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Abstract

In this paper we present a methodology for
creating concept map exercises for students.
Concept mapping is a common pedagogical
exercise in which students generate a graph-
ical model of some domain. Our method auto-
matically extracts knowledge representations
from a textbook and uses them to generate
concept maps. The purpose of the study is to
generate and evaluate these concept maps ac-
cording to their accuracy, completeness, and
pedagogy.

1 Introduction

Concept mapping is an increasingly common educa-
tional activity, particularly in K-12 settings. Concept
maps are graphical knowledge representations that
represent a concept, question or process (Novak and
Canas, 2006). A recent meta-analysis of 55 studies
involving over five thousand participants found the
students creating concept maps had increased learn-
ing gains (d = .82) and students studying concept
maps had increased learning gains ( d = .37 ) (Nesbit
and Adesope, 2006). In comparison, novice tutoring
across many studies have had more modest learning
gains ( d = .40 ) (Cohen et al., 1982) – comparable
to studying concept maps but not to creating them.

For difficult topics, or for students new to con-
cept mapping, some researchers propose so-called
expert skeleton concept maps (Novak and Canas,
2006). These are partially specified concept maps
that may have some existing structure and then a
“word bank” of concepts, properties, and relations
that can be used to fill in the rest of the map. This

approach is consistent with concept maps as instruc-
tional scaffolds for student learning (O’Donnell et
al., 2002). As students increase in ability, they can
move from expert skeleton concept maps to self-
generated maps.

Because concept maps are essentially knowledge
representations based in words, analysis and syn-
thesis of concept maps are theoretically amenable
to knowledge-rich computational linguistic tech-
niques. This paper presents an approach to extract-
ing concept maps from textbooks to create educa-
tional materials for students. The concept maps can
be used as expert skeleton concept maps. The rest of
the paper is organized as follows. Section 2 presents
a brief overview of concept maps from the AI, psy-
chological, and education literatures and motivates a
particular representation used in later sections. Sec-
tion 3 presents a general technique for extracting
concept maps from textbooks and generating graph-
ical depictions of these as student exercises. Sec-
tion 4 describes a comparative evaluation of maps
extracted by the model to gold-standard human gen-
erated concept maps. Section 5 discusses these re-
sults and their significance for generating concept
map exercises for students.

2 Perspectives on Concept Maps

There are many different kinds of concept maps, and
each variation imposes different computational de-
mands. One prominent perspective comes from the
AI literature in formal reasoning, as an extension of
work done a century ago by Pierce on existential
graphs (Sowa, 2007; Sowa, 2009). In this formula-
tion (which is now an ISO standard), so-called con-
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ceptual graphs are interchangeable with predicate
calculus. Of particular importance to the current dis-
cussion is grain size, that is the level of granularity
given to nodes and relationships. In these conceptual
graphs, grain size is very small, such that each argu-
ment, e.g. John, is connected to other arguments,
e.g. Mary, through an arbitrary predicate, e.g. John
loves Mary. Aside from the tight correspondence to
logic, grain size turns out to be a relevant differentia-
tor amongst conceptualizations of conceptual graphs
amongst different fields, and one that leads to impor-
tant design decisions when extracting graphs from a
text.

Another prominent perspective comes from the
psychology literature (Graesser and Clark, 1985),
with some emphasis on modeling question ask-
ing and answering (Graesser and Franklin, 1990;
Gordon et al., 1993). In this formulation
of conceptual graphs, nodes themselves can be
propositions, e.g. “a girl wants to play with
a doll,” and relations are (as much as pos-
sible) limited to a generic set of propositions
for a given domain. For example, one such
categorization consists of 21 relations including
is-a, has-property, has-consequence,
reason, implies, outcome, and means (Gor-
don et al., 1993). A particular advantage of limiting
relations to these categories is that the categories can
then be set into correspondence with certain ques-
tion types, e.g. definitional, causal consequent, pro-
cedural, for both the purposes of answering ques-
tions (Graesser and Franklin, 1990) as well as gen-
erating them (Gordon et al., 1993).

Finally, concept maps are widely used in science
education (Fisher et al., 2000; Mintzes et al., 2005)
for both enhancing student learning and assessment.
Even in this community, there are several formu-
lations of concept maps. One such widely known
map is a hierarchical map (Novak and Canas, 2006;
Novak, 1990), in which a core concept/question at
the root of the map drives the elaboration of the
map to more and more specific details. In hierarchi-
cal maps, nodes are not propositions, and the edges
linking nodes are not restricted (Novak and Canas,
2006). Alternative formulations to hierarchical
maps include cluster maps, MindMaps, computer-
generated associative networks, and concept-circle
diagrams, amongst others (Fisher et al., 2000).

part

abdomenarthropod posterior
has-part

is-a

has-property

Figure 1: A concept map fragment. Key terms have black
nodes.

Of particular interest is the SemNet formulation,
which is characterized by a central concept (which
has been determined as highly relevant in the do-
main) linked to other concepts using a relatively pre-
scribed set of relations (Fisher, 2010). End nodes
can be arbitrary, and cannot themselves be linked to
unless they are another core concept in the domain.
Interestingly, in the field of biology, 50% of all links
are is-a, part-of, or has-property (Fisher et al., 2000),
which suggests that generic relations may be able
to account for a large percentage of links in any
domain, with only some customization to be per-
formed for specific domains. An example SemNet
triple (start node/relation/end node) is “prophase in-
cludes process chromosomes become visible.” Sev-
eral thousand of such triples are available online for
biology, illustrating the viability of this representa-
tional scheme for biology (Fisher, 2010).

3 Computational Model

Our approach for extracting concept maps from a bi-
ology textbook follows the general SemNet formu-
lation with some elements of the conceptual graphs
of Graesser and Clark (1985). There are two pri-
mary reasons for adopting this formulation, rather
than the others described in Section 2. By using a
highly comparable formulation to the original Sem-
Nets, one can compare generated graphs with sev-
eral thousand, expert-generated triples that are freely
available. Second, by making just a few modifica-
tions to the SemNet formalism, we can create a for-
malism that is more closely aligned with question
answering/question generation, which we believe is
a fruitful avenue for future research.
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Our concept map representation has two signif-
icant structural elements. The first is key terms,
shown as black nodes in Figure 1. These are terms in
our domain that are pedagogically significant. Only
key terms can be the start of a triple, e.g. abdomen
is-a part. End nodes can contain key terms, other
words, or complete propositions. This structural el-
ement is aligned with SemNets. The second cen-
tral aspect of our representation is labeled edges,
shown as boxes in Figure 1. As noted by (Fisher
et al., 2000), a small set of edges can account for a
large percentage of relationships in a domain. Thus
this second structural element aligns better with psy-
chological conceptual graphs (Gordon et al., 1993;
Graesser and Clark, 1985), but remains consistent
with the spirit of the SemNet representation. The
next sections outline the techniques and models used
for defining key terms and edges, followed by our
method of graph extraction.

3.1 Key Terms

General purpose key term extraction procedures are
the subject of current research (Medelyan et al.,
2009), but they are less relevant in a pedagogical
context where key terms are often already provided
in learning materials. For example, both glossaries
(Navigli and Velardi, 2008), and textbook indices
(Larrañaga et al., 2004) have previously been used
as resources in constructing domain models and on-
tologies. To develop our key terms, we used the
glossary and index from a textbook in the domain of
biology (Miller and Levine, 2002) as well as the key-
words given in a test-prep study guide (Cypress Cur-
riculum Services, 2008). Thus we can skip the key-
word extraction step of previous work on concept
map extraction (Valerio and Leake, 2008; Zouaq and
Nkambou, 2009) and the various errors associated
with that process.

3.2 Edge Relations

Since edge relations used in conceptual graphs often
depict abstract, domain-independent relationships
(Graesser and Clark, 1985; Gordon et al., 1993), it
might be inferred that these types of relationships,
e.g. is-a, has-part, has-property, are
exhaustive. While such abstract relationships may
be able to cover a sizable percentage of all relation-
ships previous work suggests new content can drive

new additions to that set (Fisher et al., 2000). In or-
der to verify the completeness of our edge relations,
we undertook an analysis of concept maps from bi-
ology.

Over a few hours, we manually clustered 4371 bi-
ology triples available on the Internet1 that span the
two topics of molecules & cells and population bi-
ology. Although these two topics represent a small
subset of biology topics, we hypothesize that as the
extremes of levels of description in biology, their re-
lations will be representative of the levels between
them.

Consistent with previous reported concept map
research in biology (Fisher et al., 2000), our cluster
analysis revealed that 50% of all relations were
either is-a, has-part, or has-property.
Overall, 252 relation types clustered into 20 rela-
tions shown in Table 1. The reduction from 252
relation types to 20 clusters generally lost little
information because the original set of relations
included many specific subclass relationships, e.g.
part-of had the subclasses composed of, has
organelle, organelle of, component
in, subcellular structure of, has
subcellular structure. In most cases
subclassing of this kind is recoverable from infor-
mation distributed across nodes. For example, if we
know that golgi body is-a organelle and we know
that eukaryotic cell has-part golgi body, then
the original relation golgi body organelle of
eukaryotic cell is implied.

Additional edge relations were added based on
the psychology literature (Graesser and Clark, 1985;
Gordon et al., 1993) as well as adjunct information
gleaned from the parser described in the next sec-
tion, raising the total number of edge relations to
30. As indicated by Table 1 a great deal of over-
lap exists between the clustered edge relations and
those in the psychological literature. However, nei-
ther goal-oriented relationships nor logical relation-
ships (and/or) were included as these did not seem
appropriate for the domain (a cell divides because it
must, not because it “wants to”). We also removed
general relations that overlapped with more specific
ones, e.g. temporal is replaced by before, during,
after. We hypothesize that the edge relation scheme

1http://www.biologylessons.sdsu.edu
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Relation Clustered Gordon Adjunct Relation Clustered Gordon Adjunct
after * has-consequence * * *
before * has-part * *
combine * has-property * *
connect * * implies *
contain * * isa * *
contrast * lack *
convert * location * *
definition * manner * *
direction * not *
during * * possibility *
enable * produce *
example * purpose *
extent * reciprocal *
follow * require *
function * same-as * *

Table 1: Edge relations from cluster analysis, Gordon et al. (1993), and parser adjunct labels

in Table 1 would be portable to other domains, but
some additional tuning would be necessary to cap-
ture fine-grained, domain specific relationships.

3.3 Automatic Extraction

According to the representational scheme defined
above, triples always begin with a key term that is
connected by a relation to either another key term
or a propositional phrase. In other words, each key
term is the center of a radial graph. Triples begin-
ning and ending with key terms bridge these radial
graphs. The automatic extraction process follows
this representational scheme. Additionally, the fol-
lowing process was developed using a biology glos-
sary and biology study guide as a development data
set, so training and testing data were kept separate in
this study.

We processed a high school biology text (Miller
and Levine, 2002), using its index and glossary as
sources of key terms as described above, using the
LTH SRL2 parser. The LTH SRL parser is a seman-
tic role labeling parser that outputs a dependency
parse annotated with PropBank and NomBank pred-
icate/argument structures (Johansson and Nugues,
2008; Meyers et al., 2004; Palmer et al., 2005). For
each word token in a parse, the parser returns in-

2The Swedish “Lunds Tekniska Högskola” translates as
“Faculty of Engineering”

formation about the word token’s part of speech,
lemma, head, and relation to the head. Moreover,
it uses PropBank and NomBank to identify pred-
icates in the parse, either verbal predicates (Prop-
Bank) or nominal predicates (NomBank), and their
associated arguments. A slightly abbreviated exam-
ple parse corresponding to the concept map in Fig-
ure 1 is shown in Table 2.

In Table 2 the root of the sentence is “is,” whose
head is token 0 (the implied root token) and whose
dependents are “abdomen” and “part,” the subject
and predicate, respectively. Predicate “part.01,” be-
ing a noun, refers to the Nombank predicate “part”
roleset 1. This predicate has a single argument of
type A1, i.e. theme, which is the phrase domi-
nated by “of,” i.e. “of an arthopod’s body.” Predi-
cate “body.03” refers to Nombank predicate “body”
roleset 3 and also has a single argument of type A1,
“arthopod,” dominating the phrase “an arthopod’s.”
Potentially each of these semantic predicates repre-
sents a relation, e.g. has-part, and the syntactic in-
formation in the parse also suggests relations, e.g.
ABDOMEN is-a.

The LTH parser also marks adjunct arguments.
For example, consider the sentence “During electron
transport, H+ ions build up in the intermembrane
space, making it positively charged.” There are four
adjuncts in this sentence: “During electron trans-
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port” is a temporal adjunct, “in the intermembrane
space” is a locative adjunct, “making it positively
charged” is an adverbial adjunct, and “positively” is
a manner adjunct. The abundance of these adjuncts
led to the pragmatic decision to include them as edge
relation indicators in Table 1.

After parsing, four triple extractor algorithms are
applied to each sentence, targeting specific syntac-
tic/semantic features of the parse, is-a, adjectives,
prepositions, and predicates. Each extractor first at-
tempts to identify a key term as a possible start node.
The search for key terms is greedy, attempting to
match an entire phrase if possible, e.g. “abiotic fac-
tor” rather than “factor,” by searching the depen-
dents of an argument and applying morphological
rules for pluralization. If no key term can be found,
the prospective triple is discarded. Potentially, some
unwanted loss can occur at this stage because of
unresolved anaphora. However, it appears that the
writing style of the particular textbook used, Miller
and Levine (2002), generally minimizes anaphoric
reference.

As exemplified by Figure 1 and Table 2, several
edge relations are handled purely syntactically. The
is-a extractor considers when the root verb of the
sentence is “be,” but not a helping verb. Is-a rela-
tions can create a special context for processing ad-
ditional relations. For example, in the sentence, “An
abdomen is a posterior part of an arthropod’s body,”
“posterior” modifies “part,” but the desired triple is
abdomen has-property posterior. This is an ex-
ample of the adjective extraction algorithm running
in the context of an is-a relation: rather than al-
ways using the head of the adjective as the start of
the triple, the adjective extractor considers whether
the head is a predicate nominative. Prepositions can
create a variety of edge relations. For example, if
the preposition has part of speech IN and has a LOC
dependency relation to its head (a locative relation),
then the appropriate relation is location, e.g. “by
migrating whales in the Pacific Ocean.” becomes
whales location in the Pacific Ocean.

The predicates from PropBank and NomBank use
specialized extractors that consider both their argu-
ment structure as well as the specific sense of the
predicate used. As illustrated in some of the preced-
ing examples, not all predicates have an A0. Like-
wise not all predicates have patient/instrument roles

like A1 and A2. Ideally, every predicate would
start with A0 and end with A1, but the variability
in predicate arguments makes simple mapping unre-
alistic. To assist the predicate extractors, we created
a manual mapping between predicates, arguments,
and edge relations, for every predicate that occurred
more that 40 times in the textbook. Table 3 lists the
four most common predicates and their mappings.

Predicate Edge Relation Start End
have.03 HAS PROPERTY A0 Span
use.01 USE A0 Span
produce.01 PRODUCE A0 Span
call.01 HAS DEFINITION A1 A2

Table 3: Predicate map examples

The label “Span” in the last column indicates that
the end node of the triple should be the text domi-
nated by the predicate. Consider the example, “The
menstrual cycle has four phases” has AO cycle and
A1 phases. Using just A0 and A1, the extracted
triple would be menstrual cycle has-property
phases. Using the span dominated by the predi-
cate yields menstrual cycle has-property four
phases, which is more correct in this situation. As
can be seen in this example, end nodes based on
predicate spans tend to contain more words and
therefore have closer fidelity to the original sen-
tence.

After triples are extracted from the parse, they
are filtered to remove triples that are not particularly
useful for generating concept map exercises. Filters
are applied on the back end rather than during the
extraction process because the triples discarded at
this stage might be usefully used for other applica-
tions such as student modeling or question genera-
tion. The first three filters used are straightforward
and require little explanation: the repetition filter,
the adjective filter, and the nominal filter. The repeti-
tion filter considers the number of words in common
between the start and end nodes. If the number of
shared words is more than half the words in the end
node, the triple is filtered. This helps alleviate redun-
dant triples such as cell has-property cell. The
adjective filter removes any triple whose key term is
an adjective. These triples violate the assumption by
the question generator that all key terms are nouns.
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Id Form Lemma POS Head Dependency Relation Predicate Arg 1 Arg 2
1 abdomen abdomen NN 2 SBJ
2 is be VBZ 0 ROOT
3 a DT 5 NMOD
4 posterior posterior JJ 5 NMOD
5 part part NN 2 PRD part.01
6 of IN 5 NMOD A1
7 an DT 8 NMOD
8 arthropod arthropod NN 10 NMOD A1
9 s POS 8 SUFFIX
10 body body NN 6 PMOD body.03
11 . . 2 P

Table 2: A slightly simplified semantic parse

Has-property edge relations based on adjectives
were also filtered because they tend to overgener-
ate. Finally the nominal filter removes all NomBank
predicates except has-part predicates, since these of-
ten have Span end nodes and so contain themselves,
e.g. light has-property the energy of sunlight.

The final filter uses likelihood ratios to establish
whether the relation between start and end nodes
is meaningful, i.e. something not likely to occur
by chance. This filter measures the association be-
tween the start and end node using likelihood ratios
(Dunning, 1993) and a χ2 significance criterion to
remove triples with insignificant association. As a
first step in the filter, words from the end node that
have low log entropy are removed prior to calcula-
tion. This penalizes non-distinctive words that occur
in many contexts. Next, the remaining words from
start and end nodes are pooled into bags of words,
and the likelihood ratio calculated. By transforming
the likelihood ratio to be χ2 distributed (Manning
and Schütze, 1999), and applying a statistical signif-
icance threshold of .0001, triples with a weak associ-
ation between start and end nodes were filtered out.
The likelihood ratio filter helps prevent sentences re-
lated to specific examples from being integrated into
concept maps for a general concept. For example,
the sentence “In most houses, heat is supplied by
a furnace that burns oil or natural gas.” from the
textbook is part of a larger discussion about home-
ostatis. An invalid triple implied by the sentence is
heat has-property supplied by a furnace. Since
heat and furnace do not have a strong association in

the textbook overall, the likelihood ratio filter would
discard this triple.

After filtering, triples belonging to a graph are
rendered to image files using the NodeXL3 graphing
library. In each image file, a key term defines the
center of a radial graph. To prevent visual clutter,
triples that have the same edge type can be merged
into a single node as is depicted in Figure 2.

4 Evaluation

A comparison study using gold-standard, human
generated maps was performed to test the quality
of the concept maps generated by the method de-
scribed in Section 3. The gold-standard maps were
taken from Fisher (2010). Since these maps cover
only a small section of biology, only the correspond-
ing chapters from Miller and Levine (2002), chap-
ters two and seven, were used to generate concept
maps. All possible concept maps were generated
from these two chapters, and then 60 of these con-
cept maps that had a corresponding map in the gold-
standard set were selected for evaluation.

Two judges having background in biology and
pedagogy were recruited to rate both the gold stan-
dard and generated maps. Each map was rated
on the following three dimensions: the cover-
age/completeness of the map with respect to the key
term (Coverage), the accuracy of the map (Accu-
racy), and the pedagogical value of the map (Ped-
agogy). A consistent four item scale was used for

3http://nodexl.codeplex.com/
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Figure 2: Comparison of computer and human generated concept maps for “cohesion.” The computer generated
concept map is on the left, and the human generated map is on the right.

all ratings dimensions. An example of the four item
scale is shown in Table 4.

Score Criteria
1 The map covers the concept.
2 The map mostly covers the concept.
3 The map only slightly covers the concept.
4 The map is unrelated to the concept.

Table 4: Rating scale for coverage

Judges rated half the items, compared their scores,
and then rated the second half of the items. Inter-
rater reliability was calculated on each of the three
measures using Cronbach’s α. Cronbach’s α is more
appropriate than Cohen’s κ because the ratings are
ordinal rather than categorical. A Cronbach’s α for
each measure is presented in Table 5. Most of the
reliability scores in Table 5 are close to .70, which
is typically considered satisfactory reliability. How-
ever, reliability for accuracy was poor at α = .41.

Scale Cronbach’s α
Coverage .75
Accuracy .41
Pedagogy .71

Table 5: Inter-rater reliability

Computer Human
Scale Mean SD Mean SD
Coverage 2.47 .55 1.67 .82
Accuracy 1.87 .67 1.47 .55
Pedagogy 2.53 .74 1.83 .90

Table 6: Inter-rater reliability and mean ratings for com-
puter and human generated maps

Means and standard deviations were computed for
each measure per condition as shown in Table 6. In
general, the means for the computer generated maps
were in between 2 and 3 on the respective scales,
while the human generated maps were between 1
and 2. The outlier is accuracy for the computer gen-
erated maps, which was significantly higher than for
the other scales. However, since the inter-rater reli-
ability for this scale was relatively low, the mean for
accuracy requires closer analysis. Inspection of the
individual means for each judge revealed that judge
A had the same mean accuracy for both human and
computer generated maps, (M = 1.73), while judge
B rated the human maps higher (M = 1.2) and the
computer generated maps lower (M = 2). Thus
it is reasonable to use this more conservative lower
mean, (M = 2), as the estimate of accuracy for the
computer-generated concept maps.
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Wilcoxon signed ranks tests pairing computer and
human generated maps based on their key terms
were computed for each of the three scales. There
was a significant effect for coverage, Z = 2.95,
p < .003, a significant effect for accuracy, Z =
2.13, p < .03, and a significant effect for pedagogy
Z = 2.46, p < .01.

Since the purpose of the computer generated maps
is to help students learn, pedagogy is clearly the
most important of the three scales. In order to assess
how the other scales were related to pedagogy, cor-
relations were calculated. Accuracy and pedagogy
were strongly correlated, r(28) = .57, p < .001.
Coverage and pedagogy were even more strongly
correlated, r(28) = .86, p < .001.

The strong relationship between coverage and
pedagogy suggests that the number of the triples in
the map might be strongly contributing to the judges
ratings. An inspection of the number of triples in the
human maps compared to the computer generated
maps reveals that there are approximately 3.5 times
as many triples in the human maps as the computer
generated maps. To further explore this relationship,
a linear regression was conducted using the log of
number of triples in each graph to predict the mean
pedagogy score for that graph. The log number of
triples in a graph significantly predicted pedagogy
ratings, b = −.96, t(28) = −3.47, p < .002. The
log number of triples in the graph explained a sig-
nificant proportion of variance in pedagogy ratings,
r2 = .30, F (1, 28) = 12.02, p < .002.

These results are encouraging on two fronts. First,
the computer generated maps are on average “mostly
accurate.” Secondly, the computer generated maps
fare less well for coverage and pedagogy, but these
two scale are highly correlated, suggesting that
judges are using a criterion largely based on com-
pleteness when scoring maps. The strength of the
log number of triples in a graph as a predictor of ped-
agogy likewise indicates that increasing the number
of triples in each graph, which would require access
to a larger sample of texts on these topics, would
increase the pedagogical ratings for the computer
generated maps. However, while gaps in the maps
would be problematic if the students were using
the maps as an authoritative source for study, gaps
are perfectly acceptable for expert skeleton concept
maps.

5 Conclusion

In this paper we have presented a methodology for
creating expert skeleton concept maps from text-
books. Our comparative analysis using human gen-
erated concept maps as a gold standard suggests that
our maps are mostly accurate and are appropriate for
use as expert skeleton concept maps.

Ideally student concept maps that extend these
skeleton maps would be automatically scored and
feedback given as is already done in intelligent tu-
toring systems like Betty’s Brain and CIRCSIM Tu-
tor(Biswas et al., 2005; Evens et al., 2001). Both
of these systems use expert-generated maps as gold
standards by which to evaluate student maps. There-
fore automatic scoring of our expert skeleton con-
cept maps would require a more complete map in
the background.

In future work we will examine increasing the
number of knowledge sources to see if this will in-
crease the pedagogical value of the concept maps
and allow for automatic scoring. However, increas-
ing the knowledge sources will also likely lead to
an increase not only in total information but also in
redundant information. Thus extending this work
to include more knowledge sources will likely re-
quire incorporating techniques from the summariza-
tion and entailment literatures to remove redundant
information.
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Mikel Larrañaga, Urko Rueda, Jon A. Elorriaga, and
Ana Arruarte Lasa. 2004. Acquisition of the domain
structure from document indexes using heuristic rea-
soning. In Intelligent Tutoring Systems, pages 175–
186.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1318–1327, Singapore, August. As-
sociation for Computational Linguistics.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel
Szekely, Veronika Zielinska, Brian Young, and Ralph
Grishman. 2004. The NomBank project: An interim
report. In A. Meyers, editor, HLT-NAACL 2004 Work-
shop: Frontiers in Corpus Annotation, pages 24–31,
Boston, Massachusetts, USA, May 2 - May 7. Associ-
ation for Computational Linguistics.

Kenneth R. Miller and Joseph S. Levine. 2002. Prentice
Hall Biology. Pearson Education, New Jersey.

Joel J. Mintzes, James H. Wandersee, and Joseph D. No-
vak. 2005. Assessing science understanding: A hu-
man constructivist view. Academic Press.

Roberto Navigli and Paola Velardi. 2008. From glos-
saries to ontologies: Extracting semantic structure
from textual definitions. In Proceeding of the 2008
conference on Ontology Learning and Population:
Bridging the Gap between Text and Knowledge, pages
71–87, Amsterdam, The Netherlands, The Nether-
lands. IOS Press.

John C. Nesbit and Olusola O. Adesope. 2006. Learning
with concept and knowledge maps: A meta-analysis.
Review of Educational Research, 76(3):413–448.

Joeseph D. Novak and Alberto J. Canas. 2006. The
theory underlying concept maps and how to construct
them. Technical report, Institute for Human and Ma-
chine Cognition, January.

Joeseph D. Novak. 1990. Concept mapping: A useful
tool for science education. Journal of Research in Sci-
ence Teaching, 27(10):937–49.

Angela O’Donnell, Donald Dansereau, and Richard Hall.
2002. Knowledge maps as scaffolds for cognitive pro-
cessing. Educational Psychology Review, 14:71–86.
10.1023/A:1013132527007.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Comput. Linguist., 31(1):71–106.

John F. Sowa. 2007. Conceptual graphs. In
F. Van Harmelen, V. Lifschitz, and B. Porter, editors,
Handbook of knowledge representation, pages 213–
237. Elsevier Science, San Diego, USA.

John F. Sowa. 2009. Conceptual graphs for representing
conceptual structures. In P. Hitzler and H. Scharfe,
editors, Conceptual Structures in Practice, pages 101–
136. Chapman & Hall/CRC.

Alejandro Valerio and David B. Leake. 2008. Associ-
ating documents to concept maps in context. In A. J.
Canas, P. Reiska, M. Ahlberg, and J. D. Novak, editors,
Proceedings of the Third International Conference on
Concept Mapping.

Amal Zouaq and Roger Nkambou. 2009. Evaluating
the generation of domain ontologies in the knowledge
puzzle project. IEEE Trans. on Knowl. and Data Eng.,
21(11):1559–1572.

119


