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Abstract

Translation requires non-isomorphic
transformation from the source to the
target. However, non-isomorphism can
be reduced by learning multi-word units
(MWUs). We present a novel way of
representating sentence structure based
on MWUSs, which are not necessarily
continuous word sequences. Our pro-
posed method builds a simpler structure
of MWUs than words using words
as vertices of a dependency structure.
Unlike previous studies, we collect
many alternative structures in a packed
forest. As an application of our proposed
method, we extract translation rules in
form of a source MWU-forest to the
target string, and verify the rule coverage
empirically. As a consequence, we
improve the rule coverage compare to a
previous work, while retaining the linear
asymptotic complexity.
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Figure 1: A pair of sentences that require long
distance reordering (dashed line) and discontinuous
translation (thick line)

(DG). Although the state-of-the-art statistical
machine translation (SMT) paradigm is phrase-
based SMT (PBSMT), many researchers have
attempted to utilize syntax in SMT to over-
come the weaknesses of PBSMT. An emerging
paradigm alternative to PBSMT is syntax-based
SMT, which embeds the source and/or target
syntax in its translation model (TM). Utilizing
syntax in TM has two advantages over PBSMT.
The first advantage is that syntax eases global
reordering between the source and the target
language. Figure 1 shows that we need global
reordering in a complex real situation, where
a verbal phrase requires a long distance move-

Syntax is the hierarchical structure of a natument. PBSMT often fails to handle global re-

ral language sentence.

It is generally repreardering, for example, from subject-verb-object

sented with tree structures using phrase stru¢SVO) to SOV transformation where V should
ture grammar (PSG) or dependency grammadre moved far away from the original position in
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Table 1: Statistics of the corresponding target words 350

for the continuous word sequences in the source lan- 300
guage, or vice versa. C denotes consistent, O over- 250
lapped, D discontinuous, and N null. & 200
Word Alignment C O D N £ :;Z
Manual 25 60 10 5 50
Automatic 20 55 15 5 0

the source language. This is because of the two

distance-based constraints in PBSMT: the digigure 2: The maximum branching factor (BF) and
tortion model cost and the distortion size limit.depth factor (DF) in a dependency tree in our corpus
For the distortion model cost, PBSMT sets zero

cost to the monotone translation and penalizes

the distorted translations as the distortion grow@rchical structure. For example, the two discon-
larger. For the distortion size limit, a phrase cartinuous source words have a head-dependent re-
only be moved from its original position within lation (Figure 3). Especially with the depen-

a limit. Therefore, PBSMT fails to handle longdency tree, we can easily identify patterns that
distance reordering. Syntax-based SMT marhave non-projectivity (Na et al., 2010). How-
ages global reordering as structural transforméVer, syntax-based patterns such as constituents
tion. Because reordering occurs at the sutPr treelets do not sufficiently cover various use-
structure level such as constituents or treelefsl patterns, even if we have the correct syn-
in syntax-based SMT, the transformation of thdactic analysis (Chiang, 2010). For this reason,

sub-structure eventually yields the reordering ofnany researchers have proposed supplementary
the whole sentence. patterns such as an intra/inter constituent or se-

The second advantage of using syntax in TMiU€Nce of treelets (Galley et al., 2006; Shen et

is that syntax guides us to discontinuous tranddl-» 2008).

lation patterns. Because PBSMT regards only Unlike PSG, DG does not include non-

a continuous sequence of words as a transléerminal symbols, which represent constituent
tion pattern, it often fails to utilize many use-information. This makes DG simpler than PSG.
ful discontinuous translation patterns. For exfor instance, it directly associates syntatic role
ample, two discontinuous source words correwith the structure, but introduces a difficulty in
spond to a target word in Figure 1. In our in-syntax-based SMT. The branching factor of a
spection of the training corpus, a continuouslependency tree becomes larger when a head
word sequence often corresponds to a set e@ford dominates many dependents. We ob-
discontinuous words in the target language, aserve that the maximum branching factor of
vice versa (Table 1). Discontinuous translatioran automatically parsed dependency tree ranges
patterns frequently appear in many languagesidely, while most trees have depth under a cer-
(Sggaard and Kuhn, 2009). Syntax-based SMiain degree (Figure 2). This indicates that we
overcomes the limitations of PBSMT because ihave a horizontally flat dependency tree struc-
finds discontinuous patterns along with the hierture. The translation patterns extracted from the
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flat dependency tree are also likely to be flatwell. For parsing alternatives, Mi et al. (2008)
Unfortunately, the flat patterns are less applisuggested a packed forest that encodes alterna-
cable at the decoding stage. When one of thi&ve PSG derivations. Futher, Mi et al. (2010)
modifiers does not match, for instance, we faicombined the two approaches in order to bene-
to apply the translation pattern. Therefore, wdit from both.

need a more generally applicable representation

for syntax-based SMT using DG, The translation literature also shows that

We propose a novel representation of DG theﬁanslation requires non-isomorphic transfor-

regards a set of words as a unit of the depen.. _.. o
. . . mation from the source to the target. This yields
dency relations, similar to (Ding, 2006; Wu et g y

) i translation divergences such as head-switchin
al., 2009; Na et al., 2010). Unlike their work, g 9

i it " hout q (Dorr, 1994). Ding and Palmer (2005) reported
we consider many aternatives WIthout prédey, »; ihe percentage of the head-swapping cases
fined units, and construct a packed forest of th

. . S 4.7%, and that of broken dependencies is
multi-word units (MWUS) from a dependency59.3% between Chinese and English. The large

tree. For brevity, we denote the forest based oD ount of non-isomorphism, however, will be

MWUS as an MWU-forest. Begause all POSYeduced by learning MWUs such as elementary
sible alternatives are exponentially many, W& oo (Eisner, 2003)
give an efficient algorithm that enumerates the ’ '
k-best alternatives in section 3. As an appli-
cation, we extract translation patterns in form There are few studies that consider a depen-
of a source MWU-forest to the target string indency structure based on MWUs. Ding (2006)
order to broaden the coverage of the extractesliggested a packed forest which consists of the
patterns for syntax-based SMT in section 4. Welementary trees, and described how to find
also report empirical results related to the usehe best decomposition of the dependency tree.
fulness of the extracted pattern in section 5. Thelowever, Ding (2006) did not show how to de-
experimental results show that the MWU-forestermine the MWUs and restrict them to form
representation gives more applicable translatioa subgraph from a head. For opinion mining,
patterns than the original word-based tree.  Wu et al. (2009) also utilized a dependency
structure based on MWUSs, although they re-
2 Related Work stricted MWUs with predefined relations. Na
et al. (2010) proposed an MWU-based depen-
Previous studies have proposed merging altedency tree-to-string translation rule extraction,
native analyses to deal with analysis errors fobut considered only one decomposition for ef-
two reasons: 1) the strongest alternative is ndiciency. Our proposed method includes addi-
necessarily the correct analysis, and 2) mogional units over Ding’s method, such as a se-
alternatives contain similar elements such aguence of subgraphs within a packed forest. It
common sub-trees. For segmentation alternds also more general than Wu et al.’'s method
tives, Dyer et al. (2008) proposed a word latticdbecause it does not require any predefined re-
that represents exponentially large numbers détions. We gain much better rule coverage
segmentations of a source sentence, and intagainst Na et al.'s method, while retaining linear
grates reordering information into the lattice assymptotical computational time.

43



s

would, likes to,

R e e —
11&1 Wheng_:L|3 comes backy EE:I-O o 12 ::ft::\:\T o T sl
S A \ k )
BHiE B X H3 ER10 - 12
wheng 8 againg 9 herej ali i — —
kg Fo Xqq
A

K1 |
it
Ha FEs \\f’"f% .

10 my)

the, States]j,;% 6 El‘JY //‘

Figure 3: A dependency tree of the source sentence XHe 17 XEHY
in Figure 1

Figure 4: An MWU-forest of Figure 3. The dashed
3 MWU-based Dependency Forest line indicates the alternative hyperedges.

There are two advantages when we use the
MWU-forest representaion with DG. First, wenon-terminals that represent the linguistically
express the discontinuous patterns in a vertegyotivated, intermediate structure such as noun
so that we can extract more useful translatiophrases and verb phrases. For this simplicity,
patterns beyond continuous ones for syntaxfu et al. (2010) proposed a dependency forest
based SMT. Second, an MWU-forest contain@s a hypergraph, regarding a word as a vertex
many alternative structures which may be simwith a span that ranges for all its descendants.
pler structures than the original tree in terms off he dependency forest offers tolerence of pars-
the branching factor and the maximum depthing errors.
Wu et al. (2009) utilized an MWU-tree to iden-  Our representation is different from the de-
tify the product features in a sentence easily. pendency forest of Tu et al. (2010) since a ver-
As in previous literature in syntax-basedtex corresponds to multiple words as well as
SMT using DG, we only consider thevell- words. Note that our representation is also
formed MWUs where an MWU is either a capable of incorporating multiple parse trees.
treelet (a connected sub-graph), or a sequenddéerefore, MWU-forests will also be tolerant
of treelets under a common head. In otheof the parsing error if we provide multiple parse
words, each vertex in an MWU-forest is eithertrees. In this work, we concentrate on the ef-
“fixed on head” or “floating with children”. The fectiveness of MWUs, and hence utilize the
formal definitions can be found in (Shen et al.pest dependency parse tree. Figure 4 shows an
2008). MWU-forest of the dependency tree in Figure
We propose encoding multiple dependency.
structures based on MWUs into a hypergraph. More formally, a hypergrapi{f = (V, E)
A hypergraph is a compact representation ofonsists of the verticed” and hyperedges
exponetially many variations in a polynomi- £. We assume that a lengthsentence has
nal space. Unlike PSG, DG does not hava dependency graph which is single-headed,
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acyclic, and rooted, i.eh; is the index of the Algorithm 1 Build Forest

head word of thei-th word, or0 if the word is  1: Initialize V/

the root. Each vertex = {j|j € [1,J]} de-  2: for v € V in bottom-up ordedo
notes a set of the indices of the words that satis-3: ~ Create a char®’ = |7(v)|?
fies the well-formed constraint. Each hyperedge4:  for chart sparip, ¢] do

e = (tails(e), head(e)) denotes a set of the de- 5: Initialize Clp, q] if Jv s.t.[p,q] =vor
pendency relations betweérad(e) andVv € o(v)
tails(e). We include a special node) € V 6: CombineC|p,i] andC[i + 1, ¢

that denotes the dummy root of an MWU-forest. 7:  end for

Note thatuy does not appear ituils(e) forall 8  SetIN(v) to the k-best irC[T'OP]

hyperedges. We denofs is the arity of hyper- 9. Setf(v) asin Eq. 1

edgee, i.e. the number of tail nodes, and the1o: end for

arity of a hypergraph is the maximum arity over11: for v € V in top-down ordedo

all hyperedges. Also, let(v) be the indices of 12:  Seta(v) asin Eq. 2

the words that the head lays out of the vertex13: end for

l.e. o(v) = {jlhj #vAjev} andr(v) be 14: Prune outif p(e) < 6

the indices of the direct dependent words of thas: return g

vertex, i.e. 7(v) = {jlh; € vAj & v}. Let

OUT(v) and IN(v) be the outgoing and in- _

coming hyperedges of a vertexrespectively. (line 12) for each vertex in a top-down manner.
It is challenging to weight the hyperedgesFina”y we prune out less probable hyperedges

based on dependency grammar because a dline 14) similar to (Mi et al., 2008). The inside

pendency relation is a binary relation from sand outside probabilities are defined as follows:

head to a dependent. Tu et al. (2010) assigned

a probability for each hyperedge based on the

score of the binary relation. We simply prefer Alv) = Z p(e) H pld) (1)

the hyperedges that have lower arity by scoring e€IN(v)  details(e)

as follows: where3(v) = 1.0 if IN(v) =0, and

el

a(head(e))p(e
. o -y st
p(e) S c(e) heOUT (v) OUT )]
e/€IN (head(e)) e€IN (head(h))
We convert a dependency tree into a hyper- - 11 8@ @

graph in two steps using the Inside-Outside al-
gorithm. Algorithm 1 shows the pseudo code
of our proposed method. At the first step, wevherea(v) = 1.0 if OUT (v) = (.

find the k-best incoming hyperedges for each In practice, we restrict the number of words
vertex (line 3-8), and compute the inside probain a vertex in the initialization (line 1). We ap-
bility (line 9), in bottom-up order. At the sec- proximate all possible alternative MWUs that
ond step, we compute the outside probabilitynclude each word as follows:

details(e)\{v}
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™o Table 2: The extracted rules in Figure 5. N denotes
S he non-lexicalized rules with variables for each
B a:[9.9] é ij. (= — t . .
LN {*8 Hﬂae& [9,13] v € tails(e), and L denotes the lexicalized rule.

N
?‘Z. 7— @ [1010]-?&_' B 11 1] 7_ 7_ . head(e) tazls(e) ThS(’)/)
;\‘/' {8} {4} T X1, {5} ) When:Bl o
%Eﬂelﬁ’h .%H;ﬁ ?lh N {3,8} {4,5} : 11 whenz
‘ {3, 8} {4} X, {5} ) Whenxl o

[12,13]

-+ wheng I'myq iny4 the,, States - (4,5} 6,7} : 11 'min
{5} {6,7}: 21 in x;
Figure 5: A sub-forest of Figure 4 with annotation {6,7} the States
of aspan andcspan for each vertex. We omit the {4} I'm
span if it is not consistent. (5} in
L N/A o
{4,5} I'min
e A horizontal vertex is a sequence of modi- {5,6} in the State
fiers for a common head word, and {3,8} When

e A vertical vertex is a path from a word to
one of the ancestors, and the total time complexity also becomes linear
to the length of the senteneesimilar to Ding

e A combination of the horizontal vertices and paimer (2005), i.€(|V |k2|r(v)[?), where
and the vertical vertices, and [V| = O(na®*Y) anda = min(m, b, d).

e A combination of the vertical vertices and

the vertical vertices. 4 MWU-Forest-to-String Translation

. . _— Rule Extraction
The computational complexity of the initial-

izaion directly affects the complexity of the en-As an application of our proposed MWU-forest,
tire procedure. For each word, generating theve extract translation rules for syntax-based
horizontal vertices take9(b?), and the vertical SMT. Forest-based translation rule extraction
vertices takeD (b%~1), whereb is the maximum has been suggested by Mi and Huang (2008)
branching factor and is the maximum depth although their forest compacts the k-best PSG
of a dependency tree. The two combinationtrees. The extraction procedure is essentially
take O(b%t1) and O(b2(4—1)) time to initialize the same as Galley et al. (2004), which iden-
the vertices. However, it take8(m™*!) and tifies the cutting points (frontiers) and extracts
O(m?™=1) if we restrict the maximum num- the sub-structures from a root to frontiers.
ber of the words in a vertex to a constant The situation changes in DG because DG
Ding and Palmer (2005) insisted that thedoes not have intermediate representation. At
Viterbi decoding of an MWU-forest takes lin- the dependency structure, a node corresponds
ear time. In our case, we enumerate the k-besd two kinds of target spans. We borrow the
incoming hyperedeges instead of the best ondefinitions of the aligned span{pan), and the
Because each enumeration tak&g:%|7(v)|?), covered spancgpan) from Na et al. (2010), i.e.
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e aspan(v) = [min(a,), max(a,)], and Algorithm 2 Extract Rules = (V, E))
1:T=0

. Zipzz((z))a < cspan(d) 2: for v € V do
P ZSTCJL\ZII(SU(;) P 3. if aspan(v) is consistenthen
4: r—Tu t asin Eq. 3

, Wherea, = {i]j e v (i,j) € A}. Figure5 . 4 ;f— L) !
showsaspans an_dcspans of. a sub-forest of of 6. if cspan(v) is consistenthen
the MWU-forest in the previous example. 7. for e € IN(v) do

Each Sl?dan typle Y'ell(_js : dlf{erenthrme ype: g if cspan(d)Vd € tails(e) then
aspan yields a exmq ized rule wit _out_ any I —T'U(s(e),t(e))asinEq. 4
variables, and:span yields a non-lexicalized end if
rule with variables for the dependents of the end for
head word. For example, Table 2 shows the exi2: end if
tralcted rul\l/leVULF]:guretih o extract 13: end for

n our -forest, the rule extraction pro- . . 0

cedure is almost identical to a dependency
tree-to-string rule extraction except we regard

MWUs as vertices. Lef; ande; be thej-th  whered ¢ tails(e).

source and-th target word, respectively. As an More formally, we extract a synchronous tree

MWU itself has a internal structure, a lexicalsubstitution grammar (STSG) which regards the
rule is a tree-to-string translation rule. ThereMWUs as non-terminals.

fore, a lexicalized rule is a pair of the sourceDeﬁnition 1A STSG usng MWU (STSG-
wordss and the target wordsas follows: MWU) isa 6-tuple G = (X5, %7, A, T, S, ¢),

where:

s(v) = {f;lj €v} - .
o) = {eli € aspan(v)} 3) e Ys and X are finite sets of terminals
(words, POSs, etc.) of the source and tar-
In addition, we extract the non-lexicalized  get languages, respectively.

rules from a hyperedge to cspan of the
head(e). A non-lexicalized rule is a pair of the
source words in the vertices of a hyperedge and
thecspan of the target words with substitutions  is a finite set of production rules
of espan(d) for eachd € tails(e). We abstract where a production ruley : X —
d on the source witly(d) for non-lexicalized (1hs(7), rhs(v), ¢ ), which s a relation-
rules (row 2 in Table 2). We define the source
wordss and the target wordsas follows:

e A is a finite set ofM W Us in the source
language, i.eA = {¥g} +

ship fromA to {z U X1} *, whereg is the
bijective function from the source vertices
to the variables: in rhs(vy). The asterisk

s(e) = {fjlj € head(e) V j € o(d)} represents the Kleenstar operation, and
tle) = {eili € cspan(v) ANi & cspan(d)} e S is the start symbol used to represent the
U{z;|ld < x;} 4 whole sentence, i.ep: S — ( X, X ).
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For each type of span, we only extract the
rules if the target span has consistent wort
alignments, i.e. span # 0 A Vi € span,
{jl(i,j) € AN (i, 5) € As.t.i' & span} = 0.
Algorithm 2 shows the pseudo code of the
extraction. Because a vertex haspan and
csapn, we extract a lexicalized rule (line 3-5)
and/or non-lexicalized rules (line 6-12) for each

Rule coverage

3 4 5 6 7
ve I'teX . The maximum number of the words in a vertex

5 Experiment Figure 6: The rule coverage according to the number

We used the training corpus provided for theOf the words in a vertex.

DIALOG Task in IWSLT10 between Chinese

and English . The corpus is a collection of

30,033 sentence pairs and consists of dialogs in c(vy) = M

travel situations (10,061) and parts of the BTEC a3 (vo)

corpus (19,972). Details about the provided We prioritized the rule according to the frac-

corpus are described in (Paul, 2009). We usetibnal count. The priority is used when we com-

the Stanford Parséhr to obtain word-level de- bine the rules to restore the target sentence us-

pendency structures of Chinese sentences, aimd) the extracted rule for each sentence. We var-

GIZA++ 2 to obtain word alignments of the ied the maximum size of a vertex, and the

biligual corpus. number of incoming hyperedgds Figure 6
We extracted the SCFG-MWU from the shows the emprical result.

biligual corpus with word alignment. In or- _ )

der to investigate the coverage of the extractef Discussion

rule, we counted the number of the recovereﬁigure 6 shows that we need MWU to broaden
sentences, i.e. counted if the extracted rulgye coverage of the extracted translation rules.
for each sentence pair generates the target séflje ryje coverage increases as the number of

tence by combining the extracted rules. As W&ords in an MWU increases, and almost con-
collected many alternatives in an MWU-forest,ver(‘:J(_:.S atn — 6. Our proposed method re-

we wanted to determine the importance of eac@over around 75% of the sentences in the cor-
source fragment. Mi and Huang (2008) penal:

) ) ™ ' pus when we properly restriet andk. This is
ized a ruley by the posterior probability of its great improvement over Na et al. (2010), who

tree fragmenths (). This posterior probability enrted around 60% of the rule coverage with-

is also computed in the Inside-Outside fashioR ;: the limitaion of the size of MWUS. They

that we used in Algorithm 1. Therefore, we ré-gny considered the best decomposition of the
garded the fractional count of a rujeas

dependency tree, while our proposed method
http://nip.stanford.edu/software/lex-parser.shtml, collects many altematlv_e MWUs into an MWU-

Version 1.6.4 forest. When we considered the best decom-
2http://code.google.com/p/giza-pp/ position ¢ = 1), the rule coverage dropped to
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to the length of the sentences in 1,000 sentences

7 Conclusion

around 65%. This can be viewed as an indiredfVe have presented a way of representing sen-
comparison between Na et al. (2010) and ouence structure using MWUs on DG. Because of
proposed method in this corpus. the absence of the intermdiate representation in
DG, we built a simpler structure of MWUSs than
Figure 7 shows that the frequency of sucwords using words as vertices of a dependency
cess and failure in the recovery depends on thgiructure. Unlike previous studies, we collected
length of the sentences. As the length of sermany alternative structures using MWUs in a
tences increase, the successful recovery occyrgcked forest, which is novel. We also ex-
less frequently. We investigated the reason dfacted MWU-forest-to-string translation rules,
failure in the longer sentences. As a result, thend verified the rule coverage empirically. As a
two main sources of the failure are the wordconsequence, we improvemed the rule coverage
alignment error and the dependency parsing ecompared with a previous work, while retaining
ror. the linear asymptotic complexity. We will ex-
pand our propose method to develop a syntax-
Our proposed method does not include albased SMT system in the future, and incoporate
translation rules in PBSMT because of the synthe parsing error by considering multiple syn-
tactic constraint. Generally speaking, our protactic analyses.
posed method cannot deal with MWUs that do
not satisfy the well-formed constraint. How- Acknowledgments
ever, ill-formed MWUs seems to be useful as
well. For example, our proposed method dos¥Ve appreciate the three anonymous reviewers.
not allow ill-formed vertices in an MWU-forest This work was supported in part by the Korea
as shown in Figure 8. This would be problem-Science and Engineering Foundation (KOSEF)
atic when we use an erroneuos parsing resulgrant funded by the Korean government (MEST
Because dealing with parsing error has beeNo. 2011-0003029), and in part by the BK 21
studied in literature, our proposed method haBroject in 2011.
the potential to improve thought future work.
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