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Abstract 

For adult readers, an automated system can 
produce oral reading fluency (ORF) scores 
(e.g., words read correctly per minute) that are 
consistent with scores provided by human 
evaluators (Balogh et al., 2005, and in press).  
Balogh’s work on NAAL materials used 
passage-specific data to optimize statistical 
language models and scoring performance.  The 
current study investigates whether or not an 
automated system can produce scores for young 
children’s reading that are consistent with 
human scores.  A novel aspect of the present 
study is that text-independent rule-based 
language models were employed (Cheng and 
Townshend, 2009) to score reading passages 
that the system had never seen before.  Oral 
reading performances were collected over cell 
phones from 1st, 2nd, and 3rd grade children (n = 
95) in a classroom environment. Readings were 
scored 1) in situ by teachers in the classroom, 
2) later by expert scorers, and 3) by an 
automated system. Statistical analyses provide 
evidence that machine Words Correct scores 
correlate well with scores provided by teachers 
and expert scorers, with all (Pearson’s 
correlation coefficient) r’s > 0.98 at the 
individual response level, and all r’s > 0.99 at 
the “test” level (i.e., median scores out of 3). 

1 Introduction 

Oral reading fluency (ORF), defined as “the ability 
to read a text quickly, accurately, and with proper 
expression” (National Reading Panel, 2000; p. 
3.5), is a reflection of readers’ decoding ability.  
Skilled readers can recognize words effortlessly 

(Rasinski and Hoffman, 2003), due to 
“automaticity” of processing (LaBerge and 
Samuels, 1974) whereby a reader’s attention is no 
longer focused on “lower level” processing (e.g., 
letter to phoneme correspondence, word 
identification, etc.).  Instead, attention can be 
devoted to “higher level” functions such as 
comprehension and expression (LaBerge and 
Samuels, 1974).  As a means of assessing general 
reading ability, oral reading fluency performance is 
also a predictor of student success in academic 
areas such as reading and math (e.g., Crawford, 
Tindal, and Stieber, 2001).  Oral reading fluency is 
one of the key basic skills identified in the Reading 
First initiative used to satisfy the standards of the 
No Child Left Behind Act (NCLB, 2001). 

Although oral reading fluency is comprised of 
several abilities, due to practical constraints the 
most commonly reported reflection of oral reading 
fluency is reading rate, specifically, the words read 
correctly per minute (WCPM).  Typically, ORF 
performance is measured by a classroom teacher 
who sits alongside a student, marking and 
annotating – in real time – the student’s reading on 
a sheet of paper containing the passage to be read.  
Classroom testing is time-consuming and requires 
a teacher’s full attention.  In practice, teaching time 
is often sacrificed to “testing time” to satisfy local 
and federal reporting standards (e.g., NCLB).  
ORF scoring guidelines are specific to particular 
publishers; teachers must undergo training to 
become familiar with these guidelines, and cost, 
availability, and quality of training varies.  Finally, 
despite good-faith attempts to score accurately, 
teachers may impose errors and inconsistencies in 
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scoring ORF performances due to unavoidable 
factors such as classroom distractions, varying 
experience with different accents/dialects, varying 
experience with scoring conventions, and 
differences in training, among others.   

To address the need for a rapid and reliable way 
to assess oral reading fluency, a growing body of 
research has supported the use of automated 
approaches.  Beginning with work by Bernstein et 
al. (1990) and Mostow et al. (1994), prototype 
systems for automatic measurement of basic 
components of reading have appeared.  Recent 
projects have addressed finer event classification in 
reading aloud (Black, Tepperman, Lee, Price, and 
Narayanan, 2007), and word level reading 
(Tepperman et al., 2007), among others.  Research 
has increasingly focused on systems to score 
passage-level reading performances (e.g., Balogh 
et al., 2005; Zechner, Sabatini, and Chen, 2009; 
Cheng and Townshend, 2009).  Eskenazi (2009) 
presents a general historical perspective on speech 
processing applications in language learning, 
including reading. 

The present automated ORF assessment was 
developed to deliver and score tests of oral reading 
fluency, allowing teachers to spend less time 
testing and more time teaching, while at the same 
time improving score consistency across time and 
location.  Automated ORF tests are initiated by a 
click in a web-based class roster.  Once a test is 
initiated, a call is placed to a local phone number 
and the test begins when the phone is answered.  
Instructions presented through the handset direct 
the student to read passages out loud into the cell 
phone, and these readings are sent to the automated 
ORF system for processing and scoring. 

2 Present Study 

The scoring models used by the automated ORF 
test (see Method below) were originally developed 
based on adult readings, and then optimized on 
large sets of data collected from students reading 
passages produced by AIMSweb, a publisher of 
Reading Curriculum-Based Measurement (R-
CBM) oral reading fluency passages 
(www.aimsweb.com).  AIMSweb passages are 
leveled and normed across large samples of 
students.  Previous validation studies found that 
when the system was optimized using data from 

students reading AIMSweb passages, machine 
scores correlated with trained human expert score 
with r = 0.95 to 0.98, depending on the grade level 
of the student readers.  

The primary question that the present studies 
attempt to answer is whether the automated scoring 
system can score newly inserted content – in this 
case, ORF passages offered by Sopris called 
“Dynamic Indicators of Basic Early Literacy 
Skills”, or DIBELS (www.dibels.com) – accurately 
and at a high level of reliability.  This is an 
evaluation of text-independent Rule Based 
Language Models (RBLMs) that were developed 
with training data from other readers performing 
on other passages and then applied to the new 
passages.   

A secondary question of interest involves how 
different types of scorers may assign Words 
Correct scores differently.  Two groups of human 
scorers were recruited:  1) teachers who were 
recently trained in DIBELS scoring methods who 
would perform scoring in the classroom, and 2) 
expert scorers with the ability to score reading 
recordings carefully and at their convenience, 
without classroom distractions.  Answering the 
first part of the question involves comparing 
machine Words Correct scores to human scores 
when teachers make ratings in the classroom 
environment as the student reads into the phone.  
This analysis reveals if the machine and teachers 
produce systematically different scores when 
testing is performed in a “live” classroom with the 
typical attentional demands placed on a teacher 
scoring an ORF passage.  Answering the second 
part of the question involves comparing machine 
Words Correct scores to a “consensus”, or median 
Words Correct value, from expert scorers.  These 
three experts, with over 14 years of combined 
experience scoring DIBELS passages, listened to 
recordings of the same readings made in the 
classroom.  Because the recordings were digitally 
preserved in a database, the expert scorers were 
able to replay any part(s) of the recordings to 
determine whether each word was read correctly.  
The benefit of being able to replay recordings is 
that such scores obtained are, in theory, closer to 
capturing the “truth” of the student’s performance, 
unaffected by biases or distractions encountered by 
scorers performing a “live” rating.  
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2.1 Method 

2.1.1 Rule Based Language Models 

The scoring models used by the automated ORF 
system are RBLMs such as those described by 
Cheng and Townshend (2009). Such models out-
perform traditional n-gram language models 
(Cheng and Shen, 2010), in part by adding 
intuitively simple rules such as allowing a long 
silence as an alternative to a short pause after every 
word, leading to improvements in accuracy. Also, 
rules like those described by Cheng and 
Townshend (2009) consider much longer 
sequential dependencies. The basic idea for this 
kind of language model is that each passage gets a 
simple directed graph with a path from the first 
word to the last word. Different arcs are added to 
represent different common errors made by the 
readers, such as skipping, repeating, inserting, and 
substituting words. For each arc, a probability is 
assigned to represent the chance that the arc will be 
chosen.  Knowledge of performance on other 
readings produces linguistic rules, such as she can 
substitute for he, a single noun can replace a plural 
noun, the reader may skip from any place to the 
end, etc. All the rules used in RBLMs can be 
classified into five broad groups:  

1. skip/repeat rules 
2. rules using part-of-speech (POS) tagging 

information 
3. rules accommodating for insertion of 

partial words  
4. general word level rules 
5. hesitation and mouth noise rules  

A detailed analysis of the role of rules in RBLMs 
was described in Cheng and Shen (2010). 

The language rules are extrapolated from 
transcriptions of oral reading responses to passages 
using four base rules: any word substitutes for any 
word with a low probability; any word is inserted 
after any word with a low probability; any word is 
skipped with a low probability; any word is 
repeated immediately with a low probability. 
Following Cheng and Townshend (2009), the first 
two are the only rules that allow out-of-vocabulary 
words and their probabilities are fixed to the lowest 
level, so their arcs will never be traversed unless 
there is no other choice. 

General language model rules for reading can 
be inferred from clustering traversals of the basic 

models and proposing further rules that can be 
applied to new reading passages and used to infer 
underlying knowledge about the reading. Arcs are 
added to represent commonly observed non-
canonic readings. Further analysis of rule-firing 
details may provide diagnostic linguistic 
information about children’s reading habits that 
can be reported and analyzed. 

In the present automated scoring system, new 
passages are automatically tagged for part-of-
speech (POS) using the Penn Tree Tagger (Marcus, 
Santorini, and Marcinkiewicz, 1993).  POS tags 
allow specification of certain general rules based 
on linguistic properties, such as: 
 NN (noun, singular or mass) can become NNS 

(noun, plural);  
 VBZ (verb, 3rd person singular present) can 

become VBP (verb, non-3rd person singular 
present); and so on.  

These patterns occur quite frequently in real 
responses and can therefore be accounted for by 
rules. Sentence, clause, and end-of-line boundaries 
are tagged manually. Marked up passages are then 
inserted into the ORF scoring system, providing 
data regarding places in the reading that may result 
in pauses, hesitations, corrections, etc.  If the 
expected response to a reading passage is highly 
constrained, the system can verify the occurrence 
of the correct lexical content in the correct 
sequence.  It is expected that the system, using 
previously trained data coupled with the RBLMs 
from the newly inserted passages, will be able to 
produce Words Correct scores with high accuracy 
(i.e., consistent with human Words Correct scores). 

Here, we make a final note on the use of Words 
Correct instead of words correct per minute 
(WCPM), when WCPM is the most common 
measure for quantifying oral reading performance.  
The automated system presents students with a 60-
second recording window to read each passage, but 
it calculates a truer WCPM by trimming leading 
and trailing silence.  Human scorers simply 
reported the number of words correct, on the 
assumption that the reading time is the recording 
window duration.  Thus, Words Correct scores are 
the appropriate comparison values, with a fixed 60-
second nominal reading time. 

2.1.2 Participants 

A total of 95 students were recruited from the San 
Jose Unified School District in San Jose, 
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California.  The students were 20 first graders, 20 
second graders, and 55 third graders, all enrolled in 
a summer school program.  Students with known 
speech disorders were included in the study, as was 
one student with a hearing impairment.  Roughly 
half of the participants were male and half were 
female.  A number of English Language Learners 
are known to have been included in the sample, 
though language status was not recorded as a 
variable for this study.  It is not known whether 
any of the students had been diagnosed with 
reading disabilities.  

Four Teachers were trained to administer and 
score DIBELS ORF passages by an official 
DIBELS trainer, over the course of a two day 
training session.  All Teachers were reading 
experts or teachers with experience in reading 
education.  They were trained to navigate a web 
application that triggers delivery of tests over cell 
phones under classroom testing conditions.  
Evaluator qualifications are summarized in Table 
1. 

Evaluator 
Highest degree, 

or relevant certification 

Years 

assessing 

reading 

Teacher 1 MA Education 8 

Teacher 2 MA Education 7 

Teacher 3 Reading Credential 15 

Teacher 4 BA Education 12 

Expert 1 MS, Statistics 5 

Expert 2 EdS, Education 2 

Expert 3 MA Education 20 

Table 1.  Evaluator qualifications 

2.1.3 Procedure 

First, nine passages – three for each of the three 
grades, presented together in a single test – were 
drawn from the DIBELS Benchmark test materials.  
Each DIBELS passage was tagged for parts of 
speech and formatting (e.g., line breaks) and 
inserted into the automated scoring system.  Rule-
based language models were produced for each 
passage. 

During data collection, each student read the 
grade-appropriate DIBELS Benchmark test (3 
passages) into a cellular telephone in the 
classroom.  With three passages per student, this 
process yielded 285 individual reading 
performances.   

Once a test was initiated, Teachers allowed the 
test to run independently and scored manually 
alongside the student reading into the phone.  
According to standard DIBELS scoring 
conventions, the students were allowed to read 
each passage for one minute.  Teachers calculated 
and recorded the Words Correct score on a 
worksheet for each passage.  Teachers returned the 
annotated score sheets for analysis. 

Later, three Expert scorers logged in to a web-
based interface via the Internet, where they listened 
to the digitized recordings of the readings.  All 
three Expert scorers had extensive experience with 
DIBELS rating.  One Expert was the DIBELS 
trainer who provided the DIBELS training to the 
Teachers for this study.  Experts scored students’ 
performance manually using score sheets with the 
instruction to use standard DIBELS scoring 
conventions.  Each Expert entered a Words Correct 
score for each passage using the web interface, and 
the score sheets were returned for analysis.   

2.1.4 Automated scoring 

Incoming spoken responses were digitally 
recorded and sent to a speech processing system 
that is optimized for both native and non-native 
speech.  Recognition was performed by an HMM-
based recognizer built using the HTK toolkit 
(Young, et al., 2000).  Acoustic models, 
pronunciation dictionaries, and expected-response 
networks were developed in-house using data from 
previous training studies involving many 
thousands of responses.  The words, pauses, 
syllables, phones, and even some subphonemic 
events can be located in the recorded signal, and 
“words recognized” are compared with “words 
expected” to produce a recognized response and 
word count. 

The acoustic models for the speech recognizer 
were developed using data from a diverse sample 
of non-native speakers of English.  In addition, 
recordings from 57 first-grade children were used 
to optimize the automated scoring system to 
accommodate for characteristics specific to young 
children’s voices and speech patterns.  These 
participants produced 136 usable, individual 
reading samples.  These samples were each rated 
by two expert human raters.  Using this final 
training set, the scoring models were refined to the 
point that the correlation between human and 
machine scoring was 0.97 for WCPM.  
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2.1.5 Human scoring 

During data preparation, it was noted that many 
of the teacher scores were several words longer 
than would be expected based on the machine 
scores.  Further investigation revealed that teachers 
would occasionally continue scoring after the one 
minute point at which the system stopped 
recording a passage, perhaps because they hadn’t 
heard the notification that the reading was 
complete.  A total of 31 out of 285 instances 
(~10.8%) were found where teachers continued 
scoring for more than 3 words beyond the 1 minute 
recording window, leading to artificially inflated 
Teacher scores.  This artifact of the testing 
apparatus/environment warranted making a careful 
correction, whereby all Teacher scores were 
adjusted to account for what the machine “heard”.  
That is, words and errors which Teachers scored 
after the automated system stopped recording (i.e., 
to which the automated system did not have 
access) were subtracted from the original Teacher 
Words Correct scores.  All Teacher Words Correct 
scores reported hereafter are thus “corrected”. 

For purposes of finding a “consensus” Expert 
score, the median of the 3 expert human scores for 
each passage was obtained and is referred to as 
ExpertM in the following analyses.   

Nine readings from eight separate students 
received no scores from teachers.  Information was 
not provided by the teachers regarding why they 
failed to complete the scoring process for these 
readings.  However, we made the following 
observations based on the teachers’ marked-up 
scoring sheets. For three readings, the teacher’s 
final score was blank when the student appeared to 
have skipped lines in the passage.  It is possible 
that, despite recent scoring training, the teacher 
was uncertain how to score skipped lines in the 
readings and left the final score blank pending 
confirmation.  For one reading, the teacher made a 
note that the system stopped recording well before 
one minute had expired because the child’s reading 
was too quiet to be picked up, and the teacher did 
not record the final score on the score sheet.  For 
one reading, the student did not hear the prompt to 
begin reading (confirmed by listening to the 
response recording) and therefore did not read the 
entire passage; the teacher did not enter a final 
score.  For the four remaining readings, the teacher 

annotated the performance but did not write down 
the final score for unclear reasons. 

We might have elected to fill in the teachers’ 
final scores for these 9 readings prior to subjecting 
the data to analysis, especially in the cases where a 
teacher annotated the reading correctly on the 
score sheet but simply failed to record the final 
Words Correct score, perhaps due to oversight or 
not knowing how to handle unusual events (e.g., 
entire line of reading skipped).  Excluding such 
readings from the analysis ensured that the 
teachers’ scores reflected “their own” scoring – 
including any errors they might make – rather than 
our interpretation of what the Teachers probably 
would have written.  In addition, to maintain the 
most conservative approach, whenever a single 
reading passage from a student lacked a teacher’s 
score, all 3 of that student’s readings were 
excluded.  The decision to exclude all readings 
from students with only a single passage missing 
was made because relevant analyses reported 
below involve reporting median scores, and a 
median score for students lacking one or two 
passage scores would not be possible.1  The final 
set of graded responses thus consisted of 261 
responses from 87 students.2 

2.2 Results  

2.2.1 Score Group Comparisons 

Words Correct scores from Teachers, ExpertM, and 
machine are displayed in Table 2.  Repeated 
measures ANOVA with Scorer Type (machine, 
Teacher, ExpertM) as the repeated measure and 
Score Group as the between-subjects factor 
revealed a main effect of group for the 261 

                                                           
1 The excluded 8 students produced 15 readings with all three 
(Machine, Teacher, Expert) scores.  Machine scores vs. 
Teacher scores and Machine scores vs. ExpertM scores for 
these 15 individual responses yielded correlations of 
(Pearson’s) r = 0.9949 and 0.9956, respectively.  Thus, 
excluding these responses from the larger dataset is unlikely to 
have significantly affected the overall results. 
2 In production, such a system would not commit these errors 
of omission.  Readings that are unscorable for technical 
reasons can trigger a “Median score not be calculated” 
message and request a teacher to manually score a recording 
or re-administer the assessment.  Also, anomalous 
performances where Words Correct on one passage is very 
different from Words Correct on the two other passages could 
return a message. 
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readings3, F(2, 520) = 9.912, p < .01, ω2 < .001.  
Post-hoc pairwise comparisons 4  showed that 
Words Correct scores from Teachers were higher 
on average than both the machine and ExpertM 
scores (higher by 1.559 and 0.923 words correct, 
respectively; both p’s < .05).  On the other hand, 
Machine and ExpertM scores did not differ 
significantly from each other (diff = 0.636).  

Although the ANOVA showed that the means 
In the above analysis were significantly different, 
the effect size was negligible: ω2 was = .0002, 
indicating that Score Group by itself accounted for 
less than 1% of the overall variance in scores.  
These results indicate that, for all 261 passages, the 
ExpertM and machine scores were statistically 
comparable (e.g., within 1 word correct of each 
other), while Teachers tended to assign slightly – 
but not meaningfully – higher scores, on average. 

Next, comparisons were made using the median 
value of each student’s three readings.  Median 
Words Correct scores for the 87 individual 
students were subjected to repeated measures 
ANOVA with the same factor (Scorer Group).  
Teachers’ Words Correct scores were again higher 
than ExpertM scores (diff = 1.115) and Machine 
scores (diff = 0.851), but this was not statistically 
significant in the main analysis, F(2, 172) = 3.11, p 
> .05, ω2 < .001.  Machine Words Correct scores 
were, on average, 0.264 words higher than ExpertM 
scores, but this, too, was not statistically 
significant.  These results support the previous 
comparisons, in that machine scores fall well 
within ~1 word correct of scores from careful 
experts, while teachers tended to give scores of 
about 1 word correct higher than both experts and 
machine. 

2.2.2 Scorer performance 

To compare reliability, the Pearson’s Product 
Moment coefficient (r) was used to estimate the 
correlation between paired human and machine 
scores, and between pairs of human raters.  Two 
types of analyses are reported.  First, analyses of 
Words Correct scores were conducted across 
scorers.  Next, analyses were conducted on the 
basis of the median Words Correct score for each 

                                                           
3  For both ANOVAs, uncorrected degrees of freedom are 
reported but reported F values are corrected using Huynh-
Feldt estimates of sphericity. 
4 Using Bonferroni adjustment for multiple comparisons. 

student’s readings (i.e., the median score across all 
three passages).  This score reflects the “real-life” 
score of DIBELS ORF tests because the median 
score is the one that is ultimately reported 
according to DIBELS scoring/reporting 
conventions.    

2.2.2.1.  Intra-rater reliability 

Each Teacher scored each reading once during the 
live grading; intra-rater reliability could thus not be 
 

 Words Correct 
Score 
Type 

261 readings 
Mean (SD) 

87 students  
Mean (SD) 

Teacher 84.3 (42.5) 84.0 (42.1) 
ExpertM 83.4 (42.3) 82.9 (41.8) 
Machine 82.8 (39.6) 83.2 (39.3) 

Table 2.  Mean Words Correct for all readings and 
all students. 

 
estimated for the Teacher group.  During Expert 
rating, a randomly selected 5% of the passages 
were presented again for rating to each scorer.  
Overall Expert intra-rater reliability was 0.9998, 
with intra-rater reliability scores for Expert 1, 
Expert 2, and Expert 3 at 0.9996, 1.0, and 1.0, 
respectively.  These results indicate that Expert 
human scorers are extremely consistent when 
asked to provide Words Correct scores for reading 
passages when given the opportunity to listen to 
the passages at a careful, uninterrupted pace.  The 
automated scoring system would produce the exact 
same score (reliability = 1.0) every time it scored 
the same recordings, making its reliability 
comparable. 

2.2.2.2.  Inter-rater reliability 

Pearson’s r was used to estimate the inter-rater 
reliability.  All three Experts scored all passages, 
whereas any particular Teacher scored only a 
subset of the passages; thus, the Teacher’s score 
was used without consideration of which teacher 
provided the score.  Inter-rater reliability results 
are summarized in Table 3.   
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Reliability  (N = 261) 

 Teacher Expert 1 Expert 2 
Expert 1 0.998   
Expert 2 0.999 0.999  

Expert 3 0.998 0.999 0.999 
Table 3.  Inter-rater reliability estimates for Expert 

scorers. 
 
To provide a measure of a “consensus” expert 
score, the median score from all 3 Experts was 
derived for each passage, and then compared with 
the Teacher score.  This comparison (Teacher vs. 
ExpertM) yielded a reliability of 0.999, p < .01.  As 
shown in Table 3, all inter-rater reliability 
estimates are extremely high, indicating, in part, 
that teachers in the classroom produce scores that 
do not differ systematically from those given by 
careful experts.   

2.2.3 Human-machine performance 

Pearson’s r was computed to estimate the 
correlations.  The different scorer groups (i.e., 
ExpertM, Teacher, and Machine) provided similarly 
consistent scoring, as evidenced by high 
correlations between scores from the three groups.  
These correlations were maintained even when 
data were broken down into individual grades.  
Table 4 reveals correlations between Words 
Correct scores provided by all 3 scoring groups, 
for each grade individually, for all three grades 
combined, and finally for the median scores for all 
87 students. 
 

Grade level (N) 
Machine 

~ Teacher 

Machine ~ 

ExpertM 

Teacher ~ 

ExpertM 

1st grade (54) 0.990 0.990 0.996 

2nd grade (60) 0.990 0.991 0.999 

3rd grade (147) 0.964 0.962 0.997 

Grades 1-3 (261) 0.989 0.988 0.999 

Only medians 87 0.994 0.994 0.999 

Table 4.  Correlations between Words Correct scores 
by Experts, Teachers, and machine. 

 
All correlations are 0.96 or higher.  Correlations 
are highest between Teacher and ExpertM, but 
correlations between machine and both human 
groups are consistently 0.96 or above.  The 
relatively lower correlations between human and 
machine scores seen in the third grade data may be 

attributed in large part to two outliers noted in the 
Figures below.  If these outliers are excluded from 
the analysis, both correlations between human and 
machine scores in the third grade rise to 0.985.  
(See below for discussion of these outliers.) 

2.2.4.1.  Teacher vs. Machine performance 

Pearson’s r was used to estimate the correlation 
between Teacher and Machine scores.  First, the 
Teacher-generated Words Correct score and 
Machine-generated Words Correct scores were 
obtained for each of the 261 individual recordings, 
where the correlation was found to be r = 0.989, p 
< .01.   

 

Words Correct scores
Teacher vs. Machine 

r = 0.989
n = 261
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Figure 1.  Words Correct (WC) scores from Teachers 

and Machine; response level (n = 261 responses) 
 
Figure 1 shows a small number of outliers in the 
scatterplot (circled in red).  One outlier (human = 
3, machine = 21) came from a student whose low 
level of reading skill required him to sound out the 
letters as he read; machine scores were high for all 
3 recordings from this reader.  One outlier (human 
= 21, machine = 10) occurred because the reader 
had an unusually high pitched voice quality which 
posed a particular challenge to the recognizer.  
Two outliers (human = 141, machine = 76; human 
= 139, machine = 104) suffered from a similar 
recording quality-based issue whereby only some 
of the words were picked up by the system because 
the student read rapidly but quietly, making it 
difficult for the system to consistently pick up their 
voices.  That is, for these calls the Teacher was 
close enough to hear the students’ entire reading 
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but the machine picked up only some of the words 
due to distance from the telephone handset.5   

Next, median Words Correct scores for each 
student were computed.  Median scores derived 
from machine and Teachers correlated at 0.994, p 
< .01 for the 87 students.  These scores are 
presented in Figure 2. 
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Figure 2.  Words Correct (WC) scores from Teachers 

and Machine scoring at the reader level (n = 87). 
 
Figure 2 shows that some of the outliers visible in 
the individual recording data disappear when the 
median score is computed for each student’s 
reading performance, as would be expected.     

2.2.4.2. Expert vs. Machine performance 

The median of the 3 expert human scores for each 
passage (ExpertM) was compared to the Machine 
score.  The correlation between machine-generated 
Words Correct scores and ExpertM-generated 
Words Correct scores was 0.988, p < .01, for the 
261 individual readings, and 0.999, p < .01, for the 
median (student-level) scores.  These results are 
displayed in Figure 3. 

Figure 3 shows that two notable outliers present 
in the Teacher analysis were also present in the 
ExpertM analysis.  This may be due to the fact that 
while the recordings were of a low enough volume 
to present a challenge to the automated scoring 
system, they were of a sufficient quality for expert 
human scorers to “fill in the blanks” by listening 

                                                           
5 In a production version, these recordings would return an 
instruction to re-administer the readings with better recording 
conditions or to score the recordings. 

repeatedly (e.g., with the ability to turn up the 
volume), and in some cases giving the student 
credit for a word spoken correctly even though 
they, the scorers, were not completely confident of 
having heard every portion of the word correctly.  
Though conjectural, it is reasonable to expect that 
the human listeners were able to interpolate the 
words in a “top down” fashion in a way that the 
machine was not.  
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 Figure 3.  Words Correct (WC) Machine scores vs. 

Expert scores for all 261 individual responses 
(top) and for 87 students at test level (bottom).   

2.2.5. Scoring Precision 

It is reasonable to assume that careful expert 
scorers provide the closest possible representation 
of how a reading should be scored, particularly if 
the Expert score represents a “consensus” of expert 
opinions.  Given the impracticality of having a 
team of experts score every passage read by a child 
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in the classroom, automated machine scoring 
might provide the preferred alternative if its scores 
can be shown to be consistent with expert scores.  
To explore the consistency between scores from 
Teachers and scores from the machine with scores 
provided by Experts, Teacher and Machine scores 
were compared against the median Expert score for 
each call using linear regression.   

The standard error of the estimate (SEE) for the 
two human groups was computed.  The SEE may 
be considered a measure of the accuracy of the 
predictions made for Teacher and Machine scores 
based on the (median, “consensus”) Expert scores.  
Figure 4 below shows a scatterplot of the data, 
along with the R2 and SEE measures for both 
Teacher and machine scores based on ExpertM 
scores. 

Scores from Teachers and Machine produce very 
similar regression lines and coefficients of 
determination (R2 = 0.998 and 0.988 for Teachers 
and Machine, respectively).  The figure also shows 
that, compared with the Machine scores, Teachers’ 
scores approximate the predicted ExpertMed scores 
more closely (SEE for Teachers = 1.80 vs. 4.25 for 
machine).  This disparity appears to be driven by 
diverging scores at the upper and lower end of the 
distribution, as might be expected due to relatively 
smaller numbers of scores at the ends of the 
distribution. 
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Figure 4.  Median Words Correct scores from 

Machine (red squares) and Teachers (blue 
triangles) plotted against median Expert scores 
for 87 students.  S.E.E. = Standard error of 
estimate. 

 

3 Summary/Discussion 

Correlations between human- and machine-based 
Words Correct scores were found to be above 0.95 
for both individual reading passages and for 
median scores per student.  The machine scoring 
was consistent with human scoring performed by 
teachers following along with the readings in real 
time (r = 0.989), and was also consistent with 
human scoring when performed by careful expert 
scorers who had the ability to listen to recorded 
renditions repeatedly (r = 0.988).  Correlations 
were consistent with those between expert scorers 
(all r’s between 0.998 and 0.999) and between 
Teachers and Experts (r = 0.999 and 0.988, 
respectively).   

These results demonstrate that text-independent  
machine scoring of Words Correct for children’s 
classroom reading predicts human scores 
extremely well (almost always within a word or 
two).   
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