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Abstract

This paper presents a method for identifying
non-English speech, with the aim of support-
ing an automated speech proficiency scoring
system for non-native speakers.

The method uses a popular technique from the
language identification domain, a single phone
recognizer followed by multiple language-
dependent language models. This method
determines the language of a speech sample
based on the phonotactic differences among
languages.

The method is intended for use with non-
native English speakers. Therefore, the
method must be able to distinguish non-
English responses from non-native speakers’
English responses. This makes the task more
challenging, as the frequent pronunciation er-
rors of non-native speakers may weaken the
phonetic and phonotactic distinction between
English responses and non-English responses.
In order to address this issue, the speaking
rate measure was used to complement the
language identification based features in the
model.

The accuracy of the method was 98%, and
there was 45% relative error reduction over
a system based on the conventional language
identification technique. The model using
both feature sets furthermore demonstrated an
improvement in accuracy for speakers at all
English proficiency levels.

1 Introduction

We developed a non-English response identifica-
tion method as a supplementary module for the au-

tomated speech proficiency scoring of non-native
speakers. The method can identify speech samples
of test takers who try to game the system by speak-
ing in their native languages. For the items that
elicited spontaneous speech, fluency features such
as speaking rate have been one of the most impor-
tant features in the automated scoring. By speak-
ing in their native languages, speakers can generate
fluent speech, and the automated proficiency scor-
ing system may assign a high score. This problem
has been rarely recognized, and none of research has
focused on it as to the authors’ knowledge. In or-
der to address this issue, the automated proficiency
scoring system in this study first filters out the re-
sponses in non-English languages, and for the re-
maining responses, it predicts the proficiency score
using a scoring model.

Non-English detection is strongly related to lan-
guage identification(Lamel and Gauvain, 1993;
Zissman, 1996; Li et al., 2007); language identifi-
cation is the process of determining which language
a spoken response is in, while non-English detec-
tion makes a binary decision whether the spoken re-
sponse is in English or not. Due to the strong simi-
larity between the two tasks, the language identifica-
tion method was used here for non-English response
detection.

In contrast to previous research, the method de-
scribed here was intended for use with non-native
speakers, and the English responses for model train-
ing and evaluation were accordingly collected from
non-native speakers. Among other differences,
non-native speakers’ speech tends to display non-
standard pronunciation characteristics which can
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make the task of language identification more chal-
lenging. For instance, when native Korean speak-
ers speak English, they may replace some English
phonemes not in their language with their native
phones, and epenthesize vowels within consonant
clusters. Such processes tend to reduce the pho-
netic and phonotactic distinction between English
and other languages. The frequency of these pro-
nunciation errors is influenced by speakers’ na-
tive language and proficiency level, with lower-
proficiency speakers likely to exhibit the greatest
degree of divergence from standard pronunciation.
Language identification method may not effectively
distinguish non-fluent speakers’ English responses
from non-English responses. In order to address
these non-native speech characteristics, the model
described here includes the speaking rate feature,
which has been found to be an indicator of speak-
ing proficiency in previous research(Strik and Cuc-
chiarini, 1999; Zechner et al., 2009). Non-fluent
speakers’ English responses can be distinguished
from non-English responses by slow speaking rate.

This paper will proceed as follows: we first re-
view previous studies in section 2, then describe the
data in section 3, and present the experiment in sec-
tion 4. The results and discussion are presented in
section 5, and the conclusions are presented in sec-
tion 6.

2 Previous Work

Many previous studies in language identification
focused on phonetic and phonotactic differences
among languages. The frequencies of phones and
phone sequences differ according to languages and
some phone sequences occur only in certain lan-
guages. The literature in language identification
captured this characteristic using the likelihood
score of speech recognizers, which signals the de-
gree of a match between the test sentences and
speech recognizer models. Both the language model
(hereafter, LM) and acoustic model (hereafter, AM)
of a phone recognizer are optimized for the acoustic
characteristics and the phoneme distribution of the
training data. If a spoken response is recognized us-
ing a recognizer trained on a different language, it
may result in a low likelihood score due to a mis-
match between the test sentences and the models.

Lamel and Gauvain (1993) trained multiple
language-dependent-phone-recognizers and se-
lected the language with the highest matching score
as the input language (hereafter, parallel PRLM).
For instance, if the test data contained English and
Hindi speech data, the English-phone-recognizer
and the Hindi-phone-recognizer were trained in-
dependently. In the test, the given speech samples
were recognized using two phone recognizers,
and the language that had a higher matching
score was selected. However, training multiple
phone recognizers was time-consuming and labor
intensive; therefore, Zissman (1996) proposed a
system using single-language phone recognition
followed by multiple language-dependent language
modeling (hereafter, PRLM). PRLM was able to
achieve comparable performance to parallel PRLM
for long speech (longer than 30 seconds), and in a
two-language situation, the error rate was between
5 and 7%.

Instead of language-dependent LM, Li et al.
(2007) used vector space modeling (VSM). They
applied metrics frequently used in information re-
trieval. As with the PRLM method, the speech was
converted into phone sequences using the phone rec-
ognizer, and cooccurrence statistics such as term fre-
quency (TF) and inverse document frequency (IDF)
were calculated. The method outperformed the
PRLM approach for long speech.

These methods can be challenging and time-
consuming to implement, as they require implemen-
tation of methods beyond those typically available
in a standard word-based recognition system. In
particular, the application of the phone recognizer
increases the processing time substantially. Be-
cause of this problem, Lim et al. (2004) presented a
method based on the features that were readily avail-
able for speech recognizers: a confidence score and
the cross-entropy of the LM. The confidence scoring
method measured the acoustic match between the
word hypotheses and the real sound, while the cross-
entropy measured how well a sentence matched a
given language model. If the test sentence was rec-
ognized by the speech recognizer in a different lan-
guage, the phonetic and lexical mismatches between
two languages resulted in a low confidence score and
a high cross-entropy. Using this methodology, Lim
et al. (2004) achieved 99.8% accuracy in their three-
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way classification task.
The current study can be distinguished from the

previous studies in the following points. First of all,
special features were implemented to model non-
native speech since the method was developed for
non-native speech. In our study, the data contained
non-native speakers’ English speech, characterized
by inaccurate pronunciation. It resulted in a mis-
match between the speech-recognizer models and
test sentences, even for utterances in English. In par-
ticular, the mismatch was more salient in non-fluent
speakers’ speech, which comprised a high propor-
tion of our data. In order to address this issue, speak-
ing rate, which has achieved good performance in
the estimation of non-native speakers’ speaking pro-
ficiency (Strik and Cucchiarini, 1999; Zechner et
al., 2009), was implemented as an additional feature.
Secondly, in contrast to previous studies that deter-
mined which language the speech was in, we made
a binary decision whether the speech was in English
or not. Finally, the method was developed as part of
a language assessment system.

3 Data

The OGI Multi-language corpus (Muthusamy et al.,
1992), a standard language identification develop-
ment data set, was used in the training and evalua-
tion of the system. It contains a total of 1,957 calls
from speakers of 10 different languages (English,
Farsi, French, German, Japanese, Korean, Mandarin
Chinese, Spanish, Tamil, and Vietnamese). The cor-
pus was composed of short speech and long speech;
the short files contained approximately 10 seconds
speech, while the long files contained speech ranged
from 30 seconds to 50 seconds.

The method described here was implemented to
distinguish non-English responses from non-native
speakers’ English responses. Therefore, the English
data used to train and evaluate the model for non-
English response detection was collected from non-
native speakers. In particular, responses to the En-
glish Practice Test (EPT) were used. The EPT is
an online practice test which allows students to gain
familiarity with the format of a high-stakes test of
English proficiency and receive immediate feedback
on their test responses based on automated scor-
ing methods. The speaking section of the EPT as-

sessment consists of 6 items in which speakers are
prompted to provide open-ended responses of 45-60
seconds in length. The scoring scale of each item is
discrete from 1 to 4, where 4 indicates high speaking
proficiency and 1 low proficiency.

The non-English detection task is composed of
two major components: training of PRLM, and
training of the classifier which makes a binary de-
cision about whether a speech sample is in the En-
glish language, given PRLM-based features and the
speaking rate.

The OGI corpus was used in training of both
PRLM and the classifier; a total of 9,033 short files
from the OGI corpus were used in PRLM training,
and 158 long files were used in classifier training.
(The small number of long files in the OGI corpus
limited the number of samples comparable in length
to our English-language data described below, so
that only these 158 OGI samples could be used in
classifier training and evaluation.) For English, only
short samples were selected for use in this experi-
ment.

In addition, a total of 3,021 EPT responses were
used in classifier training. As the English profi-
ciency levels of speakers may have an influence
on the accuracy of non-English response detection,
the EPT responses were selected to include simi-
lar numbers of responses for each score level. Re-
sponses were classified into four groups according
to their proficiency scores and 1000 responses were
randomly selected from each group. For score 1
and 4, where the number of available responses was
smaller than 1000, all available responses were se-
lected. Ultimately, 156 responses for score 1, 1000
responses for score 2 and score 3, and 865 responses
for score 4 were selected.

The resultant training and evaluation data sets are
summarized in Table 1.

Due to the lack of non-Engilsh responses in EPT
data, 158 non-English utterances in OGI data were
used in both training and evaluation of non-English
detection. EPT responses were collected from many
different countries, and speakers with 75 different
native languages were participated in the data collec-
tion. Due to the large variations, many of their native
languages were not covered by OGI data. However,
all 9 languages in OGI data were in top 15 L1 lan-
guages and covered approximately 60% of speakers’

163



Partition name Purpose Number of
English files

Number of non-
English files

PRLM-train Training of Language-
dependent LM

1,716 (OGI) 7,317 (OGI)

EN-detection Training and evaluation of non-
English detection classifier

3,021 (EPT) 158 (OGI)

Table 1: Data partition

native languages.

4 Experiment

4.1 Overview
Due to the efficiency in processing time and im-
plementation, a PRLM was implemented instead of
a parallel PRLM. However, the difference between
PRLM and parallel PRLM in this study may not be
significant since PRLM has been shown to be com-
parable to parallel PRLM for test samples longer
than 30 seconds, and the duration of test instances in
this study was longer than 30 seconds. In addition
to PRLM, speaking rate was calculated as a feature.

4.2 PRLM based features
The PRLM based method in this study is composed
of three parts: training of a phone recognizer, train-
ing of language-dependent LMs, and generation of
PRLM-based features. In contrast to the conven-
tional language identification approach that only fo-
cused on identifying the language with the highest
matching score, 6 additional features were imple-
mented to capture the difference between English
model and other models.

Phone recognizer: An English triphone acoustic
model was trained on 30 hours of non-native English
speech (EPT data) using the HTK toolkit (Young et
al., 2002). The model contained 43 monophones
and 4,887 triphones. Due to the difference in the
sampling rate of EPT (11,025 Hz) and the OGI cor-
pus (8,000 Hz), the EPT data was down-sampled to
8,000 Hz and the acoustic model was trained using
the down-sampled data. In order to avoid the in-
fluence of English in phone hypothesis generation,
a triphone bigram language model with a uniform
probability distribution was used as the LM. (All
possible combinations of two triphones were gener-
ated and a uniform probability was assigned to each

combination.) The phone recognition accuracy rate
was 42.7% on the 94 held-out EPT test samples.
This phone recognizer was used in phone hypoth-
esis generation for all data; the same recognizer was
used for all languages.

Language-dependent LMs: For responses in the
PRLM-train partition, phone hypothesis was gener-
ated using the English recognizer. Instead of the
manual transcription, a language-dependent phone
bigram LM was trained using the phone hypothe-
sis. In order to avoid a data sparseness problem, tri-
phones were converted into monophones by remov-
ing left and right context phones, and a bigram LM
with closed vocabulary was trained. 10 language-
dependent bigram LMs, including one for English,
were trained.

PRLM based feature generation: For each re-
sponse in the EN-detection partition, phone hypoth-
esis was generated, and triphones were converted
into monophones. Given monophone hypothesis, an
LM score was calculated for each language using a
language-dependent LM. A total of 10 LM scores
were calculated.

Since the LM score increases as the number of
phones increases, the LM score was normalized by
the number of phones in each response, in order
to avoid the influence of hypothesis length. 7 fea-
tures were generated based on these normalized LM
scores:

• MaxLanguage: The language with the maxi-
mum LM score

• SecondLanguage: The language with the
second-largest LM score.

• MaxScore: Normalized LM score of the
MaxLanguage.
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• MaxDifference: Difference between normal-
ized English LM score and MaxScore

• MaxRatio: Ratio between normalized English
LM score and MaxScore

• AverageDifference: Difference between nor-
malized English LM score and the average of
normalized LM scores for languages other than
English

• AverageRatio: Ratio between normalized En-
glish LM score and the average of normalized
LM scores for languages other than English

Among above 6 features, 4 features (MaxDiffer-
ence, MaxRatio, AverageDifference, and AverageR-
atio) were designed to measure the difference be-
tween matching of a test responses with English
model and it with the other models. These features
may be particularly effective when MaxLanguage of
the English response is not English; these values will
be close to 0 when the divergence due to non-native
characteristics result in only slightly better match
with other language than that with English.

4.3 Speaking rate calculation

The speaking rate was calculated as a feature rele-
vant to establishing speakers’ proficiency level, as
established in previous research. Speaking rate was
calculated from the phone hypothesis as the number
of phones divided by the duration of responses (cf.
Strik and Cucchiarini (1999)).

4.4 Model building

For each response, both PRLM-based features and
speaking rate were calculated, and a decision tree
model was trained to predict binary values (0 for En-
glish and 1 for non-English) using the J48 algorithm
(WEKA implementation of C4.5) of the WEKA ma-
chine learning toolkit (Hall et al., 2009).

Due to the limited number of non-English re-
sponses in the EN-detection partition, three-fold
cross validation was performed during classifier
training and evaluation. The 3,179 responses were
partitioned into three sets to include approximately
same numbers of non-English responses and English
responses for each proficiency score group. Each
partition contained 52 ∼ 53 non-English responses

and 1007 English responses. In each fold, the de-
cision tree was trained using two of these partitions
and tested on the remaining one.

5 Evaluation

First, the accuracy of the PRLM method was eval-
uated based on multiple forced-choice experiments
with two alternatives using OGI data; in addition
to non-English responses in EN-detection partition,
English responses from the OGI data were used in
this experiment. For each response (in English and
one other language), phone hypothesis was gener-
ated and two normalized LM scores were calculated
using the English LM and the LM for the other lan-
guage. The MaxLanguage was hypothesized as the
source language of the speech. The same experiment
was performed for 9 combinations of English and
other languages. Each experiment was comprised
of 17 English utterances and 17 non-English utter-
ances1. The majority class baseline was thus 0.5.
The mean accuracy of the 9 experiments in this study
was 0.943, which is comparable to (1996)’s perfor-
mance: in his study, the best performing PRLM
exhibited an average accuracy of 0.950. This ini-
tial evaluation used the same data and feature as
Zissman (1996). (Of the seven PRLM-based fea-
tures listed above, only MaxLanguage was used in
(1996)’s study.)

Table 2 summarizes the evaluation results of the
non-English response detection experiments using
three-fold cross-validation within the EN-detection
partition. In order to investigate the impact of dif-
ferent types of features, the features were classi-
fied into four sets—MaxLanguage only, PRLM
(encompassing all PRLM features), SpeakingRate,
and all—and models were trained using each set.
The baseline using majority voting demonstrated an
accuracy of 0.95 by classifying all responses as En-
glish responses.

All models achieved improvements over baseline.
In particular, the model using all features achieved
a 66% relative error reduction over the baseline of
0.95. Furthermore, the all-features model outper-
formed the model based only on PRLM or speaking

1Due to the languages where the available responses were
only 17, the same 17 English responses were used in the all
experiment although 18 responses were available

165



Features Acc. Pre. Rec. F-
score

Base-
line

0.950 0.000 0.000 0.000

Max-
Language

0.969 0.943 0.411 0.572

PRLM 0.966 0.675 0.633 0.649
Speaking-
Rate

0.962 0.886 0.278 0.415

All 0.983 0.909 0.746 0.816

Table 2: Performance of non-English response detection

rate; the accuracy of the all-features model was ap-
proximately 1-2% higher than other models in abso-
lute value and represented approximately a 45-50%
relative error reduction over these models.

The PRLM-based model had higher overall accu-
racy than the speaking rate-based model, and the dif-
ference was even more salient by the F-score mea-
sure: the PRLM-based model achieved an F-score
approximately 24% higher than the speaking rate-
based model.

The model based on all PRLM features did not
achieve a higher accuracy than the model based on
only MaxLanguage. However, there was a clear im-
provement in F-score by using the additional fea-
tures. The PRLM-based model achieved an F-score
approximately 8% higher than the model based only
on MaxLanguage.

In order to investigate the influence of speakers’
proficiency on the accuracy of non-English detec-
tion, the responses in EN-detection were divided
into 4 groups according to proficiency score, and the
performance was calculated for each score group;
the performance of each score group was calcu-
lated using subset comprised of all non-English re-
sponses and English responses with the correspond-
ing scores.

A majority class baseline (classifying all re-
sponses as English) was again used. Table 3 sum-
marizes the results observed, by score level, for the
baseline model and for four different models used in
Table 2. Note that the baseline is lower in Table 3
than in Table 2, because the ratio of English to non-
English responses is lower for each of the subsets of
the EN-detection partitions used for the evaluations

Figure 1: Relationship between proficiency score and
MaxDifference

at a given score level.
For all score groups, the model using all features

achieved high accuracy. The model’s accuracy on all
data sets except for score group 1 was approximately
0.96 and the F-score approximately 0.85. The accu-
racy on score group 1 was 0.87, relatively lower than
other score groups. This is largely due to the smaller
number of English responses available at score level
1, and the consequent lower baseline on this data
set. However, the relative error reduction was much
larger; it was 74% for score group 1.

For all score groups, the PRLM-based mod-
els outperformed MaxLanguage based models and
speaking rate based models. Additional PRLM
features improved the performance over the mod-
els only based on MaxLanguage (conventional lan-
guage identification method). In addition, the com-
bination of both types of features resulted in further
improvement.

The consistent improvement of the model using
both PRLM and speaking rate features suggests a
compensatory relationship between these features.
In order to investigate this relationship in further de-
tail, two representative features, MaxDifference and
AverageDifference were selected, and boxplots were
created. Figure 1 and Figure 2 show the relationship
between proficiency score and PRLM features. In
these figures, the label ‘NE’ is used to indicate the
non-English group, while the labels 1, 2, 3, and 4
correspond to each score group.

Figure 1 shows that MaxDifference decreases as
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Score Features Acc. Pre. Rec. F-score
1 Baseline 0.497 0.000 0.000 0.000

MaxLanguage 0.696 0.970 0.411 0.577
PRLM 0.792 0.936 0.633 0.752
SpeakingRate 0.636 1.000 0.278 0.432
All 0.869 0.992 0.746 0.851

2 Baseline 0.865 0.000 0.000 0.000
MaxLanguage 0.919 0.983 0.411 0.579
PRLM 0.930 0.811 0.633 0.709
SpeakingRate 0.901 1.000 0.278 0.432
All 0.962 0.971 0.746 0.843

3 Baseline 0.865 0.000 0.000 0.000
MaxLanguage 0.920 1.000 0.411 0.582
PRLM 0.939 0.903 0.633 0.738
SpeakingRate 0.901 0.983 0.278 0.430
All 0.963 0.976 0.746 0.845

4 Baseline 0.846 0.000 0.000 0.000
MaxLanguage 0.908 0.987 0.411 0.579
PRLM 0.936 0.934 0.633 0.752
SpeakingRate 0.882 0.896 0.278 0.417
All 0.955 0.956 0.746 0.837

Table 3: Performance of non-English detection according to speakers’ proficiency level

Figure 2: Relationship between proficiency score and Av-
erageDifference

the speaker’s proficiency decreases, although the
feature displays a large variance. The feature mean
for non-English responses is lower than for score
groups 2, 3, and 4, but the distinction between
non-English and English becomes smaller as the
proficiency score decreases. The feature mean for
score group 1 is even lower than for non-English re-
sponses. This obscures the distinction between En-
glish responses and non-English responses at lower
score levels.

As Figure 2 shows, AverageDifference is rela-
tively stable across score levels, compared to MaxD-
ifference. Although the mean feature value de-
creases as the proficiency score decreases, the de-
crease is smaller than for MaxDifference. In addi-
tion, the mean feature values of the English groups
are consistently higher than those for non-English
responses.

Figure 3 shows the relationship between profi-
ciency score and speaking rate.

For the speaking rate feature, the distinction be-
tween non-English and English responses increases
as speakers’ proficiency level decreases, as shown
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Figure 3: Relationship between proficiency score and
SpeakingRate

in Figure 3. The speaking rate of non-English re-
sponses is the highest among all groups compared,
and the speaking rate decreases for English re-
sponses as the speaker’s proficiency score decreases.
Thus, the PRLM features tend to display better dis-
crimination between English and non-English re-
sponses at the higher end of the proficiency scale,
while the SpeakingRate feature provides better dis-
crimination at the lower end of the scale. By com-
bining both feature classes, we are able to produce
a model which outperforms both a PRLM-based
model and a model using speaking rate alone.

6 Conclusion

In this study, we presented a non-English response
detection method for non-native speakers’ speech. A
decision tree model was trained using PRLM-based
features and speaking rate.

The method was intended for use as a supple-
mentary module of an automated speech proficiency
scoring system. The characteristics of non-native
English speech (frequent pronunciation errors) re-
duced the phonetic distinction between English re-
sponses and non-English responses, and correspond-
ingly, the differences between the feature values for
non-English and English speech decreased as well.

In order to address this issue, a speaking rate fea-
ture was added to the model. This feature was spe-
cialized for second language (L2) learners’ speech,
as speaking rate has previously proved useful in es-

timating non-native speakers’ speaking proficiency.
In contrast to PRLM-based features, the speaking
rate feature showed increasing discrimination be-
tween non-English and English speech samples as
speakers’ proficiency level decreased. The com-
plementary relationship between PRLM-based fea-
tures and speaking rate led to an improvement in
the model when these features were combined. Im-
provements resulting from the combined feature set
extended across speakers at all proficiency levels
studied in the context of this paper.

The speaking rate becomes less effective if test
takers speak slowly in their native languages. How-
ever, the test takers are unlikely to use this strategy,
since it will result in a low score although they can
game the system.

Due to lack of non-English responses in EPT data,
non-English utterances were extracted from OGI
data. Since the features in this study were not di-
rectly related to acoustic scores, the acoustic dif-
ferences between EPT and OGI data may not give
significant impact on the results. However, in order
to avoid any influence by differences between cor-
pora, the non-English responses will be collected us-
ing EPT setup and the evaluation will be performed
using new data in future.
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