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Abstract 

We introduce a method for learning to 
describe the attendant contexts of a given 
query for language learning. In our 
approach, we display phraseological 
information in the form of a summary of 
general patterns as well as lexical bundles 
anchored at the query. The method 
involves syntactical analyses and inverted 
file construction. At run-time, grammatical 
constructions and their lexical 
instantiations characterizing the usage of 
the given query are generated and 
displayed, aimed at improving learners’ 
deep vocabulary knowledge. We present a 
prototype system, GRASP, that applies the 
proposed method for enhanced collocation 
learning. Preliminary experiments show 
that language learners benefit more from 
GRASP than conventional dictionary 
lookup. In addition, the information 
produced by GRASP is potentially useful 
information for automatic or manual 
editing process. 

1 Introduction 

Many learners submit word or phrase queries (e.g., 
“ role”) to language learning sites on the Web to 
get usage information every day, and an increasing 
number of services on the Web specifically target 
such queries. Language learning tools such as 
concordancers typically accept single-word queries 

and respond with example sentences containing the 
words. There are also collocation reference tools 
such as Sketch Engine and TANGO that provide 
co-occurring words for the query word. Another 
collocation tool, JustTheWord further organizes 
and displays collocation clusters. 

Learners may want to submit phrase queries 
(fixed or rigid collocaions) to learn further how to 
use the phrase in context, or in other words, to 
acquire the knowledge on the attendant 
phraseology of the query. These queries could be 
answered more appropriately if the tool accepted 
long queries and returned a concise summary of 
their surrounding contexts. 

Consider the query “play role”. The best 
responses for this query are probably not just 
example sentences, but rather the phraseological 
tendencies described grammatically or lexically. A 
good response of such a summary might contain  
patterns such as “play Det Adj role” (as in “play an 
important role”) and “play ~ role in V-ing” (as in 
“play ~ role in shaping …”). Intuitively, by 
exploiting simple part-of-speech analysis, we can 
derive such patterns, inspired by the grammatical 
theory of Pattern Grammar1 in order to provide 
more information on demand beyond what is given 
in a grammar book. 

We present a system, GRASP, that provide a 
usage summary of the contexts of the query in the 
form of patterns and frequent lexical bundles. Such 
rich information is expected to help learners and 
lexicographers grasp the essence of word usages. 
An example GRASP response for the query “play 

                                                           
1 Please refer to (Hunston and Francis, 2000). 
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role” is shown in Figure 1. GRASP has retrieved 
the sentences containing the query in a reference 
corpus. GRASP constructs these query-to-sentence 
index in the preparation stage (Section 3). 

 
Figure 1. An example GRASP search for “play role”. 

 
At run-time, GRASP starts with a search query 

(e.g., “play role”) submitted by the user. GRASP 
then retrieves example sentences and generates a 
summary of representative contexts, using patterns 
(e.g., “play ~ role in V-ing”) and lexical bundles 
(e.g., “play ~ role in shaping. In our 
implementation, GRASP also returns the 
translations and the example sentences of the 
lexical instances, so the learner can use their 
knowledge of native language to enhance the 
learning process. 

2 Related Work 

Computer-assisted language learning (CALL) has 
been an area of active research. Recently, more and 
more research based on natural language 

processing techniques has been done to help 
language learners. In our work, we introduce a 
language learning environment, where summarized 
usage information are provided, including how 
function words and verb forms are used in 
combination with the query. These usage notes 
often help contrast the common sources of error in 
learners’ writing (Nicholls, 1999). In our pilot 
teaching experiment, we found learners have 
problems using articles and prepositions correctly 
in sentence composition (as high as 80% of the 
articles and 60% of the prepositions were used 
incorrectly), and GRASP is exactly aimed at 
helping ESL or EFL learners in that area. 

Until recently, collocations and usage 
information are compiled mostly manually 
(Benson et al., 1986). With the accessibility to 
large-scale corpora and powerful computers, it has 
become common place to compile a list of 
collocations automatically (Smadja, 1993). In 
addition, there are many collocation checkers 
developed to help non-native language learners 
(Chang et al., 2008), or learners of English for 
academic purposes (Durrant, 2009). 

Recently, automatic generation of collocations 
for computational lexicography and online 
language learning has drawn much attention. 
Sketch Engine (Kilgarriff et al., 2004) summarizes 
a word’s grammatical and collocation behavior, 
while JustTheWord clusters the co-occurring 
words of single-word queries and TANGO (Jian et 
al., 2004) accommodates cross-lingual collocation 
searches. Moreover, Cheng et al. (2006) describe 
how to retrieve mutually expected words using 
concgrams. In contrast, GRASP, going one step 
further, automatically computes and displays the 
information that reveals the regularities of the 
contexts of user queries in terms of grammar 
patterns. 

Recent work has been done on incorporating 
word class information into the analyses of 
phraseological tendencies. Stubbs (2004) 
introduces phrase-frames, which are based on 
lexical ngrams with variable slots, while Wible et 
al. (2010) describe a database called StringNet, 
with lexico-syntactic patterns. Their methods of 
using word class information are similar in spirit to 
our work. The main differences are that our 
patterns is anchored with query words directly and 
generalizes query’s contexts via parts-of-speech, 
and that we present the query’s usage summary in 

Search query: 

Mapping query words to (position, sentence) pairs: 
“play” occurs in (10,77), (4,90), (6,102), …, and so on. 
“role” occurs in (7,90), (12,122), (6,167), …, and so on. 

A. In-between pattern grammar: 
   Distance 3 (1624): 
play DT JJ role (1364): 
e.g., ‘play an important role’ (259), ‘play a major role’ (168), … 
play DT VBG role (123): 
e.g., ‘play a leading role’ (75), ‘play a supporting role’ (5), … 
play DT JJR role (40): 
e.g., ‘play a greater role’ (17), ‘play a larger role’ (8), … 
   Distance 2 (480): 
play DT role (63): 
e.g., ‘play a role’ (197), ‘play the role’ (123), … 
play JJ role (63): 
e.g., ‘play important role’ (15), ‘play different role’ (6), … 
   Distance 1 (6): 
play role (6) 
B. Subsequent pattern grammar: 
play ~ role IN(in) DT (707): 
e.g., ‘play ~ role in the’ (520), ‘play ~ role in this’ (24), … 
play ~ role IN(in) VBG (407): 
e.g., ‘play ~ role in shaping’ (22), … 
play ~ role IN(in) NN (166): 
e.g., ‘play ~ role in society’ (7), ‘play ~ role in relation’ (5), … 
C. Precedent pattern grammar: 
NN MD play ~ role (83): 
e.g., ‘communication will play ~ role ’ (2), … 
JJ NNS play ~ role (69): 
e.g., ‘voluntary groups play ~ role’ (2), … 

Type your search query, and push GRASP! 
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terms of function words as well as content word 
form (e.g., “play ~ role in V-ing”), as well as 
elastic lexical bundles (e.g., “play ~ role in 
shaping”). Additionally, we also use semantic 
codes (e.g., PERSON) to provide more information 
in a way similar what is provided in learner 
dictionaries. 

3 The GRASP System 

3.1 Problem Statement 

We focus on constructing a usage summary likely 
to explain the contexts of a given linguistic search. 
The usage summary, consisting of the query’s 
predominant attendant phraseology ranging from 
pattern grammar to lexical phrases, is then returned 
as the output of the system. The returned summary, 
or a set of patterns pivoted with both content and 
function words, can be used for learners’ benefits 
directly, or passed on to an error detection and 
correction system (e.g., (Tsao and Wible, 2009) 
and some modules in (Gamon et al., 2009) as rules. 
Therefore, our goal is to return a reasonable-sized 
set of lexical and grammatical patterns 
characterizing the contexts of the query. We now 
formally state the problem that we are addressing. 

Problem Statement: We are given a reference 
corpus C from a wide range of sources and a 
learner search query Q. Our goal is to construct a 
summary of word usages based on C that is likely 
to represent the lexical or grammatical preferences 
on Q’s contexts. For this, we transform the words 
in Q into sets of (word position, sentence record) 
pairs such that the context information, whether 
lexically- or grammatical-oriented, of the querying 
words is likely to be acquired efficiently. 

In the rest of this section, we describe our 
solution to this problem. First, we define a strategy 
for preprocessing our reference corpus (Section 
3.2). Then, we show how GRASP generates 
contextual patterns, comprising the usage summary, 
at run-time (Section 3.3). 

3.2 Corpus Preprocessing 

We attempt to find the word-to-sentence mappings 
and the syntactic counterparts of the L1 sentences 
expected to speed up run-time pattern generation. 
Our preprocessing procedure has two stages. 
Lemmatizing and PoS Tagging. In the first stage, 
we lemmatize each sentence in the reference 

corpus C and generate its most probable POS tag 
sequence. The goal of lemmatization is to reduce 
the impact of morphology on statistical analyses 
while that of POS tagging is to provide a way to 
grammatically describe and generalize the 
contexts/usages of a linguistic query. Actually, 
using POS tags is quite natural: they are often used 
for general description in grammar books, such as 
one’s (i.e., possessive pronoun) in the phrase 
“make up one’s mind”, oneself (i.e., reflexive 
pronoun) in “enjoy oneself very much”, 
superlative_adjective in “the most 
superlative_adjective”, NN (i.e., noun) and VB (i.e., 
base form of a verb) in “insist/suggest/demand that 
NN VB” and so on. 
Constructing Inverted Files. In the second stage, 
we build up inverted files of the lemmas in C for 
quick run-time search. For each lemma, we record 
the sentences and positions in which it occurs. 
Additionally, its corresponding surface word and 
POS tag are kept for run-time pattern grammar 
generation. 
 

Figure 2. Generating pattern grammar and usage 
summary at run-time. 

procedure GRASPusageSummaryBuilding(query,proximity,N,C) 
(1)  queries=queryReformulation(query) 
(2)  GRASPresponses= φ  

for each query in queries 
(3)    interInvList=findInvertedFile(w1 in query) 

for each lemma wi in query except for w1 
(4)      InvList=findInvertedFile(wi) 

//AND operation on interInvList and InvList 
(5a)    newInterInvList= φ ; i=1; j=1 
(5b)    while i<=length(interInvList) and j<=lengh(InvList) 
(5c)       if interInvList[i].SentNo==InvList[ j].SentNo 
(5d)         if withinProximity(interInvList[ i]. 

wordPosi,InvList[ j].wordPosi,proximity) 
(5e)   Insert(newInterInvList, interInvList[i],InvList[j]) 

else if interInvList[i].wordPosi<InvList[j].wordPosi 
(5f)   i++ 

else //interInvList[ i].wordPosi>InvList[ j].wordPosi 
(5g)   j++ 

else if interInvList[i].SentNo<InvList[ j].SentNo 
(5h)          i++ 

else //interInvList[i].SentNo>InvList[j].SentNo 
(5i)           j++ 
(5j)     interInvList=newInterInvList 

//construction of GRASP usage summary for this query 
(6)    Usage= φ  

for each element in interInvList 
(7)       Usage+={PatternGrammarGeneration(query,element,C)} 
(8a)  Sort patterns and their instances in Usage in descending order 

of frequency 
(8b)  GRASPresponse=the N patterns and instances in Usage with 

highest frequency 
(9)    append GRASPresponse to GRASPresponses 
(10) return GRASPresponses 
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3.3 Run-Time Usage Summary Construction 

Once the word-to-sentence mappings and syntactic 
analyses are obtained, GRASP generates the usage 
summary of a query using the procedure in Figure 
2. 

In Step (1) we reformulate the user query into 
new ones, queries, if necessary. The first type of 
query reformulation concerns the language used in 
query. If it is not in the same language as C, we 
translate query and append the translations to 
queries as if they were submitted by the user. The 
second concerns the length of the query. Since 
single words may be ambiguous in senses and 
contexts or grammar patterns are closely associated 
with words’ meanings (Hunston and Francis, 2000), 
we transform single-word queries into their 
collocations, particularly focusing on one word 
sense (Yarowsky, 1995), as stepping stones to 
GRASP patterns. Notice that, in implementation, 
users may be allowed to choose their own 
interested translation or collocation of the query 
for usage learning. The prototypes for first-
language (i.e., Chinese) queries and English 
queries of any length are at A2 and B3 respectively. 
The goal of cross-lingual GRASP is to assist EFL 
users even when they do not know the words of 
their searches and to avoid incorrect queries 
largely because of miscollocation, misapplication, 
and misgeneralization. 

Afterwards, we initialize GRASPresponses to 
collect usage summaries for queries (Step (2)) and 
leverage inverted files to extract and generate each 
query’s syntax-based contexts. In Step (3) we prep 
interInvList for the intersected inverted files of the 
lemmas in query. For each lemma wi within, we 
first obtain its inverted file, InvList (Step (4)) and 
perform an AND operation on interInvList 
(intersected results from previous iteration) and 
InvList (Step (5a) to (5j)4), defined as follows. 

First, we enumerate the inverted lists (Step (5b)) 
after the initialization of their indices i and j and 
temporary resulting intersection newInterInvList 
(Step (5a)). Second, we incorporate a new instance 
of (position, sentence), based on interInvList[i] and 
InvList[j], into newInterInvList (Step (5e)) if the 
sentence records of the indexed list elements are 
the same (Step (5c)) and the distance between their 
                                                           
2 http://140.114.214.80/theSite/bGRASP_v552/ 
3 http://140.114.214.80/theSite/GRASP_v552/ 
4 These steps only hold for sorted inverted files. 

words are within proximity (Step (5d)). Otherwise, 
i and j are moved accordingly. To accommodate 
the contexts of queries’ positional variants (e.g., 
“ role to play” and “role ~ play by” for the query 
“play role”), Step (5d) considers the absolute 
distance. Finally, interInvList is set for the next 
AND iteration (Step (5j)). 

Once we obtain the sentences containing query, 
we construct its context summary as below. For 
each element, taking the form ([wordPosi(w1), …, 
wordPosi(wn)], sentence record) denoting the 
positions of query’s lemmas in the sentence, we 
generate pattern grammar involving replacing 
words in the sentence with POS tags and words in 
wordPosi(wi) with lemmas, and extracting fixed-
window5  segments surrounding query from the 
transformed sentence. The result is a set of 
grammatical patterns with counts. Their lexical 
realizations also retrieved and displayed. 

The procedure finally generates top N 
predominant syntactic patterns and their N most 
frequent lexical phrases as output (Step (8)). The 
usage summaries GRASP returns are aimed to 
accelerate EFL learners’ language understanding 
and learning and lexicographers’ word usage 
navigation. To acquire more semantic-oriented 
patterns, we further exploit WordNet and majority 
voting to categorize words, deriving the patterns 
like “provide PERSON with.” 

4 Experimental Results 

GRASP was designed to generate usage 
summarization of a query for language learning. 
As such, GRASP will be evaluated over CALL. In 
this section, we first present the setting of GRASP 
(Section 4.1) and report the results of different 
consulting systems on language learning in Section 
4.2. 

4.1 Experimental Setting 

We used British National Corpus (BNC) as our 
underlying reference corpus C. It is a British 
English text collection. We exploited GENIA 
tagger to obtain the lemmas and POS tags of C’s 
sentences. After lemmatizing and syntactic 
analyses, all sentences in BNC were used to build 
up inverted files and used as examples for 
grammar pattern extraction. 

                                                           
5 Inspired by (Gamon and Leacock, 2010). 
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English (E) sentence with corresponding Chinese (C) translation answer to 1st blank  answer to 2nd blank 
C: 環境保護對地球有深遠的影響 
E: Environmental protection has ___ impact ___. 

a profound on the Earth 

C: 房屋仲介商在賣屋上大賺一筆 
E: The real estate agent ___ record profit ___. 

made a on house selling 

C: 他們打算在不久將來推出新專輯 
E: They plan to release their new album in ___ future 

the near none 

C: 他為了再見她一面等了很久 
E: He waited for her for a long time in ___ attempt ___ again. 

an to see her 

 

4.2 Results of Constrained Experiments 

In our experiments, we showed GRASP6 to two 
classes of Chinese EFL (first-year) college students. 
32 and 86 students participated, and were trained 
to use GRASP and instructed to perform a sentence 
translation/composition task, made up of pretest 
and posttest. In (30-minute) pretest, participants 
were to complete 15 English sentences with 
Chinese translations as hints, while, in (20-minute) 
posttest, after spending 20 minutes familiarizing 
word usages of the test candidates from us by 
consulting traditional tools or GRASP, participants 
were also asked to complete the same English 
sentences. We refer to the experiments as 
constrained ones since the test items in pre- and 
post-test are the same except for their order. A 
more sophisticated testing environment, however, 
are to be designed. 

Each test item contains one to two blanks as 
shown in the above table. In the table, the first item 
is supposed to test learners’ knowledge on the 
adjective and prepositional collocate of “have 
impact” while the second test the verb collocate 
make, subsequent preposition on, and preceding 
article a of “record profit”. On the other hand, the 
third tests the ability to produce the adjective 
enrichment of “in future”, and the fourth the in-
between article a or possessive his and the 
following infinitive of “ in attempt”. Note that as 
existing collocation reference tools retrieve and 
display collocates, they typically ignore function 
words like articles and determiners, which happen 
to be closely related to frequent errors made by the 
learners (Nicholls, 1999), and fail to provide an 
overall picture of word usages. In contrast, GRASP 
attempts to show the overall picture with 
appropriate function words and word forms. 

We selected 20 collocations and phrases 7 
manually from 100 most frequent collocations in 
                                                           
6 http://koromiko.cs.nthu.edu.tw/grasp/ 
7 Include the 15 test items. 

BNC whose MI values exceed 2.2 and used them 
as the target for learning between the pretest and 
posttest. To evaluate GRASP, half of the 
participants were instructed to use GRASP for 
learning and the other half used traditional tools 
such as online dictionaries or machine translation 
systems (i.e., Google Translate and Yahoo! Babel 
Fish). We summarize the performance of our 
participants on pre- and post-test in Table 1 where 
GRASP denotes the experimental group and TRAD 
the control group. 
 
 class 1 class 2 combined 
 pretest posttest  pretest  posttest  pretest posttest 
GRASP 26.4 41.9 43.6 58.4 38.9 53.9 
TRAD 27.1 32.7 43.8 53.4 39.9 48.6 

Table 1. The performance (%) on pre- and post-test. 
 

We observe in Table 1 that (1) the partition of 
the classes was quite random (the difference 
between GRASP and TRAD was insignificant 
under pretest); (2) GRASP summaries of words’ 
contexts were more helpful in language learning 
(across class 1, class 2 and combined). Specifically, 
under the column of the 1st class, GRASP helped to 
boost students’ achievements by 15.5%, almost 
tripled (15.5 vs. 5.6) compared to the gain using 
TRAD; (3) the effectiveness of GRASP in language 
learning do not confine to students at a certain 
level. Encouragingly, both high- and low-
achieving students benefited from GRASP if we 
think of students in class 2 and those in class 1 as 
the high and the low respectively (due to the 
performance difference on pretests). 

We have analyzed some participants’ answers 
and found that GRASP helped to reduce learners’ 
article and preposition errors by 28% and 8%, 
comparing to much smaller error reduction rate 7% 
and 2% observed in TRAD group. Additionally, an 
experiment where Chinese EFL students were 
asked to perform the same task but using GRASP 
as well as GRASP with translation information8 
                                                           
8 http://koromiko.cs.nthu.edu.tw/grasp/ch 
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was conducted. We observed that with Chinese 
translation there was an additional 5% increase in 
students’ test performance. This suggests to some 
extent learners still depend on their first languages 
in learning and first-language information may 
serve as another quick navigation index even when 
English GRASP is presented. 

Overall, we are modest to say that (in the 
constrained experiments) GRASP summarized 
general-to-specific usages, contexts, or phrase-
ologies of words are quite effective in assisting 
learners in collocation and phrase learning. 

5 Applying GRASP to Error Correction 

To demonstrate the viability of GRASP-retrieved 
lexicalized grammar patterns (e.g., “play ~ role In 
V-ING” and “look forward to V-ING”) in error 
detection and correction, we incorporate them into 
an extended Levenshtein algorithm (1966) to 
provide broad-coverage sentence-level grammat-
ical edits (involving substitution, deletion, and 
insertion) to inappropriate word usages in learner 
text. 

Previously, a number of interesting rule-based 
error detection/correction systems have been 
proposed for some specific error types such as 
article and preposition error (e.g., (Uria et al., 
2009), (Lee et al., 2009), and some modules in 
(Gamon et al., 2009)). Statistical approaches, 
supervised or unsupervised, to grammar checking 
have become the recent trend. For example, 
unsupervised systems of (Chodorow and Leacock, 
2000) and (Tsao and Wible, 2009) leverage word 
distributions in general and/or word-specific 
corpus for detecting erroneous usages while 
(Hermet et al., 2008) and (Gamon and Leacock, 
2010) use Web as a corpus. On the other hand, 
supervised models, typically treating error 
detection/correction as a classification problem, 
utilize the training of well-formed texts ((De Felice 
and Pulman, 2008) and (Tetreault et al., 2010)), 
learner texts, or both pairwisely (Brockett et al., 
2006). Moreover, (Sun et al., 2007) describes a 
way to construct a supervised error detection 
system trained on well-formed and learner texts 
neither pairwise nor error tagged. 

In contrast to the previous work in grammar 
checking, our pattern grammar rules are 
automatically inferred from a general corpus (as 
described in Section 3) and helpful for correcting 

errors resulting from the others (e.g., “to close” in 
“play ~ role to close”), our pattern grammar 
lexicalizes on both content and function words and 
lexical items within may be contiguous (e.g., “look 
forward to V-ING PRP”) or non-contiguous (e.g., 
“play ~ role In V-ING”), and, with word class 
(POS) information, error correction or grammatical 
suggestion is provided at sentence level. 

5.1 Error Correcting Process 

Figure 3 shows how we check grammaticality and 
provide suggestions for a given text with accurate 
spelling. 
 

 
Figure 3. Procedure of grammar suggestion/correction. 

 
In Step (1), we initiate a set Suggestions to 

collect grammar suggestions to the user text T 
according to a bank of patterns 
PatternGrammarBank, i.e., a collection of 
summaries of grammatical usages (e.g., “play ~ 
role In V-ING”) of queries (e.g., “play role”) 
submitted to GRASP. Since we focus on grammar 
checking at sentence level, T is heuristically split 
(Step (2)). 

For each sentence, we extract user-proposed 
word usages (Step (3)), that is, the user 
grammatical contexts of ngram and collocation 
sequences. Take for example the (ungrammatical) 
sentences and their corresponding POS sequences 
“he/PRP play/VBP an/DT important/JJ roles/NNS 
to/TO close/VB this/DT deals/NNS” and “he/PRP 
looks/VBZ forward/RB to/TO hear/VB you/PRP”. 
Ngram contexts include “he VBP DT”, “play an JJ 
NNS”, “this NNS” for the first sentence and “look 
forward to VB PRP” and “look forward to hear 
PRP” for the second. And collocation contexts for 

procedure GrammarChecking(T,PatternGrammarBank) 
(1) Suggestions=“”//candidate suggestions 
(2) sentences=sentenceSplitting(T) 

for each sentence in sentences 
(3)   userProposedUsages=extractUsage(sentence) 

for each userUsage in userProposedUsages 
(4)     patGram=findPatternGrammar(userUsage.lexemes, 

PatternGrammarBank) 
(5)     minEditedCost=SystemMax; minEditedSug=“” 

for each pattern in patGram 
(6)        cost=extendedLevenshtein(userUsage,pattern) 

if cost<minEditedCost 
(7)            minEditedCost=cost; minEditedSug=pattern 

if minEditedCost>0 
(8)       append (userUsage,minEditedSug) to Suggestions 
(9) Return Suggestions 
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the first sentence are “play ~ role to VERB” and 
“close ~ deal .” 

For each userUsage in the sentence (e.g., “play 
~ role TO VB” and “look forward to hear PRP”), 
we first acquire the pattern grammar of its lexemes 
(e.g., “play role” and “look forward to hear”) such 
as “play ~ role in V-ing” and “look forward to 
hear from” in Step (4), and we compare the user-
proposed usage against the corresponding 
predominant, most likely more proper, ones (from 
Step (5) to (7)). We leverage an extended 
Levenshtein’s algorithm in Figure 4 for usage 
comparison, i.e. error detection and correction, 
after setting up minEditedCost and minEditedSug 
for the minimum-cost edit from alleged error usage 
into appropriate one (Step (5)). 
 

 
Figure 4. Extended Levenshtein algorithm for correction. 
 

In Step (1) of the algorithm in Figure 4 we 
allocate and initialize costArray to gather the 
dynamic programming based cost to transform 
userUsage into a specific pattern. Afterwards, the 
algorithm defines the cost of performing 
substitution (Step (2)), deletion (Step (3)) and 
insertion (Step (4)) at i-indexed userUsage and j-
indexed pattern. If the entries userUsage[i] and 
pattern[j] are equal literally (e.g., “VB” and “VB”) 
or grammatically (e.g., “DT” and “PRP$”9), no edit 

                                                           
9 ONE’S denotes possessives. 

is needed, hence, no cost (Step (2a)). On the other 
hand, since learners tend to select wrong word 
form and preposition, we make less the cost of the 
substitution of the same word group, say from 
“VERB” to “V-ing”, “TO” to “In” and “In” to 
“IN( on)” (Step (2b)) compared to a total edit (Step 
(2c)). In addition to the conventional deletion and 
insertion (Step (3b) and (4b) respectively), we look 
ahead to the elements userUsage[i+1] and 
pattern[ j+1] considering the fact that “with or 
without preposition” and “transitive or intransitive 
verb” often puzzles EFL learners (Step (3a) and 
(4a)). Only a small edit cost is applied if the next 
elements in userUsage and Pattern are “equal”. In 
Step (6) the extended Levenshtein’s algorithm 
returns the minimum cost to edit userUsage based 
on pattern. 

Once we obtain the costs to transform the 
userUsage into its related frequent patterns, we 
propose the minimum-cost one as its grammatical 
suggestion (Step (8) in Figure 3), if its minimum 
edit cost is greater than zero. Otherwise, the usage 
is considered valid. At last, the gathered 
suggestions Suggestions to T are returned to users 
(Step (9)). Example edits to the user text “he play 
an important roles to close this deals. he looks 
forward to hear you.” from our working prototype, 
EdIt10, is shown in Figure 5. Note that we exploit 
context checking of collocations to cover longer 
span than ngrams’, and longer ngrams like 
fourgrams and fivegrams to (more or less) help 
semantic checking (or word sense disambiguation). 
For example, “hear” may be transitive or 
intransitive, but, in the context of “look forward 
to”, there is strong tendency it is used intransitively 
and follows by “from”, as EdIt would suggest (see 
Figure 5). 

There are two issues worth mentioning on the 
development of EdIt. First, grammar checkers 
typically have different modules examining 
different types of errors with different priority. In 
our unified framework, we set the priority of 
checking collocations’ usages higher than that of 
ngrams’, set the priority of checking longer 
ngrams’ usages higher than that of shorter, and we 
do not double check. Alternatively, one may first 
check usages of all sorts and employ majority 
voting to determine the grammaticality of a 
sentence. Second, we further incorporate

                                                           
10 http://140.114.214.80/theSite/EdIt_demo2/ 

procedure extendedLevenshtein(userUsage,pattern) 
(1) allocate and initialize costArray 

for i in range(len(userUsage)) 
for j in range(len(pattern)) 

//substitution 
if equal(userUsage[ i],pattern[j]) 

(2a)       substiCost=costArray[ i-1,j-1]+0 
elseif sameWordGroup(userUsage[ i],pattern[j]) 

(2b)       substiCost=costArray[ i-1,j-1]+0.5 
else 

(2c)       substiCost=costArray[ i-1,j-1]+1 
//deletion 
if equal(userUsage[ i+1],pattern[j+1]) 

(3a)       delCost=costArray[ i-1,j]+smallCost 
else 

(3b)       delCost=costArray[ i-1,j]+1 
//insertion 
if equal(userUsage[ i+1],pattern[j+1])  

(4a)        insCost=costArray[ i,j-1]+smallCost 
else 

(4b)       insCost=costArray[ i,j-1]+1 
(5)       costArray[i,j]=min(substiCost,delCost,insCost) 
(6) Return costArray[len(userUsage),len(pattern)] 
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Erroneous sentence EdIt suggestion ESL Assistant suggestion 
Wrong word form 
… a sunny days … a sunny NN a sunny day 
every days, I … every NN every day 
I would said to … would VB would say 
he play a … he VBD none 
… should have tell the truth should have VBN should have to tell 
… look forward to see you look forward to VBG none 
… in an attempt to seeing you an attempt to VB none 
… be able to solved this problem able to VB none 
Wrong preposition 
he plays an important role to close … play ~ role IN(in) none 
he has a vital effect at her. have ~ effect IN(on) effect on her 
it has an effect on reducing … have ~ effect IN(of) VBG none 
… depend of the scholarship depend IN(on) depend on 
Confusion between intransitive and transitive verb 
he listens the music. missing “to” after “listens” missing “to” after “listens” 
it affects to his decision. unnecessary “to” unnecessary “to” 
I understand about the situation. unnecessary “about”  unnecessary “about” 
we would like to discuss about this matter. unnecessary “about” unnecessary “about” 
Mixture 
she play an important roles to close this deals. she VBD; an JJ NN; 

play ~ role IN(in) VBG; this NN 
play an important role; 
close this deal 

I look forward to hear you. look forward to VBG; 
missing “from” after “hear” 

none 

Table 2. Three common score-related error types and their examples with suggestions from EdIt and ESL Assistant. 
 

 
Figure 5. Example EdIt responses to the ungrammatical. 
 
probabilities conditioned on word positions to 
weigh edit costs. For example, the conditional 
probability of “VERB” being the immediate 
follower of “look forward to” is virtually zero, but 
the probability of “V-ing” is around 0.3. 

5.2 Preliminary Results in Error Correction 

We examined three common error types in learner 
text that are highly correlated with essay scores 

(Leacock and Chodorow, 2003; Burstein et al., 
2004), to evaluate EdIt, (see Table 2). In Table 2, 
the results of a state-of-the-art checker, ESL 
Assistant (www.eslassistant.com/), are shown for 
comparison, and information produced by both 
systems are underscored. As indicated, GRASP 
retrieves patterns which are potential useful if 
incorporated into an extension of Levenshtein’s 
algorithm to correct substitution, deletion, and 
insertion errors in learner. 

6 Summary 

We have introduced a new method for producing a 
general-to-specific usage summary of the contexts 
of a linguistic search query aimed at accelerating 
learners’ grasp on word usages. We have 
implemented and evaluated the method as applied 
to collocation and phrase learning and grammar 
checking. In the preliminary evaluations we show 
that GRASP is more helpful than traditional 
language learning tools, and that the patterns and 
lexical bundles provided are promising in detecting 
and correcting common types of errors in learner 
writing. 
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