared
Task 2011 (Kim et al., 2011a). We devel-
oped a double layered machine learning ap-
proach which utilizes a state-of-the-art mini-
mized feature set for each of the event types.
We improved the best performing system
of BioNLP 2009 overall, and ranked first
amongst 15 teams in finding “Localization”
events in 201112. BioEvent is available at
http://bioevent.sourceforge.net/

1 Introduction

A biological event refers to a specific kind of inter-
action between biological entities. Events consist
of two parts: event triggers and event arguments.
Event extraction can be very challenging when deal-
ing with complex events with multiple or nested ar-
guments; for example, events themselves can be an
argument for other events.

2 Methods

In general, to detect an event mentioned in text, the
event trigger should be identified first, then comple-
mented with event arguments. We divided the train-
ing and testing tasks into two phases: trigger detec-
tion and argument detection.

1Using the “Approximate Span without Event Trigger
Matching/Approximate Recursive” metric

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/-
SharedTask/evaluation.shtml

2.1 Event Trigger Detection

The trigger detection problem can be modeled as
a multi-class classification of a word or combina-
tion of words (phrase). Instead of using all possible
phrases in the training text as examples for the clas-
sifier, we only included those that were known trig-
gers in the training set. For the official shared task
submission we used SV M light (Joachims, 1999).
Detailed explanation of the trigger detection process
includes three main steps: pre-processing, training
of the SVM models, and combining SVM results.

Pre-processing. All tokenized documents pro-
vided by the shared task organizers (Stenetorp et al.,
2011) were converted to database records. Then dif-
ferent sets of attributes were defined and calculated
for words, sentences and documents.

Training SVM models and Combining Results.
We trained 9 different binary SVM models using
one-vs-many approach. One of the challenging tasks
was to compare the results of different SVM models,
given that each had different feature sets and their
confidence values were not directly comparable and
needed to be calibrated properly before comparing.
We tried three approaches: 1) selecting the SVM re-
sult with highest positive distance to hyperplane, 2)
using a trained decision tree and 3) using another
SVM trained for voting. Model J48 from the WEKA
library (Hall et al., 2009) was trained based on SVM
distances for the training set examples and expected
outputs. In the third approach, we tried SVM for
voting, which generated better results than the deci-
sion tree. Last two approaches consist of two layers
of classifiers which first layer includes event types
classifiers and second layer generates final decision
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Event type Bioevent Turku09
Gene expression 71.88 70.84
Transcription 47.62 47.14
Protein catabolism 60.87 60.87
Phosphorylation 75.14 73.39
Localization 61.49 59.68
Binding 34.42 35.97
Regulation 24.03 22.26
Positive regulation 33.41 31.84
Negative regulation 18.89 18.58
ALL-TOTAL 44.69 43.54

Table 1: F-Value from our BioEvent system compared to
Turku09 (Bjorne et al., 2009) results, using Approximate
Span/Approximate Recursive matching

based on first layer outputs.

2.2 Arguments detection and Post-processing

Similar to trigger detection, argument detection can
be modeled for a classification task by assigning an
argument type label to each possible combination
of an event trigger and a biological entity in a sen-
tence. We obtained entities from a1 files, as well as
the supportive analysis data provided by the shared
task organizers (Bjorne et al., 2009). After gener-
ating events using SVM classification, we merged
them with the output from the Turku system to gen-
erate the final result. For common events (detected
by both systems) we used the arguments detected by
the Turku system.

3 Results

Since we tried to improve upon the best performing
system in the 2009 competition (Turku09), we com-
pare the results of our system and Turku09’s on the
2011 test set. Table 1 shows the performance of our
proposed system and that of Turku09. We see that
Binding was our worst event (negative change), Lo-
calization the most improved, no change for Protein
Catabolism, and only a slight improvement in Neg-
ative Regulation.

4 Conclusion and future work

In this research we focused on event trigger detec-
tion by applying a SVM-based model. SVM is very
sensitive to parameters and further tuning of param-

eters can improve the overall result. Furthermore,
we want to evaluate our method independently and
find the contribution of each modification to the fi-
nal result. Our method is generalizable to other do-
mains by using proper train-set and finding useful
attributes for new event types.
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Abstract 

We describe the system from the Natural 
Language Processing group at Microsoft 
Research for the BioNLP 2011 Shared 
Task. The task focuses on event extraction, 
identifying structured and potentially 
nested events from unannotated text. Our 
approach follows a pipeline, first 
decorating text with syntactic information, 
then identifying the trigger words of 
complex events, and finally identifying the 
arguments of those events. The resulting 
system depends heavily on lexical and 
syntactic features. Therefore, we explored 
methods of maintaining ambiguities and 
improving the syntactic representations, 
making the lexical information less brittle 
through clustering, and of exploring novel 
feature combinations and feature reduction. 
The system ranked 4th in the GENIA task 
with an F-measure of 51.5%, and 3rd in the 
EPI task with an F-measure of 64.9%. 

1 Introduction 

We describe a system for extracting complex 
events and their arguments as applied to the 
BioNLP-2011 shared task.  Our goal is to explore 
general methods for fine-grained information 
extraction, to which the data in this shared task is 
very well suited.  We developed our system using 
only the data provided for the GENIA task, but 
then submitted output for two of the tasks, GENIA 
and EPI, training models on each dataset 
separately, with the goal of exploring how general 
the overall system design is with respect to text 

domain and event types. We used no external 
knowledge resources except a text corpus used to 
train cluster features. We further describe several 
system variations that we explored but which did 
not contribute to the final system submitted. We 
note that the MSR-NLP system consistently is 
among those with the highest recall, but needs 
additional work to improve precision. 

2 System Description 

Our event extraction system is a pipelined 
approach, closely following the structure used by 
the best performing system in 2009 (Björne et al., 
2009). Given an input sentence along with 
tokenization information and a set of parses, we 
first attempt to identify the words that trigger 
complex events using a multiclass classifier. Next 
we identify edges between triggers and proteins, or 
between triggers and other triggers. Finally, given 
a graph of proteins and triggers, we use a rule-
based post-processing component to produce 
events in the format of the shared task. 

2.1 Preprocessing and Linguistic Analysis 

We began with the articles as provided, with an 
included tokenization of the input and 
identification of the proteins in the input. However, 
we did modify the token text and the part-of-
speech tags of the annotated proteins in the input to 
be PROT after tagging and parsing, as we found 
that it led to better trigger detection. 

The next major step in preprocessing was to 
produce labeled dependency parses for the input. 
Note that the dependencies may not form a tree: 
there may be cycles and some words may not be 
connected. During feature construction, this 
parsing graph was used to find paths between 
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words in the sentence. Since proteins may consist 
of multiple words, for paths we picked a single 
representative word for each protein to act as its 
starting point and ending point. Generally this was 
the token inside the protein that is closest to the 
root of the dependency parse. In the case of ties, 
we picked the rightmost such node. 

2.1.1 McClosky-Charniak-Stanford parses 
The organizers provide parses from a version of 
the McClosky-Charniak parser, MCCC (McClosky 
and Charniak, 2008), which is a two-stage 
parser/reranker trained on the GENIA corpus. In 
addition, we used an improved set of parsing 
models that leverage unsupervised data, MCCC-I 
(McClosky, 2010). In both cases, the Stanford 
Parser was used to convert constituency trees in the 
Penn Treebank format into labeled dependency 
parses: we used the collapsed dependency format. 

2.1.2 Dependency posteriors 
Effectively maintaining and leveraging the 
ambiguity present in the underlying parser has 
improved task accuracy in some downstream tasks 
(e.g., Mi et al. 2008). McClosky-Charniak parses 
in two passes: the first pass is a generative model 
that produces a set of n-best candidates, and the 

second pass is a discriminative reranker that uses a 
rich set of features including non-local 
information. We renormalized the outputs from 
this log-linear discriminative model to get a 
posterior distribution over the 50-best parses. This 
set of parses preserved some of the syntactic 
ambiguity present in the sentence. 

The Stanford parser deterministically converts 
phrase-structure trees into labeled dependency 
graphs (de Marneffe et al., 2006). We converted 
each constituency tree into a dependency graph 
separately and retained the probability computed 
above on each graph. 

One possibility was to run feature extraction on 
each of these 50 parses, and weight the resulting 
features in some manner. However, this caused a 
significant increase in feature count. Instead, we 
gathered a posterior distribution over dependency 
edges: the posterior probability of a labeled 
dependency edge was estimated by the sum of the 
probability of all parses containing that edge. 
Gathering all such edges produced a single labeled 
graph that retained much of the ambiguity of the 
input sentence. Figure 1 demonstrates this process 
on a simple example. We applied a threshold of 0.5 
and retained all edges above that threshold, 
although there are many alternative ways to exploit 
this structure.  

 
Figure 1: Example sentence from the GENIA corpus. (a) Two of the top 50 constituency parses from the MCCC-I 
parser; the first had a total probability mass of 0.43 and the second 0.25 after renormalization. Nodes that differ 
between parses are shaded and outlined. (b) The dependency posteriors (labels omitted due to space) after 
conversion of 50-best parses. Solid lines indicate edges with posterior > 0.95; edges with posterior < 0.05 were 
omitted. Most of the ambiguity is in the attachment of “elicited”. 
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As above, the resulting graph is likely no longer 
a connected tree, though it now may also be cyclic 
and rather strange in structure. Most of the 
dependency features were built on shortest paths 
between words. We used the algorithm in Cormen 
et al. (2002, pp.595) to find shortest paths in a 
cyclic graph with non-negative edge weights. The 
shortest path algorithm used in feature finding was 
supplied uniform positive edge weights. We could 
also weight edges by the negative log probability 
to find the shortest, most likely path. 

2.1.3 ENJU 

We also experimented with the ENJU parses 
(Miyao and Tsujii, 2008) provided by the shared 
task organizers. The distribution contained the 
output of the ENJU parser in a format consistent 
with the Stanford Typed Dependency 
representation . 

2.1.4 Multiple parsers 
We know that even the best modern parsers are 
prone to errors. Including features from multiple 
parsers helps mitigate these errors. When different 
parsers agree, they can reinforce certain 
classification decisions. The features that were 
extracted from a dependency parse have names 
that include an identifier for the parser that 
produced them. In this way, the machine learning 
algorithm can assign different weights to features 
from different parsers. For finding heads of multi-
word entities, we preferred the ENJU parser if 
present in that experimental condition, then fell 
back to MCCC parses, and finally MCCC-I. 

2.1.5 Dependency conversion rules 
We computed our set of dependency features (see 
2.2.1) from the collapsed, propagated Stanford 
Typed Dependency representation (see 
http://nlp.stanford.edu/software/dependencies_man
ual.pdf and de Marneffe et al., 2006), made 
available by the organizers.  We chose this form of 
representation since we are primarily interested in 
computing features that hold between content 
words.  Consider, for example, the noun phrase 
“phosphorylation of TRAF2”. A dependency 
representation would specify head-modifier 
relations for the tuples (phosphorylation, of) and 
(of, TRAF2). Instead of head-modifier, a typed 
dependency representation specifies PREP and 

PPOBJ as the two grammatical relations: 
PREP(phosphorylation-1, of-2) and PPOBJ(of-2, 
TRAF2-3). A collapsed representation has a single 
triplet specifying the relation between the content 
words directly, PREP_OF(phosphorylation-1, 
TRAF2-3); we considered this representation to be 
the most informative.   

We experimented with a representation that 
further normalized over syntactic variation.  The 
system submitted for the GENIA subtask does not 
use these conversion rules, while the system 
submitted for the EPI subtask does use these rules.  
See Table 2 for further details. While for some 
applications it may be useful to distinguish 
whether a given relation was expressed in the 
active or passive voice, or in a main or a relative 
clause, we believe that for this application it is 
beneficial to normalize over these types of 
syntactic variation.  Accordingly, we had a set of 
simple renaming conversion rules, followed by a 
rule for expansion; this list was our first effort and 
could likely be improved.  We modeled this 
normalized level of representation on the logical 
form, described in Jensen (1993), though we were 
unable to explore NP-or VP-anaphora 

 

Renaming conversion rules: 
1. ABBREV -> APPOS 
2. NSUBJPASS -> DOBJ 
3. AGENT -> NSUBJ 
4. XSUBJ -> NSUBJ 
5. PARTMOD(head, modifier where last 3 

characters are "ing") -> NSUBJ(modifier, head) 
6. PARTMOD(head, modifier where last 3 

characters are "ed") -> DOBJ(modifier, head) 
Expansion: 
1. For APPOS, find all edges that point to the head 

(gene-20) and duplicate those edges, but 
replacing the modifier with the modifier of the 
APPOS relation (kinase-26).  

 

Thus, in the 2nd sentence in PMC-1310901-01-
introduction, “... leading to expression of a bcr-abl 
fusion gene, an aberrant activated tyrosine kinase, 
....”, there are two existing grammatical relations: 

 

PREP_OF(expression-15, gene-20) 
APPOS(gene-20, kinase-26) 
 

to which this rule adds: 
 

PREP_OF(expression-15, kinase-26) 
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2.2 Trigger Detection 
We treated trigger detection as a multi-class 
classification problem: each token should be 
annotated with its trigger type or with NONE if it 
was not a trigger. When using the feature set 
detailed below, we found that an SVM 
(Tsochantaridis et al., 2004) outperformed a 
maximum entropy model by a fair margin, though 
the SVM was sensitive to its free parameters. A 
large value of C, the penalty incurred during 
training for misclassifying a data point, was 
necessary to achieve good results. 

2.2.1 Features for Trigger Detection 
Our initial feature set for trigger detection was 
strongly influenced by features that were 
successful in Björne et al., (2009).  

Token Features. We included stems of single 
tokens from the Porter stemmer (Porter, 1980), 
character bigrams and trigrams, a binary indicator 
feature if the token has upper case letters, another 
indicator for the presence of punctuation, and a 
final indicator for the presence of a number. We 
gathered these features for both the current token 
as well as the three immediate neighbors on both 
the left and right hand sides. 

We constructed a gazetteer of possible trigger 
lemmas in the following manner. First we used a 
rule-based morphological analyzer (Heidorn, 2000) 
to identify the lemma of all words in the training, 
development, and test corpora. Next, for each word 
in the training and development sets, we mapped it 

to its lemma. We then computed the number of 
times that each lemma occurred as a trigger for 
each type of event (and none). Lemmas that acted 
as a trigger more than 50% of the time were added 
to the gazetteer. 

During feature extraction for a given token, we 
found the lemma of the token, and then look up 
that lemma in the gazetteer. If found, we included 
a binary feature to indicate its trigger type. 

Frequency Features. We included as features 
the number of entities in the sentence, a bag of 
words from the current sentence, and a bag of 
entities in the current sentence. 

Dependency Features. We used primarily a set 
of dependency chain features that were helpful in 
the past (Björne et al., 2009); these features walk 
the Stanford Typed Dependency edges up to a 
distance of 3. 

We also found it helpful to have features about 
the path to the nearest protein, regardless of 
distance. In cases of multiple shortest paths, we 
took only one, exploring the dependency tree 
generally in left to right order. For each potential 
trigger, we looked at the dependency edge labels 
leading to that nearest protein. In addition we had a 
feature including both the dependency edge labels 
and the token text (lowercased) along that path. 
Finally, we had a feature indicating whether some 
token along that path was also in the trigger 
gazetteer. The formulation of this set of features is 
still not optimal especially for the “binding” events 
as the training data will include paths to more than 
one protein argument.  Nevertheless, in Table 3, 

 
Key Relation Value Key Relation Value 
quantities child(left, NNS JJ) measurable measurable child-1(left, NNS JJ) quantities 
found child(after, VBN NNS) hours hours child-1(after, VBN NNS) found 
found child(after, VBN NN) ingestion ingestion child-1(after, VBN NN) found 
 
Figure 2: A sample PubMed sentence along with its dependency parse, and some key/relation/value triples 
extracted from that parse for computation of distributional similarity. Keys with a similar distribution of values 
under the same relation are likely semantically related. Inverse relations are indicated with a superscript -1. 
Prepositions are handled specially: we add edges labeled with the preposition from its parent to each child 
(indicated by dotted edges). 
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we can see that this set of features contributed to 
improved precision. 

Cluster Features. Lexical and stem features 
were crucial for accuracy, but were unfortunately 
sparse and did not generalize well. To mitigate 
this, we incorporated word cluster features. In 
addition to the lexical item and the stem, we added 
another feature indicating the cluster to which each 
word belongs. To train clusters, we downloaded all 
the PubMed abstracts (http://pubmed.gov), parsed 
them with a simple dependency parser (a 
reimplementation of McDonald, 2006 trained on 
the GENIA corpus), and extracted dependency 
relations to use in clustering: words that occur in 
similar contexts should fall into the same cluster. 
An example sentence and the relations that were 
extracted for distributional similarity computation 
are presented in Figure 2. We ran a distributional 
similarity clustering algorithm (Pantel et al., 2009) 
to group words into clusters. 

Tfidf features. This set of features was intended 
to capture the salience of a term in the medical and 
“general” domain, with the aim of being able to 
distinguish domain-specific terms from more 
ambiguous terms. We calculated the tf.idf score for 
each term in the set of all PubMed abstracts and 
did the same for each term in Wikipedia. For each 
token in the input data, we then produced three 
features: (i) the tf.idf value of the token in PubMed 
abstracts, (ii) the tf.idf value of the token in 
Wikipedia, and (iii) the delta between the two 
values. Feature values were rounded to the closest 
integer. We found, however, that adding these 
features did not improve results. 

2.2.2 Feature combination and reduction 
We experimented with feature reduction and 
feature combination within the set of features 
described here. For feature reduction we tried a 
number of simple approaches that typically work 
well in text classification. The latter is similar to 
the task at hand, in that there is a very large but 
sparse feature set. We tried two feature reduction 
methods: a simple count cutoff, and selection of 
the top n features in terms of log likelihood ratio 
(Dunning, 1993) with the target values. For a count 
cutoff, we used cutoffs from 3 to 10, but we failed 
to observe any consistent gains. Only low cutoffs 
(3 and occasionally 5) would ever produce any 
small improvements on the development set. Using 

log likelihood ratio (as determined on the training 
set), we reduced the total number of features to 
between 10,000 and 75,000. None of these 
experiments improved results, however. One 
potential reason for this negative result may be that 
there were a lot of features in our set that capture 
the same phenomenon in different ways, i.e. which 
correlate highly. By retaining a subset of the 
original feature set using a count cutoff or log 
likelihood ratio we did not reduce this feature 
overlap in any way. Alternative feature reduction 
methods such as Principal Component Analysis, on 
the other hand, would target the feature overlap 
directly. For reasons of time we did not experiment 
with other feature reduction techniques but we 
believe that there may well be a gain still to be had. 

For our feature combination experiments the 
idea was to find highly predictive Boolean 
combinations of features. For example, while the 
features a and b may be weak indicators for a 
particular trigger, the cases where both a and b are 
present may be a much stronger indicator. A linear 
classifier such as the one we used in our 
experiments by definition is not able to take such 
Boolean combinations into account. Some 
classifiers such as SVMs with non-linear kernels 
do consider Boolean feature combinations, but we 
found the training times on our data prohibitive 
when using these kernels. As an alternative, we 
decided to pre-identify feature combinations that 
are predictive and then add those combination 
features to our feature inventory. In order to pre-
identify feature combinations, we trained decision 
tree classifiers on the training set, and treated each 
path from the root to a leaf through the decision 
tree classifier as a feature combination. We also 
experimented with adding all partial paths through 
the tree (as long as they started from the root) in 
addition to adding all full paths. Finally, we tried 
to increase the diversity of our combination 
features by using a “bagging” approach, where we 
trained a multitude of decision trees on random 
subsets of the data. Again, unfortunately, we did 
not find any consistent improvements. Two 
observations that held relatively consistently across 
our experiments with combination features and 
different feature sets were: (i) only adding full 
paths as combination features sometimes helped, 
while adding partial paths did not, and (ii) bagging 
hardly ever led to improvements. 
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2.3 Edge Detection 

This phase of the pipeline was again modeled as 
multi-class classification. There could be an edge 
originating from any trigger word and ending in 
any trigger word or protein. Looking at the set of 
all such edges, we trained a classifier to predict the 
label of this edge, or NONE if the edge was not 
present. Here we found that a maximum entropy 
classifier performed somewhat better than an SVM, 
so we used an in-house implementation of a 
maximum entropy trainer to produce the models. 

2.3.1 Features for Edge Detection 
As with trigger detection, our initial feature set for 
edge detection was strongly influenced by features 
that were successful in Björne et al. (2009). 
Additionally, we included the same dependency 
path features to the nearest protein that we used for 
trigger detection, described in 2.2.1. Further, for a 
prospective edge between two entities, where the 
entities are either a trigger and a protein, or a 
trigger and a second trigger, we added a feature 
that indicates (i) if the second entity is in the path 
to the nearest protein, (ii) if the head of the second 
entity is in the path to the nearest protein, (iii) the 
type of the second entity.   

2.4 Post-processing 

Given the set of edges, we used a simple 
deterministic procedure to produce a set of events. 

This step is not substantially different from that 
used in prior systems (Björne et al., 2009). 

2.4.1 Balancing Precision and Recall 
As in Björne et al. (2009), we found that the trigger 
detector had quite low recall. Presumably this is 
due to the severe class imbalance in the training 
data: less than 5% of the input tokens are triggers. 
Thus, our classifier had a tendency to overpredict 
NONE. We tuned a single free parameter  
(the “recall booster”) to scale back the score 
associated with the NONE class before selecting 
the optimal class. The value was tuned for whole-
system F-measure; optimal values tended to fall in 
the range 0.6 to 0.8, indicating that only a small 
shift toward recall led to the best results. 

  Development Set  Test Set 

Event Class Count Recall Precision F1 Count Recall Precision F1 
Gene_expression 749 76.37 81.46 78.83 1002 73.95 73.22 73.58 
Transcription 158 49.37 73.58 59.09 174 41.95 65.18 51.05 
Protein_catabolism 23 69.57 80.00 74.42 15 46.67 87.50 60.87 
Phosphorylation 111 73.87 84.54 78.85 185 87.57 81.41 84.37 
Localization 67 74.63 75.76 75.19 191 51.31 79.03 62.22 
=[SVT-TOTAL]= 1108 72.02 80.51 76.03 1567 68.99 74.03 71.54 
Binding 373 47.99 50.85 49.38 491 42.36 40.47 41.39 
=[EVT-TOTAL]= 1481 65.97 72.73 69.18 2058 62.63 65.46 64.02 
Regulation 292 32.53 47.05 38.62 385 24.42 42.92 31.13 
Positive_Regulation 999 38.74 51.67 44.28 1443 37.98 44.92 41.16 
Negative_Regulation 471 35.88 54.87 43.39 571 41.51 42.70 42.10 
=[REG-TOTAL]= 1762 36.95 51.79 43.13 2399 36.64 44.08 40.02 
ALL-Total 3243 50.20 62.60 55.72 4457 48.64 54.71 51.50 
Table 1: Approximate span matching/approximate recursive matching on development and test data 
sets for GENIA Shared Task -1 with our system. 

Trigger 
Detection 
Features 

Trigger 
Loss Recall Prec. F1 

B 2.14 48.44 64.08 55.18 
B + TI 2.14 48.17 62.49 54.40 
B + TI + C 2.14 50.32 60.90 55.11 
B + TI + C + PI 2.03 50.20 62.60 55.72 
B + TI + C + PI 
+D 

2.02 49.21 62.75 55.16 

Table 2: Recall/Precision/F1 on the GENIA 
development set using MCCC-I + Enju parse; 
adding different features for Trigger Detection. 
B = Base set Features, TI = Trigger inflect 
forms, 
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3 Results 

Of the five evaluation tracks in the shared task, we 
participated in two: the GENIA core task, and the 
EPI (Epigenetics and Post-translational 
modifications) task. The systems used in each track 
were substantially similar; differences are called 
out below. Rather than building a system 
customized for a single trigger and event set, our 
goal was to build a more generalizable framework 
for event detection. 

3.1 GENIA Task 

Using F-measure performance on the development 
set as our objective function, we trained the final 

system for the GENIA task with all the features 
described in section 2, but without the conversion 
rules and without either feature combination or 
reduction. Furthermore, we trained the cluster 
features using the full set of PubMed documents 
(as of  January 2011). The results of our final 
submission are summarized in Table 1. Overall, we 
saw a substantial degradation in F-measure when 
moving from the development set to the test set, 
though this was in line with past experience from 
our and other systems.  

We compared the results for different parsers in 
Table 3. MCCC-I is not better in isolation but does 
produce higher F-measures in combination with 
other parsers. Although posteriors were not 
particularly helpful on the development set, we ran 

Parser 
SVT-Total Binding REG-Total All-Total 

Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 

MCCC 70.94 82.72 76.38 45.04 55.26 49.63 34.39 51.88 41.37 48.10 64.39 55.07 
MCCC-I 68.59 82.59 74.94 42.63 58.67 49.38 32.58 52.76 40.28 46.06 65.50 54.07 
Enju 71.66 82.18 76.56 40.75 51.01 45.31 32.24 49.39 39.01 46.69 62.70 53.52 
MCCC-I + 
Posteriors 

70.49 78.87 74.44 47.72 51.59 49.58 35.64 50.40 41.76 48.94 61.47 54.49 

MCCC + 
Enju 

71.84 82.04 76.60 44.77 53.02 48.55 34.96 53.15 42.18 48.69 64.59 55.52 

MCCC-I + 
Enju 

72.02 80.51 76.03 47.99 50.85 49.38 36.95 51.79 43.13 50.20 62.60 55.72 

Table 3: Comparison of Recall/Precision/F1 on the GENIA Task-1 development set using various 
combinations of parsers: Enju, MCCC (Mc-Closky Charniak), and MCCC-I (Mc-Closky Charniak 
Improved self-trained biomedical parsing model) with Stanford collapsed dependencies were used for 
evaluation. Results on Simple, Binding and Regulation and all events are shown. 
 

  Development Set  Test Set 

Event Class Count Recall Precision F1 Count Recall Precision F1 
Hydroxylation 31 25.81 61.54 36.36 69 30.43 84.00 44.68 
Dehydroxylation 0 100.00 100.00 100.00 0 100.00 100.00 100.00 
Phosphorylation 32 71.88 85.19 77.97 65 72.31 85.45 78.33 
Dephosphorylation 1 0.00 0.00 0.00 4 0.00 0.00 0.00 
Ubiquitination 76 63.16 75.00 68.57 180 67.78 81.88 74.16 
Deubiquitination 8 0.00 0.00 0.00 10 0.00 0.00 0.00 
DNA_methylation 132 72.73 72.18 72.45 182 71.43 73.86 72.63 
DNA_demethylation 9 0.00 0.00 0.00 6 0.00 0.00 0.00 
Glycosylation 70 61.43 67.19 64.18 169 39.05 69.47 50.00 
Deglycosylation 7 0.00 0.00 0.00 12 0.00 0.00 0.00 
Acetylation 65 89.23 75.32 81.69 159 87.42 85.28 86.34 
Deacetylation 19 68.42 92.86 78.79 24 62.50 93.75 75.00 
Methylation 65 64.62 75.00 69.42 193 62.18 73.62 67.42 
Demethylation 7 0.00 0.00 0.00 10 0.00 0.00 0.00 
Catalysis 60 3.33 15.38 5.48 111 4.50 33.33 7.94 
====[TOTAL]==== 582 57.22 72.23 63.85 1194 55.70 77.60 64.85 
Table 4: Approximate span matching/approximate recursive matching on development and test data 
sets for EPI CORE Task with our system 
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a system consisting of MCCC-I with posteriors 
(MCCC-I + Posteriors) on the test set after the 
final results were submitted, and found that it was 
competitive with our submitted system (MCCC-I + 
ENJU). We believe that ambiguity preservation 
has merit, and hope to explore more of this area in 
the future. Diversity is important: although the 
ENJU parser alone was not the best, combining it 
with other parsers led to consistently strong results.  

Table 2 explores feature ablation: TI appears to 
degrade performance, but clusters regain that loss. 
Protein depth information was helpful, but 
dependency rule conversion was not.  Therefore 
the B+TI+C+PI combination was our final 
submission on GENIA.  

3.2 EPI Task 

We trained the final system for the Epigenetics 
task with all the features described in section 2. 
Further, we produced the clusters for the 
Epigenetics task using only the set of GENIA 
documents provided in the shared task. 

In contrast to GENIA, we found that the 
dependency rule conversions had a positive impact 
on development set performance. Therefore, we 
included them in the final system. Otherwise the 
system was identical to the GENIA task system.  

4 Discussion 

After two rounds of the BioNLP shared task, in 
2009 and 2011, we wonder whether it might be 
possible to establish an upper-bound on recall and 
precision. There is considerable diversity among 
the participating systems, so it would be interesting 
to consider whether there are some annotations in 
the development set that cannot be predicted by 
any of the participating systems1. If this is the case, 
then those triggers and edges would present an 
interesting topic for discussion. This might result 
either in a modification of the annotation protocols, 
or an opportunity for all systems to learn more. 

After a certain amount of feature engineering, 
we found it difficult to achieve further 
improvements in F1. Perhaps we need a significant 
shift in architecture, such as a shift to joint 
inference (Poon and Vanderwende, 2010). Our 
system may be limited by the pipeline architecture. 

                                                           
1 Our system output for the 2011development set can be 
downloaded from http://research.microsoft.com/bionlp/ 

MWEs (multi-word entities) are a challenge. 
Better multi-word triggers accuracy may improve 
system performance. Multi-word proteins often led 
to incorrect part-of-speech tags and parse trees. 

Cursory inspection of the Epigenetics task 
shows that some domain-specific knowledge 
would have been beneficial. Our system had 
significant difficulties with the rare inverse event 
types, e.g. “demethylation” (e.g., there are 319 
examples for “methylation” in the combined 
training/development set, but only 12 examples for 
“demethylation”). Each trigger type was treated 
independently, thus we did not share information 
between an event and its related inverse event type. 
Furthermore, our system also failed to identify 
edges for these rare events. One approach would 
be to share parameters between types that differ 
only in a prefix, e.g., “de”. In general, some 
knowledge about the hierarchy of events may let 
the learner generalize among related events. 

5 Conclusion and Future Work 

We have described a system designed for fine-
grained information extraction, which we show to 
be general enough to achieve good performance 
across different sets of event types and domains.  
The only domain-specific characteristic is the pre-
annotation of proteins as a special class of entities. 
We formulated some features based on this 
knowledge, for instance the path to the nearest 
protein.  This would likely have analogues in other 
domains, given that there is often a special class of 
target items for any Information Extraction task. 

As the various systems participating in the 
shared task mature, it will be viable to apply the 
automatic annotations in an end-user setting.  
Given a more specific application, we may have 
clearer criteria for balancing the trade-off between 
recall and precision.  We expect that fully-
automated systems coupled with reasoning 
components will need very high precision, while 
semi-automated systems, designed for information 
visualization or for assistance in curating 
knowledge bases, could benefit from high recall.  
We believe that the data provided for the shared 
tasks will support system development in either 
direction. As mentioned in our discussion, though, 
we find that improving recall continues to be a 
major challenge. We seek to better understand the 
data annotations provided. 
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Our immediate plans to improve our system 
include semi-supervised learning and system 
combination.  We will also continue to explore 
new levels of linguistic representation to 
understand where they might provide further 
benefit.  Finally, we plan to explore models of joint 
inference to overcome the limitations of pipelining 
and deterministic post-processing. 
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Abstract

We participated in the BioNLP Shared Task 2011,
addressing the GENIA event extraction (GE) and
the Epigenetics and Post-translational Modifica-
tions (EPI) tasks. A graph-based approach is
employed to automatically learn rules for detect-
ing biological events in the life-science literature.
The event rules are learned by identifying the
key contextual dependencies from full syntactic
parsing of annotated text. Event recognition is
performed by searching for an isomorphism be-
tween event rules and the dependency graphs of
sentences in the input texts. While we explored
methods such as performance-based rule rank-
ing to improve precision, we merged rules across
multiple event types in order to increase recall.

We achieved a 41.13% F-score in detecting events
of nine types in the Task 1 of the GE task, and a
52.67% F-score in identifying events across fif-
teen types in the core task of the EPI task. Our
performance on both tasks is comparable to the
state-of-the-art systems. Our approach does not
require any external domain-specific resources.
The consistent performance on the two tasks sup-
ports the claim that the method generalizes well
to extract events from different domains where
training data is available.

1 Introduction

Recent research in information extraction in the biolog-
ical domain has focused on extracting semantic events
involving genes or proteins, such as binding events or
post-translational modifications. To date, most of the
biological knowledge about these events has only been
available in the form of unstructured text in scientific
articles (Abulaish and Dey, 2007; Ananiadou et al.,
2010).

When a biological event is described in text, it can
be analyzed by recognizing its type, the trigger that sig-
nals the event, and one or more event arguments. The
BioNLP-ST 2009 (Kim et al., 2009) focused on the

recognition of semantically typed, complex events in
the biological literature. Although the best-performing
system achieved a 51.95% F-score in identifying events
across nine types, only 4 of the rest 23 participating
teams obtained an F-score in the 40% range. This sug-
gests that the problem of biological event extraction is
difficult and far from solved.

Graphs provide a powerful primitive for modeling
biological data such as pathways and protein interac-
tion networks (Tian et al., 2007; Yan et al., 2006). More
recently, the dependency representations obtained from
full syntactic parsing, with its ability to reveal long-
range dependencies, has shown an advantage in bi-
ological relation extraction over the traditional Penn
Treebank-style phrase structure trees (Miyao et al.,
2009). Since the dependency representation maps
straightforwardly onto a directed graph, operations on
graphs can be naturally applied to the problem of bio-
logical event extraction.

We participated in the BioNLP-ST 2011 (Kim et al.,
2011a), and applied a graph matching-based approach
(Liu et al., 2010) to tackling the Task 1 of the GE-
NIA event extraction (GE) task (Kim et al., 2011b), and
the core task of the Epigenetics and Post-translational
Modifications (EPI) task (Ohta et al., 2011), two main
tasks of the BioNLP-ST 2011. Event recognition is
performed by searching for an isomorphism between
dependency representations of automatically learned
event rules and complete sentences in the input texts.
This process is treated as a subgraph matching problem,
which corresponds to the search for a subgraph isomor-
phic to a rule graph within a sentence graph. While
we explored methods such as performance-based rule
ranking to improve the precision of the GE and EPI
tasks, we merged rules across multiple event types in
order to increase the recall of the EPI task.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the BioNLP Shared Task 2011.
Section 3 describes the subgraph matching-based event
extraction method. Section 4 and Section 5 elabo-
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rate the implementation details and our performance
respectively. Finally, Section 6 summarizes the paper
and introduces future work.

2 BioNLP Shared Task 2011

The BioNLP-ST 2011 is the extension of the BioNLP-
ST 2009 that focused on the recognition of events in the
biological literature. The BioNLP-ST 2011 extends the
previous task in three directions: the type of the inves-
tigated text, the domain of the subject, and the targeted
event types. As a result, the shared task was organized
into four independent tasks: GENIA Event Extraction
Task (GE), Epigenetics and Post-translational Modifi-
cations Task (EPI), Infectious Diseases Task (ID) and
Bacteria Track.

The definition of the GE task remained the same as
the BioNLP-ST 2009. However, additional annotated
texts that come from full papers were provided together
with the dataset of the 2009 task to generalize the task
from PubMed abstracts to full text articles. The pri-
mary task of the GE task was to detect biological events
of nine types such as protein binding and regulation,
given the annotation of protein names. It was required
to extract type, trigger, and primary arguments of each
event. This task is an example of extraction of seman-
tically typed, complex events for which the arguments
can also be other events. Such embedding results in a
nested structure that captures the underlying biological
statements more accurately.

Different from the subject domain of the GE task on
transcription factors in human blood cells, the EPI task
focused on events related to epigenetic change, includ-
ing DNA methylation and histone modification, as well
as other common post-translational protein modifica-
tions. The core task followed the definition for Phos-
phorylation event extraction in the 2009 task, and ex-
tended that basic event type to a total of fifteen types
including both positive and negative variants, for ex-
ampleAcetylationandDeacetylation. The task dataset
was prepared from relevant PubMed abstracts, with
additional evidence sentences from databases such as
PubMeth (Ongenaert et al., 2007). Given the annota-
tion of protein names, the core task required to extract
type, trigger, and primary arguments of each event.

We focused on the primary task of GE and the core
task of EPI, and tackled the event extraction problem in
both cases using a graph matching-based method.
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Figure1: Dependency Graph Example

3 Subgraph Matching-based Event Extraction

3.1 Dependency Representation
The dependency representation of a sentence is formed
by tokens in the sentence and binary relations between
them. A single dependency relation is represented
asrelation(governor, dependent), wheregovernorand
dependentare tokens, andrelation is a type of the
grammatical dependency relation. This representation
is essentially a labeled directed graph, which is named
dependency graphand defined as follows:

Definition 1. A dependency graph is a pair of sets
G = (V, E), whereV is a set of nodes that correspond
to the tokens in a sentence, andE is a set of directed
edges, for which the edge labels are types of depen-
dency relations between the tokens, and the edge direc-
tion is fromgovernorto dependentnode.

Figure 1 illustrates the dependency graph for the sen-
tence: “Interferons inhibit activation of STAT6 by in-
terleukin 4 in human monocytes by inducing SOCS-1
gene expression.” (MEDLINE: 10485906). The token
number in the sentence is appended to each token in
order to differentiate identical tokens that co-occur in a
sentence. All the protein names in the sentence have
been replaced with a unified tag “BIOEntity”. The
POS tag of each token is noted. “BIOEntity” tokens
are uniformly tagged as proper nouns.

3.2 Event Rule Induction
The premise of our work is that there is a set of fre-
quently occurring event rules that match a majority of
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statedevents about protein biology. We consider that
an event rule encodes the detailed description and char-
acterizes the typical contextual structure of a group of
biological events. The rules are learned from labeled
training sentences using a graph-based rule induction
method (Liu et al., 2010), and we briefly describe the
algorithm as follows.

Starting with the dependency graph of each training
sentence, edge directions are first removed so that the
directed graph is transformed into an undirected graph,
where a path must exist between any two nodes since
the graph is always connected. For each gold event, the
shortest dependency path in the undirected graph con-
necting the event trigger nodes to each event argument
node is selected. The union of all shortest dependency
paths is then computed, and the original directed de-
pendency representation of the path union is retrieved
and used as the graph representation of the event.

For multi-token event triggers, the shortest depen-
dency path connecting the node of every trigger token
to the node of each event argument is selected, and the
union of the paths is then computed for each trigger.
For regulation events, when a sub-event is used as an
argument, only the type and the trigger of the sub-event
are preserved as the argument of the main events. The
shortest dependency path is extracted so as to connect
the trigger nodes of the main event to the trigger nodes
of the sub-event. In case that there exists more than
one shortest path, all of the paths are considered. As a
result, each gold event is transformed into the form of
a biological event rule. The algorithm is elaborated in
more detail in (Liu et al., 2010). The obtained rules are
categorized in terms of the event types of the tasks.

3.3 Sentence Matching

We attempted to match event rules to each testing sen-
tence to extract events from the sentence using a sen-
tence matching approach. Since the event rules and the
sentences all possess a dependency graph, the matching
process is a subgraph matching problem, which cor-
responds to the search for a subgraph isomorphic to
an event rule graph within the graph of a testing sen-
tence. The subgraph matching problem is also called
subgraph isomorphism, defined in this work as follows:

Definition 2. An event rule graphGr = (Vr, Er)
is isomorphic to a subgraph of a sentence graphGs =
(Vs, Es), denoted byGr

∼= Ss ⊆ Gs, if there is an
injective mappingf : Vr → Vs such that, for every
directed pair of nodesvi, vj ∈ Vr, if (vi, vj) ∈ Er then
(f(vi), f(vj)) ∈ Es, and the edge label of(vi, vj) is

the same as the edge label of(f(vi), f(vj)).
The subgraph isomorphism problem is NP-complete

(Cormen et al., 2001). A number of algorithms have
been designed to tackle the problem of subgraph iso-
morphism in different applications (Ullmann, 1976;
Cordella et al., 2004; Pelillo et al., 1999). Considering
that the graphs of rules and sentences involved in the
matching process are small, a simple subgraph match-
ing algorithm using a backtracking approach (Liu et
al., 2010) was used in this work. It is named “Injec-
tive Graph Embedding Algorithm” and designed based
on the Huet’s graph unification algorithm (Huet, 1975).
The formalized algorithm and the detailed description
are given in (Liu et al., 2010).

When matching between graphs, different combina-
tions of matching features can be applied, resulting in
different matching criteria. The features include edge
features (E) which are edge label and edge direction,
and node features which are POS tags (P), trigger to-
kens (T), and all tokens (A), ranging from the least spe-
cific matching criterion, E, to the much stricter crite-
rion, A. For each sentence, the algorithm returns all the
matched rules together with the corresponding injec-
tive mappings from rule nodes to sentence tokens. Bio-
logical events are then extracted by applying the event
descriptions of tokens in each matched rule consisting
of the type, the trigger and the arguments to the corre-
sponding tokens of the sentence.

4 Implementation

4.1 Preprocessing
The same preprocessing steps as in (Liu et al., 2010)
are completed on the datasets of the GE and the EPI
tasks before performing text mining strategies. These
include sentence segmentation and tokenization, Part-
of-Speech tagging, and sentence parsing.

The Stanford unlexicalized natural language parser
(version 1.6.5), which includes Genia Treebank 1.0
(Ohta et al., 2005) as training material, is used to ana-
lyze the syntactic structure of the sentences. The parser
returns a dependency graph for each sentence.

4.2 Rule Induction and Sentence Matching
For each gold event, the shortest path in the undirected
graph connecting the event trigger to each event argu-
ment is extracted using Dijkstra’s algorithm (Cormen
et al., 2001) with equal weight for edges.

Sentence matching is performed and the raw match-
ing results are then postprocessed based on the specifi-
cations of the shared task, such as event trigger cannot
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bea protein name or another event.

5 Results and Evaluation

This section presents our results on the GE and the EPI
tasks (Kim et al., 2011b; Ohta et al., 2011) respectively.
Different experimental methods in processing the ob-
tained event rules are described for the purpose of im-
proving the precision of both tasks and increasing the
recall of the EPI task.

5.1 GE task

5.1.1 Preprocessing Results
For training data, only sentences that contain at least

one protein and one event are considered candidates
for further processing. For testing data, candidate sen-
tences contain at least one protein. Our event recog-
nition method focuses on extracting events from sen-
tences. Therefore, only sentence-based events are con-
sidered in this work. Table 1 presents some statistics of
the preprocessed datasets.

Attributes Counted Training Dev. Testing

Abstracts&Fullarticles 908 259 347
Total sentences 8,759 2,954 3,437
Candidatesentences 3,615 1,989 2,353
Total events 10,287 3,243 4,457
Sentence-basedevents 9,583 3,058 hidden

Table 1: Statistics of GE dataset

We were able to build event rules for 9,414 gold
events. Gold events in which the event trigger and
an event argument are not connected by a path in the
undirected dependency graph of the sentence could not
be transformed into a biological event rule. After re-
moving duplicate rules, we obtained 8,677 event rules,
which are distributed over nine event types. The rules
that are isomorphic to each other in terms of their graph
representation are not filtered at this stage as the dupli-
cate events they produce will be removed eventually to
prepare the annotations for the shared task.

5.1.2 Probability-based rule refining
We observed that some event rules of an event type

overlap with rules of other event types. For instance, a
Transcriptionrule is isomorphic to aGeneexpression
rule in terms of the graph representation and they also
share a same event trigger token. In fact, tokens like
“gene expression” and “induction” are used as event
trigger of both Transcription and Geneexpression

in training data. Therefore, the detection of some
Geneexpressionevents is always accompanied by cer-
tain Transcription events. This will have detrimen-
tal effects on the precision of bothTranscriptionand
Geneexpressionevent types.

As transcription is the first step leading to gene ex-
pression (Ananiadou and Mcnaught, 2005), there ex-
ist some correlations or associations between the two
event types. In tackling this problem, we processed
the overlapping rules based on a conditional probability
P (t|E), wheret stands for an event trigger andE repre-
sents one of the event types. Eq.(1) is used to estimate
the value ofP (ti|E).

P (ti|E) =
f(ti, E)∑
i f(ti, E)

, (1)

wheref(ti, E) is the frequency of the event triggerti
of the event typeE in the training data, and

∑
i f(ti, E)

calculates the total frequency of all event triggers of the
event typeE in the training data.

P (ti|E) evaluates the degree of the importance of a
trigger to an event type. When the dependency graphs
of two rules of different event types are isomorphic to
each other, and two rules share a same event trigger,
we examine theP (ti|E) of each event type, and only
retain the rule for which theP (ti|E) is higher.

Compared to the “once a trigger, always a trigger”
method employed in other work (Buyko et al., 2009;
Kilicoglu and Bergler, 2009), triggers are treated in a
more flexible way in our work. A token is not neces-
sarily always a trigger unless it appears in the appropri-
ate context. Also, the same token can serve as trigger
for different event types as long as it appears in the dif-
ferent context. A trigger will only be classified into a
fixed event type when it could serve as trigger for dif-
ferent event types in the same context.

5.1.3 Performance-based rule ranking
In addition to the process of refining rules across

event types, we proposed a performance-based rule
ranking method to evaluate each rule under one event
type. We matched each rule to sentences in the de-
velopment set using the subgraph matching approach.
For rules that produce at least one event prediction, we
ranked them byPRC(ri), the precision of each ruleri,
which is computed via Eq.(2).

PRC(ri) =
#correctly predicted events by ri

#predicted events by ri
(2)
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We manually examined the rules with low rank. In
our experiments, thePRC(ri) ratio of these rules is
bigger than 4:1. We removed the ones that are either in-
correct or ambiguous in semantics and syntactics based
on our domain knowledge. Our assumption is that these
rules will keep producing false positive events on the
testing data if they are retained in the rule set. For
rules that do not make any predictions on the develop-
ment data, we keep them in the set in the hope that they
may contribute to the event recognition from the testing
data. Without affecting much on the recall, this process
helps to improve the precision of the events extracted
from the development data.

5.1.4 GE Results on Development Set

In our previous work (Liu et al., 2010), the match-
ing criteria, “E+P+T” and and “E+P+A”, achieved the
highest F-score and the highest precision respectively
among all the investigated matching criteria. “E+P+T”
requires that edge directions and labels of all edges (E)
be identical, POS tags (P) of all tokens be identical, and
tokens of only event triggers (T) be identical for the
edges and the nodes of a rule and a sentence to match
with each other. “E+P+A” requires that edges (E), POS
tags (P) and all tokens (A) be exactly the same. In this
work, we focused on these two criteria and explored
to extend them for graph matching between event rules
and sentences.

We attempted to relax the matching criterion of POS
tags for nouns and verbs. For nouns, the plural form of
nouns is allowed to match with the singular form, and
proper nouns are allowed to match with regular nouns.
For verbs, past tense, present tense and base present
form are allowed to match with each other.

Next, letters of each token are transformed into lower
case, and tokens containing hyphens are normalized
into non-hyphenated forms. Lemmatization is then per-
formed on every pair of tokens to be matched using
WordNet (Fellbaum, 1998) as the lemmatizer to al-
low tokens that share a same lemma to match. Since
WordNet is a lexical database only for the general Eng-
lish language, the lemma of a fair amount of domain-
specific vocabulary cannot be found in WordNet, such
as “Phosphorylation” and “Methylation”. In this case,
a backup process is invoked to stem the tokens to
their root forms using the Porter’s stemming algorithm
(Porter, 1997) allowing the tokens derived from a same
root word to match.

To further generalize event rules, we extended
the matching criteria “E+P*+A*” to “E+P*+A*S”

to allow tokens to match if their lemmatized forms
have a common synonym in terms of the synsets
of WordNet. Since WordNet will relate verbs such
as “induce” and “receive” together as they share
a synonym “have”, and allow nouns like “expres-
sion” and “aspect” to match as they share a syn-
onym “face”, we limited this extension to only ad-
jective tokens to avoid too many false positive events
and allow tokens like “crucial” and “critical” to match.

Table 2 shows the event extraction results on the
development data based on different matching cri-
teria. The performance is evaluated by “Approxi-
mate Span Matching/Approximate Recursive Match-
ing”, the primary evaluation measure of the shared task.
“E+P*+T*”, “E+P*+A*” and “E+P*+A*S” demon-
strate the performance of the extended criteria.

Feature Recall(%) Prec.(%) F-score(%)

E+P+A 28.03 66.74 39.48
E+P+T 31.17 52.38 39.09

E+P*+A* 31.45 63.51 42.07
E+P*+T* 35.71 46.26 40.31

E+P*+A*S 31.51 63.32 42.08

Table 2: GE results on development set using different
matching criteria

As the strictest matching criteria, “E+P+A” performs
better than “E+P+T” in both precision and F-score. Al-
though “E+P+T” achieves a better recall, when relax-
ing the matching criteria from all tokens being the same
to only event trigger tokens having to be identical, the
precision of “E+P+T” is decreased by a large margin,
nearly 14%. This indicates that a certain number of bi-
ological events are described in very similar ways in
the literature, involving same grammatical structures
and identical contextual contents. While producing
more incorrect events, “E+P*+A*” and “E+P*+T*”
significantly improve the recall, leading to a better
F-score over “E+P+A” and “E+P+T”. This confirms
the effectiveness of the POS relaxation and the to-
ken lemmatization on the generalization of event rules.
“E+P*+A*S” obtains a comparable performance with
“E+P*+A*” with only a 0.06% increase in recall and a
0.2% drop in precision.

5.1.5 GE Results on Testing Set
Table 3 shows our results of “E+P*+A*” on the test-

ing data using the official metric. We are listed as
team “CCP-BTMG”. Ranked by F-score, our perfor-
mance ranked 10th out of 15 participating groups. It
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is worth noting that our result on the event type “Pro-
tein catabolism”ranked 1st.

Event type Rec.(%) Prec.(%) F(%)

Geneexpression 58.68 75.77 66.14
Transcription 39.08 51.91 44.59
Proteincatabolism 66.67 83.33 74.07
Phosphorylation 63.78 85.51 73.07
Localization 29.32 91.80 44.44

Binding 22.61 49.12 30.96

Regulation 12.99 46.73 20.33
Positive regulation 21.90 44.51 29.35
Negative regulation 15.76 40.18 22.64

All total 31.57 58.99 41.13

Table 3: GE results of “E+P*+A*” on testing set by “Ap-
proximate Span /Approximate Recursive Matching”

The performance of our system on the testing set
is consistent with that of the development set. We
achieved a comparable precision with the top systems
and ranked 6th by precision. However, our recall was
lower, ranking 11th. This adversely impacted the over-
all F-score. The lower recall is not surprising because
the graph matching criteria “E+P*+A*” strictly de-
mand that every lemmatized token in the patterns, other
than protein names represented as“BIOEntity”, has to
find its exact match in the input sentences. The detailed
analysis on the recall problem is presented in the “Error
Classification” section.

While examining the false positives, we found that
for many cases our result matched the gold annotation
but for the trigger word. We believe that event type and
their arguments are more important biologically than
the trigger. We consulted some domain experts who
reinforced our intuition in many cases that different
words could be considered as trigger for the event in
question. Following this we contacted organizers and
they agreed to release a new evaluation scheme to ig-
nore the trigger match requirement in order to support
evaluation of the event extraction itself.

Table 4 shows our results of “E+P*+A*” evaluated
by other official evaluation metrics of the task. The
strict matching scheme requires exact trigger span as
well as all its nested events to be recursively correct
for an event to be considered correctly extracted. Our
F-score in terms of the strict matching is only 2.65%
lower than the relaxed, primary measure, indicating
that most of the detected triggers are captured with cor-
rect text span. The organizers also provided the eval-

uation results on PubMed abstracts and PMC full text
articles separately. Our system performs consistently
on both abstracts and full papers and the difference be-
tween F-scores is less than 1% (41.39% vs. 40.47%)
mostly due to the small recall loss on full texts.

Measures R(%) P(%) F(%)
Strict Matching 29.55 55.13 38.48
Appr. SpanNoTrigger/Recur. 33.68 62.17 43.69
Appr. Span/Recur./Decomp. 32.56 66.20 43.65
Appr. Sp. No T./Recur./Decomp. 34.96 69.87 46.60
Appr. Span/Recur. (Abstract) 31.87 59.02 41.39
Appr. Span/Recur. (Full paper) 30.82 58.92 40.47

Table 4: GE results on testing set by other evaluation measures

5.2 EPI task
5.2.1 Preprocessing Results

Table 5 presents some statistics of the datasets. We
were able to build event rules for 1598 gold events. Af-
ter removing duplicate rules, we obtained 1,562 event
rules distributed over fifteen event types.

Attributes Counted Training Dev. Testing

Abstracts 600 200 440
Total sentences 6,411 2,218 4,640
Candidatesentences 1,054 1,241 2,839
Total events 1,738 582 1,194
Sentence-basedevents 1,643 536 hidden

Table 5: Statistics of EPI dataset

We processed the obtained rules following the
same rule refining and ranking processes of the GE
task. We experimented with two graph matching
criteria for extracting EPI events, “E+P*+T*” and
“E+P*+A*”. From the preliminary results, we ob-
served that “E+P*+A*” achieves a high precision over
80% but a lower recall around 33%. Compared to
the GE task results, “E+P*+T*” achieves a better re-
call against a small tradeoff for precision. We consider
that this is because the event triggers themselves for
the EPI task such as “acetylation”, “deglycosylation”
and “demethylation” are powerful enough to differen-
tiate among event types without the need to resort to
more contextual content of the patterns. Therefore, we
focused on using “E+P*+T*” to extract events.

5.2.2 Recall-oriented rule merging
Since all the event types exceptCatalysis,

DNA methylation and DNA demethylation in the
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EPI task involve addition or removal of biochemical
functional groups at a particular amino acid residue of
a protein (Hunter, 2009), common syntactic structures
of expressing the protein PTM events might be shared
across event types. To further improve the recall, we
proposed a rule merging strategy to take advantage of
the syntactic structures of rules across event types.

We first experimented with a “pairwise flip” ap-
proach which combines rules of the pairwise, positive
and negative event types by flipping the type and the
trigger of event rules. For instance, the event rules
of PhosphorylationandDephosphorylationare merged
together and then used to detect events of the two types
respectively.

Next, the “pairwise flip” approach was extended to
an “all in one” method. For one event type, the rules
of all other PTM event types are processed and merged
into the rules of the current type if the trigger of rules
of other types contains one of these 12 morphemes:
“acetyl”, “glycosyl”, “hydroxyl”, “methyl”, “phospho-
ryl”, “ubiqui”, “deacetyl”, “deglycosyl”, “dehydroxyl”,
“demethyl”, “dephosphoryl”, “deubiqui”. We consider
that event rules involving these morphemes in trigger
are more likely to discuss representative protein post-
translational modifications.

5.2.3 EPI Results on Development Set
Table 6 shows the event extraction results on the de-

velopment data using different matching criteria and
rule merging methods. The performance is evaluated
by the primary evaluation measure.

Feature Recall(%) Prec.(%) F(%)

E+P*+A* 32.65 79.83 46.34
E+P*+T* 38.14 73.51 50.23

E+P*+A*(pairwise) 35.22 80.39 48.98
E+P*+T*(pairwise) 40.89 77.52 53.54
E+P*+T*(all in one) 46.39 63.08 53.47

Table 6: EPI results on development set

The two rule merging methods using “E+P*+T*”
outperform others in terms of F-score. The “pairwise
flip” method achieves higher precision as the syntac-
tic structures of rules to describe the pairwise, positive
and negative events tend to be highly similar. However,
when merging all the rules across PTM event types,
although more events are captured, rules that involve
syntactic structures for expressing very specific events
of certain types may not generalize well on some other
types, resulting in incorrect events. Thus, the “all in

one” approach significantly improves the recall while
producing many false positive events, leading to a F-
score comparable with the “pairwise flip” method.

5.2.4 EPI Results on Testing Set
We conducted two runs on the testing data in terms

of “E+P*+T*(pairwise)” and “E+P*+T*(all in one)”.
Since the two rule merging methods achieve compara-
ble F-scores, we decided to submit a run with higher
recall. Table 7 shows our results of “E+P*+T*” using
the “all in one” approach on the official metrics. Only
7 teams participated in this task. For the core task, our
performance ranked 7th, only 0.16% lower in F-score
than the 6th team. When evaluating our results in terms
of the full task, we ranked 6th.

Feature Recall(%) Prec.(%) F(%)

E+P*+T*(coretask) 45.06 63.37 52.67
E+P*+T*(full task) 23.44 37.93 28.97

Table 7: EPI results on testing set

Compared to the top teams, our F-score is mostly af-
fected by the lower recall. Although the run we submit-
ted achieves the highest recall among all our runs, our
recall is about 20% less than the best performing sys-
tem. Considering that most of the event types of the EPI
task tend to use tokens containing only a small fixed
set of domain-specific morphemes as triggers, the re-
call deficit is assumed to be lack of event rules that de-
scribe syntactic structures of expressing a fair amount
of EPI events.

5.3 Error Classification
Since the gold event annotation of the testing data is
hidden, we examined the event extraction results of the
development data to analyze the underlying errors. The
detailed analysis is reported in terms of false negative
and false positive events.

5.3.1 False negatives
It is shown that false negative events have a substan-

tial impact on the performance of all 15 participating
teams of the GE task. The best recall, 49.56%, cap-
tures less than half of the gold events in the testing set.
In our work, three major causes of false negatives are
determined for both tasks.

(1) Low coverage of rule set: For the GE task, the
graph matching criteria “E+P*+A*” strictly asks every
lemmatized token in the patterns to find its exact match
in the input sentences. Although maintaining the pre-
cision at a high level, this directly limits the contextual
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structureand content around the proteins and thus pre-
vents the recall from being higher.

Lemmatization helps to detect more events, however,
further generalization needs to be performed on the ex-
isting rules to relax the token matching requirement.
For instance, when “lysine” appears in an event rule,
knowing that “lysine” is an amino acid, the rule might
be further generalized to allow all amino acids to match
with each other in order to recognize more events.

For the EPI task, although “E+P*+T*” requires to-
kens of only event triggers to be identical, we captured
less than half of the gold events. We noticed that many
trigger tokens in the development sentences do not ap-
pear as triggers in the training set. This leads to the
failure of extracting the corresponding events. Since
the training data is the only source of triggers in our
work, the coverage of triggers limits the generalization
power of event rules.

For both tasks, we found that many gold events are
described in grammatical structures that are not cov-
ered by the existing rules induced from the training sen-
tences. These structures tend to be more complex, in-
volving a long dependency path from the trigger to ar-
guments in the graphs of sentences. Events that consist
of these structures are not recognized as no matched
rules will be returned from the subgraph matching.

In order to further improve the recall, some post-
processing steps are necessary to be performed on the
raw dependency graphs of both rules and sentences in-
stead of using them in the graph matching directly. By
eliminating semantically unimportant nodes and group-
ing lexically connected nodes together, the rules can
be generalized to retain only their skeleton structures
while complex sentences can be syntactically simpli-
fied to allow event rules to match them.

(2) Compound error effect: In both tasks, reg-
ulation and catalysis event types can take sub-events
as arguments. Therefore, if the nested sub-events are
not correctly identified, the main events will not be ex-
tracted due to the compound error effect.

(3) Anaphora and coreference: Since our system
focuses on extracting events from sentences, events that
contain protein names spanning multiple sentences will
not be captured. Recognition of these events requires
the ability to do anaphora and coreference resolution in
biological text (Gasperin and Briscoe, 2008).

5.4 False positives

Three major causes of false positives are generalized
from our analysis.

(1) Assignment of overlapping event rules: The
conditional probability-based method to assign over-
lapped rules of different event types effectively reduces
the number of event candidates but leads to errors. For
instance, “methylation” is used as the trigger for two
overlapping rules ofDNA methylationand Methyla-
tion. Based on theP (ti|E), “methylation” is classified
intoDNA methylation. An erroneousDNA methylation
event is then detected from a development sentence in-
stead of the goldMethylationevent. Although the trig-
ger and the participant are all identified correctly, the
event type is assigned wrongly.

In fact, the same contextual structure and con-
tent appear in bothDNA methylationandMethylation
events in the training data. According to the EPI
task (Ohta et al., 2011),Methylation is to abbreviate
for “protein methylation” and thus is different from
DNA methylation. In this case, the only way to dis-
tinguish between the two types is to identify that the
biological entity mentioned in the sentence is a gene for
DNA methylationanda protein forMethylation. Since
genes and their products are uniformly annotated as
“Protein” in the task, it is not possible to assign a cor-
rect event type in this case from the perspective of the
event extraction itself.

(2) Lack of postprocessing rules: Some misiden-
tified events require customized postprocessing rules.
For instance, aGeneexpressionevent is detected from
the phrase “Tax expression vector” of a development
sentence. However, since “Tax expression” is only
used as an adjective to describe “vector” in this context,
the identifiedGeneexpressionevent is not appropriate.
Likewise, “Sp1 transcription” should not be identified
as an event in the context of “Sp1 transcription factors”.

(4) Inconsistencies in gold annotation: Some ex-
tracted events are considered biologically meaningful
but evaluated as false positives due to the inconsisten-
cies in the gold annotation. In Table 4, the 3.2% in-
crease in precision of the no-trigger evaluation measure
over the primary evaluation scheme indicates that the
inconsistent gold annotations of event triggers.

6 Conclusion and future work

We used dependency graphs to automatically induce
biological event rules from annotated events. We ex-
plored methods such as performance-based rule rank-
ing to improve the accuracy of the obtained rules, and
we merged rules across multiple event types in order to
increase the coverage of the rules. The event extraction
process is treated as a subgraph matching problem to
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searchfor the graph of an event rule within the graph of
a sentence. We tackled two main tasks of the BioNLP
Shared Task 2011. We achieved a 41.13% F-score in
detecting events across nine types in the Task 1 of the
GE task, and a 52.67% F-score in identifying events
across fifteen types in the core task of the EPI task.

In future work, we would like to explore the ap-
proaches of generalizing the raw dependency graphs of
both event rules and sentences in order to improve the
recall of our event extraction system. We also plan to
extend our system to tackle the other sub-tasks in GE
and EPI tasks, such as to extract events with additional
arguments like site and location, and to recognize nega-
tions and speculations regarding the extracted events.
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Abstract

The second BioNLP Shared Task on Event
Extraction (BioNLP-ST’11) follows up the
previous shared task competition with a focus
on generalization with respect to text types,
event types and subject domains. In this spirit,
we re-engineered and extended our event ex-
traction system, emphasizing linguistic gener-
alizations and avoiding domain-, event type-
or text type-specific optimizations. Similar
to our earlier system, syntactic dependencies
form the basis of our approach. However, di-
verging from that system’s more pragmatic na-
ture, we more clearly distinguish the shared
task concerns from a general semantic com-
position scheme, that is based on the no-
tion of embedding. We apply our methodol-
ogy to core bio-event extraction and specu-
lation/negation detection tasks in three main
tracks. Our results demonstrate that such a
general approach is viable and pinpoint some
of its shortcomings.

1 Introduction

In the past two years, largely due to the availabil-
ity of GENIA event corpus (Kim et al., 2008) and
the resulting shared task competition (BioNLP’09
Shared Task on Event Extraction (Kim et al.,
2009)), event extraction in biological domain has
been attracting greater attention. One of the crit-
icisms towards this paradigm of corpus annota-
tion/competition has been that they are concerned
with narrow domains and specific representations,
and that they may not generalize well. For in-
stance, GENIA event corpus contains only Medline
abstracts on transcription factors in human blood
cells. Whether models trained on this corpus would

perform well on full-text articles or on text focusing
on other aspects of biomedicine (e.g., treatment or
etiology of disease) remains largely unclear. Since
annotated corpora are not available for every con-
ceivable domain, it is desirable for automatic event
extraction systems to be generally applicable to dif-
ferent types of text and domains without requiring
much training data or customization.

GENIA EPI ID BB BI
# core events 9 15 10 2 10
Triggers? Y Y Y N N
Full-text? Y N Y N N
Spec/Neg? Y Y Y N N

Table 1: An overview of BioNLP-ST’11 tracks

In the follow-up event to BioNLP’09 Shared
Task on Event Extraction, organizers of the second
BioNLP Shared Task on Event Extraction (BioNLP-
ST’11) (Kim et al., 2011a) address this challenge to
some extent. The theme of BioNLP-ST’11 is gen-
eralization and the net is cast much wider. There
are 4 event extraction tracks: in addition to the GE-
NIA track that again focuses on transcription fac-
tors (Kim et al., 2011b), the epigenetics and post-
translational modification track (EPI) focuses on
events relating to epigenetic change, such as DNA
methylation and histone modification, as well as
other common post-translational protein modifica-
tions (Ohta et al., 2011), whereas the infectious dis-
eases track (ID) focuses on bio-molecular mecha-
nisms of infectious diseases (Pyysalo et al., 2011a).
Both GENIA and ID tracks include data pertaining
to full-text articles, as well. The fourth track, Bacte-
ria, consists of two sub-tracks: Biotopes (BB) and
Interactions (BI) (Bossy et al. (2011) and Jourde
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et al. (2011), respectively). A summary of the
BioNLP-ST’11 tracks is given in Table (1).

We participated in three tracks: GENIA, EPI, and
ID. In the spirit of the competition, our aim was to
demonstrate a methodology that was general and re-
quired little, if any, customization or training for in-
dividual tracks. For this purpose, we used a two-
phase approach: a syntax-driven composition phase
that exploits linguistic generalizations to create a
general semantic representation in a bottom-up man-
ner and a mapping phase, which relies on the shared
task event definitions and constraints to map rele-
vant parts of this semantic representation to event
instances. The composition phase takes as its input
simple entities and syntactic dependency relations
and is intended to be fully general. On the other
hand, the second phase is more task-specific even
though the kind of task-specific knowledge it re-
quires is largely limited to event definitions and trig-
ger expressions. In addition to extracting core bio-
logical events, our system also addresses speculation
and negation detection within the same framework.
Our results demonstrate the feasibility of a method-
ology that uses little training data or customization.

2 Methodology

In our general research, we are working towards
a linguistically-grounded, bottom-up discourse in-
terpretation scheme. In particular, we focus on
lower level discourse phenomena, such as causation,
modality, and negation, and investigate how they in-
teract with each other, as well as their effect on ba-
sic propositional semantic content (who did what to
who?) and higher discourse/pragmatics structure. In
our model, we distinguish three layers of proposi-
tions: atomic, embedding, and discourse. An atomic
proposition corresponds to the basic unit and low-
est level of meaning: in other words, a semantic re-
lation whose arguments correspond to ontologically
simple entities. Atomic propositions form the ba-
sis for embedding propositions, that is, propositions
taking as arguments other propositions (embedding
them). In turn, embedding and atomic propositions
act as arguments for discourse relations1. Our main

1Discourse relations, also referred to as coherence or rhetor-
ical relations (Mann and Thompson, 1988), are not relevant to
the shared task and, thus, we will not discuss them further in

motivation in casting the problem of discourse in-
terpretation in this structural manner is two-fold: a)
to explore the semantics of the embedding layer in
a systematic way b) to allow a bottom-up semantic
composition approach, which works its way from
atomic propositions towards discourse relations in
creating general semantic representations.

The first phase of our event extraction system
(composition) is essentially an implementation of
this semantic composition approach. Before delving
into further details regarding our implementation for
the shared task, however, it is necessary to briefly ex-
plain the embedding proposition categorization that
our interpretation scheme is based on. With this cat-
egorization, our goal is to make explicit the kind
of semantic information expressed at the embedding
layer. We distinguish three basic classes of embed-
ding propositions: MODAL, ATTRIBUTIVE, and RE-
LATIONAL. We provide a brief summary below.

2.1 MODAL type

The embedding propositions of MODAL type mod-
ify the status of the embedded proposition with re-
spect to its factuality, possibility, or necessity, and
so on. They typically involve a) judgement about
the status of the proposition, b) evidence for the
proposition, c) ability or willingness, and d) obli-
gations and permissions, corresponding roughly to
EPISTEMIC, EVIDENTIAL, DYNAMIC and DEONTIC

types (cf. Palmer (1986)), respectively. Further sub-
divisions are given in Figure (1). In the shared task
context, the MODAL class is mostly relevant to the
speculation and negation detection tasks.

2.2 ATTRIBUTIVE type

The ATTRIBUTIVE type of embedding serves to
specify an attribute of an embedded proposition (se-
mantic role of an argument). They typically involve
a verbal predicate (undergo in Example (1) below),
which takes a nominalized predicate (degradation)
as one of its syntactic arguments. The other syntac-
tic argument of the verbal predicate corresponds to
a semantic argument of the embedded predicate. In
Example (1), p105 is a semantic argument of PA-
TIENT type for the proposition indicated by degra-
dation.

this paper.
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(1) . . . p105 undergoes degradation . . .

Verbs functioning in this way are plenty (e.g., per-
form for the AGENT role, experience for experiencer
role). With respect to the shared task, we found that
the usefulness of the ATTRIBUTIVE type of embed-
ding was largely limited to verbal predicates involve
and require and their nominal forms.

2.3 RELATIONAL type
The RELATIONAL type of embedding serves to se-
mantically link two propositions, providing a dis-
course/pragmatic function. It is characterized by
permeation of a limited set of discourse relations to
the clausal level, often signalled lexically by “dis-
course verbs” (Danlos, 2006) (e.g., cause, mediate,
lead, correlate), their nominal forms or other ab-
stract nouns, such as role. We categorize the RELA-
TIONAL class into CAUSAL, TEMPORAL, CORREL-
ATIVE, COMPARATIVE, and SALIENCY types. In the
example below, the verbal predicate leads to indi-
cates a CAUSAL relation between the propositions
whose predicates are highlighted.

(2) Stimulation of cells leads to a rapid phospho-
rylation of IκBα . . .

While not all the subtypes of this class were relevant
to the shared task, we found that CAUSAL, CORREL-
ATIVE, and SALIENCY subtypes play a role, partic-
ularly in complex regulatory events. The portions of
the classification that pertain to the shared task are
given in Figure (1).

3 Implementation

In the shared task setting, embedding propositions
correspond to complex regulatory events (e.g., Reg-
ulation, Catalysis) as well as event modifications
(Negation and Speculation), whereas atomic propo-
sitions correspond to simple event types (e.g., Phos-
phorylation). While the treatment of these two types
differ in significant ways, they both require that sim-
ple entities are recognized, syntactic dependencies
are identified and a dictionary of trigger expressions
is available. We first briefly explain the construction
of the trigger dictionary.

3.1 Dictionary of Trigger Expressions
In the previous shared task, we relied on training
data and simple statistical measures to identify good

Figure 1: Embedding proposition categorization relevant
to the shared task

trigger expressions for events and used a list of trig-
gers that we manually compiled for speculation and
negation detection (see Kilicoglu and Bergler (2009)
for details). With respect to atomic propositions,
our method of constructing a dictionary of trigger
expressions remains essentially the same, including
the use of statistical measures to distinguish good
triggers. The only change we made was to consider
affixal negation and set polarity of several atomic
proposition triggers to negative (e.g., nonexpression,
unglycosylated). On the other hand, we have been
extending our manually compiled list of specula-
tion/negation triggers to include other types of em-
bedding triggers and to encode finer grained distinc-
tions in terms of their categorization and trigger be-
haviors. The training data provided for the shared
task also helped us expand this trigger dictionary,
particularly with respect to RELATIONAL trigger ex-
pressions. It is worth noting that we used the same
embedding trigger dictionary for all three tracks that
we participated in. Several entries from the embed-
ding trigger dictionary are summarized in Table (2).

Lexical polarity and strength values play a role
in the composition phase in associating a context-
dependent scalar value with propositions. Lexical
polarity values are largely derived from a polarity
lexicon (Wilson et al., 2005) and extended by us-
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Trigger POS Semantic Type Lexical Polarity Strength
show VB DEMONSTRATIVE positive 1.0
unknown JJ EPISTEMIC negative 0.7
induce VB CAUSAL positive 1.0
fail VB SUCCESS negative 0.0
effect NN CAUSAL neutral 0.5
weakly RB HEDGE neutral -
absence NN REVERSE negative -

Table 2: Several entries from the embedding dictionary

ing heuristics involving the event types associated
with the trigger2. Some polarity values were as-
signed manually. Some strength values were based
on prior work (Kilicoglu and Bergler, 2008), oth-
ers were manually assigned. As Table (2) shows, in
some cases, the semantic type (e.g., DEMONSTRA-
TIVE, CAUSAL) is simply a mapping to the embed-
ding categorization. In other cases, such as weakly
or absence, the semantic type identifies the role that
the trigger plays in the composition phase. The em-
bedding trigger dictionary incorporates ambiguity;
however, for the shared task, we limit ourselves to
one semantic type per trigger to avoid the issue of
disambiguation. For ambiguous triggers extracted
from the training data, the semantic type with the
maximum likelihood is used. On the other hand, we
determined the semantic type to use manually for
triggers that we compiled independent of the train-
ing data. In this way, we use 466 triggers for atomic
propositions and 908 for embedding ones3.

3.2 Composition

As mentioned above, the composition phase as-
sumes simple entities, syntactic dependency rela-
tions and trigger expressions. Using these elements,
we construct a semantic embedding graph of the
document. To obtain syntactic dependency relations,
we segment documents into sentences, parse them
using the re-ranking parser of Charniak and John-
son (2005) adapted to the biomedical domain (Mc-
Closky and Charniak, 2008) and extract syntactic

2For example, if the most likely event type associated with
the trigger is Negative regulation, its polarity is considered neg-
ative.

3Note, however, that not all embedding propositions (or their
triggers) were directly relevant to the shared task.

dependencies from parse trees using the Stanford
dependency scheme (de Marneffe et al., 2006). In
addition to syntactic dependencies, we also require
information regarding individual tokens, including
lemma, part-of-speech, and positional information,
for which we also rely on Stanford parser tools. We
present a high level description of the composition
phase below.

3.2.1 From syntactic dependencies to
embedding graphs

As the first step in composition, we convert syn-
tactic dependencies into embedding relations. An
embedding relation, in our definition, is very simi-
lar to a syntactic dependency; it is typed and holds
between two textual elements. It diverges from a
syntactic dependency in two ways: its elements can
be multi-word expressions and it is aimed at better
reflecting the direction of the semantic dependency
between its elements. Take, for example, the sen-
tence fragment in Example (3a). Syntactic depen-
dencies are given in (3b) and the corresponding em-
bedding relations in (3c). The fact that the adjecti-
val predicate in modifier position (possible) semanti-
cally embeds its head (involvement) is captured with
the first embedding relation. The second syntactic
dependency already reflects the direction of the se-
mantic dependency between its elements accurately
and, thus, is unchanged as an embedding relation.

(3) (a) . . . possible involvement of HCMV . . .
(b) amod(involvement,possible)

prep of (involvement,HCMV)
(c) amod(possible,involvement)

prep of (involvement,HCMV)

To obtain the embedding relations in a sentence,
we apply a series of transformations to its syntactic

176



Figure 2: The embedding graph for the sentence Our previous results show that recombinant gp41 (aa565-647), the
extracellular domain of HIV-1 transmembrane glycoprotein, stimulates interleukin-10 (IL-10) production in human
monocytes. in the context of the document embedding graph for the Medline abstract with PMID 10089566.

dependencies. A transformation may not be neces-
sary, as with the prep of dependency in the exam-
ple above. It may result in collapsing several syn-
tactic dependencies into one, as well, or in splitting
one into several embedding relations. In addition
to capturing semantic dependency behavior explic-
itly, these transformations serve to incorporate se-
mantic information (entities and triggers) into the
embedding structure and to correct syntactic depen-
dencies that are systemically misidentified, such as
those that involve modifier coordination.

After these transformations, the resulting directed
acyclic embedding graph is, in the simplest case, a
tree, but more often a forest. An example graph is
given in Figure (2). The edges are associated with
the embedding relation types, and the nodes with
textual elements.

3.2.2 Composing Propositions

After constructing the embedding graph, we tra-
verse it in a bottom-up manner and compose se-
mantic propositions. Before this procedure can take

place, though, the embedding graph pertaining to
each sentence is further linked to the document em-
bedding graph in a way to reflect the proximity of
sentences, as illustrated in Figure (2). This is done
to enable discourse interpretation across sentences,
including coreference resolution.

Traversal of the embedding structure is guided by
argument identification rules, which apply to non-
leaf nodes in the embedding graph. An argument
identification rule is essentially a mapping from the
type of the embedding relation holding between a
parent node and its child node and part-of-speech of
the parent node to a logical argument type (logical
subject, logical object or adjunct). Constraints on
and exclusions from a rule can be defined, as shown
in Table (3). We currently use about 80 such rules,
mostly adapted from our previous shared task sys-
tem (Kilicoglu and Bergler, 2009).

After all the descendants of a non-leaf node are
recursively processed for arguments, a semantic
proposition can be composed. We define a seman-
tic proposition as consisting of a trigger, a collection
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Relation Applies to Argument Constrained to Exclusions
prep on NN Object influence,impact,effect -
agent VB Subject - -
nsubjpass VB Object - -
whether comp VB Object INTERROGATIVE -
prep in NN Adjunct - effect, role, influence, importance

Table 3: Several argument identification rules. Note that constraints and exclusions may apply to trigger categories, as
well as to lemmas.

of core and adjunct arguments as well as a polarity
value and a scalar value. The polarity value can be
positive, negative or neutral. The scalar value is in
the (0,1) range. Atomic propositions are simply as-
signed polarity value of neutral4 and the scalar value
of 1.0. On the other hand, in the context of embed-
ding propositions, the computation of these values,
through which we attempt to capture some of the in-
teractions occurring at the embedding layer, is more
involved. For the sentence depicted in Figure (2),
the relevant resulting embedding and atomic propo-
sitions are given below.

(4) DEMONSTRATIVE(em1,Trigger=show,
Object=em2, Subject=Our previous results,
Polarity=positive, Value=1.0)

(5) CAUSAL(em2, Trigger=stimulates, Object=ap1,
Subject=recombinant gp41, Polarity=positive,
Value=1.0)

(6) Gene expression(ap1, Trigger= production,
Object= interleukin-10, Adjunct= human
monocytes, Polarity=neutral, Value=1.0)

The composition phase also deals with coordina-
tion of entities and propositions as well as with prop-
agation of arguments at the lower levels.

3.3 Mapping Propositions to Events
The goal of the mapping phase is to impose the
shared task constraints on the partial interpretation
achieved in the previous phase. We achieve this in
three steps.

The first step is to map embedding proposition
types to event (or event modification) types. We de-
fined constraints that guide this mapping. Some of

4Unless affixal negation is involved, in which case the as-
signed polarity value is negative.

these mappings are presented in Table (4). In this
way, Example (4) is pruned, since embedding propo-
sitions of DEMONSTRATIVE type satisfy the con-
straints only if they have negative polarity, as shown
in Table (4).

We then apply constraints concerned with the se-
mantic roles of the participants. For this step, we
define a small number of logical argument/semantic
role mappings. These are similar to argument identi-
fication rules, in that the mapping can be constrained
to certain event types or event types can be excluded
from it. We provide some of these mappings in Ta-
ble (5). With these mappings, the Object and Sub-
ject arguments of the proposition in Example (5) are
converted to Theme and Cause semantic roles, re-
spectively.

As the final step, we prune event participants that
do not conform to the event definition as well as the
propositions whose types could not be mapped to a
shared task event type. For example, a Cause par-
ticipant for a Gene expression event is pruned, since
only Theme participants are relevant for the shared
task. Further, a proposition with DEONTIC seman-
tic type is pruned, because it cannot be mapped to
a shared task type. The infectious diseases track
(ID) event type Process is interesting, because it may
take no participants at all, and we deal with this id-
iosyncrasy at this step, as well. This concludes the
progressive transformation of the graph to event and
event modification annotations.

4 Results and Discussion

With the two-phase methodology presented above,
we participated in three tracks: GENIA (Tasks 1 and
3), ID, and EPI. The official evaluation results we
obtained for the GENIA track are presented in Ta-
ble (6) and the results for the EPI and ID tracks in
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Track Prop. Type Polarity Value Correspond. Event (Modification) Type
GENIA,ID CAUSAL neutral - Regulation
GENIA,ID,EPI SUCCESS negative - Negation
EPI CAUSAL positive - Catalysis
GENIA,ID,EPI SPECULATIVE - > 0.0 Speculation
GENIA,ID,EPI DEMONSTRATIVE negative - Speculation

Table 4: Several event (and event modification) mappings

Logical
Arg.

Semantic
Role

Constraint Exclusion

Object Theme - Process
Subject Cause - -
Subject Theme Binding -
Object Participant Process -
Object Scope Speculation,

Negation
-

Table 5: Logical argument to semantic role mappings

Table (7). With the official evaluation criteria, we
were ranked 5th in the GENIA track (5/15), 7th in
the EPI track (7/7) and 4th in the ID track (4/7).
There were only two submissions for the GENIA
speculation/negation task (Task 3) and our results
in this task were comparable to those of the other
participating group: our system performed slightly
better with speculation, and theirs with negation.

Our core module extracts adjunct arguments, us-
ing ABNER (Settles, 2005) as its source for addi-
tional named entities. We experimented with map-
ping these arguments to non-core event participants
(Site, Contextgene, etc.); however, we did not in-
clude them in our official submission, because they
seemed to require more work with respect to map-
ping to shared task specifications. Due to this short-
coming, the performance of our system suffered sig-
nificantly in the EPI track.

A particularly encouraging outcome for our sys-
tem is that our results on the GENIA development
set versus on the test set were very close (an F-
score of 51.03 vs. 50.32), indicating that our gen-
eral approach avoided overfitting, while capturing
the linguistic generalizations, as we intended. We
observe similar trends with the other tracks, as well.
In the EPI track, development/test F-score results
were 29.10 vs. 27.88; while, in the ID track, inter-

Event Class Recall Precis. F-score
Localization 39.27 90.36 54.74
Binding 29.33 49.66 36.88
Gene expression 65.87 86.84 74.91
Transcription 32.18 58.95 41.64
Protein catabolism 66.67 71.43 68.97
Phosphorylation 75.14 94.56 83.73
EVT-TOTAL 52.67 78.04 62.90
Regulation 33.77 42.48 37.63
Positive regulation 35.97 47.66 41.00
Negative regulation 36.43 43.88 39.81
REG-TOTAL 35.72 45.85 40.16
Negation 18.77 44.26 26.36
Speculation 21.10 38.46 27.25
MOD-TOTAL 19.97 40.89 26.83
ALL-TOTAL 43.55 59.58 50.32

Table 6: Official GENIA track results, with approximate
span matching/approximate recursive matching evalua-
tion criteria

estingly, our test set performance was better (39.64
vs. 44.21). We also obtained the highest recall in
the ID track, despite the fact that our system typi-
cally favors precision. We attribute this somewhat
idiosyncratic performance in the ID track partly to
the fact that we did not use a track-specific trigger
dictionary. Most of the ID track event types are
the same as those of GENIA track, which probably
led to identification of some ID events with GENIA-
only triggers5.

One of the interesting aspects of the shared task
was its inclusion of full-text articles in training and
evaluation. Cohen et al. (2010) show that structure
and content of biomedical abstracts and article bod-
ies differ markedly and suggest that some of these

5This clearly also led to low precision particularly in com-
plex regulatory events.
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Track-Eval. Type Recall Precis. F-score
EPI-FULL 20.83 42.14 27.88
EPI-CORE 40.28 76.71 52.83

ID-FULL 49.00 40.27 44.21
ID-CORE 50.77 43.25 46.71

Table 7: Official evaluation results for EPI and ID tracks.
Primary evaluation criteria underlined.

differences may pose problems in processing full-
text articles. Since one of our goals was to determine
the generality of our system across text types, we
did not perform any full text-specific optimization.
Our results on article bodies are notable: our system
had stable performance across text types (in fact, we
had a very slight F-score improvement on full-text
articles: 50.40 vs. 50.28). This contrasts with the
drop of a few points that seems to occur with other
well-performing systems. Taking only full-text arti-
cles into consideration, we would be ranked 4th in
the GENIA track. Furthermore, a preliminary error
analysis with full-text articles seems to indicate that
parsing-related errors are more prevalent in the full-
text article set than in the abstract set, consistent with
Cohen et al.’s (2010) findings. At the same time, our
results confirm that we were able to abstract away
from this complexity to some degree with our ap-
proach.

We have a particular interest in speculation and
negation detection. Therefore, we examined our re-
sults on the GENIA development set with respect to
Task 3 more closely. Consistent with our previous
shared task results, we determined that the majority
of errors were due to misidentified or missed base
events (70% of the precision errors and 83% of the
recall errors)6. Task 3-specific precision errors in-
cluded cases in which speculation or negation was
debatable, as the examples below show. In Exam-
ple (7a), our system detected a Speculation instance,
due to the verbal predicate suggesting, which scopes
over the event indicated by role. In Example (7b),
our system detected a Negation instance, due to the
nominal predicate lack, which scopes over the events
indicated by expression. Neither were annotated as

6Even a bigger percentage of speculation/negation-related
errors in the EPI and ID tracks were due to the same problem,
as the overall accuracy in those tracks is lower.

such in the shared task corpus.

(7) (a) . . . suggesting a role of these 3’ elements
in beta-globin gene expression.

(b) . . . DT40 B cell lines that lack expression
of either PKD1 or PKD3 . . .

Another class of precision errors was due to argu-
ment propagation up the embedding graph. It seems
the current algorithm may be too permissive in some
cases and a more refined approach to argument prop-
agation may be necessary. In the following example,
while suggest, an epistemic trigger, does not embed
induction directly (as shown in (8b)), the intermedi-
ate nodes simply propagate the proposition associ-
ated with the induction node up the graph, leading
us to conclude that the proposition triggered by in-
duction is speculated, leading to a precision error.

(8) (a) . . . these findings suggest that PWM is able
to initiate an intracytoplasmic signaling
cascade and EGR-1 induction . . .

(b) suggest → able → initiate → induction

Among the recall errors, some of them were due
to shortcomings of the composition algorithm, as it
is currently implemented. One recall problem in-
volved the embedding status of and rules concern-
ing copular constructions, which we had not yet ad-
dressed. Therefore, we miss the relatively straight-
forward Speculation instances in the following ex-
amples.

(9) (a) . . . the A3G promoter appears constitu-
tively active.

(b) . . . the precise factors that mediate this in-
duction mechanism remain unknown.

Similarly, the lack of a trigger expression in our dic-
tionary may cause recall errors. The example below
shows an instance where this occurs, in addition to
lack of an appropriate argument identification rule:

(10) mRNA was quantified by real-time PCR for
FOXP3 and GATA3 expression.

Our system also missed an interesting, domain-
specific type of negation, in which the minus sign
indicates negation of the event that the entity partic-
ipates in.

(11) . . . CD14- surface Ag expression . . .
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5 Conclusions and Future Work

We explored a two-phase approach to event ex-
traction, distinguishing general linguistic principles
from task-specific aspects, in accordance with the
generalization theme of the shared task. Our results
demonstrate the viability of this approach on both
abstracts and article bodies, while also pinpointing
some of its shortcomings. For example, our error
analysis shows that some aspects of semantic com-
position algorithm (argument propagation, in partic-
ular) requires more refinement. Furthermore, using
the same trigger expression dictionary for all tracks
seems to have negative effect on the overall perfor-
mance. The incremental nature of our system de-
velopment ensures that some of these shortcomings
will be addressed in future work.

We participated in three supporting tasks, two
of which (Co-reference (CO) and Entity Relations
(REL) tasks (Nguyen et al. (2011) and Pyysalo et
al. (2011b), respectively) were relevant to the main
portion of the shared task; however, due to time con-
straints, we were not able to fully incorporate these
modules into our general framework, with the ex-
ception of the co-reference resolution of relative pro-
nouns. Since our goal is to move towards discourse
interpretation, we plan to incorporate these modules
(inter-sentential co-reference resolution, in particu-
lar) into our framework. After applying the lessons
we learned in the shared task and fully incorporating
these modules, we plan to make our system available
to the scientific community.
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Abstract

We present a system for extracting biomedical
events (detailed descriptions of biomolecular
interactions) from research articles. This sys-
tem was developed for the BioNLP’11 Shared
Task and extends our BioNLP’09 Shared Task
winning Turku Event Extraction System. It
uses support vector machines to first detect
event-defining words, followed by detection
of their relationships. The theme of the
BioNLP’11 Shared Task is generalization, ex-
tending event extraction to varied biomedical
domains. Our current system successfully pre-
dicts events for every domain case introduced
in the BioNLP’11 Shared Task, being the only
system to participate in all eight tasks and all
of their subtasks, with best performance in
four tasks.

1 Introduction

Biomedical event extraction is the process of auto-
matically detecting statements of molecular interac-
tions in research articles. Using natural language
processing techniques, an event extraction system
predicts relations between proteins/genes and the
processes they take part in. Manually annotated cor-
pora are used to evaluate event extraction techniques
and to train machine-learning based systems.

Event extraction was popularised by the
BioNLP’09 Shared Task on Event Extraction
(Kim et al., 2009), providing a more detailed
alternative for the older approach of binary inter-
action detection, where each pair of protein names
co-occurring in the text is classified as interacting or

not. Events extend this formalism by adding to the
relations direction, type and nesting. Events define
the type of interaction, such as phosphorylation,
and commonly mark in the text a trigger word
(e.g. “phosphorylates”) describing the interaction.
Directed events can define the role of their protein
or gene arguments as e.g. cause or theme, the agent
or the target of the biological process. Finally,
events can act as arguments of other events, creating
complex nested structures that accurately describe
the biological interactions stated in the text. For
example, in the case of a sentence stating “Stat3
phosphorylation is regulated by Vav”, a phospho-
rylation-event would itself be the argument of a
regulation-event.

We developed for the BioNLP’09 Shared Task the
Turku Event Extraction System, achieving the best
performance at 51.95% F-score (Björne et al., 2009).
This system separated event extraction into multiple
classification tasks, detecting individually the trig-
ger words defining events, and the arguments that
describe which proteins or genes take part in these
events. Other approaches used in the Shared Task in-
cluded e.g. joint inference (Riedel et al., 2009). An
overall notable trend was the use of full dependency
parsing (Buyko et al., 2009; Van Landeghem et al.,
2009; Kilicoglu and Bergler, 2009).

In the following years, event extraction has been
the subject of continuous development. In 2009, af-
ter the BioNLP’09 Shared Task, we extended our
system and improved its performance to 52.85%
(Björne et al., 2011). In 2010, the system introduced
by Miwa et. al. reached a new record performance of
56.00% (Miwa et al., 2010a).
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Figure 1: Event extraction. In most tasks named entities
are given (A). Sentences are parsed (B) to produce a de-
pendency parse. Entities not given are predicted through
trigger detection (C). Edge detection predicts event argu-
ments between entities (D) and unmerging creates events
(E). Finally, event modality is predicted (F). When the
graph is converted to the Shared Task format, site argu-
ments are paired with core arguments that have the same
target protein.

In 2010, we applied the Turku Event Extrac-
tion System to detecting events in all 18 million
PubMed abstracts, showing its scalability and gener-
alizability into real-world data beyond domain cor-
pora (Björne et al., 2010). In the current BioNLP’11
Shared Task1 (Kim et al., 2011), we demonstrate its
generalizability to different event extraction tasks by
applying what is, to a large extent, the same system
to every single task and subtask.

2 System Overview

Our system divides event extraction into three main
steps (Figure 1 C, D and E). First, entities are
predicted for each word in a sentence. Then, ar-
guments are predicted between entities. Finally,
entity/argument sets are separated into individual
events.

1http://sites.google.com/site/bionlpst/
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Figure 2: Site argument representation. Site arguments
add detail to core arguments. (A) In most tasks we
link both core and site arguments to given protein nodes.
This minimizes the number of outgoing edges per trigger
node, simplifying unmerging, but loses the connection
between site and core arguments. (B) In the EPI task, all
events with site-arguments have a single core argument,
so linking sites to the trigger node preserves the site/core
connection. (C) To both limit number of arguments in
trigger nodes and preserve site information, event argu-
ments using sites could be linked to protein nodes through
the site entity. However, in this approach the core argu-
ment would remain undetected if the site wasn’t detected.

2.1 Graph Representation

The BioNLP’11 Shared Task consists of eight sep-
arate tasks. Most of these follow the BioNLP’09
Shared Task annotation scheme, which defines
events as having a trigger entity and one or more ar-
guments that link to other events or protein/gene en-
tities. This annotation can be represented as a graph,
with trigger and protein/gene entities as nodes, and
arguments (e.g. theme) as edges. In our graph repre-
sentation, an event is defined implicitly as a trigger
node and its outgoing edges (see Figure 1 F).

Most of the BioNLP’11 Shared Task tasks define
task-specific annotation terminology, but largely fol-
low the BioNLP’09 definition of events. Some new
annotation schemes, such as the bracket notation in
the CO-task can be viewed simply as alternative rep-
resentations of arguments. The major new feature
is relations or triggerless events, used in the REL,
REN, BB and BI tasks. In our graph representation,
this type of event is a single, directed edge.

Some event arguments have a matching site ar-
gument that determines the part of the protein the
argument refers to (Figure 2). To allow detection of
core arguments independently of site arguments, in
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most tasks we link site arguments directly to pro-
teins (Figure 2 A). This maximises extraction per-
formance on core events, but losing the connection
between site and core arguments limits performance
on site arguments.

To further simplify event extraction all sentences
are processed in isolation, so events crossing sen-
tence boundaries (intersentence events, Table 2) can-
not be detected. This also limits the theoretical max-
imum performance of the system (see Figure 3).

In the provided data an event is annotated only
once for a set of equivalent proteins. For example, in
the sentence “Ubiquitination of caspase 8 (casp8)”
a ubiquitination event would be annotated only for
“caspase 8”, “casp8” being marked as equivalent
to “caspase 8”. To improve training data consis-
tency, our system fully resolves these equivalences
into new events, also recursively when a duplicated
event is nested in another event (Table 2). Resolved
equivalences were used for event extraction in the
BioNLP’11 GE, ID, EPI and BB tasks, although
based on tests with the GE dataset their impact on
performance was negligible.

2.2 Machine Learning

The machine learning based event detection com-
ponents classify examples into one of the positive
classes or as negatives, based on a feature vector
representation of the data. To make these classifi-
cations, we use the SVMmulticlass support vector
machine2 (Tsochantaridis et al., 2005) with a linear
kernel. An SVM must be optimized for each classi-
fication task by experimentally determining the reg-
ularization parameter C. This is done by training the
system on a training dataset, and testing a number of
C values on a development dataset. When producing
predictions for the test set, the classifier is retrained
with combined training and development sets, and
the test data is classified with the previously deter-
mined optimal value of C.

Unlike in the BioNLP’09 Shared Task where
the three main parameters (trigger-detector, recall-
adjustment and edge-detector) were optimized in an
exhaustive grid search against the final metric, in
the new system only the recall-adjustment param-

2http://svmlight.joachims.org/svm_
multiclass.html

eter (see Section 2.5) is optimized against the final
metric, edge and trigger detector parameters being
optimized in isolation to speed up experiments.

2.3 Syntactic Analyses

The machine learning features that are used in
event detection are mostly derived from the syntac-
tic parses of the sentences. Parsing links together
related words that may be distant in their linear or-
der, creating a parse tree (see Figure 1 B).

We used the Charniak-Johnson parser (Char-
niak and Johnson, 2005) with David McClosky’s
biomodel (McClosky, 2010) trained on the GENIA
corpus and unlabeled PubMed articles. The parse
trees produced by the Charniak-Johnson parser were
further processed with the Stanford conversion tool
(de Marneffe et al., 2006), creating a dependency
parse (de Marneffe and Manning, 2008).

In the supporting tasks (REL, REN and CO) this
parsing was done by us, but in the main tasks the
organizers provided official parses which were used.
All parses for tasks where named entities were given
as gold data were further processed with a pro-
tein name splitter that divides at punctuation tokens
which contain named entities, such as “p50/p65” or
“GATA3-binding”.

2.4 Feature Groups

To convert text into features understood by the clas-
sifier, a number of analyses are performed on the
sentences, mostly resulting in binary features stating
the presence or absence of some feature. Applica-
ble combinations of these features are then used by
the trigger detection, edge detection and unmerging
steps of the event extraction system.

Token features can be generated for each word
token, and they define the text of the token, its
Porter-stem (Porter, 1980), its Penn treebank part-
of-speech-tag, character bi- and trigrams, presence
of punctuation or numeric characters etc.

Sentence features define the number of named
entities in the sentence as well as bag-of-words
counts for all words.

Dependency chains follow the syntactic depen-
dencies up to a depth of three, starting from a token
of interest. They are used to define the immediate
context of these words.
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Dependency path N-grams, are built from the
shortest undirected path of tokens and dependencies
linking together two entities, and are used in edge
detection. N-grams join together a token with its two
flanking dependencies as well as each dependency
with its two flanking tokens. While these N-grams
follow the direction of the entire path, the governor-
dependent directions of individual dependencies are
used to define token bigrams.

Trigger features can be built in cases where trig-
gers are already present, such as edge detection and
event construction. These features include the types
and supertypes of the trigger nodes, and combina-
tions thereof.

External features are additional features based
on data external to the corpus being processed. Such
features can include e.g. the presence of a word in
a list of key terms, Wordnet hypernyms, or other
resources that enhance performance on a particular
task. These are described in detail in Section 3.

2.5 Trigger Detection
Trigger words are detected by classifying each token
as negative or as one of the positive trigger classes.
Sometimes several triggers overlap, in which case
a merged class (e.g. phosphorylation–regulation) is
used. After trigger prediction, triggers of merged
classes are split into their component classes.

Most tasks evaluate trigger detection using ap-
proximate span, so detecting a single token is
enough. However, this token must be chosen consis-
tently for the classifier to be able to make accurate
predictions. For multi-token triggers, we select as
the trigger word the syntactic head, the root token of
the dependency parse subtree covering the entity.

When optimizing the SVM C-parameter for trig-
ger and edge detection, it is optimized in isolation,
maximizing the F-score for that classification task.
Edges can be predicted for an event only if its trig-
ger has been detected, but often the C-parameter that
maximizes trigger detection F-score has too low re-
call for optimal edge detection. A recall adjustment
step is used to fit together the trigger and edge de-
tectors. For each example, the classifier gives a con-
fidence score for each potential class, and picks as
the predicted class the one with the highest score. In
recall adjustment, the confidence score of each neg-
ative example is multiplied with a multiplier, and if

the result falls below the score of another class, that
class becomes the new classification. This multiplier
is determined experimentally by optimizing against
overall system performance, using the official task
metric for cases where a downloadable evaluator is
available (GE and BB).

2.6 Edge Detection

Edge detection is used to predict event arguments or
triggerless events and relations, all of which are de-
fined as edges in the graph representation. The edge
detector defines one example per direction for each
pair of entities in the sentence, and uses the SVM
classifier to classify the examples as negatives or as
belonging to one of the positive classes. As with the
trigger detector, overlapping positive classes are pre-
dicted through merged classes (e.g. cause–theme).
Task-specific rules defining valid argument types for
each entity type are used to considerably reduce the
number of examples that can only be negatives.

2.7 Unmerging

In the graph representation, events are defined
through their trigger word node, resulting in over-
lapping nodes for overlapping events. The trigger
detector can however predict a maximum of one trig-
ger node per type for each token. When edges are
predicted between these nodes, the result is a merged
graph where overlapping events are merged into a
single node and its set of outgoing edges. Taking
into account the limits of trigger prediction, the edge
detector is also trained on a merged graph version of
the gold data.

To produce the final events, these merged nodes
need to be “pulled apart” into valid trigger and argu-
ment combinations. In the BioNLP’09 Shared Task,
this was done with a rule-based system. Since then,
further research has been done on machine learning
approaches for this question (Miwa et al., 2010b;
Heimonen et al., 2010). In our current system, un-
merging is done as an SVM-classification step. An
example is constructed for each argument edge com-
bination of each predicted node, and classified as a
true event or a false event to be removed. Tested on
the BioNLP’09 Shared Task data, this system per-
forms roughly on par with our earlier rule-based sys-
tem, but has the advantage of being more general
and thus applicable to all BioNLP’11 Shared Task
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Figure 3: Ranking of the systems participating in the
BioNLP’11 Shared Task. Our system is marked with
black dots and the dotted line shows its theoretical maxi-
mum performance (see Section 2.1) with all correct clas-
sifications.

tasks. The unmerging step is not required for trig-
gerless events which are defined by a single edge.

All of the tasks define varied, detailed limits on
valid event type and argument combinations. A final
validation step based on task-specific rules is used to
remove structurally incorrect events left over from
preceding machine learning steps.

2.8 Modality Detection

Speculation and negation are detected indepen-
dently, with binary classification of trigger nodes.
The features used are mostly the same as for trigger
detection, with the addition of a list of speculation-
related words based on the BioNLP’09 ST corpus.

3 Tasks and Results

The BioNLP’11 Shared Task consists of five main
tasks and three supporting tasks. Additionally, many
of these tasks specify separate subtasks. Except
for the GE-task, which defines three main evalua-
tion criteria, all tasks have a single primary evalua-
tion criterion. All evaluations are based on F-score,
the harmonic mean of precision and recall. Perfor-
mance of all systems participating in the BioNLP’11
Shared Task is shown in Figure 3. Our system’s per-
formance on both development and test sets of all
tasks is shown in Table 1.

Corpus Devel F Test F
GE’09 task 1 56.27 53.15
GE’09 task 2 54.25 50.68
GE task 1 55.78 53.30
GE task 2 53.39 51.97
GE task 3 38.34 26.86
EPI 56.41 53.33
ID 44.92 42.57
BB 27.01 26
BI 77.24 77
CO 36.22 23.77
REL 65.99 57.7
REN 84.62 87.0

Table 1: Devel and test results for all tasks. The perfor-
mance of our new system on the BioNLP’09 ST GENIA
dataset is shown for reference, with task 3 omitted due to
a changed metric. For GE-tasks, the Approximate Span
& Recursive matching criterion is used.

3.1 GENIA (GE)

The GENIA task is the direct continuation of the
BioNLP’09 Shared Task. The BioNLP’09 ST cor-
pus consisted only of abstracts. The new version ex-
tends this data by 30% with full text PubMed Central
articles.

Our system applied to the GE task is the most
similar to the one we developed for the BioNLP’09
Shared Task. The major difference is the replace-
ment of the rule-based unmerging component with
an SVM based one.

The GE task has three subtasks, task 1 is detection
of events with their main arguments, task 2 extends
this to detection of sites defining the exact molecu-
lar location of interactions, and task 3 adds the de-
tection of whether events are stated in a negated or
speculative context.

For task 3, speculation and negation detection, we
considered the GE, EPI and ID task corpora simi-
lar enough to train a single model on. Compared
to training on GE alone, example classification F-
score decreased for negation by 8 pp and increased
for speculation by 4 pp. Overall task 3 processing
was considerably simplified.

Our system placed third in task 1, second in task 2
and first in task 3. Task 1 had the most participants,
making it the most useful for evaluating overall per-
formance. Our F-score of 53.30% was within three
percentage points of the best performing system (by
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Corpus sentences events equiv events nesting events intersentence events neg/spec events
GE’09 8906 11285 7.9% 38.8% 6.0% 12.1%
GE 11581 14496 6.6% 37.2% 6.0% 13.3%
EPI 7648 2684 9.1% 10.2% 9.3% 10.1%
ID 3193 2931 5.3% 21.3% 3.9% 4.9%
BB 1762 5843 79.4% N/A 86.0% 0%
BI 120 458 0% N/A 0% 0%
CO 8906 5284 0% N/A 8.5% N/A
REL 8906 2440 4.2% N/A 0% 0%
REN 13235 373 0% N/A 2.4% 0%

Table 2: Corpus statistics. Numbers are for all available annotated data, i.e. the merged training and development sets.

team FAUST), indicating that our chosen event de-
tection approach still remains competitive. For ref-
erence, we ran our system also on the BioNLP’09
data, reaching an F-score of 53.15%, a slight in-
crease over the 52.85% we previously reported in
Björne et al. (2011).

3.2 Epigenetics and Post-translational
Modifications (EPI)

All events in the EPI task that have additional argu-
ments (comparable to the site-arguments in the GE-
task) have a single core argument. We therefore use
for this task a slightly modified graph representation,
where all additional arguments are treated as core ar-
guments, linking directly to the event node (Figure 2
B). The number of argument combinations per pre-
dicted event node remains manageable for the un-
merging system and full recovery of additional ar-
guments is possible.

Eight of the EPI event types have correspond-
ing reverse events, such as phosphorylation and de-
phosphorylation. Many of these reverse events are
quite rare, resulting in too little training data for the
trigger detector to find them. Therefore we merge
each reverse event type into its corresponding for-
ward event type. After trigger detection, an addi-
tional rule-based step separates them again. Most of
the reverse classes are characterized by a “de”-prefix
in their trigger word. On the EPI training dataset,
the rule-based step determined correctly whether an
event was reversed in 99.6% of cases (1698 out of
1704 events). Using this approach, primary criterion
F-score on the development set increased 1.33 per-
centage points from 55.08% to 56.41%. Several pre-
viously undetectable small reverse classes became
detectable, with e.g. deubiquitination (8 instances in

the development set) detected at 77.78% F-score.
Our system ranked first on the EPI task, outper-

forming the next-best system (team FAUST) by over
18 percentage points. On the alternative core metric
our system was also the first, but the FAUST system
was very close with only a 0.27 percentage point dif-
ference. Since the core metric disregards additional
arguments, it may be that our alternative approach
for representing these arguments (Figure 2 B) was
important for the primary criterion difference.

3.3 Infectious Diseases (ID)

The annotation scheme for the ID task closely fol-
lows the GE task, except for an additional process
event type that may have no arguments, and for five
different entity types in place of the protein type.
Our approach for the ID task was identical to the
GE task, but performance relative to the other teams
was considerably lower. Primary evaluation metric
F-score was 42.57% vs. 43.44% for the core metric
which disregards additional arguments, indicating
that these are not the reason for low performance.

3.4 Bacteria Biotopes (BB)

The BB task considers detection of events describ-
ing bacteria and their habitats. The task defines only
two event types but a large number of entity types
which fall into five supertypes. All entities must be
predicted and all events are triggerless.

Unlike in the other main tasks, in the BB task ex-
act spans are required for Bacterium-type entities,
which usually consist of more than one token (e.g.
B. subtilis). After trigger detection, a rule-based step
attempts to extend predicted trigger spans forwards
and backwards to cover the correct span. When ex-
tending the spans of BB training set gold entity head
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tokens, this step produced the correct span for 91%
(399 out of 440) of Bacterium-type entities.

To aid in detecting Bacterium-entities a list of
bacteria names from the List of Prokaryotic names
with Standing in Nomenclature3 was used (Euzéby,
1997) as external features. To help in detecting the
heterogeneous habitat-entities, synonyms and hy-
pernyms from Wordnet were used (Fellbaum, 1998).
The development set lacked some event classes, so
we moved some documents from the training set to
the development set to include these.

Our F-score was the lowest of the three partici-
pating systems, and detailed results show a consis-
tently lower performance in detecting the entities.
The large number of intersentence events (Table 2)
also considerably limited performance (Figure 3).

3.5 Bacteria Gene Interactions (BI)

The BI-task considers events related to genetic pro-
cesses of the bacterium Bacillus subtilis. This task
defines a large number of both entity and event
types, but all entities are given as gold-standard data,
therefore we start from edge detection (Figure 1 D).
All BI events are triggerless.

In this task manually curated syntactic parses are
provided. As also automated parses were available,
we tested them as an alternative. With the Charniak-
Johnson/McClosky parses overall performance was
only 0.65 percentage points lower (76.59% vs.
77.24%). As with the BB task, we moved some doc-
uments from the training set to the development set
to include missing classes.

Despite this task being very straightforward com-
pared to the other tasks we were the only participant.
Therefore, too many conclusions shouldn’t be drawn
from the performance, except to note that a rather
high F-score is to be expected with all the entities
being given as gold data.

3.6 Protein/Gene Coreference (CO)

In the CO supporting task the goal is to extract
anaphoric expressions. Even though our event ex-
traction system was not developed with corefer-
ence resolution in mind, the graph representation
can be used for the coreference annotation, making
coreference detection possible. Anaphoras and An-

3http://www.bacterio.cict.fr/

tecedents are both represented as Exp-type entities,
with Coref -type edges linking Anaphora-entities to
Antecedent-entities and Target-type edges linking
Protein-type entities to Antecedent-entities.

In the CO-task, character spans for detected enti-
ties must be in the range of a full span and minimum
span. Therefore in this task we used an alternative
trigger detector. Instead of predicting one trigger per
token, this component predicted one trigger per each
syntactic phrase created by the Charniak-Johnson
parser. Since these phrases don’t cover most of the
CO-task triggers, they were further subdivided into
additional phrases, e.g. by cutting away determiners
and creating an extra phrase for each noun-token,
with the aim of maximizing the number of included
triggers and minimizing the number of candidates.

Our system placed fourth out of six, reaching an
F-score of 23.77%. Coreference resolution being a
new subject for us and our system not being devel-
oped for this domain, we consider this an encour-
aging result, but conclude that in general dedicated
systems should be used for coreference resolution.

3.7 Entity Relations (REL)
The REL supporting task concerns the detection of
static relationships, Subunit-Complex relations be-
tween individual proteins and protein complexes and
Protein-Component relations between a gene or pro-
tein and its component, such as a protein domain or
gene promoter. In the graph representation these re-
lations are defined as edges that link together given
protein/gene names and Entity-type entities that are
detected by the trigger detector.

To improve entity detection, additional features
are used. Derived from the REL annotation, these
features highlight structures typical for biomolecular
components, such as aminoacids and their shorthand
forms, domains, motifs, loci, termini and promot-
ers. Many of the REL entities span multiple tokens.
Since the trigger detector predicts one entity per to-
ken, additional features are defined to mark whether
a token is part of a known multi-token name.

Our system had the best performance out of four
participating systems with an F-score of 57.7%, over
16 percentage points higher than the next. Develop-
ment set results show that performance for the two
event classes was very close, 66.40% for Protein-
Component and 65.23% for Subunit-Complex.

189



3.8 Bacteria Gene Renaming (REN)

The REN supporting task is aimed at detecting state-
ments of B. Subtilis gene renaming where a syn-
onym is introduced for a gene. The REL task defines
a single relation type, Renaming, and a single entity
type, Gene. All entities are given, so only edge de-
tection is required. Unlike the other tasks, the main
evaluation criterion ignores the direction of the rela-
tions, so they are processed as undirected edges in
the graph representation.

Edge detection performance was improved with
external features based on two sources defining
known B. Subtilis synonym pairs: The Uniprot B.
Subtilis gene list “bacsu”4 and SubtiWiki5, the B.
Subtilis research community annotation wiki.

For the 300 renaming relations in the REN train-
ing data, the synonym pair was found from the
Uniprot list in 66% (199 cases), from SubtiWiki in
79% (237 cases) and from either resource in 81.3%
(244 cases). For the corresponding negative edge
examples, Uniprot or SubtiWiki synonym pairs ap-
peared in only 2.1% (351 out of 16640 examples).

At 87.0% F-score our system had the highest per-
formance out of the three participants, exceeding the
next highest system by 17.1 percentage points. If
Uniprot and SubtiWiki features are not used, perfor-
mance on the development set is still 67.85%, close
to the second highest performing system on the task.

4 Conclusions

We have developed a system that addresses all tasks
and subtasks in the BioNLP’11 Shared Task, with
top performance in several tasks. With the modular
design of the system, all tasks could be implemented
with relatively small modifications to the processing
pipeline. The graph representation which covered
naturally all different task annotations was a key fea-
ture in enabling fast system development and test-
ing. As with the Turku Event Extraction System de-
veloped for the BioNLP’09 Shared Task, we release
this improved system for the BioNLP community
under an open source license at bionlp.utu.fi.

Of all the tasks, the GE-task, which extends the
BioNLP’09 corpus, is best suited for evaluating ad-
vances in event extraction in the past two years.

4http://www.uniprot.org/docs/bacsu
5http://subtiwiki.uni-goettingen.de/

Comparing our system’s performance on the GE’09
corpus with the current one, we can assume that the
two corpora are of roughly equal difficulty. There-
fore we can reason that overall event extraction
performance has increased about three percentage
points, the highest performance on the current GE-
task being 56.04% by team FAUST. It appears that
event extraction is a hard problem, and that the im-
mediate easy performance increases have already
been found. We hope the BioNLP’11 Shared Task
has focused more interest in the field, hopefully
eventually leading to breakthroughs in event extrac-
tion and bringing performance closer to established
fields of BioNLP such as syntactic parsing or named
entity recognition.

That our system could be generalized to work on
all tasks and subtasks, indicates that the event extrac-
tion approach can offer working solutions for several
biomedical domains. A potential limiting factor cur-
rently is that most task-specific corpora annotate a
non-overlapping set of sentences, necessitating the
development of task-specific machine learning mod-
els. Training on multiple datasets could mean that
positives of one task would be unannotated on text
from the other task, confusing the classifier. On the
other hand, multiple overlapping task annotations on
the same text would permit the system to learn from
the interactions and delineations of different annota-
tions. System generalization has been successfully
shown in the BioNLP’11 Shared Task, but has re-
sulted in a number of separate extraction systems. It
could well be that the future of event extraction re-
quires also the generalization of corpus annotations.

As future directions, we intend to further improve
the scope and usability of our event extraction sys-
tem. We will also continue our work on PubMed-
scale event extraction, possibly applying some of the
new extraction targets introduced by the BioNLP’11
Shared Task.
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