Improving MT Word Alignment Using Aligned Multi-Stage Parses

Adam Meyersf, Michiko Kosaka?!, Shasha Liad and Nianwen Xue
T New York University,\Monmouth University?Brandeis University

Abstract than Giza++ on raw text (a 0.7% to 1.5% absolute
improvement). In principle, our reordered text can
We use hand-coded rules and graph-aligned  pe used to improve any Chinese/English SMT sys-

logical dependencies to reorder English text  tem for which Giza++ (or other word aligners) are
towards Chinese word order. We obtain a part of the processing pipeline.

1.5% higher F-score for Giza++ compared to
running with unprocessed text. We describe

. o eE These experiments are a first step in using
this research and its implications for SMT.

GLARF-style analyses for MT, potentially improv-
ing systems that already perform well with aligned
1 Introduction text lacking large gaps in surface alignment. We hy-
o _ _ pothesize that SMT systems are most likely to ben-
Some statistical machine translation (SMT) systemj; from deep analysis for structures where source
use pattern-based rules acquired from linguistically,4 target language word order differs the most. We
processed bitexts. They acquire these rules throu%gopose using deep analysis to reorder such struc-
the alignment of a parsed structure in one languaggres in one language to more closely reflect the
with & raw string in the other language (Yamada angqrq order of the other language. The text would be
Knight, 2001; Shen et al., 2008) or the alignmenfeordered at two stages in an SMT system: (1) prior
of source/target language parse trees (Zhang et g,acquiring a translation model; and (2) either prior
2008; Cowan, 2008). This paper shows that My transiation (if source text is reordered) or after

chine translation (MT) can also benefit by aligning gransjation (f target text is reordered). Our system
deeper” level of analysis than parsed text, which ingqyes Jarge constituents (e.g., noun post-modifiers)

cludes semantic role labeling, regularization of pasy pring English word order closer to that of parallel
sives and wh constructions, etc. We create GLAREhinese sentences. This improves word alignment

representations (Meyers et al., 2009) for English angl,4 is likely to improve SMT.
Chinese sentences, in the form of directed acyclic
graphs. We describe two graph-based techniquesFor this work we use two English/Chinese bitext
for reordering English sentences to be closer to thabrpora developed by the Linguistic Data Consor-
of corresponding Chinese sentences. One technigtiem (LDC): the Tides FBIS corpus and the GALE
is based on manually created rules and the otherYsl Q4 Chinese/English Word-Alignment corpus.
based on an automatic alignment of GLARF repreWwe used 2300 aligned sentences from FBIS for de-
sentations of Chinese/English sentences. After r@elopment purposes. We divided the GALE corpus
ordering, we align words of the reordered Englishinto into a 3407 sentence development subcorpus
with the words of the Chinese, using the Giza+{DEV) and a 1505 sentence test subcorpus (TEST).
word aligner(Och and Ney, 2003). For both techWe used the LDC’s manual alignments of the FBIS
niques, the resulting alignment has a higher F-scomrpus to score these data.
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2 Related Work in SMT sentation analogous to the (more accurate) output
F tand out osel lated to t of current treebank-based parsers (Charniak, 2001)
our papers stand out as closely related 1o hﬁﬁd an additional second stage output that regular-

gg%s;r:jt Stqu ) (Coll!ns e;[ al.r,].2r(]) 05; Wang ﬁt al'i’zed constructions (passive, active, relative clauses)
) describe experiments which use manua VG representations similar to active clauses with no

ated parse-tree-based rules to reorder one sideé) ps, e.g.The book was read by Mawyas given a
a bitext: German/English in (Coliins et al., 2005)representation similar to that dfary read the book

and English/Chinese in (Wang et al., 2007). BOtI1’reating the active clause as canonical provides a

achieve BLEU scgre improvements for SMT: 25'20/9/vay to reduce variation in language and thus, mak-
to 26.8% for (Collins et al.

for (W L 2007 ' \2/\(/305) and |28E23§(§$ 30'8(?ng it easier to acquire and apply statistical informa-
or (Wang et al., ). (Wang et al, ) US€8on from corpora—there is more evidence for partic-

rules very sw_mlar to our own as they use the S8M&ar statistical patterns when applications learn pat-
language pair, although they reorder the Chmesﬁérns and patterns more readily match data.

whereas we reorder the English. The most signifi- Two-stage parsers were influenced by linguistic

cant differences between our research and (Couigfeories (Harris, 1968: Chomsky, 1957; Bresnan and
et al., 2005; Wang et al., 2007) are: (1) our manu aplan, 1982) which distinguish a “surface” and a

rules benefit from a level of representation deeper‘,deep,, level. The deep level neutralizes differences

than a surface parse; and (2) In addition to the hang- tween ways to express the same meaning—a pas-
coded rules, we also use automatic alignment—basg e like The cheese was eaten by raias analyzed
rules. (Wu and Fung, 2009) uses PropBank role I% terms of the active fornRats ate the chees€ur-

bels (Palmer et al., 2005) as the basis of a SeCO'Pgntly “semantic parsing” refers to a similar repre-

pass filter over an SMT system to improve the BLEUsentation, e.g., (Wagner et al., 2007) or our own

score from 42.99 to 43.51. The main similarity tOGLARF (Meyers et al., 2009). However, the term is

the current study is the use of a level of rePreseiliso used for semantic role labelers (Gildea and Ju-

tation that is “deeper” than a surface parse. Howr'afsky, 2002; Xue, 2008), systems which typically

gver, our application of linguistic structure is MO8 abel semantic relations between verbs and their ar-
like that of (Wang et al., 2007) and our "deep” level uments and rarely cover arguments of other parts

connects all predicates and arguments in the se speech. Second stage semantic parsers like our

tence, regardless of part of speech, rather than ju&’vn, connect all the tokens in the sentence. Aligned

connecting verbs to their arguments. (Bryl and vag, processed in this way can (for example) repre-

Genabith, ?010) descnbgs an open source _LFG Ig’ent differences in English/Chinese noun modifier
structure alignment tool with an algorithm similar to

i o order, including relative clauses. In contrast, few
our previous work. They evaluate their allgnmenE

4 “role labelers handle noun modifiers and none han-
output on 20 manually-aligned German and Englis le relative clauses. Below, we describe the GLARF

F-structures. They leave the impact of their work o - mework and our system for generating GLARF
MT to futyre research. representations of English and Chinese sentences.
In addition to these papers, thgre has also beenFor each language, we combine several types of
some WOI’.k on rule-based reordering PrePrOCeSSOltormation which may include: named entity (NE)
to word alignment based on shallower linguistic 'n'tagging, date/number regularization, recognition of

formation. For example (Crego and Mam, 2006) multi-word expressions (the prepositiafith respect
reorders based on patterns of POS tags. We hypo%-, the nounhand me dowrand the verbad lib),

tehsTe tft1tat this ﬁ:ggl»:ar to theI.EbIO\{[e ap prcl)atches ¥ole labels for predicates of all parts of speech, regu-
at patterns o ags are likely fo simulate Ioar?étrizing passives and other constructions, error cor-

ing or chunking. rection, among other processes into a single typed

feature structure (TFS) representation. This TFS
is converted into a set of 25-tuples representing
The two stage parsers of previous decades (Hobdspendency-style relations between pairs of words
and Grishman, 1976) generated a syntactic reprat the sentence. Three types of dependencies are

&9

3 Preparing the Data



mon parsing errors; (b) merge NE information with
the parse, resolving conflicts in constituent bound-
aries by hand-coded rules; (c) regularize numbers,

" sy dates, times and holidays; (d) identify heads and
2 os ™ label relations between constituents; (e) regularize
> text grammatically (filling empty subjects, resolv-

,,,,,,,,,,,,,,,,,,, PAER

e . ing relative clause and Wh gaps, etc.); (f) mark con-

junction scope; (g) identify transparent constituents
Figure 1: Word-Aligned Logicl Dependencies ~ (€-9., recognizing, thah variety of different peo-

ple has the semantic featurespeople(human), not

those ofvariety, the syntactic head of the phrase.);
representedsurfacedependencies (close to the levelamong other aspects. The Chinese pipeline is simi-
of the parser)|ogicl dependencies (reflecting var-|ar, except that it includes the LDC word segmenter
ious regularizations) antbgic2 dependencies (re- and a PropBanker (Xue, 2008). Also, the regulariza-
flecting the output of a PropBanker, NomBanketion routines are not as completely developed, e.g.,
and Penn Discourse Treebank transducer).(Palmefative clause gaps and passives are not handled
et al., 2005; Xue and Palmer, 2003; Meyers et alyet. The Chinese system currently uses the Berke-
2004; Miltsakaki et al., 2004) The surface depentey parser (Petrov and Klein, 2007). Each of these
dency graph is a tree; The logicl dependency grafipelines derives typed feature structure representa-
is an directed acyclic graph; and The logic2 depenions, which are then converted into the 25 tuple rep-
dency graph is a directed graph with cycles, covefesentation of 3 types of dependencies between pairs
ing only a subset of the tokens in the sentence. Fef tokens: surface, logicl and logic2.
these experiments, we focus on the logicl relations, To insure that the logic1 graphs are acyclic, we as-
but will sometimes use the surface relations as We“_:,ume that certain edges are surface 0n|y and that the
Figure 1 is a simple dependency-based logicl repreesulting directed acyclic graphs can have multiple
sentation ofl know the rules of tenniand its Chi- roots. It turns out that the multiple rooted cases are
nese translation. The edge labels name the relatiopfostly limited to a few constructions, the most com-
between heads and dependents, ¢ig.the SBJ of mon being parenthetical clauses and relative clauses.
knowand the dashed lines indicate word level correa, parenthetica| clause takes the main clause as an
spondences. Each node is labeled with both a wogtgument. For example, ifihe word ’potato’, he
and a unique node identifier (n1, n1’, etc.) claimed, is spelled with a final ’e’the verbclaimed

The English system achieves F-scores for logicakes the entire main clause as an argument, we as-
dependencies on parsed news text in the 80-908ame thathe claimedis a dependent on the main
range and the Chinese system achieves F-scoresvérb (is) spelledlabeled PARENTHETICAL in our
the 74-84% range, depending on the complexity afurface dependency structure, but that the main verb
the text. The English system has been created ovgs) spelledis a dependent of the vertddaimedin
the course of about 9 years, and consequently ésur logicl structure, labeled COMPLEMENT. Thus
more extensive than the Chinese system, which h@se logicl surface dependency structure have dis-
been created over the past 3 years. The systems @reet roots. In a relative clause, suchthe book that
described in more detail in (Meyers et al., 2009). | read’, we assume that the clauseat | readis a de-

The GLARF representations are created in a s@endent on the nousookin our surface dependency
ries of steps involving several processors. The Erstructure with the label RELATIVE, buttookis a de-
glish pipeline includes: (1) dividing text into sen-pendent on the verkeadin our logicl dependency
tences; (2) running the JET NE tagger (Ji and Grstructure, with the label OBJ. This, means that our
ishman, 2006); (3) running scripts that clean up datagicl dependency graphs for sentences containing
(to prevent parser crashes); (4) running a parser (cuelative clauses are multi-rooted. One of the roots is
rently Charniak’s 2005 parser based on (Charniakhe same as the root of the surface tree and the other
2001)); (5) running filters that: (a) correct com-root is the root of the relative clause graph (a rela-

90



tive pronoun or a main verb). Furthermore, there igadverb, PP, subordinate clause that is semantically
a surface path connecting the relative clause root temporal) to pre-verb position.

the rest of the graph. Noncyclic graph traversal is

possible, provide that: (1) we use the surface path & Automatic Node Alignment and its

enter the graph representing the relative clause — oth- Application for Word Alignment

erwise, the traversal would skip the relative clausei'h this experiment. we automatically derive re-
and (2) we halt the traversal if we reach this path a P ' y

. . . . O?rderings of the English sentences from an align-
second time — this avoids traversing down an en - et between nodes in logicl dependency araphs
less path. The parenthetical and relative clause g P Y grap

e ) .

representative of the handful of cases in which nal;a{é)r the English (source) anq Ch!nese (target) sen
: : tences. Source/Target designations are for conve-

representations would introduce loops. All cases of. . e o

n;fence, since the direction of MT is irrelevant.

which we are aware have the essential properties o . . . .
brop We define an alignment as a partial function from

one of these two cases: (1) either introducing a dif- . )
. ) . ; the nodes in the source graph and the nodes in the

ferent single root of the clause; or (2) introducing ar .
. . target graph. We, furthermore, assume that this map-
additional root that can be bridged by a surface path. @~ )
ping is 1 to 1 for most node pairs, but can be nto 1

(or 1 to n). Furthermore, we allow some nodes, in
effect, to represent multiple tokens. These are iden-

We derived manual rules for making the Englishtlfled as part_of the GLARF analysis of a pe}r.tlcular
. . . sentence string and reflect language-specific rules.
Word Order more like the Chinese by manually in- hus. for oUr DUIDOSES. 4 MADbING between a source
specting the data. We inspected the first 100—20-5 ’ burp ’ PpINg .
. . ._and target node, each representing a multi-word ex-
sentences of the DEV corpus by first transliteratin o
ression is 1 to 1, rather than N to N.

the Chinese into English — replaced each Chine eW dentify the following ¢ ¢ multi q
word with the aligned English counterpart. Several € identify the following types of muiti-word ex-

patterns emerged which were easy to formalize in[ﬁressmns for this purpose: (a) idiomatic expressions

rules in the GLARF framework. These patterns wer(éom our monolingual lexicons, (b) dates, (c) times

4 Manual Reordering Rules

verified and sometimes generalized through discu d) numbers and (e) ACE (Grishman, 2000) NEs.

sions with native Chinese speakers and Iinguistsi_.atefv’lt()“dayj and t|m3e slzr;?rﬁgularlzedlgil;l%;s(())l-
Our rules, similar to those of (Wang et al., 2007) are eV - €G-, January s, ecomes had

as follows (results are discussed in section 6): (ﬁnd numbers are converted to Arabic numbers.

Front a post-nominal PP headed by a preposition i1  A| IGN-ALG1
the list{of, in, with, abou}}. (2) Front post-nominal _ - ,
relative clause that begins withator does not have 1HiS Work uses a modified version of ALIGN-

any relative pronoun, such that the main predicate 8LG1: @ graph alignment algorithm we previously
not a copula plus adjective construction. (3) FronS€d to align 1990s-style two-stage parser output for

: ) 5
post-nominal relative clause that begins witator MT experiments. ALIGN-ALGL is arO(n”) algo-
has no relative pronoun if the main predicate is M. N is the maximum number of nodes n the
copula+adjective construction which is not negate§PUrce and target graphs (Meyers et al., 1996; Mey-
by a word from the sefno neither nor never not rS et ,al., 1998)' Given S(l)urce Tréeand Target
n't}. (4) Front post-nominal reduced relative in the '€€ 7" an alignment(T, T") is a partial function

: ot from nodesN in 7' to nodesN’ in 7”. An exhaus-
form of a passive or adjectival phrase. (5) Move ad- , : : :
verbialsmore thanandless tharafter numbers that Ve search of possible alignments would consider all
they modify. (6) Move PPs that post-modify adjec_non-intersecting combinations of tiex 7" pairs of
tives to the position before the adjective. (7) Move>@urce/target nodes — There are at nidstuch pair-

H 1
subordinate conjunctiorzeforeandafterto the end N9S wherel’ >= T"." However, ALIGN-ALG1 as-
of the clause that they introduce. (8) Move an injSUmes that some of these pairings are unlikely, and

tial one-word-long title r., Ms,, Dr., President to This ignores N to 1 matches, which we allow, although rel-
the end of the name. (9) Move temporal adverbialstively rarely.
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favors pairings that assume the structure of the trease at mostnaz(: + 1,5 + 1)! possible pairings.
correspond more closely. In particular, it is assumeRather than calculating them all, a greedy heuristic
that ancestor nodes are more likely to match if mostan reduce the calculation time with minimal effect
of their descendant nodes match as well. on accuracy: the highest scoring cell in the matrix is
ALIGN-ALG1 finds the highest scoring align- chosen first, conflicting cells are eliminated, the next

ment, where the score of an alignment is the sufighest scoring cell is chosen, etc.

of the scores of the node pairs in the partial func- Consider the example in Figure 1, assum-
tion. The score for each node pair, n’) partially jng the dashed lines connect lexical matches

depends on the scores of a mapping from the chifthe function LEX returns 1 for these node
dren ofn to the children ofn’. While the process pairs). Where nl1 and nl' are the roots,

of calculating the scores is recursive, it can be madgCOTe(nLnl/) = 1+ ChildVal(nl,nl’). Cal-

efficient using dynamic programming. culating ChildVal(nl,nl’) requires a recursive
ALIGN-ALG1 assumes that we align and’, descent down the pairs of nodes, until the bot-

the roots ofl" and7”. Calculating the scores for tom most pair is scored. Score(n6,n6') = 1.

andr’, entails calculating the scores of pairs of theiScore(n5,n6') = 0 + .9 (derived by collaps-

children, and by extension all mappings frahto ing an edge and subtracting a penalty of .1).

N’ that obey the dominance preserving constrain§core(n3,n3’) = 1+ .9 = 1.9. Score(n2,n2') =

Given nodesy; andny in N and nodesy; andn)y 1. ChildVal(nl,nl’) = 1+ 1.9 = 2.9. Thus

in N', where all 4 nodes are part of the alignmentScore(nl,nl’) = 3.9. The alignment includes:

it cannot be the case thaty; dominatesny, but (n1,nl’), (n2,n2'), (n3,n3’), (n5,n6"), (n6,n6’).

ny does not dominate;,. Here,dominatesmeans e co|apsing of edges helps recognize cases
is an ancestor in the dependency grapALIGN-  \hare multiple predicates form substructures, e.g.,
ALGL1 scores each pair of hodes using the formula('ake awalkis angry, etc. in one tree can map to sin-
Score(n, ') - Lea(n,n') + ChildVal(n,n), gle verbs in the other tree, allowing outgoing edges
whereLez(n, n') is @ score based on matching the, o alk or angryto map to outgoing edges of the
words labeling nodes andr/, e.g., the score is 1 if corresponding verb, e.g., the agent and goalobin

the pair is found in a bilingual dictionary and 0 Oth'walked to the storeould map to the agent and goal

eryvise. Givemn has childremncy, . . 5 Ci andn’ has of John took a walk to the store
childrency, ..., ¢}, to calculate ChildVal: (1) Cre- _ .
ate Child-Matrix, a(i + 1) x (j + 1) matrix (2) Fill In practice, ALIGN-ALG1 falls short because:

(1) Our translation dictionary does not have suffi-
cient coverage for the algorithm to perform well; (2)
The assumption that the roots of both graphs should
be aligned is often false. Parallel text often reflects
a dynamic, rather than a literal translation. In one
sition (I <= = <= i, j+1) with Score(z,n’) mi- pair _of aligned sentences in the FBIS corpus, the
nus a penalty focollapsing an edgeThusn + z is  ENglish phraséhe above mentioned requestsr-
paired with ', (5) Set (i+1,j+1) to-co. Collapsing e€sponds to: FRkRHIZESER  meaningthese re-
both source and target edges is not permitted. (6) FHeSts of Chen Shui-bianChen Shui-biarhas no
all sets of positions in the matrix such that no nog€ounterpart in the English. Parts of translations can
or column is repeated, select the set with the higtpe omitted due to: (a) the discretion of the trans-
est aggregate score. The aggregate score is the HfOrs, (b) the expected world knowledge of partic-
meric value ofChildVal(n,n’). If (n,n") is part of ular language communities, (c) the cultural impor-
the alignment that is ultimately chosen, this choicénce of particular information, etc.; (3) Violations
of node pairs is also part of the alignment. Ther@f the dominance-preserving constraint exist. The
most common type that we have observed consists
2The slight penalty represents that collapsing edges compf S€quences of transparent nouns ahée.g., se-
cate the analysis and is thus disfavored (Occam’s Razor).  ries of) in English corresponding to quantifiers in
92

every position { <=z <=1, 1 <= 2’ <= j)
with Score(x, ') (3) Fill every position (i+1,1 <=
' <= j) with Score(n,z’) minus a penalty (e.g.,
- .1) for collapsing an edge This treatsn’ and 2’
as a single unit, matched t@? (4) Fill every po-



Chinese —%J!). Thus the head of the English con-Matches between words in the hand-coded transla-
struction corresponds to the dependent of the Chiion dictionary and NEDICT are given a score of
nese construction and vice versa. 1.0. Matches in other dictionaries are allotted lower
scores to represent that these are based on automati-
cally acquired information, which we assume is less
Our primary bilingual Chinese/English dictionaryreliable than manually coded informatién.

(LEX1) had insufficient coverage for ALIGN-ALG1

to be effective. LEX1 is a merger between:

The LDC 2002 Chinese-English Dictionary anc®-3 ALIGN-ALG2

HowNet. In addition, we manually added additional h ALIGN-ALG2 iailv add i
translations of units of measure from English. Wi I ) , We partially address two lim-

also used NEDICT, a name translation dictionary (j}atlons of ALIGN-ALGL: (1) the assumption 'that
etal., 2009) and AUTODICT, English/Chinese Worothe roots of source and target_graph are_allgned;
to word pairs with high similarity scores taken froma_nCI (2) the dominance-preserving C_0n_str§1|nt_. Ba-
MT phase tables created as part of the (Zhang et aﬂcally, we assume that structural similarity is fa-
2007) system. The NEDICT was used both for pre\_/ored, but not necessarily at the global level. Thus
cise matches and partial matches (since, NEs chS likely that many subparts of corresponding trees
’ orrespond closely, but not necessarily the highest

often be synonymous with substrings of NES). I X
addition, we used some WordNet (Fellbaum, 199§30des in the trees.
synonyms of English to expand the coverage of all We use ALIGN-ALG1 to align every possible pair
the dictionaries, allowing English words to matchof S source nodes arif target nodes. Then we look
Chinese word translations of their synonyms. Wéor P, the highest scoring node pair of &lX T
allowed additional matches of function words thapairs. P and all the pairs of descendants that are
served similar functions in the two languages includysed to derive this score (the highest scoring pairs
ing: copulas, pronouns and determiners. of children, grand children, etc.) become the initial
Finally, we use a mutual information (MI) basedoutput. Then we find all unmatched source and tar-
approach to find further lexical information. We rungét children, and look up the highest scoring pair of
our alignment program over the corpus two timeghese nodes, and we repeat the process, adding the
the first time, we acquire statistical informationresulting node pairs to the output. We continue to
useful for generating a Mi-based score. This scorkepeat this process until either all the nodes are in-
is used as a lexical score on the second pass feluded in the output or there is no remaining pair
items that do not match any of the dictionaries. Omith a score above a threshold score (we leave au-
the first pass, we tally the frequency of each pamomatic methods of tuning this score to future work
of source/target words and ¢, such that neither and preliminarily have set this parameter to .3). This
s, nor t are matched lexically to any other itemmeans that: 1) some parts of the graphs are left un-
in the sentence. We, furthermore, keep track diligned (the alignment is a partial mapping); 2) the
the number of times each word appears in thalignment is more resilient to misalignment caused
corpus and the number of times each word appear8yl differences in graph structure, regardless of the
unaligned in the corpus. We tally MI as follows:reason; and 3) the alignment may be between pair
pair— frequency® of unconnected graphs, each containing subsets of

1+ (source—word— frequency xtarget—word— frequency)

One is added fo the denominator as a variation diPdes and edges in the source and target graphs.

add-one smoothing (Laplace, 1816), intended t¥/hile more complex than ALIGN-ALG1, ALIGN-

penalize low frequency scores. We calculate thi@LG2 performs relatively quickly. After one itera-

score in two ways: (a) using the global frequencie§on using ALIGN-ALG1, scores are looked up, not

of the source and target words; and (b) using theecalculated.

frequency these words were unaligned. The larger

of the two scores is the one that is actually use. ®Current informal weights of .2 to .6 may be replaced with
Different lexicons are given different weights.automatically tuned weights (hill-climbing, etc.) in future work.
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5.4 Treating Multiple Tokens as One 5.5 Using Node Alignment for Reordering

Given a node alignment, we can attempt to reorder

the source language so that words associated with
In some cases, parsing and segmentation of teaigned nodes reflect the order of the words label-
can be corrected through minor modifications to oung the corresponding target nodes. Specifically,
alignment routine. Similarly, we use bilingual lex-we reorder our surface phrase structure-based repre-
ical information to determine that certain other adsentation of the source language (English) and then
jacent tokens should be treated as single words fprint out all the words yielded from the resulting
purposes of alignment. reordered tree. Reordering takes place in a bottom

up fashion as follows: for each phragewith chil-

Given a language for which segmentation is grenc(]._..cn, reorderthe structure benea_th the c.hild
common source of processing error (Chinese), if godes first. Then build the new-constituent right
token is unaligned, we check to see whether subd® |€ft, one child at a time fronz, ... co. Start- -
viding the token into two sub-tokens would allowin@ With an empty sequence, each item is put in
one or both of these sub-tokens to be alignable witlS Proper place among the constituents in the se-
unaligned tokens in the other language. We iteduence so far. Ateach step, place safafter some
ate through the string one token at a time, trying N Ci+1---¢n, SUCh thatc; align_precedes c;
all partitions. Given a source tokekBC, consist- and ¢; is after everycy, in ¢y ...c, such that
ing of segments, B andC, we test the two pairs of ¢i align-precedes ci. If ¢; does not existe; is
subsequence§A, BC} and {AB, C}, to see which placed at the beginning of the sequence so far.
of the two partitions (if any) could be aligned with ~ Definition of X align_precedes Y, where X and
unaligned target tokens and we compare the scor¥gre nodes sharing the same parent: (1)cgt s x
of both, selecting the highest score. Unless no palpe the set of source/target pairs in the alignment such
tition yields further source/target matches, we thethat some (leaf node) descendantofs the source
choose the highest scoring partition and add the rg@ode in the pair; (2) Lepairsy be the set of pairs
sulting node pairings to our alignment. In a similain the alignment such that some descendarit @$
way, if there are a pair of aligned names consistingie source node in the pair; (3) I&%,,,., be the last
of source tokens; . .. s and target tokens; ... t;, target member of a pair ipairsy, where the or-
we look for adjacent unaligned source nodes (a sger is determined by the word order of the target
quence of nodes ending #}_; or beginning with words labeling the nodes; (4) I&},,;, be the first
sp+1) and/or adjacent target language nodes, sudarget member of a pair ipairsy, where the order
that adding these nodes to the name sequence woifiddetermined the same way; (5) &, be the
produce at least as high a lexical score. The lexfirst source member of a pair puirs,, according
con can also be used to match two adjacent items t@ the source sentence word order; (6)¥ef... be
the same word. We use a similar routine that checkbe last source word in a pair puirsy ordered the
our lexicons for words that are adjacent to matchingame way. (7)X align_precedes Y if: Xymae pre-
words. This is particularly meaningful for the entriescedesY;;,.;, and there is no source/target palr R
automatically acquired by means of MI, as our curin the alignment such that: (AR precedesYmin;
rent method for acquiring MI would not distinguish (B) X¢ma. precedesi; (C) @ either precedeX ;i
between 1 to 1 and N to 1 cases. Thus MI score® follows Y,,,q2; (D) If Q precededs; 4z, thenR
for adjacent items typically does mean that an N téoes not precedg ;.

1 match is appropriate. For example, the Chinese Essentially, thealign_precedes operator pro-

word ¥R had high MI with every word vides a conservative way to order the source sub-

in the sequence (excephd): ambassador extraor- treesS; andS; by their aligned target sub-tree coun-

dinary and plenipotentiargexample is from FBIS). terparts7; and7>. The idea is that if[; and T,

This routine was able to cause our procedure to treate ordered in an opposite mannerp and So,

this English sequence as a single token. the source subtrees should trade places. However,
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System DEV TEST improvement. However, space limitations prevent a
BASELINE | 53.1% 49.9% detailed exploration of these differences. The results
MANUAL 54.0% 50.6% show that for both DEV and TEST corpora, both re-
(p < .01) | (not significant) ordering approaches improve F-scores of GIZA++
ALIGN 53.5% 51.1% over the baseline. The manual rules (MANUAL)
(p<.05) | (p<.01) seem to suffer somewhat from overtraining on the
ALIGN+MI | 53.8% 51.4% DEV corpus, as they were designed based on DEV
(p<.01) | (p<.01) corpus examples, whereas the alignment based ap-

proaches (ALIGN and subsequent entries in the ta-
ble) seem resilient to these effects. The use of Mu-
tual Information (ALIGN+MI) seems to further im-

a source/target paiB,, B; can block this reorder- prove the F-score.

ing if doing so would upset the order of the moved The two approaches worked for many of the same
constituents relative t&, and B; e.g., if before the phenomena, e.g., they fronted many of the same
move, B, precedesS; and B; preceded, but af- noun post-modifiers. The advantage of the hand-
ter the moveS; would precede3;. This reordering coded rules seems to be that they cover reordering
proceeds from right to left, halting after placing  of words which we cannot align. For example, a
rule that fronts post-nominaif phrases operates re-

6 Results gardless of dictionary coverage. Thus the rule-based

The results summarized in table 1, provide F-scoregrsion fronted thef phrase in the NRhe govern-
(the harmonic mean of precision and recall) of th&ent of the Guangxi Zhuangzu Autonomous Region
word alignment resulting from running GIZA++ in our DEV corpus, due to the absolute application
with and without our reordering rules, using theof the rule. However, the alignment-based version
LDC’s manually created word alignments for ourdid not front the PP because the name was not found
DEV and TEST corpor. Giza++ is run with En- in NEDICT. On the other hand, exceptions to this
glish as source and Chinese as target. Our baselifiée were better handled by the alignment-based sys-
is the result of running Giza++ on the raw text. Thdem. For example, iferies ofaligns with the quan-
statistical significance of differences from the basdifier —%3l, the PP would be incorrectly fronted
line are provided in parentheses, next to each noRY the manual, but not the alignment-based system.
baseline score(rounded to 2 significant digits). WAIso, the alignment-based method can handle cases
divided both corpora into 20 parts and ran all vernot covered by our rules with minimal labor. Thus,
sions of the program on each section. We compardie automatic system, but not the manual-rule sys-
the system output for each section against the badem fronted the locative PP Guangxito the po-
line and used the sign test to calculate statistical sigition betweerbeenandquite in the sentencefor-
nificance. All system output except chachieved €ign businessmen have been quite actively investing
at leastp < .05 and most systems achieved signifiin Guangxi This is closer to the Chinese, but may
cance well below < .01. have been difficult to predict with an automatic rule
Informally, we observe that the rules reorderingor several reasons, e.g., it is not clear if all post-
common noun modifiers produce most of the totaterbal locative phrases should front.
Wscores, which (Fraser and Marcu, 2007) show t we fgrther analyzed the DEV ALIGN+MI r_un to
correlate well with improvements in BLEU. We weighted pre-d€termine both how often nodes were combined to-
cision and recall evenly since we do not currently have BLELWgether by our algorithm to produce N to 1 align-
chr?eretshéo\flv';/'iThttzat lésuer tgessufl—‘t :'ﬁg;ngﬂfw aegdirt:erfs\jgfnfeﬁlgrments and the number of reorderings undertaken. It
alignment err%r réte (AER) (Och and Ney, 2000),pwhich incor-llnu_ms out that out of the 59,032 pairs of .nOdeS were
porate the “possible” and “sure” portions of the manual align-‘""“gned for 3076 sentence paft§5,391 alignments

ment into F-score, but do not seem to correlate well with BLEU.,
SWhen run on the test corpus, the manual system outper- When sentences were misparsed in one language or the
formed the baseline system on only 13 out of 20 sections.  other they were not reordered by the program.
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were 1 to 1 (93.8% of the total) , 3443 alignmentgporating and using multi-word bilingual dictionary
were 2 to 1 (5.8% of the total) and 203 alignmentgntries.; (4) automatic methods for tuning parame-
were N to 1, where N is greater than 2 (0.3% of theers of our system that are currently hand-coded; (5)
total). The reordering program moved 1597 singléraining Ml on a much larger corpus; (6) investigat-
tokens; 2140 blocks 2 or 3 tokens long; 1203 blockeg possible ways to merge the manual-rules with
of 4 or 5 tokens; 610 blocks of 6 or 7 tokens, 419he alignment-based approach; and (7) performing
blocks of 8, 9 or 10 tokens, and 383 blocks of morsimilar experiments with English/Japanese bitexts.

than 10 tokens. We would expect both parse-based approaches
and our system to handle mismatches that cover
7 Concluding Remarks large distances better than more shallow approaches

to reordering, e.g., (Crego and Miaoi, 2006) in the
We have demonstrated that deep level linguistisame way that a full-parse handles constituent struc-
analysis can be used to improve word alignment reure more completely than a chunker. In addition,
sults. It is natural to consider whether or not thes@e would expect our approach to work best in lan-
reorderings are likely to improve MT results. Bothguages where there are large differences in word or-
the manual and alignment-based systems moveir, as these are exactly the cases that all predicate-
post-nominal English modifiers to pre-nominal po-argument structure is designed to handle well (they
sition, to reflect Chinese word order — other movereduce apparent variation in structure). Towards this
ments were much less frequent. In principle, thesend we are currently working on a Japanese/English
selective reorderings may help SMT systems idersystem. Obviously, the cost of developing GLARF
tify phraseof English that correspond fghraseof  (or similar) systems are high, require linguistic ex-
Chinese, thus improving the quality of the phrase tgpertise and may not be possible for resource-poor
bles, especially when large chunks are moved. Wanguages. Nevertheless, we maintain that such sys-
would also expect that the precision of our system tems are useful for many purposes and are there-
be more important than the recall, since our systefiare worth the cost. The GLARF system for En-
would not yield an improvement if it produced tooglish is available for download dtt t p: / / nl p.
much noise. Further experiments with current MTcs. nyu. edu/ meyer s/ GLARF. ht mi .
systems are needed to assess whether this is actually
the case. We are considering such tests for future rACknowledgments

search, using the Moses SMT system (Koehn et all"nis work was supported by NSF Grant IIS-
2007). ) ] 0534700 Structure Alignment-based MT.
Our representation had several possible advan-
tages over pure parse-based methods. We used se-
mantic features such as temporal, locative and trangeferences

parent (whether a low-content words inherits its €y g eqnan and R. M. Kaplan. 1982. Syntactic Represen-
mantics) to help guide our alignment. The regu- tation: Lexical-Functional Grammar: A Formal The-
larized structure, also, helped identify long-distance ory for Grammatical Representation. In J. Bresnan,
dependency relationships. We are also consider- editor, The Mental Representation of Grammatical Re-
ing several improvements for our alignment-based lations The MIT Press, Cambridge.

rules: (1) using additional dictionary resources such- Bryl and J. van Genabith. 2010. f-align: An Open-
as CATVAR (Habash and Dorr, 2003), so that cross- Sour(_:e Alignment Tool for LFG f-Structures. Rro-
part-of speech alignments can be more readily rec':E- %ehezgxgi Ozg(ﬁT?nfr?]iziate head parsing for language
ognl_zed; (2) finding more optimal orderings for models. INACL 2001 pages 116123,

unaligned source language words. For exampl

) ) K. Chomsky. 1957.Syntactic StructuresMouton, The
the alignment-based method reordeagright star Hague.

aris_sing from _China’s policyoabright arising from  n1 collins, P. Koehn, and I. Kucerova. 2005. Clause
China s policy stay separatingoright from star, Restructuring for Statistical Machine Translation. In
even thouglbright starfunction as a unit; (3) incor-  ACL 2005
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