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Abstract number of occurrences of relevant features between
. the groups (Evens and Michael, 2006; Chi et al.,

We present an empirical study of one-on- .
one human tutoring dialogues in the domain 2010). Howevgr, as we already argued in (Ohlsson
of Computer Science data structures. We  etal., 2007), this code-and-count methodology only

are interested in discovering effective tutor-  focuses on what a certain type of tutor (assumed to
ing strategies, that we frame as discovering  be better according to certain criteria) datiffer-
which Dialogue Act (DA) sequences corre- ently from another tutor, rather than on strategies
late with learning. We employ multiple lin- that may be effective independently from their fre-

ear regression, to discover the strongestmod- o \ancies of usage by different types of tutor. Indeed
els that explain why students learn during

one-on-one tutoring. Importantly, we define we had f_ollowed.thls same methodology in previous
“flexible” DA sequence, in which extraneous ~ WOrk (Di Eugenio et al., 2006), but a key turning
DAs can easily be discounted. Our experi-  Point for our work was to discover that our expert

ments reveal several cognitively plausible DA and novice tutors were equally effective (please see
sequences which significantly correlate with below).

learning outcomes. . . .
The other kind of approach uses linear regression

analysis to find correlations between dialogue fea-
tures and learning gains (Litman and Forbes-Riley,
One-on-one tutoring has been shown to be a very é2006; Di Eugenio et al., 2009). Whereas linear
fective form of instruction compared to other educaregression is broadly used to analyze experimental
tional settings. Much research on discovering whylata, only few analyses of tutorial data or tutoring
this is the case has focused on the analysis of tlexperiments use it. In this paper, we follow
interaction between tutor and students (Fox, 199%;itman and Forbes-Riley (2006) in correlating se-
Graesser et al., 1995; Lepper et al., 1997; Chi et abuences of Dialogue Acts (DAs) with learning gains.
2001). In the last fifteen years, many such analysé&e extend that work in that our bigram and trigram
have been approached from a Natural Language PiDAs are not limited to tutor-student DA bigrams —
cessing (NLP) perspective, with the goal of buildLitman and Forbes-Riley (2006) only considers bi-
ing interfaces that allow students to naturally intergrams where one DA comes from the tutor’s turn
act with Intelligent Tutoring Systems (ITSs) (Mooreand one from the student’s turn, in either order. Im-
et al., 2004; Cade et al., 2008; Chi et al., 2010)ortantly, we further relax constraints on how these
There have been two main types of approaches sequences are built, in particular, we are able to
the analysis of tutoring dialogues. The first kindnodel DA sequences that include gaps. This allows
of approach compares groups of subjects interaats to discount the noise resulting from intervening
ing with different tutors (Graesser et al., 2004; VanbAs that do not contribute to the effectiveness of
Lehn et al., 2007), in some instances contrasting thhe specific sequence. For example, if we want to

1 Introduction
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explore sequences in which the tutor first provide80 years of teaching experience; or JAC, a senior un-
some knowledge to solve the problem (DPI) andlergraduate student in Computer Science, with only
then knowledge about the problem (DDI) (DPI andbne semester of previous tutoring experience. In the
DDI will be explained later), an exchange such agnd 30 students interacted with LOW and 24 with
the one in Figure 1 should be taken into accountAC.

(JAC and later LOW are the tutors, students are indi- Students took a pre-test right before the tutoring
cated with a numeric code, such as 113 in Figure 13ession, and an identical post-test immediately after.
However, if we just use adjacent utterances, dke The test had two problems on Lists, two problems on
from the student (113) interrupts the sequence, artacks, and four problems on Trees. Each problem
we could not take this example into account. By alwas graded out of 5 points, for a possible maximum
lowing gaps in our sequences, we test a large numbscore of 10 points each for Lists and Stacks, and 20
of linear regression models, some of which result ipoints for Trees. Pre and post-test scores for each
significant models that can be used as guidelines topic were later normalized to the [0..1] interval, and
design an ITS. Specifically, these guidelines will béearning gains were computed.

used for further improvement of iList, an ITS that Table 1 includes information on session length.
provides feedback on linked list problems and thallote that for each topic, the number of sessions is
we have developed over the last few years. Fiviewer than 54. The tutor was free to tutor on what
different versions of iList have been evaluated witthe felt was more appropriate, after he was given an
220 users (Fossati et al., 2009; Fossati et al., 2010nformal assessment of the student’s performance on
iList is available at http://www.digitaltutor.net, andthe pre-test (tutors were not shown pre-tests to avoid
has been used by more than 550 additional userstaat they'd tutor to the pre-test only). Hence, not

15 different institutions. every student was tutored on every topic.
JAC: so we would set k equal to e and then deldbe|| Tobi Session length (minutes)
pic N -

113: ok. Min | Max | Total L o
JAC: so we've inserted this whole list in hef2l] Lists 52| 3.4 1 41.4] 7504 | 14.4| 5.8
113: yeah. Stacks 46 | 0.3 9.4 2645 | 58 | 1.8

Trees 53] 9.1 | 40.0| 1017.6| 19.2| 6.6

Figure 1:{DPI, DDI} Sequence Excerpt [ Sessiond 54 [ 12.8] 61.1 [ 2032.5] 37.6] 6.1 |

. . Table 1: CS Tutoring Corpus - Descriptives
The rest of the paper is organized as follows. gorp P

In Section 2, we describe the CS-Tutoring corpus, Each tutoring session was videotaped. The cam-
including data collection, transcription, and annoera was pointing at the sheets of paper on which tu-
tation. In Section 3, we introduce our methodoltors and students were writing during the session.
ogy that combines multiple linear regression with nThe videos were all transcribed. The transcripts
grams of DAs that allow for gaps. We discuss ouwere produced according to the rules and conven-

experiments and results in Section 4. tions described in the transcription manual of the
CHILDES project (MacWhinney, 2000). Dialogue
2 The CS Tutoring Corpus excerpts included in this paper show some of the

transcription conventions. For examplet. . .’
denotes trailing,’ xxx' unintelligible speech and
During the time span of 3 semesters, we collected’a’ a short pause (see Figure 2). The CHILDES
corpus of 54 one-on-one tutoring sessions on Contranscription manual also provides directions on ut-
puter Science data structurdgiked list stackand terance segmentation.

binary search tree (In the following context, we  An additional group of 53 students (control
will refer them ad_ists StacksandTree$. Each stu- group) took the pre- and post-tests, but instead of
dent only participated in one session, and was raparticipating in a tutoring session they attended a
domly assigned to one of two tutors: LOW, an expe40 minute lecture about an unrelated CS topic. The
rienced Computer Science professor, with more thamationale for such a control condition was to assess

2.1 Data Collection
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LOW: what's the if? Promp] error.
LOW: well of course, don'tdo this if ttwo is null soift e first read through the entire corpus and exam-
two ign"tnull we can do that and xxx properly # thinking jned it for impressions and trends, as suggested by
:_poliltvl.t(;r; Zf\sr:.ifptf\:\]/o is null that's telling us that this is (Chi, 1997). Our informal assessment convinced us
the +.... PromptFB] that our mlnlmgllst se_t of tutoring moves was an ap-
propriate starting point. For example, contrary to
Figure 2:{Prompt,DPI,FB sequence excerpt much that has been written about an idealized so-
cratic type of tutoring where students build knowl-
edge by themselves (Chi et al., 1994), our tutors
whether by simply taking the pre-test students would,e rather directive in style, namely, they do a lot
learn about data-structures, and hence, to tease %lfltte”ing andstating Indeed our tutors talk a lot,
whether any learning we would see in the tutoreg, the tune of producing 93.5% of the total words!
conditions would be indeed due to tutoring. We translated the four types above into the follow-
The learning gain, expressed as the differenc@g pAs: Direct Procedural Instruction (DPI), Di-
between post-score and pre-score, of students thakt Declarative Instruction (DDI), Positive Feed-
received tutoring wasignificantly higherthan the pack (+FB), and Negative Feedback (-FB). Besides
learning gain of the students in the control group, fofhose 4 categories, we additionally annotated the
all the topics. This was showed by ANOVA betweencorpus for Prompt (PT), since our tutors did explic-
the aggregated group of tutored students and thg, invite students to be active in the interaction.
control group, and was significant at the< 0.01 e also annotated for Student Initiative (SI), to cap-
for each topic. There waso significant difference yyre active participation on the part of the student’s.
between the two tutored conditions in terms of learns| occurs when the student proactively produces a
ing gain. The fact that students did not learn morgyeaningful utterance, by providing unsolicited ex-
with the experienced tutor was an important ﬁndinﬁblanation (see Figures 6 and 4), or by asking ques-
that led us to question the approach of comparingons, Aswe had expected, Sis are not as frequent as
and contrasting more and less experienced tutors. gther moves (see below). However, this is precisely
Please refer to (Di Eugenio etal., 2009) for furtheghe kind of move that a regression analysis would
descriptive measurements of the corpus. tease out from others, if it correlates with learning,
even if it occurs relatively infrequently. This indeed
happens in two models, see Table 8.
Many theories have been proposed as concerns DAs Direct Procedural Instruction(DPI) occurs when
and there are many plausible inventories of DAs, inthe tutor directly tells the student what task to per-
cluding for tutorial dialogue (Evens and Michael,form. More specifically:
2006; Litman and Forbes-Riley, 2006; Boyer et al.,
2010). We start from a minimalist point of view,
postulating that, according to current theories of
skill acquisition (Anderson, 1986; Sun et al., 2005;
Ohlsson, 2008), at least the following types of tuto-
rial intervention can be explained in terms of why
and how they might support learning:
1. A tutor can tell the student how to perform the

2.2 Dialogue Act Annotation

e Utterances containing correct steps that lead to
the solution of a problem, e.g. see Figure 1.

e Utterances containing high-level steps or sub-
goals (t wants us to put the new node that con-
tains G in it, after the node that containg.B

e Utterances containing tactics and strateg&s (
with these kinds of problems, the first thing |
have to say is always draw pictudes

task. L . e Utterances where the tutor talked in the first-
2. A tutor can state declarative information about . . )
the domain person but in reality the tutor instructed the stu-

dent on what to doo I'm pushing this value

3. Atutor can provide feedback: onto a stack. So I'm pushing G back)on

(a) positive, to confirm that a correct but tentative
step is in fact correct; Direct Declarative Instruction (DDI) occurred
(b) negative, to help a student detect and correct avhen the tutor provided facts about the domain or
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a specific problem. The key to determine if an uttutor may include e.g. an explanation that we con-
terance is DDI is that the tutor is telling the studensider to be part of feedback. Positive feedback oc-
something that he or she ostensibly does not alreadyrs when the student says or does something cor-
know. Common sense knowledge is not DDXef  rect, either spontaneously or after being prompted
is less than elevep Utterances annotated as DDIby the tutor. The tutor acknowledges the correctness
include: of the student’s utterance, and possibly elaborates on

e Providing general knowledge about data strudt with further explanation. Negative feedback oc-
tures the standard format is right child is al- curs when the student says or does something incor-
ways greater than the parent, left child is al-rect, either spontaneously or after being prompted

ways less than the parént by the tutor. The tutor reacts to the mistake and pos-
o Telling the student information about a specificsibly provides some form of explanation.
problem ¢his is not a binary search trg@e After developing a first version of the coding
e Conveying the results of a given actiogo(now manual, we refined it iteratively. During each itera-
since we've eliminated nine, it's gone tion, two human annotators independently annotated
e Describing pictures of data structures@ then several dialogues for one DA at a time, compared
there is a link to the next nojle outcomes, discussed disagreements, and fine-tuned

Prompts (PT) occur when the tutor attempts t(Bhe scheme accordingly. This process was repeated

elicit a meaningful contribution from the student.until a sufficiently high inter-coder agreement was

We code for six types of tutor prompts, including:reaqhed'_ The KaPpa values we o_btamgd in the fi-
nal iteration of this process are listed in Table 2

Specif © An att tt ¢ i (Di Eugenio and Glass, 2004; Artstein and Poesio,
* SPECIlC prompt. An attempt o get a speci IC2008). In Table 2, the “Double Coded*” column
response from the studenhét's not b so what

refers to the sessions that we double coded to cal-

d(.) we wgnt to dop? . culate the inter-coder agreement. This number does

° D|agnosmg,: The tutor attempts t? determln%ot include the sessions which were double coded
the student's knowledge statetfy did you put when coders were developing the coding manual.
ab there’.). ) ... The numbers of double-coded sessions differ by DA

* Confirm-OK: The tutor attempts to determine Ifsince it depends on the frequency on the particular

f[he stude.nt understood or '.f the student is PaYHA (recall that we coded for one DA at a time).
ing attention ¢kay, got that idea)?

o i For example, since Student Initiatives (SI) are not as
* Fill-in-the-blank: The tutor does not Completefrequent, we needed to double code more sessions
an utterance thereby inviting the_ student t(%o find a number of SI's high enough to compute a
complete the utterance, €.g. see Figure 2. meaningful Kappa (in our whole corpus, there are
Up to now we have discussed annotations for utt157 Sis but e.g. 4957 Prompts).
terances that do not explicitly address what the stu-

dent has said or done. However, many tutoring Category | Double Coded*| Kappa
moves concern providing feedback to the student. DPI 10 .7133
Indeed as already known but not often acted upon in FeedbacK 5 6747
ITS interfaces, tutors do not just point out mistakes, DDI 10 8018
but also confirm that the student is making correct S| 14 8686
steps. While the DAs discussed so far label single Prompt 8 9490

utterances, our positive and negative feedback (+FB
and -FB) annotations comprise a sequence of con-
secutive utterances, that starts where the tutor startsThe remainder of the corpus was then indepen-
providing feedback. We opted for a sequence of utdently annotated by the two annotators. For our
terances rather than for labeling one single utterandimal corpus, for the double coded sessions we did
because we found it very difficult to pick one singlenot come to a consensus label when disagreements
utterance as the one providing feedback, when tleose; rather, we set up a priority order based on

Table 2: Inter-Coder Agreement in Corpus
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topic and coder (e.g., during development of theounted them in the sequence, they would contribute
coding scheme, when coders came to consenswgo utterances, transforming a 3 DA sequence into a
coding, which coder’s interpretation was chose® DA sequence. As well known, the higher thighe
more often), and we chose the annotation by a cesparser the data becomes, i.e., the fewer sequences
tain coder based on that order. of lengthn we find, making the task of discover-

As a final important note, given our codinging significant correlations all the harder. Note that
scheme some utterances have more than one lakeime of the bigrams in (Litman and Forbes-Riley,
(see Figures 2 and 4), whereas others arelaot 2006) could be considered to have gaps, since they
belled at all. Specifically, most student utterancegair one student move (say Sl) with each tutor move
and some tutor utterances, are not labelled (see Figentained in the next tutor turn (eg, in our Figure 6

ures 1 and 4). they would derive two bigrams [SI, FB], and [SI,
Prompt]). However, this does not result in a system-
3 Method atic exploration of all possible sequences of a certain
3.1 Linear Regression Models lengthn, with all possible gaps of length up to, as
we do here.

In this work, we adopt a multiple regression model, The tool that allows us to leave gaps in sequences
because it can tell us how much variation in learnings part of Apache Lucenkan open source full text
outcomes is explained by the variation of individuakearch library. It provides strong capabilities to
features in the data. The features we use include prgratch and count efficiently. Our counting method
test score, the length of the tutoring sessions, ang based on two important features provided by
DAs, both the single DAs we annotated for and DA _ycene, that we already used in other work (Chen
n-grams i.e. DA sequences of length. Pre-test and Di Eugenio, 2010) to detect uncertainty in dif-
score is always included since the effect of previferent types of corpora.

ous knowledge on learning is well established, and 4 Synonym matching: We can specify several
confirmed in our data (see all Models 1 in Table 4);  gifferent tokens at the same position in a field

indeed multiple linear regression allows us to factor  of 5 document, so that each of them can be used
out the effect of previous knowledge on learning, by {5 match the query.

quantifying the predictive power of features that are  precise gaps: With Lucene, we can precisely
added beyond pre-test score. specify the gap between the matched query and
the indexed documents (sequences of DAs in

our case) using a special type of query called
n-grams (sequences ofunits, such as words, POS SpanNearQuery

tags, dialogue acts) have been used to derive lan-
guage models in computational linguistics for a Ion%v
time, and have proven effective in tasks like part-of-
speech tagging, spell checking.

Our innovation with regard to using DA n-grams
is to allow gaps in the sequence. This allows us DAs

to extract the sequences that are really effective, .
2. We prune utterance sequences where either O

and to eliminate noise. Note that from the point = v 1 utt ) tated with a DA. b
of view of an effective sequenceapiseis anything oronly L u eranpg 'S anhotated wi . aLv, be-
cause we are mining sequences with at least 2

that does not contribute to the sequence. For ex- DAs. Recall that di tati ¢

ample, a tutor’s turn may be interrupted by a stu- ‘ s. Reca atglventm:rc?nno a |on,§ome ul

dent's acknowledgments, such as “OK” or “Uh-hah” erances are not annotate (see e.g. Figure 1).
3. After pruning, for each utterance sequence, we

(see Figure 1). Whereas these acknowledgments™ eal q " h DA label
perform fundamental functions in conversation such generate a Lucene document. €ac abeton
an utterance will be treated as a token, multiple

as grounding (Clark, 1992), they may not directly
correlate with learning (a hypothesis to test). If we *http://lucene.apache.org/

3.2 n-gram Dialogue Act Model

To take advantage of Lucene as described above,
e use the following algorithm to index our corpus.

1. For each Tutor-Topic session, we generate n-
gram utterance sequences — note that these are
sequences of utterances at this point, not of
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labels on the same utterance will be treated aBhe R?'s stay the same (literally, to the second dec-
“synonyms”. imal digit), or minimally decrease. However, in all
éhese Model 3+'s that include length no DA is sig-

By indexing annotations as just described, we * )
avoid the problem of generating too many combinglificant, hence we consider them as less explana-

tions of labels. After indexing, we can use SpanNTY than the Model 3's in Table 4: finding that a
earQuery to query the index. SpanNearQuery allow/€nger dialogue positively affects learning does not
us to specify the position distance allowed betweel§!l US what happens during that dialogue which is
each term in the query. conducive to Iearnmg:

Figure 3 is the field of the generated Lucene doc- NOt€ that thej weights on the pre-test are al-
ument corresponding to the utterance sequencesifyS Negative in every model, namely, students with
Figure 4. We can see that each utterance of the t[Jl9n€r pre-test scores lear less than students with
tor is tagged with 2 DAs. Those 2 DAs produce Jower pre-'t_est scores. Thisis an 9xample of thg well-
tokens, which are put into the same position. Thknown ceiling effect students with more previous

tokens in the same position act as synonyms to eatRowledge have Iegearning opportunity Also no-
other during the query. ticeable is that thé“ for the Trees models are much

higher than for Lists and Stacks, and that for Trees
no DA is significant (although there will be signifi-
DDI S| DDI cant trigram models that involve DAs for Trees). We
( ) C ) ( ) have observed that Lists are in general more diffi-

cult than Stacks and Trees (well, at least than binary

Figure 3: Lucene Document Example for DAs search trees) for students.

Topic || Pre-Test| o || Gain| o
Lists .40 27| .14 | .25

258: okay.
JAC: its right child is eight.DDI, FB] Stack 55 - = >
258: uh no it has to be greater than teBl] [ acks : : . .

. . ; . T : 2 . .24
JAC: right so it's not a binary search tree #it'snotabst, rees. 5_0 - 6] 30 .
right? [DDI,Promp{ Table 3: Learning gains and t-test statistics

Indeed Table 3 shows that in the CS-tutoring cor-
Figure 4:{FB, SI, DDI} is most effective in Trees 5 the average learning gain is only .14 for Lists,
but .31 for Stacks and .30 for Trees; whereas stu-
dents have the lowest pre-test score on Stacks, and
Here we build on our previous results reportedience they have more opportunities for learning,
in (Di Eugenio et al., 2009). There we had showrihey learn as much for Trees, but not for Lists.

that, for lists and stacks, models that include positive We now examine whether DA sequences help us
and negative feedback are significant and expla@xplain why student learn. We have run 24 sets of
more of the variance with respect to models that onlinear regression experiments, which are grouped as
include pre-test score, or include pre-test score arile following 6 types of models.

session length. Table 4 still follows the same ap- ® With DA bigrams (DA sequences of length 2):
proach, but adds to the regression models the addi-
tional DAs, DPI, DDI, Prompt and Sl that had not
been included in that earlier work. The column . — Gain ~ DA Bigram + Pre-test Score +
refers to three types of models, Model 1 only in- Session Length

cludes Pre-test, Model 2 adds session length to Pre-e With DA trigrams (DA sequences of length 3):
test, and Model 3 adds to Pre-test all the DAs. As ev-
idenced by the table, only DPI provides a marginally
significant contribution, and only for lists. Note that
length is not included in Model 3's. We did run all
the equivalent models to Model 3’s including length.

4 Experiments and Results

— Gain~ DA Bigram
— Gain~ DA Bigram + Pre-test Score

— Gain~ DA Trigram
— Gain~ DA Trigram + Pre-test Score
— Gain ~ DA Trigram + Pre-test Score +

Session Length
For each type of model:
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Topic | M | Predictor| [ R? P excerpt in Figure 1 will be counted as{BP!I,
1| Pretest | —47 | .20 | <.001 DDI} bigram with a gap of length 1. Gaps can
) Ere-test _(ﬁ?’ 29 | '881 be discontinuous.
Pfg_%ést _'.500 i 2001 3. We run I_inear regressioh®n the six types of
Lists +FB 020 <01 models I|§ted above,_ generating gctual quels
-FB 039 ns by replacing a generic DA bi- or tri-gram with
3 | DPI 004 | 377 <1 each possible DA sequence we generated in
DDI .001 ns step 2.
S 005 ns 4. We output those regression results, in which the
- E:ZT:; '0(3116 55 <”(*)901 whole model and every predictor are at least
» Pretest | — 46 o | < 501 marginally significant < 0..1).- | |
Length | —.002 | - ns The number of generated significant models is
Stacks Pre-test | —.465 <.001 shown in Figure 5. In the legend of the Figure,
+FB —.017 <.01 B stands forBigram DA sequence, T stands for
-FB —.045 ns Trigram DA sequence, L stands for sessicength,
8 Bgll :881 215 Zi P stands foPre-test score. Not surprisingly, Fig-
S| 008 ns ure 5 shows that, as the allowed gap increases in
Prompt | —.006 ns length, the number of significant models increases
1 | Pre-test | —.739 | .676 | < .001 too, which give us more models to analyze.
Pre-test | —.733 < .001
2 Length .001 670 ns 8 -
Trees Pre-test | —.712 <001 Precrs ) B
+FB —.002 ns S :
-FB —.018 ns i B
3 | DPI —.001 | .667 | ns § o | [+ men
DDI —.001 ns = o I
S —.001 ns g ] -
Prompt | —.001 ns 2"
1 [ Pre-test | —.505 | .305 | < .001 5 . e
Pre-test | —.528 < .001 z -
2 Length .06 338 < .001 o |
All Pre-test | —.573 < .001 "
+FB .009 < .001
-FB —.024 ns = ‘ ‘ ‘
3 | DPI .001 .382 ns 0 ! 2 8
DDI .001 ns . Gap Allowed
S| 001 ns Figure 5: Gaps Allowed vs. Significant Models
Prompt | .001 ns Figure 5 shows that there are a high number of

Table 4: Linear Regression — Human Tutoring significant models. In what follows we will present

first of all those that improve on the models that
Ogo not use sequences of DAs, as presented in Ta-

. We index the corpus according to the length
) . ble 4. Improvement here means not only that the
the sequence (2 or 3) using the method we in-, . ' . . .
. . R~ is higher, but that the model is more appropriate
troduced in section 3.2.

. n roximation of r str nd hen

. We generate all the permutations of all the DASS @n approxi atio ora .tUtO strategy, and hence,
- " constitutes a better guideline for an ITS. For exam-

we annotated for within the specified length;

Ple, take model 3 for Lists in Table 4. It tells us
count the number of occurrences of each per;

. . ) that positive feedback (+FB) and direct procedural
mutation using Lucene’s SpanNearQuery al- . " . .

. o instruction (DPI) positively correlate with learning
lowing for gaps of specified length. Gaps can

span from 0 to 3 utterances; for example, the 2We used rJava, http://www.rforge.net/rJava/
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gains. However, this obviously cannot mean that oun Table 4 that includes +FB but not DPI. We can
ITS should only produce +FB and DPI. The ITS issee the3 weight is negative for the sequen{BPI,
interacting with the student, and it needs to tune itd=B} in the Stacks model. No models including the
strategies according to what happens in the interabigram{DPI, -FB} are significant for Trees.

tion; model 3 doesn't even tell us if +FB and DPI
should be used together or independently. ModelsTopic | Predictor | 3 | R P Gap
that include sequences of DAs will be more useful Erzl_'t;;? ;ng:s 235 <<'(())8} 2,3
for the design of an ITS, since they point out what - :
sequences of DAs the ITS may use, even if they still

DPI,+FB | .019 <.001
Pre-test | —.492 | .339 | < .001 | 0,1,2,3

don’t answer the question, when should the ITS en-ists Length 011 <0.05
gage in a particular sequence — we have addressed DPI, FB .016 <.05
related issues in our work on iList (Fossati et al, Pre-test | —.489 | .333 | < .001 | 0,1,2,3
2009; Fossati et al., 2010). Length 011 < 0.05
DPI,-FB | —.290 | .136 | <.05 | 0,1,2,3
4.1 Bigram Models Stacks| DPI, -FB | —.187 <1
) Pre-test | —.401 342 < .001 0,1,2,3

{DPI, Feedback Model Indeed the first signifi-
cant models that include a DA bigram include the

{DPI, FeedbackDA sequence. Note that we distin- FB, DDI} Model A natural question arises:
guish between models that employ Feedback (FE)nce Feedback following DPI results in significant
without distinguishing between positive and negamqgdels, are there any significant models which in-
tive feedback; and models where the type of feedsde sequences whose first component is a Feed-
back is taken into account (+FB, -FB). Table 5 showg;ck move? We found only two that are signif-
that for Lists, a sequence that includes DPI foIIowqucam’ when Feedback is followed by DDI (Direct
by any type of feedback (Feedback, +FB, -FB) propeciarative Instruction). Note that here we are not
duces significant models when the model includegistinguishing between negative and positive feed-
pre-test. Table 5 and all tables that follow includgy;ck.  Those models are shown in Table 6. The
the columnGapthat indicates the length of the gapy_ jsis model is not more effective than the original
within the DA sequence with which that model was\jodel 3 for Lists in Table 4, but the model for Trees
obtained. When, as in Table 5, multiple numberg; slightly more explanatory than the best model
appear in theGap column, this indicates that the for Trees in that same table, and includes a bigram

model is significant with all those gap settings. Wenodel, whereas in Table 4, only pre-test is signifi-
only show thes, R? and P values for the gap length .ant for Trees.

which generates the higheg? for a model, and the
corresponding gap length is in bold font: for exam} Topic | Predictor|  j R’ P | Gap
ple, the first model for Lists in Table 5 is obtained FB, DDI | .1478 <1
with a gap length = 2. For Lists, these models are npt-'StS | Pre-test | =470 1321 | <.001 ) 1
. . Length 011 < .05
as predictive as Model 3 in Table 4, however we bg EB DDl | 0709 05
lieve they are more useful from an ITS design point Trees| o - | 7409 | 6993 | _ g1 | O
pf view: they tell us that when the tutor gives dl.rec Table 6:{F8, DDI} Model
instruction on how to solve the problem, within a
short span of dialogue the tutor produces feedback, _
since (presumably) the student will have tried to ap?-2  Trigram Models
ply that DPI. For Stacks, 8DPI, -FB} model (with- {DPI, FB, DDI} Model Given our significant bi-
out taking pre-test into account) significantly corregram models for DPI followed by FB, and FB fol-
lates p < 0.05) with learning gain, and marginally lowed by DDI, it is natural to ask whether the com-
significantly correlates with learning gain when thebined trigram modeKDPI, FB, DDI} results in a
model also includes pre-test score. This latter modsignificant model. It does for the topic List, as
is actually more predictive than Model 3 for Stackshown in table 7, however again tRg is lower than

Table 5: DPI, Feedback Model
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that of Model 3 in Table 4. This suggests that an efPrompts and Sl is not surprising, although interest-
fective tutoring sequence is to provide instruction otingly they are significant only in association with

how to solve the problem (DPI), then Feedback ogertain tutor moves. It is well known that students
what the student does, and finally some declaratidearn more when they build knowledge by them-

instruction (DDI). selves, either by taking the initiative (SI), or after
the tutor prompts them to do so (Chi et al., 1994;
Topic | Predictor i) R? P Gap | Chi et al., 2001).
DPI, FB, DDI | .156 <.01
Lists | Pre-test =528 | 371 <.001 | 1) o irs backwards # it's got four elements, but they
Length 012 <.05 are backwards.gDI]
Table 7:{DPI, FB, DDI} Model 234: so we have do it agairS|]

LOW: so do it again. B]
More effective trigram models include Prompt LOW: do what again?Rrompi
and SI. Up to now, only one model including se-
guences of DAs was superior to the simpler models Figure 6:{DDI, FB, PT} is most effective in Stacks
in Table 4. Interestingly, different trigrams that still
include some form of Feedback, DPI or DDI, and™3 ©Other models
then either Prompt or SI (Student Initiative) result inVe found other significant models, specifically,
models that exhibit slightly higheR?; additionally {DDI,DPI} for all three topics, and-FB,SI} for
in all these models the trigram predictor is highlyLists. However, theirkR? are very low, and much
significant. These models are listed in table 8 (not@wer than any of the other models presented so
that the two Trees models differ because in one FB far. Besides models that includmly oneDA se-
generic Feedback, irregardless of orientation, in thguenceand pre-test score to predict learning gain,
other it's +FB, i.e., positive feedback). In detail, im-we also ran experiments to see if adding multiple
provements ink? are 0.0382 in topic Lists, 0.12 in DA sequences to pre-test score will lead to signifi-
topic Stacks and 0.0563 in topic Trees. The highesiant models — namely, we experimented with mod-

improvement is in Stacks. els which include two sequences as predictors, say,
the two bigramq-FB,SI} and{FB,DDI}. However,
Topic | Predictor g R’ P | Gap| no significant models were found.
PT.DPI,FB .266 <.01
Lists | Pre-test —.463 | 415 | <.001 | 0 |5 Conclusions
Length 011 < .05 ) ) )
Stacks| DDWFBPT [ =06 [ 77 <0L [ In this paper, we explored effective tutoring strate-
tacks Pre-test —-.52 | < .001 gies expressed as sequence of DAs. We first pre-
+FB,SI,DDI | .049 <.01 sented the CS-Tutoring corpus. By relaxing the DA
Trees 732 1 o . . .
Pre-test —.746 <.001 n-gram definition via the fuzzy matching provided
Trees | FB:SLDDI | .049 00 | <01 | | hy Apache Lucene, we managed to discover several
Pre-test | —.746 < 001 DA sequences that significantly correlate with learn-
Table 8: Highesk? Models ing gain. Further, we discovered models with higher

It is interesting to note that the model for Lists add® _than models Wthh mcIude- only one smglg DA,
Promptat the beginning to a bigram that had alread)wh'Ch are also.more_lnformatlve from the point of
been found to contribute to a significant model. FoY!€W of the design of interfaces to ITSs.

Trees, likewise, we add another DA to the bigra

{FB,DDI} that had been found to be significant; this
time, it is Student Initiative (SI) and it occurs in This work was mainly supported by ONR (N00014-
the middle. This indicates that, after the tutor pro©0-1-0640), and by the UIC Graduate College
vides feedback, the student takes the initiative, an@008/2009 Dean’s Scholar Award). Partial sup-
the tutor responds with one piece of information thgort is also provided by NSF (ALT-0536968, |IS-

student didn't know (DDI). Of course, the role 0f 0905593).
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