
Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 33–38,
Portland, OR, USA, 24 June 2011. c©2011 Association for Computational Linguistics

Automatic linguistic annotation of historical language:

ToTrTaLe and XIX century Slovene

Tomaž Erjavec

Department of Knowledge Technologies,

Jožef Stefan Institute

Jamova cesta 39, 1000 Ljubljana

Slovenia

tomaz.erjavec@ijs.si

Abstract

The paper describes a tool developed to

process historical (Slovene) text, which an-

notates words in a TEI encoded corpus

with their modern-day equivalents, mor-

phosyntactic tags and lemmas. Such a tool

is useful for developing historical corpora

of highly-inflecting languages, enabling

full text search in digital libraries of histor-

ical texts, for modernising such texts for

today's readers and making it simpler to

correct OCR transcriptions.

1 Introduction

Basic processing of written language, in particular

tokenisation, tagging and lemmatisation, is useful

in a number of applications, such as enabling full-

text search, corpus-linguistic studies, and adding

further layers of annotation. Support for lemmati-

sation and morphosyntactic tagging is well-

advanced for modern-day languages, however, the

situation is very different for historical language

varieties, where much less – if any – resources ex-

ist to train high-quality taggers and lemmatisers.

Historical texts also bring with them a number of

challenges not present with modern language:

 due to the low print quality, optical character

recognition (OCR) produces much worse re-

sults than for modern day texts; currently, such

texts must be hand-corrected to arrive at ac-

ceptable quality levels;

 full-text search is difficult, as the texts are not

lemmatised and use different orthographic

conventions and archaic spellings, typically

not familiar to non-specialists;

 comprehension can also be limited, esp. when

the text uses an alphabet different from the

contemporary norm.

This paper describes a tool to help alleviate the

above problems. The tool implements a pipeline,

where it first tokenises the text and then attempts

to transcribe the archaic words to their modern day

equivalents. For here on, the text is tagged and

lemmatised using the models for modern Slovene.

Such an approach is not new, as it straightforward-

ly follows from a situation where good language

models are available for contemporary language,

but not for its historical variants.

The focus of the research in such cases is on the

mapping from historical words to modern ones,

and such approaches have already been attempted

for other languages, e.g. for English (Rayson et al.

2007), German (Pilz et al. 2008), Spanish

(Sánchez-Marco et al. 2010) and Icelandic (Rögn-

valdsson and Helgadóttir, 2008). These studies

have mostly concentrated on mapping historical

variants to modern words or evaluating PoS tag-

ging accuracy and have dealt with Germanic and

Romance languages. This paper discusses the

complete annotation process, including lemmatisa-

tion, and treats a Slavic language, which has sub-

stantially different morphology; in Slovene, words

belong to complex inflectional paradigms, which

makes tagging and lemmatisation models quite

complex, esp. for unknown words.

The paper also discusses structural annotations

supported by the tool, which takes as input a doc-

ument encoded according to (a subset of) the Text

Encoding Initiative Guidelines, TEI P5 (Burnard

and Bauman, 2007) and also produces output in

this format.

An example of the tool input fragment and the cor-

responding output is given in Figure 1.

33

2 The ToTrTaLe tool

The annotation tool implements a pipeline archi-

tecture and is essentially a wrapper program that

calls a number of further processing modules. The

tool is based on the ToTaLe tool (Erjavec et al.,

2005), which performs Tokenisation, Tagging and

Lemmatisation on modern text; as the present tool

extends this with Transcription, it is called To-

TrTaLe, and comprises the following modules:

1. extracting processing chunks from source TEI

2. tokenisation

3. extracting text to be annotated

4. transcription to modern word-forms

5. part-of-speech tagging

6. lemmatisation

7. TEI output

While the tool and its modules make some lan-

guage specific assumption, they are rather broad,

such as that text tokens are (typically) separated by

space; otherwise, the tool relies on external lan-

guage resources, so it could be made to work with

most European languages, although it is especially

suited for the highly-inflecting ones.

The tool is written in Perl and is reasonably fast,

i.e. it processes about 100k words per minute on a

Linux server. The greatest speed bottleneck is the

tool start-up, mostly the result of the lemmatisation

module, which for Slovene contains thousands of

rules and exceptions. In the rest of this section we

present the modules of ToTrTaLe, esp. as they re-

late to processing of historical language.

2.1 Extracting chunks

In the first step, the top-level elements of the TEI

file that contain text to be processed in one chunk

are identified and passed on for linguistic pro-

cessing. This step serves two purposes. Certain

TEI elements, in particular the <teiHeader>, which

contains the meta-data of the document, should not

be analysed but simply passed on to the output

(except for recording the fact that the text has been

linguistically annotated). Second, the processors in

certain stages keep the text and annotations in

memory. As a TEI document can be arbitrarily

large the available physical memory can be ex-

hausted, leading to severe slow-down or even out-

of-memory errors. It is therefore possible to speci-

fy which elements (such as <body> or <div>)

should be treated as chunks to be processed in one

annotation run.

2.2 The tokenisation module

The multilingual tokenisation module mlToken 1

is written in Perl and in addition to splitting the

input string into tokens has also the following fea-

tures:

 assigns to each token its token type, e.g. XML

tag, sentence final punctuation, digit, abbrevia-

tion, URL, etc.

 preserves (subject to a flag) white-space, so

that the input can be reconstituted from the

output.

The tokeniser can be fine-tuned by putting punctu-

ation into various classes (e.g. word-breaking vs.

non-breaking) and also uses several language-

dependent resource files, in particular a list of ab-

breviations (“words” ending in period, which is a

part of the token and does not necessarily end a

sentence), list of multi-word units (tokens consist-

ing of several space-separated “words”) and a list

of (right or left) clitics, i.e. cases where one “word”

should be treated as several tokens. These resource

files are esp. important in the context of processing

historical language, as it often happens that words

that used to be written apart and now written to-

gether or vice-versa. Such words are put in the ap-

propriate resource file, so that their tokenisation is

normalised. Examples of multi-word and split to-

kens are given in Figure 1.

2.3 Text extraction

A TEI encoded text can contain a fair amount of

markup, which we, as much as possible, aim to

preserve in the output. However, most of the

markup should be ignored by the annotation mod-

ules, or, in certain cases, even the content of an

element should be ignored; this goes esp. for

markup found in text-critical editions of historical

texts. For example, the top and bottom of the page

can contain a running header, page number and

catch-words (marked up in <fw> “forme work”

elements), which should typically not be annotated

as they are not linguistically interesting and would

furthermore break the continuity of the text. The

text might also contain editorial corrections

(marked up as <choice> <sic>mistyped text</sic>

<corr>corrected text</corr> </choice>), where,

arguably, only the corrected text should be taken

1 mlToken was written in 2005 by Camelia Ignat, then work-

ing at the EU Joint Research Centre in Ispra, Italy.

34

into account in the linguistic annotation. This

module extracts the text that should be passed on

to the annotation modules, where the elements to

be ignored are specified in a resource file.

This solution does take care of most situations en-

countered so far in our corpora
2
 but is not com-

pletely general. As discussed in Bennet et al.

(2010), there are many cases where adding token

(and sentence) tags to existing markup breaks

XML well-formedness or TEI validity, such as

sentences crossing structural boundaries or word-

internal TEI markup.

A general “solution” to the problem is stand-off

markup, where the annotated text is kept separate

from the source TEI, but that merely postpones the

problem of how to treat the two as a unit. And

while TEI does offer solutions to such problems,

implementing processing of arbitrary TEI in-place

markup would, however, require much further re-

search. So ToTrTaLe adds the linguistic mark-up

in-place, but does so correctly only for a restricted,

although still useful, set of TEI element configura-

tions.

2.4 Transcription

The transcription of archaic word-forms to their

modern day equivalents is the core module which

distinguishes our processing of historical language

as opposed to its contemporary form. The tran-

scription process relies on three resources:

 a lexicon of modern-day word-forms;

 a lexicon of historical word-forms, with asso-

ciated modern-day equivalent word-form(s);
3

 a set of transcription patterns.

In processing historical texts, the word-form to-

kens are first normalised, i.e. de-capitalised and

diacritic marks over vowels removed; the latter is

most likely Slovene specific, as modern-day Slo-

vene, unlike the language of the 19th century, does

not use vowel diacritics.

2 The notable exception is <lb/>, line break, which, giv-

en the large font size and small pages, often occurs in

the middle of a word in historical texts. We move such

line breaks in the source documents to the start of the

word and mark their displacement in lb/@n.
3
 The two lexica have in fact a somewhat more compli-

cated structure. For example, many archaic words do

not have a proper modern day equivalent; for these, the

lexicon gives the word in its modern spelling but also its

modern near synonyms.

To determine the modern-day word-form, the his-

torical lexicon is checked first. If the normalized

word-form is an entry of the historical lexicon, the

equivalent modern-day word-form has also been

identified; if not, it is checked against the modern-

day lexicon. This order of searching the lexica is

important, as the modern lexicon can contain

word-forms which have an incorrect meaning in

the context of historical texts, so the historical lex-

icon also serves to block such meanings.

If neither lexicon contains the word, the transcrip-

tion patterns are tried. Many historical spelling

variants can be traced to a set of rewrite rules or

“patterns” that locally explain the difference be-

tween the contemporary and the historical spelling.

For Slovene, a very prominent pattern is e.g. r→er

as exemplified by the pair brž→berž, where the

left side represents the modern and the right the

historical spelling.

Such patterns are operationalized by the finite-state

“Variant aware approximate matching” tool Vaam,

(Gotscharek et al. 2009; Reffle, 2011), which takes

as input a historical word-form, the set of patters,

and a modern-day lexicon and efficiently returns

the modern-day word-forms that can be computed

from the archaic one by applying one or more pat-

terns. The output list is ranked, preferring candi-

dates where a small number of pattern applications

is needed for the rewrite operation.
4

It should be noted that the above process of tran-

scription is non-deterministic. While this rarely

happens in practice, the historical word-form can

have several modern-day equivalents. More im-

portantly, the Vaam module will typically return

several possible alternative modernisations, of

which only one is correct for the specific use of the

word in context. We currently make use of fre-

quency based heuristics to determine the “best”

transcription, but more advanced models are possi-

ble, which would postpone the decision of the best

candidate until the tagging and lemmatization has

been performed.

We currently use a set of about 100 transcription

patterns, which were obtained by corpus inspec-

tion, using a dedicated concordancer.

4
 Vaam also supports approximate matching based on

edit distance, useful for identifying (and correcting)

OCR errors; we have, however, not yet made use of this

functionality.

35

2.5 Tagging

For tagging words in the text with their context

disambiguated morphosyntactic annotations we use

TnT (Brants, 2000), a fast and robust tri-gram tag-

ger. The tagger has been trained on jos1M, the 1

million word JOS corpus of contemporary Slovene

(Erjavec and Krek, 2008), and is also given a large

background lexicon extracted from the 600 million

word FidaPLUS reference corpus of contemporary

Slovene (Arhar and Gorjanc, 2007).

2.6 Lemmatisation

Automatic lemmatisation is a core application for

many language processing tasks. In inflectionally

rich languages assigning the correct lemma (base

form) to each word in a running text is not trivial,

as, for instance, Slovene adjectives inflect for gen-

der, number and case (3x3x6) with a complex con-

figuration of endings and stem modifications.

For our lemmatiser we use CLOG (Manandhar et

al., 1998, Erjavec and Džeroski, 2004), which im-

plements a machine learning approach to the au-

tomatic lemmatisation of (unknown) words. CLOG

learns on the basis of input examples (pairs word-

form/lemma, where each morphosyntactic tag is

learnt separately) a first-order decision list, essen-

tially a sequence of if-then-else clauses, where the

defined operation is string concatenation. The

learnt structures are Prolog programs but in order

to minimise interface issues we made a converter

from the Prolog program into one in Perl.

An interesting feature of CLOG is that it does not

succeed in lemmatising just any word-form. With

historical texts it almost invariably fails in lemma-

tising truly archaic words, making it a good selec-

tor for new entries in the historical lexicon.

The lemmatiser was trained on a lexicon extracted

from the jos1M corpus, and the lemmatisation of

contemporary language is quite accurate, with 92%

on unknown words. However, as mentioned, the

learnt model, given that there are 2,000 separate

classes, is quite large: the Perl rules have about

2MB, which makes loading the lemmatiser slow.

2.7 TEI output

The final stage of processing is packing the origi-

nal file with the added annotations into a valid TEI

document. This is achieved by combining Perl pro-

cessing with XSLT scripts. The last step in the

processing is the validation of the resulting XML

file against a TEI schema expressed in Relax NG.

A validation failure indicates that the input docu-

ment breaks some (possibly implicit) mark-up as-

sumptions – in this case either the input document

must be fixed, or, if the encoding choices were val-

id, the program should be extended to deal also

with such cases.

3 Conclusions

The paper gave an overview of the ToTrTaLe tool,

which performs basic linguistic annotation on TEI

encoded historical texts. Some future work on the

tool has already been mentioned, in particular ex-

ploring ways of flexibly connecting transcription to

tagging and lemmatisation, as well as supporting

more complex TEI encoded structures.

While the tool itself is largely language independ-

ent, it does need substantial language resources to

operationalize it for a language. Specific for histor-

ical language processing are a corpus of tran-

scribed historical texts, a lexicon of historical word

forms and a pattern set. The paper did not discuss

these language resources, although it is here that

most work will be invested in the future.

The corpus we have used so far for Slovene lexi-

con building comes from the AHLib digital library

(Prunč, 2007; Erjavec 2005), which contains 2 mil-

lion words of 19
th
 century texts; we now plan to

extend this with older material, predominantly

from the 18
th
 century.

The on-going process of creating the Slovene his-

torical lexicon is described in Erjavec et al.,

(2010), while the model of a TEI encoded lexicon

containing not only historical word-forms, but also

all the other lexical items needed to feed the tool

(such as multi-word units) is presented in Erjavec

et al. (2011). As we extend the corpus, we will also

obtain new words, which will be automatically

annotated with ToTrTaLe and then manually cor-

rected, feeding into the lexicon building process.

For the patterns, the extension of the corpus will no

doubt show the need to extend also the pattern set.

Most likely this will be done by corpus inspection,

via a dedicated concordancer, although alternative

methods of pattern identification are possible. In

particular, once when a substantial list of pairs his-

torical word-form / contemporary word-form be-

comes available, automatic methods can be used to

derive a list of patterns, ranked by how productive

they are (Pilz et al., 2008; Oravecz et al. 2010).

36

Acknowledgements

The author thanks the anonymous reviewers for their

useful comments and suggestions. The work presented

in this paper has been supported by the EU IMPACT

project “Improving Access to Text” and the Google

Digital Humanities Research Award “Language models

for historical Slovenian”.

References

Paul Bennett, Martin Durrell, Silke Scheible, and Rich-

ard J. Whitt, 2010. Annotating a historical corpus of

German: A case study. Proceedings of the LREC

2010 workshop on Language Resources and Lan-

guage Technology Standards. Valletta, Malta, 18

May 2010. 64-68.

Lou Burnard and Syd Bauman, 2007. Guidelines for

Electronic Text Encoding and Interchange (TEI P5).

Text Encoding Initiative Consortium. Oxford, 2007.

http://www.tei-c.org/release/doc/tei-p5-doc/

Tomaž Erjavec. 2007. Architecture for Editing Complex

Digital Documents. Proceedings of the Conference

on Digital Information and Heritage. Zagreb. pp.

105-114.

Tomaž Erjavec and Sašo Džeroski. 2004. Machine

Learning of Language Structure: Lemmatising Un-

known Slovene Words. Applied Artificial Intelli-

gence, 18(1):17–41.

Tomaž Erjavec, Simon Krek, 2008. The JOS morpho-

syntactically tagged corpus of Slovene. In Proceed-

ings of the Sixth International Conference on

Language Resources and Evaluation, LREC’08, Par-

is, ELRA.

Tomaž Erjavec, Camelia Ignat, Bruno Pouliquen, and

Ralf Steinberger. Massive Multi-Lingual Corpus

Compilation: Acquis Communautaire and ToTaLe.

In Proceedings of the 2nd Language & Technology

Conference, April 21-23, 2005, Poznan, Poland.

2005, pp. 32-36.

Tomaž Erjavec, Christoph Ringlstetter, Maja Žorga, and

Annette Gotscharek, 2010. Towards a Lexicon of

XIXth Century Slovene. In Proceedings of the Sev-

enth Language Technologies Conference, October

14th-15th, 2010, Ljubljana, Slovenia. Jožef Stefan

Institute.

Tomaž Erjavec, Christoph Ringlstetter, Maja Žorga, and

Annette Gotscharek, (submitted). A lexicon for pro-

cessing archaic language: the case of XIXth century

Slovene. ESSLLI Workshop on Lexical Resources

workshop, WoLeR’11. Ljubljana, Slovenia.

Annette Gotscharek, Andreas Neumann, Ulrich Reffle,

Christoph Ringlstetter and Klaus U. Schulz. 2009.

Enabling Information Retrieval on Historical Docu-

ment Collections - the Role of Matching Procedures

and Special Lexica. Proceedings of the ACM SIGIR

2009 Workshop on Analytics for Noisy Unstructured

Text Data (AND09), Barcelona.

Suresh Manandhar, Sašo Džeroski and Tomaž Erjavec

1998. Learning Multilingual Morphology with

CLOG. In Proceedings of Inductive Logic Program-

ming; 8th International Workshop ILP-98 (Lecture

Notes in Artificial Intelligence 1446) (pp. 135-144).

Springer-Verlag, Berlin.

Csaba Oravecz, Bálint Sass and Eszter Simon. 2010.

Semi-automatic Normalization of Old Hungarian

Codices. Proceedings of the ECAI 2010 Workshop

on Language Technology for Cultural Heritage, So-

cial Sciences, and Humanities (LaTeCH 2010), Au-

gust 16, 2010, Lisbon, Portugal.

Thomas Pilz, Andrea Ernst-Gerlach, Sebastian Kemp-

ken, Paul Rayson and Dawn Archer, 2008. The Iden-

tification of Spelling Variants in English and German

Historical Texts: Manual or Automatic? Literary and

Linguistic Computing, 23/1, pp. 65-72.

Erich Prunč. 2007. Deutsch-slowenische/kroatische

Übersetzung 1848-1918 [German-Slovene/Croatian

translation, 1848-1918]. Ein Werkstättenbericht.

Wiener Slavistisches Jahrbuch 53/2007. Austrian

Academy of Sciences Press, Vienna. pp. 163-176.

Paul Rayson, Dawn Archer, Alistair Baron, Jonathan

Culpeper, and Nicolas Smith, 2007. Tagging the

Bard: Evaluating the accuracy of a modern POS tag-

ger on Early Modern English corpora. In Proceedings

of Corpus Linguistics 2007. University of Birming-

ham, UK.

Ulrich Reffle, Efficiently generating correction sugges-

tions for garbled tokens of historical language, Jour-

nal of Natural Language Engineering, Special Issue

on Finite State Methods and Models in Natural Lan-

guage Processing, 2011.

Eiríkur Rögnvaldsson and Sigrún Helgadóttir, 2008.

Morphological tagging of Old Norse texts and its use

in studying syntactic variation and change. In Pro-

ceedings of the LREC 2008 Workshop on Language

Technology for Cultural Heritage Data (LaTeCH

2008). ELRA, Paris.

Cristina Sánchez-Marco, Gemma Boleda, Josep Maria

Fontana and Judith Domingo. 2010. Annotation and

Representation of a Diachronic Corpus of Spanish.

Proceedings of the Seventh conference on Interna-

tional Language Resources and Evaluation

(LREC'10). ELRA, Paris.

37

TEI input fragment:

 <p xml:id="p.401">Nekiga bogatiga kneza z nja <lb/>
 <pb n="93" facs="#FPG00012.097" xml:id="pb.97"/>
 družino, ki v mes nemore <lb n="3"/>
 <gap/>
 </p>

ToTrTaLe output:

<p xml:id="p.401">
 <s>
 <w subtype="lexicon" nform="nekiga" mform="nekega" lemma="nek" ctag="Pi-msg">Nekiga</w>
 <c> </c>
 <w subtype="pattern" pattern="[ega@←iga@]" mform="bogatega" lemma="bogat"
 ctag="Agpmsg">bogatiga</w>
 <c> </c>
 <w lemma="knez" ctag="Npmsg">kneza</w>
 <c> </c>
 <w lemma="z" ctag="Si">z</w>
 <c> </c>
 <w subtype="lexicon" mform="njegova" lemma="njegov" ctag="Ps3fsnsm">nja</w>
 <c> </c>
 <lb/>
 <pb n="93" facs="#FPG00012.097" xml:id="pb.97"/>
 <w lemma="družina" ctag="Ncfsa">družino</w>
 <pc ctag=",">,</pc>
 <c> </c>
 <w lemma="ki" ctag="Cs">ki</w>
 <c> </c>
 <w type="multiw" subtype="pattern" pattern="[@v←@v_]" mform="vmes" lemma="vmes" ctag="Rgp"
 n="mw_jeGx2">v</w>
 <c> </c>
 <w type="multiw" subtype="pattern" pattern="[@v←@v_]" mform="vmes" lemma="vmes" ctag="Rgp"
 n="mw_jeGx2">mes</w>
 <c> </c>
 <w type="split" mform="ne_more" lemma="ne_moči" ctag="Q_Vmpr3s">nemore</w>
 <c> </c>
 <lb n="3"/>
 <gap/>
 </s>
</p>

Figure 1. An example of ToTrTaLe input paragraph and the equivalent output.

Paragraphs, page and line breaks are preserved, and the program adds elements for words, punctuation symbols and

white-space. Both punctuation and words are assigned a corpus tag and lemma, and, where different from the de-

fault, the type and subtype of the word, its normalised and modernised form, and possibly the used pattern(s). In

cases of multi-words, each part is given its own word tag, which have identical analyses and are joined together by

the unique value of @n; this approach allows also modelling discontinuous multi-word units, such as separable

verbs in Germanic languages. Split words forms, on the other hand, are modelled by one word token, but with a

portmanteau analysis.

38

