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Abstract

To increase the model coverage, source-
language paraphrases have been utilized to
boost SMT system performance. Previous
work showed that word lattices constructed
from paraphrases are able to reduce out-of-
vocabulary words and to express inputs in
different ways for better translation quality.
However, such a word-lattice-based method
suffers from two problems: 1) path dupli-
cations in word lattices decrease the capac-
ities for potential paraphrases; 2) lattice de-
coding in SMT dramatically increases the
search space and results in poor time effi-
ciency. Therefore, in this paper, we adopt
word confusion networks as the input struc-
ture to carry source-language paraphrase in-
formation. Similar to previous work, we use
word lattices to build word confusion net-
works for merging of duplicated paths and
faster decoding. Experiments are carried out
on small-, medium- and large-scale English–
Chinese translation tasks, and we show that
compared with the word-lattice-based method,
the decoding time on three tasks is reduced
significantly (up to 79%) while comparable
translation quality is obtained on the large-
scale task.

1 Introduction

With the rapid development of large-scale parallel
corpus, research on data-driven SMT has made good
progress to the real world applications. Currently,
for a typical automatic translation task, the SMT
system searches and exactly matches the input sen-
tences with the phrases or rules in the models. Obvi-

ously, if the following two conditions could be sat-
isfied, namely:

• the words in the parallel corpus are highly
aligned so that the phrase alignment can be per-
formed well;

• the coverage of the input sentence by the paral-
lel corpus is high;

then the “exact phrase match” translation method
could bring a good translation.

However, for some language pairs, it is not easy
to obtain a huge amount of parallel data, so it is not
that easy to satisfy these two conditions. To allevi-
ate this problem, paraphrase-enriched SMT systems
have been proposed to show the effectiveness of in-
corporating paraphrase information. In terms of the
position at which paraphrases are incorporated in the
MT-pipeline, previous work can be organized into
three different categories:

• Translation model augmentation with para-
phrases (Callison-Burch et al., 2006; Marton et
al., 2009). Here the focus is on the translation
of unknown source words or phrases in the in-
put sentences by enriching the translation table
with paraphrases.

• Training corpus augmentation with para-
phrases (Bond et al., 2008; Nakov, 2008a;
Nakov, 2008b). Paraphrases are incorporated
into the MT systems by expanding the training
data.

• Word-lattice-based method with para-
phrases (Du et al., 2010; Onishi et al.,
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2010). Instead of augmenting the transla-
tion table, source-language paraphrases are
constructed to enrich the inputs to the SMT
system. Another directly related work is to
use word lattices to deal with multi-source
translation (Schroeder et al., 2009), in which
paraphrases are actually generated from the
alignments of difference source sentences.

Comparing these three methods, the word-lattice-
based method has the least overheads because:

• The translation model augmentation method
has to re-run the whole MT pipeline once
the inputs are changed, while the word-lattice-
based method only need to transform the new
input sentences into word lattices.

• The training corpus augmentation method re-
quires corpus-scale expansion, which drasti-
cally increases the computational complexity
on large corpora, while the word-lattice-based
method only deals with the development set
and test set.

In (Du et al., 2010; Onishi et al., 2010), it is also
observed that the word-lattice-based method per-
formed better than the translation model augmen-
tation method on different scales and two different
language pairs in several translation tasks. Thus
they concluded that the word-lattice-based method
is preferable for this task.

However, there are still some drawbacks for the
word-lattice-based method:

• In the lattice construction processing, dupli-
cated paths are created and fed into SMT de-
coders. This decreases the paraphrase capacity
in the word lattices. Note that we use the phrase
“paraphrase capacity” to represent the amount
of paraphrases that are actually built into the
word lattices. As presented in (Du et al., 2010),
only a limited number of paraphrases are al-
lowed to be used while others are pruned during
the construction process, so duplicate paths ac-
tually decrease the number of paraphrases that
contribute to the translation quality.

• The lattice decoding in SMT decoder have
a very high computational complexity which

makes the system less feasible in real time ap-
plication.

Therefore, in this paper, we use confusion net-
works (CNs) instead of word lattices to carry para-
phrase information in the inputs for SMT decoders.
CNs are constructed from the aforementioned word
lattices, while duplicate paths are merged to increase
paraphrase capacity (e.g. by admitting more non-
duplicate paraphrases without increasing the input
size). Furthermore, much less computational com-
plexity is required to perform CN decoding instead
of lattice decoding in the SMT decoder. We car-
ried out experiments on small-, medium- and large-
scale English–Chinese translation tasks to compare
against a baseline PBSMT system, the translation
model augmentation of (Callison-Burch et al., 2006)
method and the word-lattice-based method of (Du et
al., 2010) to show the effectiveness of our novel ap-
proach.

The motivation of this work is to use CN as
the compromise between speed and quality, which
comes from previous studies in speech recog-
nition and speech translation: in (Hakkani-Tür
et al., 2005), word lattices are transformed into
CNs to obtain compact representations of multiple
aligned ASR hypotheses in speech understanding;
in (Bertoldi et al., 2008), CNs are also adopted
instead of word lattices as the source-side inputs
for speech translation systems. The main contribu-
tion of this paper is to show that this compromise
also works for SMT systems incorporating source-
language paraphrases in the inputs.

Regarding the use of paraphrases SMT system,
there are still other two categories of work that are
related to this paper:

• Using paraphrases to improve system optimiza-
tion (Madnani et al., 2007). With an English–
English MT system, this work utilises para-
phrases to reduce the number of manually
translated references that are needed in the
parameter tuning process of SMT, while pre-
served a similar translation quality.

• Using paraphrases to smooth translation mod-
els (Kuhn et al., 2010; Max, 2010). Either
cluster-based or example-based methods are
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proposed to obtain better estimation on phrase
translation probabilities with paraphrases.

The rest of this paper is organized as follows:
In section 2, we present an overview of the word-
lattice-based method and its drawbacks. Section 3
proposes the CN-based method, including the build-
ing process and its application on paraphrases in
SMT. Section 4 presents the experiments and results
of the proposed method as well as discussions. Con-
clusions and future work are then given in Section
5.

2 Word-lattice-based method

Compared with translation model augmentation
with paraphrases (Callison-Burch et al., 2006),
word-lattice-based paraphrasing for PBSMT is in-
troduced in (Du et al., 2010). A brief overview of
this method is given in this section.

2.1 Lattice construction from paraphrases

The first step of the word-lattice-based method is to
generate paraphrases from parallel corpus. The al-
gorithm in (Bannard and Callison-Burch, 2005) is
used for this purpose by pivoting through phrases
in the source- and the target- languages: for each
source phrase, all occurrences of its target phrases
are found, and all the corresponding source phrases
of these target phrases are considered as the potential
paraphrases of the original source phrase (Callison-
Burch et al., 2006). A paraphrase probability
p(e2|e1) is defined to reflect the similarities between
two phrases, as in (1):

p(e2|e1) =
∑

f

p(f |e1)p(e2|f) (1)

where the probability p(f |e1) is the probability that
the original source phrase e1 translates as a partic-
ular phrase f on the target side, and p(e2|f) is the
probability that the candidate paraphrase e2 trans-
lates as the source phrase. Here p(e2|f) and p(f |e1)
are defined as the translation probabilities estimated
using maximum likelihood by counting the observa-
tions of alignments between phrases e and f in the
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...wx+1 wy

...wx+1wx-1 wy+1
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Figure 1: Construct word lattices from paraphrases.

parallel corpus, as in (2) and (3):

p(e2|f) ≈ count(e2, f)∑
e2
count(e2, f)

(2)

p(f |e1) ≈
count(f, e1)∑
f count(f, e1)

(3)

The second step is to transform input sentences
in the development and test sets into word lattices
with paraphrases extracted in the first step. As il-
lustrated in Figure 1, given a sequence of words
{w1, . . . , wN} as the input, for each of the para-
phrase pairs found in the source sentence (e.g. pi =
{q1, . . . , qm} for {wx, . . . , wy}), add in extra nodes
and edges to make sure those phrases coming from
paraphrases share the same start nodes and end
nodes with that of the original ones. Subsequently
the following empirical methods are used to assign
weights on paraphrases edges:

• Edges originating from the input sentences are
assigned weight 1.

• The first edges for each of the paraphrases are
calculated as in (4):

w(e1pi
) =

1

k + i
(1 <= i <= k) (4)

where 1 stands for the first edge of paraphrase
pi, and i is the probability rank of pi among
those paraphrases sharing with a same start
node, while k is a predefined constant as a
trade-off parameter for efficiency and perfor-
mance, which is related to the paraphrase ca-
pacity.

• The rest of the edges corresponding to the para-
phrases are assigned weight 1.
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The last step is to modify the MT pipeline to tune
and evaluate the SMT system with word lattice in-
puts, as is described in (Du et al., 2010; Onishi et
al., 2010).

For further discussion, a real example of the gen-
erated word lattice is illustrated in Figure 2. In
the word lattice, double-line circled nodes and solid
lined edges come from originated from the origi-
nal sentence, while others are generated from para-
phrases. Word, weight and ranking of each edge are
displayed in the figure. By adopting such an input
structure, the diversity of the input sentences is in-
creased to provide more flexible translation options
during the decoding process, which has been shown
to improve translation performance (Du et al., 2010).

2.2 Path duplication and decoding efficiency

As can be seen in Figure 2, the construction pro-
cess in the previous steps tends to generate duplicate
paths in the word lattices. For example, there are two
paths from node 6 to node 11 with the same words
“secretary of state” but different edge probabilities
(the path via node 27 and 28 has the probability
1/12, while the path via node 26 and 9 has the prob-
ability 1/99). This is because the aforementioned
straightforward construction process does not track
path duplications from different spans on the source
side. Since the number of admitted paraphrases is
restricted by parameter k in formula (4), the path
duplication will decrease the paraphrase capacity to
a certain extend.

Moreover, state of the art PBSMT decoders (e.g.
Moses (Koehn et al., 2007)) have a much higher
computational complexity for lattice structures than
for sentences. Thus even though only the test sen-
tences need to be transformed into word lattices, de-
coding time is still too slow for real-time applica-
tions.

Motivated by transforming ASR word-graphs into
CNs (Bertoldi et al., 2008), we adopt CN as the
trade-off between efficiency and quality. We aim to
merge duplicate paths in the word lattices to increase
paraphrase capacity, and to speed up the decoding
process via CN decoding. Details of the proposed
method are presented in the following section.

3 Confusion-network-based method

CNs are weighted direct graphs where each path
from the start node to the end node goes through
all the other nodes. Each edge is labelled with a
word and a probability (or weight). Although it is
commonly required to normalize the probability of
edges between two consecutive nodes to sum up to
one, from the point of view of the decoder, this is
not a strict constraint as long as any score is pro-
vided (similar to the weights on the word lattices in
the last section, and we prefer to call it “weight” in
this case).

The benefits of using CNs are:

1. the ability to represent the original word lattice
with a highly compact structure;

2. all hypotheses in the word lattice are totally or-
dered, so that the decoding algorithm is mostly
retained except for the collection of translation
options and the handeling of ε edges (Bertoldi
et al., 2008), which requires much less compu-
tational resources than the lattice decoding.

The rest of this section details the construction pro-
cess of the CNs and the application in paraphrase-
enriched SMT.

3.1 Confusion Network building
We build our CN from the aforementioned word lat-
tices. Previous studies provide several methods to
do this. (Mangu et al., 2000) propose a method to
cluster lattice words on the similarity of pronuncia-
tions and frequency of occurrence, and then to create
CNs using cluster orders. Although this method has
a computational complexity of O(n3), the SRILM
toolkit (Stolcke, 2002) provides a modified algo-
rithm which runs much faster than the original ver-
sion. In (Hakkani-Tür et al., 2005), a pivot algorithm
is proposed to form CNs by normalizing the topol-
ogy of the input lattices.

In this paper, we use the modified method
of (Mangu et al., 2000) provided by the SRILM
toolkit to convert word lattices into CNs. Moreover,
we aim to obtain CNs with the following guidelines:

• Cluster the lattice words only by topological
orders and edge weights without considering
word similarity. The objective is to reduce the
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Figure 2: An example of a real paraphrase lattice. Note that it is a subsection of the whole word lattice that is too big
to fit into this page, and edge weights have been evenly distributed for CN conversion as specified by formula (5).

impact of path duplications in the building pro-
cess, since duplicate words will bias the impor-
tance of paths.

• Assign edge weights by the ranking of para-
phrase probabilities, rather than by poste-
rior probabilities from the modified method
of (Mangu et al., 2000). This is similar to that
given in formula (4). The reason for this is to
reduce the impact of path duplications on the
calculation of weights.

Thus, we modified the construction process as fol-
lows:

1. For each of the input word lattices, replace
word texts with unique identifiers (to make the
lattice alignment uncorrelated to the word sim-
ilarity, since in this case, all words in the lattice
are different from each other).

2. Evenly distribute edge weights for each of the
lattices by modifying formula (4) as in (5):

w(ejpi
) =

1
Mi
√

(k + i)
(1 <= i <= k) (5)

where 1 <= j <= Mi, given ejpi is the jth

edge of paraphrase pi, and Mi is the number of
words in pi. This is to avoid large weights on
the paraphrase edges for lattice alignments.

3. Transform the weighted word lattices into CNs
with the SRILM toolkit, and the paraphrase
ranking information is carried on the edges.

4. Replace the word texts in step 1, and then for
each column of the CN, merge edges with same
words by keeping those with the highest rank-
ing (a smaller number indicates a higher rank-
ing, and edges from the original sentences will
always have the highest ranking). Note that to
assign ranking for each ε edge which does not
appear in the word lattice, we use the ranking of
non-original edges (in the same column) which
have the closest posterior probability to it. (As-
sign ranking 1 if failed to find a such edge).

5. Reassign the edge weights: 1) edges from orig-
inal sentences are assigned with weight 1; 2)
edges from paraphrases are assigned with an
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empirical method as in (6):

w(ecnpi
) =

1

k + i
(1 <= i <= k) (6)

where ecnpi
are edges corresponding with para-

phrase pi, and i is the probability rank of pi in
formula (4), while k is also defined in formula
(4).

A real example of a constructed CN is depicted
in Figure 3, which is correspondent with the word
lattice in Figure 2. Unlike the word lattices, all the
nodes in the CN are generated from the original sen-
tence, while solid lined edges come from the orig-
inal sentence, and dotted lined edges correspond to
paraphrases.

As in shown in the Figures, duplicate paths in the
word lattices have been merged into CN edges by
step 4. For example, the two occurrences of “sec-
retary of state” in the word lattices (one path from
node 6 to 11 via 27 and 28, and one path from node
6 to 11 via 26 and 9 in the word lattice) are merged
to keep the highest-ranked path in the CN (note
there is one ε edge between node 9 and 10 to ac-
complish the merging operation). Furthermore, each
edge in the CN is assigned a weight by formula (6).
This weight assignment procedure penalizes paths
from paraphrases according to the paraphrase prob-
abilities, in a similar manner to the aforementioned
word-lattice-based method.

3.2 Modified MT pipeline
By transforming word lattices into CNs, dupli-
cate paths are merged. Furthermore the new fea-
tures on the edges are introduced by formula (6),
which is then tuned on the development set using
MERT (Och, 2003) in the log-linear model (Och and
Ney, 2002). Since the SMT decoders are able to
perform CN decoding (Bertoldi et al., 2008) in an
efficient multi-stack decoding way, decoding time is
drastically reduced compared to lattice decoding.

The training steps are then modified as fol-
lows: 1) Extract phrase table, reordering table, and
build target-side language models from parallel and
monolingual corpora respectively for the PBSMT
model; 2) Transform source sentences in the devel-
opment set into word lattices, and then transform
them into CNs using the method proposed in Sec-
tion 3.1; 3) Tune the PBSMT model on the CNs via

the development set. Note that the overhead of the
evaluation steps are: transform each test set sentence
into a word lattice, and also transform them into a
CN, then feed them into the SMT decoder to obtain
decoding results.

4 Experiments

4.1 Experimental setup

Experiments were carried out on three English–
Chinese translation tasks. The training corpora com-
prise 20K, 200K and 2.1 million sentence pairs,
where the former two corpora are derived from FBIS
corpus1 which is sentence-aligned by Champollion
aligner (Ma, 2006), the latter corpus comes from
HK parallel corpus,2 ISI parallel corpus,3 other news
data and parallel dictionaries from LDC.

The development set and the test set for the 20K
and 200K corpora are randomly selected from the
FBIS corpus, each of which contains 1,200 sen-
tences, with one reference. For the 2.1 million cor-
pus, the NIST 2005 Chinese–English current set
(1,082 sentences) with one reference is used as the
development set, and NIST 2003 English–Chinese
current set (1,859 sentences) with four references is
used as the test set.

Three baseline systems are built for comparison:
Moses PBSMT baseline system (Koehn et al., 2007),
a realization of the translation model augmentation
system described in (Callison-Burch et al., 2006)
(named “Para-Sub” hereafter), and the word-lattice
based system proposed in (Du et al., 2010).

Word alignments on the parallel corpus are per-
formed using GIZA++ (Och and Ney, 2003) with
the “grow-diag-final” refinement. Maximum phrase
length is set to 10 words and the parameters in the
log-linear model are tuned by MERT (Och, 2003).
All the language models are 5-gram built with the
SRILM toolkit (Stolcke, 2002) on the monolingual
part of the parallel corpora.

4.2 Paraphrase acquisition

The paraphrases data for all paraphrase-enriched
system is derived from the “Paraphrase Phrase Ta-

1Paragraph-aligned corpus with LDC number
LDC2003E14.

2LDC number: LDC2004T08.
3LDC number: LDC2007T09.
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Figure 3: An example of a real CN converted from a paraphrase lattice. Note that it is a subsection of the whole CN
that is converted from the word lattice in Figure 2.

ble”4 of TER-Plus (Snover et al., 2009). Further-
more, the following two steps are taken to filter out
noise paraphrases as described in (Du et al., 2010):

1. Filter out paraphrases with probabilities lower
than 0.01.

2. Filter out paraphrases which are not observed
in the phrase table. This objective is to guar-
antee that no extra out-of-vocabulary words are
introduced into the paraphrase systems.

The filtered paraphrase table is then used to generate
word lattices and CNs.

4.3 Experimental results
The results are reported in BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) scores.

Table 1 compares the performance of four sys-
tems on three translation tasks. As can be observed
from the Table, for 20K and 200K corpora, the
word-lattice-based system accomplished the best re-
sults. For the 20K corpus, the CN outperformed
the baseline PBSMT by 0.31 absolute (2.15% rel-
ative) BLEU points and 1.5 absolute (1.99% rela-
tive) TER points. For the 200K corpus, it still out-
performed the “Para-Sub” by 0.06 absolute (0.26%
relative) BLEU points and 0.15 absolute (0.23% rel-
ative) TER points. Note that for the 2.1M corpus,
although CN underperformed the best word lattice
by an insignificant amount (0.06 absolute, 0.41%

4http://www.umiacs.umd.edu/˜snover/terp/
downloads/terp-pt.v1.tgz

relative) in terms of BLEU points, it has the best
performance in terms of TER points (0.22 abso-
lute, 0.3% relative than word lattice). Furthermore,
the CN outperformed “Para-Sub” by 0.36 absolute
(2.55% relative) BLEU points and 1.37 absolute
(1.84% relative) TER points, and also beat the base-
line PBSMT system by 0.45 absolute (3.21% rela-
tive) BLEU points and 1.82 absolute (2.43% rela-
tive) TER points. The paired 95% confidence in-
terval of significant test (Zhang and Vogel, 2004)
between the “Lattice” and “CN” system is [-0.19,
+0.38], which also suggests that the two system has
a comparable performance in terms of BLEU.

In Table 2, decoding time on test sets is re-
ported to compare the computational efficiency of
the baseline PBSMT, word-lattice-based and CN-
based methods. Note that word lattice construc-
tion time and CN building time (including word lat-
tice construction and conversion from word lattices
into CNs with the SRILM toolkit (Stolcke, 2002))
are counted in the decoding time and illustrated in
the table within parentheses respectively. Although
both word-lattice-based and CN-based methods re-
quire longer decoding times than the baseline PB-
SMT system, it is observed that compared with the
word lattices, CNs reduced the decoding time signif-
icantly on three tasks, namely 52.06% for the 20K
model, 75.75% for the 200K model and 78.88% for
the 2.1M model. It is also worth noting that the
“Para-Sub” system has a similar decoding time with
baseline PBSMT since only the translation table is
modified.
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20K 200K 2.1M
System BLEU TER BLEU TER BLEU TER

Baseline PBSMT 14.42 75.30 23.60 63.65 14.04 74.88
Para-Sub 14.78 73.75 23.41 63.84 14.13 74.43

Word-lattice-based 15.44 73.06 25.20 62.37 14.55 73.28
CN-based 14.73 73.8 23.47 63.69 14.49 73.06

Table 1: Comparison on PBSMT, “Para-Sub”, word-lattice and CN-based methods.

System FBIS testset (1,200 inputs) NIST testset (1,859 inputs)
20K model 200K model 2.1M model

Baseline 21 min 41 min 37 min
Lattice 102 min (+ 15 sec) 398 min (+ 20 sec) 559 min (+ 21 sec)

CN 48 min (+ 61 sec) 95 min (+ 96 sec) 116 min (+ 129 sec)

Table 2: Decoding time comparison of PBSMT, word-lattice (“Lattice”) and CN-based (“CN”) methods.

4.4 Discussion

From the performance and decoding time reported in
the last section, it is obvious that on large scale cor-
pora, the CN-based method significantly reduced the
computational complexity while preserved the sys-
tem performance of the best lattice-based method.
Thus it makes the paraphrase-enriched SMT system
more applicable to real-world applications. On the
other hand, for small- and medium-scale data, CNs
can be used as a compromise between speed and
quality, since decoding time is much less than word
lattices, and compared with the “Para-Sub” system,
the only overhead is the transforming of the input
sentences.

It is also interesting that the relative performance
of the CNs increases gradually with the size of the
training corpus, which indicates that it is more suit-
able for models built from large scale data. Consid-
ering the decoding time, it is preferable to use CNs
instead of word lattices for such translation tasks.
However, for the small- and medium-scale data, the
CN system is not competitive even compared with
the baseline. In this case it suggests that, on these
two tasks, the coverage issue is not solved by in-
corporating paraphrases with the CN structure. It
might because of the ambiguity that introduced by
CNs harms the decoder to choose the appropriate
source words from paraphrases. On the other hand,
this ambiguity could be decreased with translation
models trained on a large corpus, which provides
enough observations for the decoders to favour para-

phrases.

5 Conclusion and future work

In this paper, CNs are used instead of word lattices
to incorporate paraphrases into SMT. Transforma-
tion from word lattices into CNs is used to merge
path duplications, and decoding time is drastically
reduced with CN decoding. Experiments are carried
out on small-, medium- and large-scale English–
Chinese translation tasks and confirm that compared
with word lattices, it is much more computationally
efficient to use CNs, while no loss of performance is
observed on the large-scale task.

In the future, we plan to apply more features
such as source-side language models and phrase
length (Onishi et al., 2010) on the CNs to obtain bet-
ter system performance. Furthermore, we will carry
out this work on other language pairs to show the ef-
fectiveness of paraphrases in SMT systems. We will
also investigate the reason for its lower performance
on the small- and medium-scale corpora, as well as
the impact of the paraphrase filtering procedure on
translation quality.
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