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Abstract

We present an empirical study of one-on-
one human tutoring dialogues in the domain
of Computer Science data structures. We
are interested in discovering effective tutor-
ing strategies, that we frame as discovering
which Dialogue Act (DA) sequences corre-
late with learning. We employ multiple lin-
ear regression, to discover the strongest mod-
els that explain why students learn during
one-on-one tutoring. Importantly, we define
“flexible” DA sequence, in which extraneous
DAs can easily be discounted. Our experi-
ments reveal several cognitively plausible DA
sequences which significantly correlate with
learning outcomes.

1 Introduction

One-on-one tutoring has been shown to be a very ef-
fective form of instruction compared to other educa-
tional settings. Much research on discovering why
this is the case has focused on the analysis of the
interaction between tutor and students (Fox, 1993;
Graesser et al., 1995; Lepper et al., 1997; Chi et al.,
2001). In the last fifteen years, many such analyses
have been approached from a Natural Language Pro-
cessing (NLP) perspective, with the goal of build-
ing interfaces that allow students to naturally inter-
act with Intelligent Tutoring Systems (ITSs) (Moore
et al., 2004; Cade et al., 2008; Chi et al., 2010).
There have been two main types of approaches to
the analysis of tutoring dialogues. The first kind
of approach compares groups of subjects interact-
ing with different tutors (Graesser et al., 2004; Van-
Lehn et al., 2007), in some instances contrasting the

number of occurrences of relevant features between
the groups (Evens and Michael, 2006; Chi et al.,
2010). However, as we already argued in (Ohlsson
et al., 2007), this code-and-count methodology only
focuses on what a certain type of tutor (assumed to
be better according to certain criteria) doesdiffer-
ently from another tutor, rather than on strategies
that may be effective independently from their fre-
quencies of usage by different types of tutor. Indeed
we had followed this same methodology in previous
work (Di Eugenio et al., 2006), but a key turning
point for our work was to discover that our expert
and novice tutors were equally effective (please see
below).

The other kind of approach uses linear regression
analysis to find correlations between dialogue fea-
tures and learning gains (Litman and Forbes-Riley,
2006; Di Eugenio et al., 2009). Whereas linear
regression is broadly used to analyze experimental
data, only few analyses of tutorial data or tutoring
experiments use it. In this paper, we follow
Litman and Forbes-Riley (2006) in correlating se-
quences of Dialogue Acts (DAs) with learning gains.
We extend that work in that our bigram and trigram
DAs are not limited to tutor-student DA bigrams –
Litman and Forbes-Riley (2006) only considers bi-
grams where one DA comes from the tutor’s turn
and one from the student’s turn, in either order. Im-
portantly, we further relax constraints on how these
sequences are built, in particular, we are able to
model DA sequences that include gaps. This allows
us to discount the noise resulting from intervening
DAs that do not contribute to the effectiveness of
the specific sequence. For example, if we want to
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explore sequences in which the tutor first provides
some knowledge to solve the problem (DPI) and
then knowledge about the problem (DDI) (DPI and
DDI will be explained later), an exchange such as
the one in Figure 1 should be taken into account
(JAC and later LOW are the tutors, students are indi-
cated with a numeric code, such as 113 in Figure 1).
However, if we just use adjacent utterances, theok
from the student (113) interrupts the sequence, and
we could not take this example into account. By al-
lowing gaps in our sequences, we test a large number
of linear regression models, some of which result in
significant models that can be used as guidelines to
design an ITS. Specifically, these guidelines will be
used for further improvement of iList, an ITS that
provides feedback on linked list problems and that
we have developed over the last few years. Five
different versions of iList have been evaluated with
220 users (Fossati et al., 2009; Fossati et al., 2010).
iList is available at http://www.digitaltutor.net, and
has been used by more than 550 additional users at
15 different institutions.

JAC: so we would set k equal to e and then delete. [DPI]
113: ok.
JAC: so we’ve inserted this whole list in here.[DDI ]
113: yeah.

Figure 1:{DPI, DDI} Sequence Excerpt

The rest of the paper is organized as follows.
In Section 2, we describe the CS-Tutoring corpus,
including data collection, transcription, and anno-
tation. In Section 3, we introduce our methodol-
ogy that combines multiple linear regression with n-
grams of DAs that allow for gaps. We discuss our
experiments and results in Section 4.

2 The CS Tutoring Corpus

2.1 Data Collection

During the time span of 3 semesters, we collected a
corpus of 54 one-on-one tutoring sessions on Com-
puter Science data structures:linked list, stackand
binary search tree. (In the following context, we
will refer them asLists, StacksandTrees). Each stu-
dent only participated in one session, and was ran-
domly assigned to one of two tutors: LOW, an expe-
rienced Computer Science professor, with more than

30 years of teaching experience; or JAC, a senior un-
dergraduate student in Computer Science, with only
one semester of previous tutoring experience. In the
end 30 students interacted with LOW and 24 with
JAC.

Students took a pre-test right before the tutoring
session, and an identical post-test immediately after.
The test had two problems on Lists, two problems on
Stacks, and four problems on Trees. Each problem
was graded out of 5 points, for a possible maximum
score of 10 points each for Lists and Stacks, and 20
points for Trees. Pre and post-test scores for each
topic were later normalized to the [0..1] interval, and
learning gains were computed.

Table 1 includes information on session length.
Note that for each topic, the number of sessions is
lower than 54. The tutor was free to tutor on what
he felt was more appropriate, after he was given an
informal assessment of the student’s performance on
the pre-test (tutors were not shown pre-tests to avoid
that they’d tutor to the pre-test only). Hence, not
every student was tutored on every topic.

Topic N
Session length (minutes)

Min Max Total µ σ

Lists 52 3.4 41.4 750.4 14.4 5.8
Stacks 46 0.3 9.4 264.5 5.8 1.8
Trees 53 9.1 40.0 1017.6 19.2 6.6

Sessions 54 12.8 61.1 2032.5 37.6 6.1

Table 1: CS Tutoring Corpus - Descriptives

Each tutoring session was videotaped. The cam-
era was pointing at the sheets of paper on which tu-
tors and students were writing during the session.
The videos were all transcribed. The transcripts
were produced according to the rules and conven-
tions described in the transcription manual of the
CHILDES project (MacWhinney, 2000). Dialogue
excerpts included in this paper show some of the
transcription conventions. For example,’+...’
denotes trailing,’xxx’ unintelligible speech and
’#’ a short pause (see Figure 2). The CHILDES
transcription manual also provides directions on ut-
terance segmentation.

An additional group of 53 students (control
group) took the pre- and post-tests, but instead of
participating in a tutoring session they attended a
40 minute lecture about an unrelated CS topic. The
rationale for such a control condition was to assess
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LOW: what’s the if? [Prompt]
LOW: well of course, don’t do this if t two is null so if t
two isn’t null we can do that and xxx properly # thinking
I put it in here. [DPI]
LOW: or else if t two is null that’s telling us that this is
the +. . . [Prompt,FB]

Figure 2:{Prompt,DPI,FB} sequence excerpt

whether by simply taking the pre-test students would
learn about data-structures, and hence, to tease out
whether any learning we would see in the tutored
conditions would be indeed due to tutoring.

The learning gain, expressed as the difference
between post-score and pre-score, of students that
received tutoring wassignificantly higherthan the
learning gain of the students in the control group, for
all the topics. This was showed by ANOVA between
the aggregated group of tutored students and the
control group, and was significant at thep < 0.01

for each topic. There wasno significant difference
between the two tutored conditions in terms of learn-
ing gain. The fact that students did not learn more
with the experienced tutor was an important finding
that led us to question the approach of comparing
and contrasting more and less experienced tutors.

Please refer to (Di Eugenio et al., 2009) for further
descriptive measurements of the corpus.

2.2 Dialogue Act Annotation

Many theories have been proposed as concerns DAs,
and there are many plausible inventories of DAs, in-
cluding for tutorial dialogue (Evens and Michael,
2006; Litman and Forbes-Riley, 2006; Boyer et al.,
2010). We start from a minimalist point of view,
postulating that, according to current theories of
skill acquisition (Anderson, 1986; Sun et al., 2005;
Ohlsson, 2008), at least the following types of tuto-
rial intervention can be explained in terms of why
and how they might support learning:
1. A tutor can tell the student how to perform the
task.
2. A tutor can state declarative information about
the domain.
3. A tutor can provide feedback:
(a) positive, to confirm that a correct but tentative
step is in fact correct;
(b) negative, to help a student detect and correct an

error.
We first read through the entire corpus and exam-

ined it for impressions and trends, as suggested by
(Chi, 1997). Our informal assessment convinced us
that our minimalist set of tutoring moves was an ap-
propriate starting point. For example, contrary to
much that has been written about an idealized so-
cratic type of tutoring where students build knowl-
edge by themselves (Chi et al., 1994), our tutors
are rather directive in style, namely, they do a lot
of telling andstating. Indeed our tutors talk a lot,
to the tune of producing 93.5% of the total words!
We translated the four types above into the follow-
ing DAs: Direct Procedural Instruction (DPI), Di-
rect Declarative Instruction (DDI), Positive Feed-
back (+FB), and Negative Feedback (-FB). Besides
those 4 categories, we additionally annotated the
corpus for Prompt (PT), since our tutors did explic-
itly invite students to be active in the interaction.
We also annotated for Student Initiative (SI), to cap-
ture active participation on the part of the student’s.
SI occurs when the student proactively produces a
meaningful utterance, by providing unsolicited ex-
planation (see Figures 6 and 4), or by asking ques-
tions. As we had expected, SIs are not as frequent as
other moves (see below). However, this is precisely
the kind of move that a regression analysis would
tease out from others, if it correlates with learning,
even if it occurs relatively infrequently. This indeed
happens in two models, see Table 8.

Direct Procedural Instruction(DPI) occurs when
the tutor directly tells the student what task to per-
form. More specifically:

• Utterances containing correct steps that lead to
the solution of a problem, e.g. see Figure 1.

• Utterances containing high-level steps or sub-
goals (it wants us to put the new node that con-
tains G in it, after the node that contains B).

• Utterances containing tactics and strategies (so
with these kinds of problems, the first thing I
have to say is always draw pictures).

• Utterances where the tutor talked in the first-
person but in reality the tutor instructed the stu-
dent on what to do (So I’m pushing this value
onto a stack. So I’m pushing G back on).

Direct Declarative Instruction (DDI) occurred
when the tutor provided facts about the domain or
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a specific problem. The key to determine if an ut-
terance is DDI is that the tutor is telling the student
something that he or she ostensibly does not already
know. Common sense knowledge is not DDI (ten
is less than eleven). Utterances annotated as DDI
include:

• Providing general knowledge about data struc-
tures (the standard format is right child is al-
ways greater than the parent, left child is al-
ways less than the parent).

• Telling the student information about a specific
problem (this is not a binary search tree).

• Conveying the results of a given action (so now
since we’ve eliminated nine, it’s gone).

• Describing pictures of data structures (and then
there is a link to the next node).

Prompts (PT) occur when the tutor attempts to
elicit a meaningful contribution from the student.
We code for six types of tutor prompts, including:

• Specific prompt: An attempt to get a specific
response from the student (that’s not b so what
do we want to do?).

• Diagnosing: The tutor attempts to determine
the student’s knowledge state (why did you put
a D there?).

• Confirm-OK: The tutor attempts to determine if
the student understood or if the student is pay-
ing attention (okay, got that idea?).

• Fill-in-the-blank: The tutor does not complete
an utterance thereby inviting the student to
complete the utterance, e.g. see Figure 2.

Up to now we have discussed annotations for ut-
terances that do not explicitly address what the stu-
dent has said or done. However, many tutoring
moves concern providing feedback to the student.
Indeed as already known but not often acted upon in
ITS interfaces, tutors do not just point out mistakes,
but also confirm that the student is making correct
steps. While the DAs discussed so far label single
utterances, our positive and negative feedback (+FB
and -FB) annotations comprise a sequence of con-
secutive utterances, that starts where the tutor starts
providing feedback. We opted for a sequence of ut-
terances rather than for labeling one single utterance
because we found it very difficult to pick one single
utterance as the one providing feedback, when the

tutor may include e.g. an explanation that we con-
sider to be part of feedback. Positive feedback oc-
curs when the student says or does something cor-
rect, either spontaneously or after being prompted
by the tutor. The tutor acknowledges the correctness
of the student’s utterance, and possibly elaborates on
it with further explanation. Negative feedback oc-
curs when the student says or does something incor-
rect, either spontaneously or after being prompted
by the tutor. The tutor reacts to the mistake and pos-
sibly provides some form of explanation.

After developing a first version of the coding
manual, we refined it iteratively. During each itera-
tion, two human annotators independently annotated
several dialogues for one DA at a time, compared
outcomes, discussed disagreements, and fine-tuned
the scheme accordingly. This process was repeated
until a sufficiently high inter-coder agreement was
reached. The Kappa values we obtained in the fi-
nal iteration of this process are listed in Table 2
(Di Eugenio and Glass, 2004; Artstein and Poesio,
2008). In Table 2, the “Double Coded*” column
refers to the sessions that we double coded to cal-
culate the inter-coder agreement. This number does
not include the sessions which were double coded
when coders were developing the coding manual.
The numbers of double-coded sessions differ by DA
since it depends on the frequency on the particular
DA (recall that we coded for one DA at a time).
For example, since Student Initiatives (SI) are not as
frequent, we needed to double code more sessions
to find a number of SI’s high enough to compute a
meaningful Kappa (in our whole corpus, there are
1157 SIs but e.g. 4957 Prompts).

Category Double Coded* Kappa
DPI 10 .7133
Feedback 5 .6747
DDI 10 .8018
SI 14 .8686
Prompt 8 .9490
Table 2: Inter-Coder Agreement in Corpus

The remainder of the corpus was then indepen-
dently annotated by the two annotators. For our
final corpus, for the double coded sessions we did
not come to a consensus label when disagreements
arose; rather, we set up a priority order based on
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topic and coder (e.g., during development of the
coding scheme, when coders came to consensus
coding, which coder’s interpretation was chosen
more often), and we chose the annotation by a cer-
tain coder based on that order.

As a final important note, given our coding
scheme some utterances have more than one label
(see Figures 2 and 4), whereas others are notla-
belled at all. Specifically, most student utterances,
and some tutor utterances, are not labelled (see Fig-
ures 1 and 4).

3 Method

3.1 Linear Regression Models

In this work, we adopt a multiple regression model,
because it can tell us how much variation in learning
outcomes is explained by the variation of individual
features in the data. The features we use include pre-
test score, the length of the tutoring sessions, and
DAs, both the single DAs we annotated for and DA
n-grams, i.e. DA sequences of lengthn. Pre-test
score is always included since the effect of previ-
ous knowledge on learning is well established, and
confirmed in our data (see all Models 1 in Table 4);
indeed multiple linear regression allows us to factor
out the effect of previous knowledge on learning, by
quantifying the predictive power of features that are
added beyond pre-test score.

3.2 n-gram Dialogue Act Model

n-grams (sequences ofn units, such as words, POS
tags, dialogue acts) have been used to derive lan-
guage models in computational linguistics for a long
time, and have proven effective in tasks like part-of-
speech tagging, spell checking.

Our innovation with regard to using DA n-grams
is to allow gaps in the sequence. This allows us
to extract the sequences that are really effective,
and to eliminate noise. Note that from the point
of view of an effective sequence,noise is anything
that does not contribute to the sequence. For ex-
ample, a tutor’s turn may be interrupted by a stu-
dent’s acknowledgments, such as “OK” or “Uh-hah”
(see Figure 1). Whereas these acknowledgments
perform fundamental functions in conversation such
as grounding (Clark, 1992), they may not directly
correlate with learning (a hypothesis to test). If we

counted them in the sequence, they would contribute
two utterances, transforming a 3 DA sequence into a
5 DA sequence. As well known, the higher then, the
sparser the data becomes, i.e., the fewer sequences
of length n we find, making the task of discover-
ing significant correlations all the harder. Note that
some of the bigrams in (Litman and Forbes-Riley,
2006) could be considered to have gaps, since they
pair one student move (say SI) with each tutor move
contained in the next tutor turn (eg, in our Figure 6
they would derive two bigrams [SI, FB], and [SI,
Prompt]). However, this does not result in a system-
atic exploration of all possible sequences of a certain
lengthn, with all possible gaps of length up tom, as
we do here.

The tool that allows us to leave gaps in sequences
is part of Apache Lucene,1 an open source full text
search library. It provides strong capabilities to
match and count efficiently. Our counting method
is based on two important features provided by
Lucene, that we already used in other work (Chen
and Di Eugenio, 2010) to detect uncertainty in dif-
ferent types of corpora.

• Synonym matching: We can specify several
different tokens at the same position in a field
of a document, so that each of them can be used
to match the query.

• Precise gaps: With Lucene, we can precisely
specify the gap between the matched query and
the indexed documents (sequences of DAs in
our case) using a special type of query called
SpanNearQuery.

To take advantage of Lucene as described above,
we use the following algorithm to index our corpus.

1. For each Tutor-Topic session, we generate n-
gram utterance sequences – note that these are
sequences of utterances at this point, not of
DAs.

2. We prune utterance sequences where either 0
or only 1 utterance is annotated with a DA, be-
cause we are mining sequences with at least 2
DAs. Recall that given our annotation, some ut-
terances are not annotated (see e.g. Figure 1).

3. After pruning, for each utterance sequence, we
generate a Lucene document: each DA label on
an utterance will be treated as a token, multiple

1http://lucene.apache.org/
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labels on the same utterance will be treated as
“synonyms”.

By indexing annotations as just described, we
avoid the problem of generating too many combina-
tions of labels. After indexing, we can use SpanN-
earQuery to query the index. SpanNearQuery allows
us to specify the position distance allowed between
each term in the query.

Figure 3 is the field of the generated Lucene doc-
ument corresponding to the utterance sequences in
Figure 4. We can see that each utterance of the tu-
tor is tagged with 2 DAs. Those 2 DAs produce 2
tokens, which are put into the same position. The
tokens in the same position act as synonyms to each
other during the query.

Figure 3: Lucene Document Example for DAs

258: okay.
JAC: its right child is eight. [DDI, FB]
258: uh no it has to be greater than ten. [SI]
JAC: right so it’s not a binary search tree # it’s not a b s t,
right? [DDI,Prompt]

Figure 4:{FB, SI, DDI} is most effective in Trees

4 Experiments and Results

Here we build on our previous results reported
in (Di Eugenio et al., 2009). There we had shown
that, for lists and stacks, models that include positive
and negative feedback are significant and explain
more of the variance with respect to models that only
include pre-test score, or include pre-test score and
session length. Table 4 still follows the same ap-
proach, but adds to the regression models the addi-
tional DAs, DPI, DDI, Prompt and SI that had not
been included in that earlier work. The columnM

refers to three types of models, Model 1 only in-
cludes Pre-test, Model 2 adds session length to Pre-
test, and Model 3 adds to Pre-test all the DAs. As ev-
idenced by the table, only DPI provides a marginally
significant contribution, and only for lists. Note that
length is not included in Model 3’s. We did run all
the equivalent models to Model 3’s including length.

TheR2’s stay the same (literally, to the second dec-
imal digit), or minimally decrease. However, in all
these Model 3+’s that include length no DA is sig-
nificant, hence we consider them as less explana-
tory than the Model 3’s in Table 4: finding that a
longer dialogue positively affects learning does not
tell us what happens during that dialogue which is
conducive to learning.

Note that theβ weights on the pre-test are al-
ways negative in every model, namely, students with
higher pre-test scores learn less than students with
lower pre-test scores. This is an example of the well-
known ceiling effect: students with more previous
knowledge have lesslearning opportunity. Also no-
ticeable is that theR2 for the Trees models are much
higher than for Lists and Stacks, and that for Trees
no DA is significant (although there will be signifi-
cant trigram models that involve DAs for Trees). We
have observed that Lists are in general more diffi-
cult than Stacks and Trees (well, at least than binary
search trees) for students.

Topic Pre-Test σ Gain σ

Lists .40 .27 .14 .25
Stacks .29 .30 .31 .24
Trees .50 .26 .30 .24

Table 3: Learning gains and t-test statistics

Indeed Table 3 shows that in the CS-tutoring cor-
pus the average learning gain is only .14 for Lists,
but .31 for Stacks and .30 for Trees; whereas stu-
dents have the lowest pre-test score on Stacks, and
hence they have more opportunities for learning,
they learn as much for Trees, but not for Lists.

We now examine whether DA sequences help us
explain why student learn. We have run 24 sets of
linear regression experiments, which are grouped as
the following 6 types of models.
• With DA bigrams (DA sequences of length 2):

– Gain∼ DA Bigram
– Gain∼ DA Bigram + Pre-test Score
– Gain ∼ DA Bigram + Pre-test Score +

Session Length
• With DA trigrams (DA sequences of length 3):

– Gain∼ DA Trigram
– Gain∼ DA Trigram + Pre-test Score
– Gain ∼ DA Trigram + Pre-test Score +

Session Length
For each type of model:
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Topic M Predictor β R2 P

Lists

1 Pre-test −.47 .20 < .001

2
Pre-test −.43

.29
< .001

Length .01 < .001

3

Pre-test −.500

.377

< .001

+FB .020 < .01

-FB .039 ns

DPI .004 < .1

DDI .001 ns

SI .005 ns

Prompt .001 ns

Stacks

1 Pre-test −.46 .296 < .001

2
Pre-test −.46

.280
< .001

Length −.002 ns

3

Pre-test −.465

.275

< .001

+FB −.017 < .01

-FB −.045 ns

DPI .007 ns

DDI .001 ns

SI .008 ns

Prompt −.006 ns

Trees

1 Pre-test −.739 .676 < .001

2
Pre-test −.733

.670
< .001

Length .001 ns

3

Pre-test −.712

.667

< .001

+FB −.002 ns

-FB −.018 ns

DPI −.001 ns

DDI −.001 ns

SI −.001 ns

Prompt −.001 ns

All

1 Pre-test −.505 .305 < .001

2
Pre-test −.528

.338
< .001

Length .06 < .001

3

Pre-test −.573

.382

< .001

+FB .009 < .001

-FB −.024 ns

DPI .001 ns

DDI .001 ns

SI .001 ns

Prompt .001 ns

Table 4: Linear Regression – Human Tutoring

1. We index the corpus according to the length of
the sequence (2 or 3) using the method we in-
troduced in section 3.2.

2. We generate all the permutations of all the DAs
we annotated for within the specified length;
count the number of occurrences of each per-
mutation using Lucene’s SpanNearQuery al-
lowing for gaps of specified length. Gaps can
span from 0 to 3 utterances; for example, the

excerpt in Figure 1 will be counted as a{DPI,
DDI} bigram with a gap of length 1. Gaps can
be discontinuous.

3. We run linear regressions2 on the six types of
models listed above, generating actual models
by replacing a generic DA bi- or tri-gram with
each possible DA sequence we generated in
step 2.

4. We output those regression results, in which the
whole model and every predictor are at least
marginally significant (p < 0.1).

The number of generated significant models is
shown in Figure 5. In the legend of the Figure,
B stands forBigram DA sequence, T stands for
Trigram DA sequence, L stands for sessionLength,
P stands forPre-test score. Not surprisingly, Fig-
ure 5 shows that, as the allowed gap increases in
length, the number of significant models increases
too, which give us more models to analyze.
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Figure 5: Gaps Allowed vs. Significant Models

Figure 5 shows that there are a high number of
significant models. In what follows we will present
first of all those that improve on the models that
do not use sequences of DAs, as presented in Ta-
ble 4. Improvement here means not only that the
R2 is higher, but that the model is more appropriate
as an approximation of a tutor strategy, and hence,
constitutes a better guideline for an ITS. For exam-
ple, take model 3 for Lists in Table 4. It tells us
that positive feedback (+FB) and direct procedural
instruction (DPI) positively correlate with learning

2We used rJava, http://www.rforge.net/rJava/
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gains. However, this obviously cannot mean that our
ITS should only produce +FB and DPI. The ITS is
interacting with the student, and it needs to tune its
strategies according to what happens in the interac-
tion; model 3 doesn’t even tell us if +FB and DPI
should be used together or independently. Models
that include sequences of DAs will be more useful
for the design of an ITS, since they point out what
sequences of DAs the ITS may use, even if they still
don’t answer the question, when should the ITS en-
gage in a particular sequence – we have addressed
related issues in our work on iList (Fossati et al.,
2009; Fossati et al., 2010).

4.1 Bigram Models

{DPI, Feedback} Model Indeed the first signifi-
cant models that include a DA bigram include the
{DPI, Feedback} DA sequence. Note that we distin-
guish between models that employ Feedback (FB)
without distinguishing between positive and nega-
tive feedback; and models where the type of feed-
back is taken into account (+FB, -FB). Table 5 shows
that for Lists, a sequence that includes DPI followed
by any type of feedback (Feedback, +FB, -FB) pro-
duces significant models when the model includes
pre-test. Table 5 and all tables that follow include
the columnGap that indicates the length of the gap
within the DA sequence with which that model was
obtained. When, as in Table 5, multiple numbers
appear in theGap column, this indicates that the
model is significant with all those gap settings. We
only show theβ, R2 andP values for the gap length
which generates the highestR2 for a model, and the
corresponding gap length is in bold font: for exam-
ple, the first model for Lists in Table 5 is obtained
with a gap length = 2. For Lists, these models are not
as predictive as Model 3 in Table 4, however we be-
lieve they are more useful from an ITS design point
of view: they tell us that when the tutor gives direct
instruction on how to solve the problem, within a
short span of dialogue the tutor produces feedback,
since (presumably) the student will have tried to ap-
ply that DPI. For Stacks, a{DPI, -FB} model (with-
out taking pre-test into account) significantly corre-
lates (p < 0.05) with learning gain, and marginally
significantly correlates with learning gain when the
model also includes pre-test score. This latter model
is actually more predictive than Model 3 for Stacks

in Table 4 that includes +FB but not DPI. We can
see theβ weight is negative for the sequence{DPI,
-FB} in the Stacks model. No models including the
bigram{DPI, -FB} are significant for Trees.

Topic Predictor β R2 P Gap

Lists

DPI, -FB .039
.235

<.001
2, 3

Pre-test −.513 < .001

DPI, +FB .019

.339

<.001
0, 1, 2, 3Pre-test −.492 < .001

Length .011 < 0.05

DPI, FB .016

.333

<.05
0, 1, 2, 3Pre-test −.489 < .001

Length .011 < 0.05

Stacks
DPI, -FB −.290 .136 <.05 0, 1, 2, 3

DPI, -FB −.187
.342

<.1
0, 1, 2, 3

Pre-test −.401 < .001

Table 5: DPI, Feedback Model

{FB, DDI} Model A natural question arises:
since Feedback following DPI results in significant
models, are there any significant models which in-
clude sequences whose first component is a Feed-
back move? We found only two that are signif-
icant, when Feedback is followed by DDI (Direct
Declarative Instruction). Note that here we are not
distinguishing between negative and positive feed-
back. Those models are shown in Table 6. The
Lists model is not more effective than the original
Model 3 for Lists in Table 4, but the model for Trees
is slightly more explanatory than the best model
for Trees in that same table, and includes a bigram
model, whereas in Table 4, only pre-test is signifi-
cant for Trees.

Topic Predictor β R2 P Gap

Lists
FB, DDI .1478

.321

<.1
1Pre-test −.470 < .001

Length .011 < .05

Trees
FB, DDI .0709

.6953
<.05

0
Pre-test −.7409 < .001

Table 6:{FB, DDI} Model

4.2 Trigram Models

{DPI, FB, DDI} Model Given our significant bi-
gram models for DPI followed by FB, and FB fol-
lowed by DDI, it is natural to ask whether the com-
bined trigram model{DPI, FB, DDI} results in a
significant model. It does for the topic List, as
shown in table 7, however again theR2 is lower than
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that of Model 3 in Table 4. This suggests that an ef-
fective tutoring sequence is to provide instruction on
how to solve the problem (DPI), then Feedback on
what the student does, and finally some declarative
instruction (DDI).

Topic Predictor β R2 P Gap

Lists
DPI, FB, DDI .156

.371

<.01
1Pre-test −.528 < .001

Length .012 < .05

Table 7:{DPI, FB, DDI} Model

More effective trigram models include Prompt
and SI. Up to now, only one model including se-
quences of DAs was superior to the simpler models
in Table 4. Interestingly, different trigrams that still
include some form of Feedback, DPI or DDI, and
then either Prompt or SI (Student Initiative) result in
models that exhibit slightly higherR2; additionally
in all these models the trigram predictor is highly
significant. These models are listed in table 8 (note
that the two Trees models differ because in one FB is
generic Feedback, irregardless of orientation, in the
other it’s +FB, i.e., positive feedback). In detail, im-
provements inR2 are 0.0382 in topic Lists, 0.12 in
topic Stacks and 0.0563 in topic Trees. The highest
improvement is in Stacks.

Topic Predictor β R2 P Gap

Lists
PT,DPI,FB .266

.415

<.01
0Pre-test −.463 < .001

Length .011 < .05

Stacks
DDI,FB,PT −.06

.416
<.01

1
Pre-test −.52 < .001

Trees
+FB,SI,DDI .049

.732
<.01

1
Pre-test −.746 < .001

Trees
FB,SI,DDI .049

.732
<.01

1
Pre-test −.746 < .001

Table 8: HighestR2 Models

It is interesting to note that the model for Lists add
Promptat the beginning to a bigram that had already
been found to contribute to a significant model. For
Trees, likewise, we add another DA to the bigram
{FB,DDI} that had been found to be significant; this
time, it is Student Initiative (SI) and it occurs in
the middle. This indicates that, after the tutor pro-
vides feedback, the student takes the initiative, and
the tutor responds with one piece of information the
student didn’t know (DDI). Of course, the role of

Prompts and SI is not surprising, although interest-
ingly they are significant only in association with
certain tutor moves. It is well known that students
learn more when they build knowledge by them-
selves, either by taking the initiative (SI), or after
the tutor prompts them to do so (Chi et al., 1994;
Chi et al., 2001).

LOW: it’s backwards # it’s got four elements, but they
are backwards. [DDI ]
234: so we have do it again. [SI]
LOW: so do it again. [FB]
LOW: do what again? [Prompt]

Figure 6:{DDI, FB, PT} is most effective in Stacks

4.3 Other models

We found other significant models, specifically,
{DDI,DPI} for all three topics, and{-FB,SI} for
Lists. However, theirR2 are very low, and much
lower than any of the other models presented so
far. Besides models that includeonly oneDA se-
quenceand pre-test score to predict learning gain,
we also ran experiments to see if adding multiple
DA sequences to pre-test score will lead to signifi-
cant models – namely, we experimented with mod-
els which include two sequences as predictors, say,
the two bigrams{-FB,SI} and{FB,DDI}. However,
no significant models were found.

5 Conclusions

In this paper, we explored effective tutoring strate-
gies expressed as sequence of DAs. We first pre-
sented the CS-Tutoring corpus. By relaxing the DA
n-gram definition via the fuzzy matching provided
by Apache Lucene, we managed to discover several
DA sequences that significantly correlate with learn-
ing gain. Further, we discovered models with higher
R2 than models which include only one single DA,
which are also more informative from the point of
view of the design of interfaces to ITSs.
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