
Workshop on Monolingual Text-To-Text Generation, pages 54–63,

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 54–63,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

Learning to Fuse Disparate Sentences

Micha Elsner

School of Informatics

University of Edinburgh

melsner0@gmail.com

Deepak Santhanam

Brown Lab for

Linguistic Information Processing (BLLIP)

Department of Computer Science

Brown University, Providence, RI 02912

dsanthan@microsoft.com

Abstract

We present a system for fusing sentences

which are drawn from the same source docu-

ment but have different content. Unlike previ-

ous work, our approach is supervised, training

on real-world examples of sentences fused by

professional journalists in the process of edit-

ing news articles. Like Filippova and Strube

(2008), our system merges dependency graphs

using Integer Linear Programming. However,

instead of aligning the inputs as a preprocess,

we integrate the tasks of finding an alignment

and selecting a merged sentence into a joint

optimization problem, and learn parameters

for this optimization using a structured online

algorithm. Evaluation by human judges shows

that our technique produces fused sentences

that are both informative and readable.

1 Introduction

Sentence fusion is the process by which content from

two or more original sentences is transformed into a

single output sentence. It is usually studied in the

context of multidocument summarization, since fus-

ing similar sentences can avoid repetition of material

which is shared by more than one input. However,

human editors and summarizers do not restrict them-

selves to combining sentences which share most of

their content. This paper extends previous work on

fusion to the case in which the input sentences are

drawn from the same document and express funda-

mentally different content, while still remaining re-

lated enough to make fusion sensible1.

1Unfortunately, we cannot release our corpus due to li-

censing agreements. Our system is available at https://

Our data comes from a corpus of news articles for

which we have un-edited and edited versions. We

search this corpus for sentences which were fused

(or separated) by the editor; these constitute natu-

rally occurring data for our system. One example

from our dataset consists of input sentences (1) and

(2) and output (3). We show corresponding regions

of the input and output in boldface.

(1) The bodies showed signs of torture.

(2) They were left on the side of a highway in

Chilpancingo, about an hour north of the

tourist resort of Acapulco in the southern

state of Guerrero, state police said.

(3) The bodies of the men, which showed signs

of torture, were left on the side of a highway

in Chilpancingo, which is about an hour

north of the tourist resort of Acapulco, state

police told Reuters.

While the two original sentences are linked by a

common topic and reference to a shared entity, they

are not paraphrases of one another. This could cre-

ate a problem for traditional fusion systems which

first find an alignment between similar dependency

graphs, then extract a shared structure. While our

system has the same basic framework of alignment

and extraction, it performs the two jointly, as parts

of a global optimization task. This makes it robust

to uncertainty about the hidden correspondences be-

tween the sentences. We use structured online learn-

ing to find parameters for the system, allowing it to

bitbucket.org/melsner/sentencefusion.

54

discover good ways to piece together input sentences

by examining examples from our corpus.

Sentence fusion is a common strategy in human-

authored summaries of single documents– 36% of

sentences in the summaries investigated by Jing

and McKeown (1999) contain content from multiple

sentences in the original document. This suggests

that a method to fuse dissimilar sentences could

be useful for single-document summarization. Our

dataset is evidence that editing also involves fusing

sentences, and thus that models of this task could

contribute to systems for automatic editing.

In the remainder of the paper, we first give an

overview of related work (Section 2). We next de-

scribe our dataset and preprocessing in more detail

(Section 3), describe the optimization we perform

(Section 4), and explain how we learn parameters for

it (Section 5). Finally, we discuss our experimental

evaluation and give results (Section 6).

2 Related work

Previous work on sentence fusion examines the task

in the context of multidocument summarization, tar-

geting groups of sentences with mostly redundant

content. The pioneering work on fusion is Barzilay

and McKeown (2005), which introduces the frame-

work used by subsequent projects: they represent

the inputs by dependency trees, align some words to

merge the input trees into a lattice, and then extract

a single, connected dependency tree as the output.

Our work most closely follows Filippova and

Strube (2008), which proposes using Integer Lin-

ear Programming (ILP) for extraction of an output

dependency tree. ILP allows specification of gram-

maticality constraints in terms of dependency rela-

tionships (Clarke and Lapata, 2008), as opposed to

previous fusion methods (Barzilay and McKeown,

2005; Marsi and Krahmer, 2005) which used lan-

guage modeling to extract their output.

In their ILP, Filippova and Strube (2008) optimize

a function based on syntactic importance scores

learned from a corpus of general text. While similar

methods have been used for the related task of sen-

tence compression, improvements can be obtained

using supervised learning (Knight and Marcu, 2000;

Turner and Charniak, 2005; Cohn and Lapata, 2009)

if a suitable corpus of compressed sentences can be

obtained. This paper is the first we know of to adopt

the supervised strategy for sentence fusion.

For supervised learning to be effective, it is nec-

essary to find or produce example data. Previous

work does produce some examples written by hu-

mans, though these are used during evaluation, not

for learning (a large corpus of fusions (McKeown et

al., 2010) was recently compiled as a first step to-

ward a supervised fusion system). However, they

elicit these examples by asking experimental sub-

jects to fuse selected input sentences– the choice

of which sentences to fuse is made by the system,

not the subjects. In contrast, our dataset consists of

sentences humans actually chose to fuse as part of a

practical writing task. Moreover, our sentences have

disparate content, while previous work focuses on

sentences whose content mostly overlaps.

Input sentences with differing content present a

challenge to the models used in previous work.

All these models use deterministic node alignment

heuristics to merge the input dependency graphs.

Filippova and Strube (2008) align all content words

with the same lemma and part of speech; Barzi-

lay and McKeown (2005) and Marsi and Krahmer

(2005) use syntactic methods based on tree simi-

larity. Neither method is likely to work well for

our data. Lexical methods over-align, since there

are many potential points of correspondence be-

tween our sentences, only some of which should

be merged– “the Doha trade round” and “U.S. trade

representative” share a word, but probably ought to

remain separate regardless. Syntactic methods, on

the other hand, are unlikely to find any alignments

since the input sentences are not paraphrases and

have very different trees. Our system selects the set

of nodes to merge during ILP optimization, allowing

it to choose correspondences that lead to a sensible

overall solution.

3 Data and preprocessing

Our sentence fusion examples are drawn from a cor-

pus of 516 pre- and post-editing articles from the

Thomson-Reuters newswire, collected over a period

of three months in 2008. We use a simple greedy

method based on bigram count overlaps to align the

sentences of each original article to sentences in the

edited version, allowing us to find fused sentences.

55

Since these sentences are relatively rare, we use both

merges (where the editor fused two input sentences)

and splits (where the editor splits an input sentence

into multiple outputs) as examples for our system.

In the case of a split, we take the edited sentences

as input for our method and attempt to produce the

original through fusion2. This is suboptimal, since

the editor’s decision to split the sentences probably

means the fused version is too long, but is required

in this small dataset to avoid sparsity.

Out of a total of 9007 sentences in the corpus,

our bigram method finds that 175 were split and 132

were merged, for a total of 307. We take 92 exam-

ples for testing and 189 for training3.

Following previous work (Barzilay and McKe-

own, 2005), we adopt a labeled dependency format

for our system’s input. To produce this, we segment

sentences with MXTerminator (Reynar and Ratna-

parkhi, 1997) and parse the corpus with the self-

trained Charniak parser (McClosky et al., 2006). We

then convert to dependencies and apply rules to sim-

plify and label the graph. An example dependency

graph is shown in Figure 1.

We augment the dependency tree by adding a

potential dependency labeled “relative clause” be-

tween each subject and its verb. This allows our

system to transform main clauses, like “the bodies

showed signs of torture”, into NPs like “the bod-

ies, which showed signs of torture”, a common para-

phrase strategy in our dataset.

We also add correspondences between the two

sentences to the graph, marking nodes which the

system might decide to merge while fusing the two

sentences. We introduce correspondence arcs be-

tween pairs of probable synonyms4. We also anno-

tate pronoun coreference by hand and create a cor-

respondence between each pronoun and the heads of

all coreferent NPs. The example sentence has only a

single correspondence arc (“they” and “bodies”) be-

2In a few cases, this creates two examples which share a

sentence, since the editor sometimes splits content off from one

sentence and merges it into another.
3We originally had 100 testing and 207 training examples,

but found 26 of our examples were spurious, caused by faulty

sentence segmentation.
4Words with the same part of speech whose similarity is

greater than 3.0 according to the information-theoretic Word-

Net based similarity measure of Resnik (1995), using the im-

plementation of (Pedersen et al., 2004).

cause input sentence (1) is extremely short, but most

sentences have more.

bodies showed

signs torture

said

left

were

they

side highway chilpancingo

policestate

north hour resort acapulco

root

root

rel

sbj

obj
pp of

rel

sbj

pp by

pp of pp in

pp about
pp of pp of

thean

aux

obj

sbj

rel

merge?

Figure 1: The labeled dependency graph for sentences (1)

and (2). Dashed lines show a correspondence arc (“bod-

ies” and “they”) and potential relative clauses between

subjects and VPs.

3.1 Retained information

Sentence fusion can be thought of as a two-part

process: first, the editor decides which information

from the input sentences to retain, and then they gen-

erate a sentence incorporating it. In this paper, we

focus on the generation stage. To avoid having to

perform content selection5 , we provide our system

with the true information selected by the editor. To

do this, we align the input sentences with the output

by repeatedly finding the longest common substring

(LCS) until a substring containing a matching con-

tent word can no longer be found. (The LCS is com-

puted by a dynamic program similar to that for edit

distance, but unlike edit distance, repeated LCS can

handle reordering.) We provide our system with the

boundaries of the retained regions as part of the in-

put. For the example above, these are the regions

of sentences (1) and (2) marked in boldface. Al-

though this helps the system select the correct infor-

mation, generating a grammatical and easy-to-read

fused sentence is still non-trivial (see examples in

section 7).

4 Fusion via optimization

Like Filippova and Strube (2008), we model our

fusion task as a constrained optimization problem,

which we solve using Integer Linear Programming

(ILP). For each dependency from word w to head

5As pointed out by Daume III and Marcu (2004) and Krah-

mer et al. (2008), content selection is not only difficult, but also

somewhat ill-defined without discourse context information.

56

h in the input sentences, we have a binary variable

xh,w, which is 1 if the dependency is retained in the

output and 0 otherwise. However, unlike Filippova

and Strube (2008), we do not know the points of cor-

respondence between the inputs, only a set of possi-

ble points. Therefore, we also introduce 0-1 integer

variables ms,t for each correspondence arc, which

indicate whether word s in one sentence should be

merged with word t in another. If the words are

merged, they form a link between the two sentences,

and only one of the pair appears in the output.

Each dependency x, each word w, and each

merger m have an associated weight value v, which

is assigned based on its features and the learned pa-

rameters of our system (explained in Section 5). Our

objective function (4) sums these weight values for

the structures we retain:

max
∑

h,w

vh,w · vw · xh,w +
∑

s,t

vs,t ·ms,t (4)

We use structural constraints to require the output

to form a single connected tree. (In the following

equations, W denotes the set of words, X denotes

the set of dependencies and M denotes the poten-

tial correspondence pairs.) Constraint (5) requires a

word to have at most one parent and (6) allows it to

be merged with at most one other word. (7) and (8)

require each merged node to have a single parent:

∀w ∈ W,
∑

h

xh,w ≤ 1 (5)

∀w ∈ W,
∑

t

ms,t ≤ 1 (6)

∀s, t ∈ M, ms,t ≤
∑

h

xh,s +
∑

h

xh,t (7)

∀s, t ∈ M, ms,t +
∑

h

xh,s +
∑

h

xh,t ≤ 2 (8)

(9) forces the output to be connected by ensuring

that if a node has children, it either has a parent or is

merged.

∀w ∈ W,
∑

c

xc,w−

|W |
∑

h

xh,w − |W |
∑

u

mu,w ≤ 0
(9)

Certain choices of nodes to merge or dependen-

cies to follow can create a cycle, so we also intro-

duce a rank variable rw ∈ R for each word and con-

strain each word (except the root) to have a higher

rank than its parent (10). Merged nodes must have

equal ranks (11).

∀w,h ∈ X,|X|xh,w + rh − rw ≤ |X| − 1 (10)

∀s,t ∈ M,|X|ms,t + rs − rt ≤ |X| (11)

We also apply syntactic constraints to make sure

we supply all the required arguments for each word

we select. We hand-write rules to prevent the sys-

tem from pruning determiners, auxiliary verbs, sub-

jects, objects, verbal particles and the word “not”

unless their head word is also pruned or it can find

a replacement argument of the same type. We learn

probabilities for prepositional and subclause argu-

ments using the estimation method described in Fil-

ippova and Strube (2008), which counts how often

the argument appears with the head word in a large

corpus. While they use these probabilities in the ob-

jective function, we threshold them and supply con-

straints to make sure all argument types with proba-

bility > 10% appear if the head is chosen.

Word merging makes it more difficult to write

constraints for required arguments, because a word

s might be merged with some other word t which is

attached to the correct argument type (for instance, if

s and t are both verbs and they are merged, only one

of them must be attached to a subject). This condi-

tion is modeled by the expression ms,t ·xt,a, where a

is a argument word of the appropriate type. This ex-

pression is non-linear and cannot appear directly in

a constraint, but we can introduce an auxiliary vari-

able gs,t,A which summarizes it for a set of poten-

tial arguments A, while retaining a polynomial-sized

program:

∀s,t ∈ M,
∑

a∈A

xa,s+

∑

a∈A

xa,t + |W |ms,t − |W + 1|gs,t,A ≥ 0
(12)

(13) then requires a word s to be connected to an

argument in set A, either via a link or directly:

57

∑

h

xs,h − 2
∑

t:{s,t∈M}

gs,t,A − 2
∑

a∈A

xa,s ≤ 0 (13)

The resulting resulting ILP is usually solvable

within a second using CPLEX (Ilog, Inc., 2003).

4.1 Linearization

The output of the ILP is a dependency tree, not an

ordered sentence. We determine the final ordering

mostly according to the original word order of the

input. In the case of a merged node, however, we

must also interleave modifiers of the merged heads,

which are not ordered with respect to one another.

We use a simple heuristic, trying to place dependen-

cies with the same arc label next to one another; this

can cause errors. We must also introduce conjunc-

tions between arguments of the same syntactic type;

our system always inserts “and”. Finally, we choose

a realization for the dummy relative pronoun THAT

using a trigram language model (Stolcke, 2002). A

more sophisticated approach (Filippova and Strube,

2009) might lead to better results.

5 Learning

The solution which the system finds depends on the

weights v which we provide for each dependency,

word and merger. We set the weights based on a dot

product of features φ and parameters α, which we

learn from data using a supervised structured tech-

nique (Collins, 2002). To do so, we define a loss

function L(s, s′) → R which measures how poor

solution s is when the true solution is s′. For each of

our training examples, we compute the oracle so-

lution, the best solution accessible to our system,

by minimizing the loss. Finally, we use the struc-

tured averaged perceptron update rule to push our

system’s parameters away from bad solutions and

towards the oracle solutions for each example.

Our loss function is designed to measure the high-

level similarity between two dependency trees con-

taining some aligned regions. (For our system, these

are the regions found by LCS alignment of the in-

put strings with the output.) For two sentences to be

similar, they should have similar links between the

regions. Specifically, we define the paths P (s,C) in
a tree s with a set of regions C as the set of word

pairs w,w′ where w is in one region, w′ is in an-

other, and the dependency path between w and w′

lies entirely outside all the regions. An example is

given in figure 2.

left on the side of a highway...were

bodies showedof the men, which signs of torture

state police told Reuters root

Figure 2: Paths between retained regions in sentence (3).

Boxes indicate the retained regions.

Our loss (equation 14) is defined as the number of

paths in s and s′ which do not match, plus a penalty

K1 for keeping extra words, minus a bonus K2 for

retaining words inside aligned regions:

L(s,s′;C,K) =

|(P (s,C) ∪ P (s′, C)) \ (P (s,C) ∩ P (s′, C))|

+ K1|w ∈ s \ C| −K2|w ∈ s ∩ C|

(14)

To compute the oracle s∗, we must minimize this

loss function with respect to the human-authored

reference sentence r over the space S of fused de-

pendency trees our system can produce.

s∗ = argmins∈S L(s, r) (15)

We perform the minimization by again using ILP,

keeping the constraints from the original program

but setting the objective to minimize the loss. This

cannot be done directly, since the existence of a path

from s to t must be modeled as a product of x vari-

ables for the dependencies forming the path. How-

ever, we can again introduce a polynomial number

of auxiliary variables to solve the problem. We in-

troduce a 0-1 variable qs
h,w for each path start word

s and dependency h,w, indicating whether the de-

pendency from h to w is retained and forms part of

a path from s. Likewise, we create variables qs
w for

each word and qs
u,v for mergers6. Using these vari-

ables, we can state the loss function linearly as (16),

6The q variables are constrained to have the appropriate val-

ues in the same way as (12) constrains g. We will print the

specific equations in a technical report when this work is pub-

lished.

58

where P (r, C) is the set of paths extracted from the

reference solution.

min
∑

s,t

qs
h,t − 2

∑

s,t∈P (r,C)

qs
h,t (16)

The oracle fused sentence for the example (1) and

(2) is (17). The reference has a path from bodies

to showed, so the oracle includes one as well. To

do so, follows a relative clause arc, which was not

in the original dependency tree but was created as

an alternative by our syntactic analysis. (At this

stage of processing, we show the dummy relative

pronoun as THAT.) It creates a path from left to bod-

ies by choosing to merge the pronoun they with its

antecedent. Other options, such as linking the two

original sentences with “and”, are penalized because

they would create erroneous paths– since there is

no direct path between root and showed, the oracle

should not make showed the head of its own clause.

(17) the bodies THAT showed signs of torture were

left on the side of a highway in Chilpancingo

about an hour north of the tourist resort of

Acapulco state police said

The features which represent each merger, word

and dependency are listed in Table 1. We use the first

letters of POS tags (in the Penn Treebank encoding)

to capture coarse groupings such as all nouns and all

verbs. For mergers, we use two measures of seman-

tic similarity, one based on Roget’s Thesaurus (Jar-

masz and Szpakowicz, 2003) and another based on

WordNet (Resnik, 1995). As previously stated, we

hand-annotate the corpus with true pronoun corefer-

ence relationships (about 30% of sentences contain

a coreferent pronoun). Finally, we provide the LCS

retained region boundaries as explained above.

Once we have defined the feature representation

and the loss function, and can calculate the oracle

for each datapoint, we can easily apply any struc-

tured online learning algorithm to optimize the pa-

rameters. We adopt the averaged perceptron, applied

to structured learning by (Collins, 2002). For each

example, we extract a current solution st by solving

the ILP (with weights v dependent on our parame-

ters α), then perform an update to α which forces

the system away from st and towards the oracle so-

lution s∗. The update at each timestep t (18) de-

pends on the loss, the global feature vectors Φ, and

COMPONENT FEATURES

MERGER SAMEWORD

SAME POS TAGS

SAME FIRST LETTER OF THE POS TAGS

POS TAG IF WORD IS SAME

COREFERENT PRONOUN

SAME DEPENDENCYARC LABEL TO PARENT

ROGET’S SIMILARITY

WORDNET SIMILARITY

FIRST LETTER OF BOTH POS TAGS

WORD POS TAG AND ITS FIRST LETTER

WORD IS PART OF RETAINED CHUNK IN EDITOR’S FUSION

DEPENDENCY POS TAGS OF THE PARENT AND CHILD

FIRST LETTER OF THE POS TAGS

TYPE OF THE DEPENDENCY

DEPENDENCY IS AN INSERTED RELATIVE CLAUSE ARC

PARENT IS RETAINED IN EDITOR’S SENTENCE

CHILD IS RETAINED IN EDITOR’S SENTENCE

Table 1: List of Features.

a learning rate parameter η. (Note that the update

leaves the parameters unchanged if the loss relative

to the oracle is 0, or if the two solutions cannot be

distinguished in terms of their feature vectors.)

αt+1 = αt + η(L(st, r)−L(s∗, r))(Φ(s∗)−Φ(st))
(18)

We do 100 passes over the training data, with η

decaying exponentially toward 0. At the end of each

pass over the data, we set α̂ to the average of all the

αt for that pass (Freund and Schapire, 1999). Fi-

nally, at the end of training, we select the committee

of 10 α̂ which achieved lowest overall loss and av-

erage them to derive our final weights (Elsas et al.,

2008). Since the loss function is nonsmooth, loss

does not decrease on every pass, but it declines over-

all as the algorithm proceeds.

6 Evaluation

Evaluating sentence fusion is a notoriously difficult

task (Filippova and Strube, 2008; Daume III and

Marcu, 2004) with no accepted quantitative metrics,

so we have to depend on human judges for evalu-

ation. We compare sentences produced by our sys-

tem to three alternatives: the editor’s fused sentence,

a readability upper-bound and a baseline formed by

splicing the input sentences together by inserting the

word “and” between each one. The readability upper

59

bound is the output of parsing and linearization on

the editor’s original sentence (Filippova and Strube,

2008); it is designed to measure the loss in gram-

maticality due to our preprocessing.

Native English speakers rated the fused sentences

with respect to readability and content on a scale of

1 to 5 (we give a scoring rubric based on (Nomoto,

2009)). 12 judges participated in the study, for a

total of 1062 evaluations7 . Each judge saw the each

pair of inputs with the retained regions boldfaced,

plus a single fusion drawn randomly from among the

four systems. Results are displayed in Table 2.

System Readability Content

Editor 4.55 4.56

Readability UB 3.97 4.27

“And”-splice 3.65 3.80

Our System 3.12 3.83

Table 2: Results of human evaluation.

7 Discussion

Readability scores indicate that the judges prefer

human-authored sentences, then the readability up-

per bound, then “and”-splicing and finally our sys-

tem. This ordering is unsuprising considering that

our system is abstractive and can make grammatical

errors, while the remaining systems are all based on

grammatical human-authored text. The gap of .58

between human sentences and the readability upper

bound represents loss due to poor linearization; this

accounts for over half the gap between our system

and human performance.

For content, the human-authored sentences

slightly outperform the readability upper bound–

this indicates that poor linearization has some ef-

fect on content as well as readability. Our system is

slightly better than “and”-splicing. The distribution

of scores is shown in Table 3. The system gets more

scores of 5 (perfect), but it occasionally fails drasti-

cally and receives a very low score; “and”-splicing

shows less variance.

Both metrics show that, while our system does not

achieve human performance, it does not lag behind

7One judge completed only the first 50 evaluations; the rest

did all 92.

1 2 3 4 5 Total

“And”-splice 3 43 60 57 103 266

System 24 24 39 58 115 260

Table 3: Number of times each Content score was as-

signed by human judges.

by that much. It performs quite well on some rel-

atively hard sentences and gets easy fusions right

most of the time. For instance, the output on our

example sentence is (19), matching the oracle (17).

(19) The bodies who showed signs of torture were

left on the side of a highway in Chilpancingo

about an hour north of the tourist resort of

Acapulco state police said.

In some cases, the system output corresponds

to the “and”-splice baseline, but in many cases,

the “and”-splice baseline adds extraneous content.

While the average length of a human-authored fu-

sion is 34 words, the average splice is 49 words long.

Plainly, editors often prefer to produce compact fu-

sions rather than splices. Our own system’s out-

put has an average length of 33 words per sentence,

showing that it has properly learned to trim away ex-

traneous information from the input. We instructed

participants to penalize the content score when fused

sentences lost important information or added extra

details.

Our integration of node alignment into our solu-

tion procedure helps the system to find good corre-

spondences between the inputs. For inputs (20) and

(21), the system was allowed to match “company”

to “unit”, but could also match “terrorism” to “ad-

ministration” or to “lawsuit”. Our system correctly

merges “company” and “unit”, but not the other two

pairs, to form our output (22); the editor makes the

same decision in their fused sentence (23).

(20) The suit claims the company helped fly

terrorism suspects abroad to secret prisons.

(21) Holder’s review was disclosed the same day

as Justice Department lawyers repeated a

Bush administration state-secret claim in a

lawsuit against a Boeing Co unit.

60

(22) Review was disclosed the same day as Justice

Department lawyers repeated a Bush

administration claim in a lawsuit against a

Boeing Co unit that helped fly terrorism

suspects abroad to secret prisons.

(23) The review was disclosed the same day that

Justice Department lawyers repeated Bush

administration claims of state secrets in a

lawsuit against a Boeing Co <BA.N> unit

claiming it helped fly terrorism suspects

abroad to secret prisons.

In many cases, even when the result is awkward

or ungrammatical, the ILP system makes reason-

able choices of mergers and dependencies to retain.

For inputs (24) and (25), the system (26) decides

“Secretary-General” belongs as a modifier on “de

Mello”, which is in fact the choice made by the ed-

itor (27). In order to add the relative clause, the

editor paraphrased “de Mello’s death” as “de Mello

was killed”. Our system, without this paraphrase op-

tion, is forced to produce the improper phrase “de

Mello’s death who”; a wider array of paraphrase op-

tions might lead to better results.

This example also demonstrates that the system

does not simply keep the LCS-aligned retained re-

gions and throw away everything else, since the re-

sult would be ungrammatical. Here it links the se-

lected content by also choosing to keep “could have

been”, “an account” and “death”.

(24) Barker mixes an account of Vieira de

Mello’s death with scenes from his career,

which included working in countries such

as Mozambique, Cyprus, Cambodia,

Bangladesh, and the former Yugoslavia.

(25) Had he lived, he could have been a future

U.N. Secretary-General.

(26) Barker mixes an account of Vieira de Mello’s

death who could been a future U.N.

secretary-general with scenes from career

which included working in countries as such

Mozambique Cyprus Cambodia and

Bangladesh

(27) Barker recounted the day Vieira de Mello, a

Brazilian who was widely tipped as a future

U.N. Secretary-General, was killed and mixes

in the story of the 55-year-old’s career, which

included working in countries such as

Mozambique, Cyprus, Cambodia, Bangladesh,

and Yugoslavia.

Many of our errors are due to our simplistic lin-

earization. For instance, we produce a sentence be-

ginning “Biden a veteran Democratic senator from

Delaware that Vice president-elect and Joe...”, where

a correct linearization of the output tree would have

begun “Vice President-elect Joe Biden, a veteran

Democratic senator from Delaware that...”. Some

errors also occur during the ILP tree extraction pro-

cess. In (28), the system fails to mark the arguments

of “took” and “position” as required, leading to their

omission, which makes the output ungrammatical.

(28) The White House that took when Israel

invaded Lebanon in 2006 showed no signs of

preparing to call for restraint by Israel and the

stance echoed of the position.

8 Conclusion

We present a supervised method for learning to fuse

disparate sentences. To the best of our knowl-

edge, it is the first attempt at supervised learning

for this task. We apply our method to naturally oc-

curring sentences from editing data. Despite using

text generation, our system is comparable to a non-

abstractive baseline.

Our technique is general enough to apply to con-

ventional fusion of similar sentences as well– all that

is needed is a suitable training dataset. We hope

to make use of the new corpus of McKeown et al.

(2010) for this purpose. We are also interested in

evaluating our approach on the fused sentences in

abstractive single-document summaries.

The performance of our readability upper bound

suggests we could improve our results using bet-

ter tree linearization techniques and parsing. Al-

though we show results for our system using hand-

annotated pronoun coreference, it should be possible

to use automatic coreference resolution instead.

Paraphrase rules would help our system repli-

cate some output structures it is currently unable

to match (for instance, it cannot convert between

the copular “X is Y” and appositive “X, a Y” con-

structions). Currently, the system has just one such

61

rule, which converts main clauses to relatives. Oth-

ers could potentially be learned from a corpus, as in

(Cohn and Lapata, 2009).

Finally, in this study, we deliberately avoid in-

vestigating the way editors choose which sentences

to fuse and what content from each of them to re-

tain. This is a challenging discourse problem that

deserves further study.

Acknowledgements

We are very grateful to Alan Elsner, Howard Goller

and Thomas Kim at Thomson-Reuters for giving us

access to this dataset. We thank Eugene Charniak for

his supervision, our colleagues in BLLIP for their

comments, Kapil Thadani and Kathy McKeown for

discussing the project with us, and our human eval-

uators for completing a task which turned out to be

extremely tedious. Part of this work was funded by a

Google Fellowship in Natural Language Processing.

References

Regina Barzilay and Kathleen McKeown. 2005. Sen-

tence fusion for multidocument news summarization.

Computational Linguistics, 31(3):297–328.

James Clarke and Mirella Lapata. 2008. Global in-

ference for sentence compression: An integer linear

programming approach. J. Artif. Intell. Res. (JAIR),

31:399–429.

Trevor Cohn and Mirella Lapata. 2009. Sentence com-

pression as tree transduction. J. Artif. Intell. Res.

(JAIR), 34:637–674.

Michael Collins. 2002. Discriminative training meth-

ods for hidden Markov models: Theory and experi-

ments with perceptron algorithms. In Proceedings of

the 2002 Conference on Empirical Methods in Natu-

ral Language Processing, pages 1–8. Association for

Computational Linguistics, July.

Hal Daume III and Daniel Marcu. 2004. Generic

sentence fusion is an ill-defined summarization task.

In Stan Szpakowicz Marie-Francine Moens, editor,

Text Summarization Branches Out: Proceedings of the

ACL-04 Workshop, pages 96–103, Barcelona, Spain,

July. Association for Computational Linguistics.

Jonathan L. Elsas, Vitor R. Carvalho, and Jaime G. Car-

bonell. 2008. Fast learning of document ranking func-

tions with the committee perceptron. InWSDM, pages

55–64.

Katja Filippova and Michael Strube. 2008. Sentence fu-

sion via dependency graph compression. In Proceed-

ings of the 2008 Conference on Empirical Methods in

Natural Language Processing, pages 177–185, Hon-

olulu, Hawaii, October. Association for Computational

Linguistics.

Katja Filippova and Michael Strube. 2009. Tree lin-

earization in English: Improving language model

based approaches. In Proceedings of Human Lan-

guage Technologies: The 2009 Annual Conference of

the North American Chapter of the Association for

Computational Linguistics, Companion Volume: Short

Papers, pages 225–228, Boulder, Colorado, June. As-

sociation for Computational Linguistics.

Yoav Freund and Robert E. Schapire. 1999. Large mar-

gin classification using the perceptron algorithm. Ma-

chine Learning, 37(3):277–296.

Ilog, Inc. 2003. Cplex solver.

Mario Jarmasz and Stan Szpakowicz. 2003. Roget’s the-

saurus and semantic similarity. In Conference on Re-

cent Advances in Natural Language Processing, pages

212–219.

Hongyan Jing and Kathleen McKeown. 1999. The de-

composition of human-written summary sentences. In

SIGIR, pages 129–136.

Kevin Knight and Daniel Marcu. 2000. Statistics-based

summarization - step one: sentence compression. In

Proceedings of the 17th National Conference on Arti-

ficial Intelligence, pages 703–71.

Emiel Krahmer, Erwin Marsi, and Paul van Pelt. 2008.

Query-based sentence fusion is better defined and

leads to more preferred results than generic sentence

fusion. In Proceedings of ACL-08: HLT, Short Pa-

pers, pages 193–196, Columbus, Ohio, June. Associa-

tion for Computational Linguistics.

Erwin Marsi and Emiel Krahmer. 2005. Explorations

in sentence fusion. In Proceedings of the 10th Eu-

ropean Workshop on Natural Language Generation,

pages 109–117.

David McClosky, Eugene Charniak, and Mark Johnson.

2006. Effective self-training for parsing. In Proceed-

ings of the Human Language Technology Conference

of the NAACL, Main Conference, pages 152–159.

Kathleen McKeown, Sara Rosenthal, Kapil Thadani, and

Coleman Moore. 2010. Time-efficient creation of

an accurate sentence fusion corpus. In Human Lan-

guage Technologies: The 2010 Annual Conference of

the North American Chapter of the Association for

Computational Linguistics, pages 317–320, Los An-

geles, California, June. Association for Computational

Linguistics.

Tadashi Nomoto. 2009. A comparison of model free

versus model intensive approaches to sentence com-

pression. In Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing,

pages 391–399, Singapore, August. Association for

Computational Linguistics.

62

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-

lizzi. 2004. Wordnet::Similarity - measuring the re-

latedness of concepts. In Daniel Marcu Susan Du-

mais and Salim Roukos, editors, HLT-NAACL 2004:

Demonstration Papers, pages 38–41, Boston, Mas-

sachusetts, USA, May 2 - May 7. Association for

Computational Linguistics.

Philip Resnik. 1995. Using information content to eval-

uate semantic similarity in a taxonomy. In IJCAI’95:

Proceedings of the 14th international joint conference

on Artificial intelligence, pages 448–453, San Fran-

cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997. A

maximum entropy approach to identifying sentence

boundaries. In Proceedings of the Fifth Conference on

Applied Natural Language Processing, pages 16–19,

Washington D.C.

Andreas Stolcke. 2002. SRILM-an extensible language

modeling toolkit. In Proceedings of the International

Conference on Spoken Language Processing, pages

257–286, November.

Jenine Turner and Eugene Charniak. 2005. Supervised

and unsupervised learning for sentence compression.

In Proc. Assoc. for Computational Linguistics (ACL),

pages 290–297.

63

