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Abstract

We introduce several ideas that improve the
performance of supervised information ex-
traction systems with a pipeline architecture,
when they are customized for new domains.
We show that: (a) a combination of a se-
quence tagger with a rule-based approach for
entity mention extraction yields better perfor-
mance for both entity and relation mention
extraction; (b) improving the identification of
syntactic heads of entity mentions helps rela-
tion extraction; and (c) a deterministic infer-
ence engine captures some of the joint domain
structure, even when introduced as a post-
processing step to a pipeline system. All in all,
our contributions yield a 20% relative increase
in F1 score in a domain significantly differ-
ent from the domains used during the devel-
opment of our information extraction system.

1 Introduction

Information extraction (IE) systems generally con-
sist of multiple interdependent components, e.g., en-
tity mentions predicted by an entity mention detec-
tion (EMD) model connected by relations via a re-
lation mention detection (RMD) component (Yao et
al., 2010; Roth and Yih, 2007; Surdeanu and Cia-
ramita, 2007). Figure 1 shows a sentence from a
sports domain where both entity and relation men-
tions are annotated. When training data exists, the
best performance in IE is generally obtained by su-
pervised machine learning approaches. In this sce-
nario, the typical approach for domain customiza-
tion is apparently straightforward: simply retrain
on data from the new domain (and potentially tune

model parameters). In this paper we argue that, even
when considerable training data is available, this is
not sufficient to maximize performance. We apply
several simple ideas that yield a significant perfor-
mance boost, and can be implemented with minimal
effort. In particular:
e We show that a combination of a conditional
random field model (Lafferty et al., 2001) with
a rule-based approach that is recall oriented
yields better performance for EMD and for
the downstream RMD component. The rule-
based approach includes gazetteers, which have
been shown to be important by Mikheev et al.
(1999), among others.

e We improve the unification of the predicted se-
mantic annotations with the syntactic analy-
sis of the corresponding text, i.e., finding the
syntactic head of a given semantic constituent.
Since many features in an IE system depend on
syntactic analysis, this leads to more consistent
features and better extraction models.

e We add a simple inference engine that gener-
ates additional relation mentions based solely
on the relation mentions extracted by the RMD
model. This engine mitigates some of the limi-
tations of a text-based RMD model, which can-
not extract relations not explicitly stated in text.

We investigate these ideas using an IE system that
performs recognition of entity mentions followed by
extraction of binary relations between these men-
tions. We used as target a sports domain that is sig-
nificantly different from the corpora previously used
with this IE system. The target domain is also sig-
nificantly different from the dataset used to train the
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Figure 1: Sample sentence from the NFL domain. The domain contains entity mentions (underlined with entity types
in bold) and binary relations between entity mentions (indicated by arrows; relation types are italicized).

supporting natural language processing tools (e.g.,
syntactic parser). Our investigation shows that, de-
spite their simplicity, all our proposals help, yielding
a 20% relative improvement in RMD F1 score.

The paper is organized as follows: Section 2 sur-
veys related work. Section 3 describes the IE system
used. We cover the target domain that serves as use
case in this paper in Section 4. Section 5 introduces
our ideas and evaluates their impact in the target do-
main. Finally, Section 6 concludes the paper.

2 Related Work

Other recent works have analyzed the robustness of
information extraction systems. For example, Flo-
rian et al. (2010) observed that EMD systems per-
form badly on noisy inputs, e.g., automatic speech
transcripts, and propose system combination (sim-
ilar to our first proposal) to increase robustness in
such scenarios. Ratinov and Roth (2009) also in-
vestigate design challenges for named entity recog-
nition, and showed that other design choices, such
as the representation of output labels and using fea-
tures built on external knowledge, are more impor-
tant than the learning model itself. These works are
conceptually similar to our paper, but we propose
several additional directions to improve robustness,
and we investigate their impact in a complete IE sys-
tem instead of just EMD.

Several of our lessons are drawn from the BioCre-
ative challenge! and the BioNLP shared task (Kim

1http: //biocreative.sourceforge.net/

et al.,, 2009). These tasks have shown the impor-
tance of high quality syntactic annotations and using
heuristic fixes to correct systematic errors (Schuman
and Bergler, 2006; Poon and Vanderwende, 2010,
among others). Systems in the latter task have also
shown the importance of high recall in the earlier
stages of pipeline system.

3 Description of the Generic IE System

We illustrate our proposed ideas using a simple IE
system that implements a pipeline architecture: en-
tity mention extraction followed by relation men-
tion extraction. Note however that the domain cus-
tomization discussion in Section 5 is independent of
the system architecture or classifiers used for EMD
and RMD, and we expect the proposed ideas to ap-
ply to other IE approaches as well.

We performed all pre-processing (tokenization,
part-of-speech (POS) tagging) with the Stanford
CoreNLP toolkit.> For EMD we used the Stanford
named entity recognizer (Finkel et al., 2005). In all
our experiments we used a generic set of features
(“macro”) and the 10 notation? for entity mention la-
bels (e.g., the labels for the tokens “over the Seattle
Seahawks on Sunday” (from Figure 1) are encoded
as “O O NFLTEAM NFLTEAM O DATE”).

2http://nlp.stanford.edu/software/
corenlp.shtml

3The IO notation facilitates faster inference than the IOB
or IOB2 notations with minimal impact on performance, when
there are fewer adjacent mentions with the same type.



Argument
Features

— Head words of the two arguments
and their combination

— Entity mention labels of the two
arguments and their combination

— Sequence of dependency labels
in the dependency path linking the
heads of the two arguments

— Lemmas of all words in the de-
pendency path

— Syntactic path in the constituent
parse tree between the largest con-
stituents headed by the same words
as the two arguments (similar
to Gildea and Jurafsky (2002))

— Concatenation of POS tags be-
tween arguments

— Binary indicators set to true if
there is an entity mention with a
given type between the two argu-
ments

Table 1: Feature set used for RMD.

Syntactic
Features

Surface
Features

The RMD model was built from scratch as a
multi-class classifier that extracts binary relations
between entity mentions in the same sentence. Dur-
ing training, known relation mentions become pos-
itive examples for the corresponding label and all
other possible combinations between entity men-
tions in the same sentence become negative exam-
ples. We used a multiclass logistic regression classi-
fier with L2 regularization. Our feature set is taken
from (Yao et al., 2010; Mintz et al., 2009; Roth and
Yih, 2007; Surdeanu and Ciaramita, 2007) and mod-
els the relation arguments, the surface distance be-
tween the relation arguments, and the syntactic path
between the two arguments, using both constituency
and dependency representations. For syntactic in-
formation, we used the Stanford parser (Klein and
Manning, 2003) and the Stanford dependency repre-
sentation (de Marneffe et al., 2006).

For RMD, we implemented an additive feature se-
lection algorithm similar to the one in (Surdeanu
et al., 2008), which iteratively adds the feature
with the highest improvement in F1 score to the
current feature set, until no improvement is seen.
The algorithm was configured to select features
that yielded the best combined performance on the
dataset from Roth and Yih (2007) and the training
partition of ACE 2007.* We used ten-fold cross val-

“LDC catalog numbers LDC2006E54 and LDC2007E11

Documents | Words Entity Relation
Mentions | Mentions
110 [ 70,119 [ 2,188 | 1,629

Table 2: Summary statistics of the NFL corpus, after our
conversion to binary relations.

idation on both datasets. We decided to use a stan-
dard F1 score to evaluate RMD performance rather
than the more complex ACE score because we be-
lieve that the former is more interpretable. We used
gold entity mentions for the feature selection pro-
cess. Table 1 summarizes the final set of features
selected.

Despite its simplicity, our approach achieves
comparable performance with other state-of-the-art
results reported on these datasets (Roth and Yih,
2007; Surdeanu and Ciaramita, 2007). For exam-
ple, Surdeanu and Ciaramita report a RMD F1 score
of 59.4 for ACE relation types (i.e., ignoring sub-
types) when gold entity mentions are used. Under
the same conditions, our RMD model obtains a F1
score of 59.2.

4 Description of the Target Domain

In this paper we report results on the “Machine
Reading NFL Scoring” corpus.” This corpus was
developed by LDC for the DARPA Machine Read-
ing project. The corpus contains 110 newswire arti-
cles on National Football League (NFL) games. The
annotations cover game information, such as partici-
pating teams, winners and losers, partial (e.g., a sin-
gle touchdown or three field goals) and final scores.
Most of the annotated relations in the original corpus
are binary (e.g. GAMEDATE(NFLGAME, DATE))
but some are n-ary relations or include other at-
tributes in addition of the relation type. We reduce
these to annotations compatible with our RMD ap-
proach as follows:

e We concatenate the cardinality of each scoring
event (i.e. how many scoring events are be-
ing talked about) to the corresponding SCORE-
TYPE entity label. Thus SCORETYPE-2 in-
dicates that there were two of a given type
of scoring event (touchdown, field goal, etc.).
This operation is necessary because the cardi-
nality of scoring events is originally annotated
as an additional attribute of the SCORETYPE

LDC catalog number LDC2009E112



Entity Mentions Correct Predicted Actual P R F1
Date 141 190 174 | 742 81.0 775
FinalScore 299 328 347 1 91.2 862 88.6
NFLGame 71 109 147 | 65.1 483 555
NFLPlayoffGame 8 25 38 1 32.0 21.1 254
NFLTeam 651 836 818 | 779 79.6 78.7
ScoreType-1 329 479 525 | 687 6277 65.5
ScoreType-2 49 68 79 | 72.1  62.0 66.7
ScoreType-3 17 26 36 | 654 472 54.8
ScoreType-4 6 11 14 | 545 429 48.0
Total 1571 2076 2188 | 75.7 71.8 73.7
Relation Mentions Correct Predicted Actual P R Fl1
fieldGoalPartialCount 33 41 101 | 80.5 32.7 465
gameDate 32 36 115 | 889 27.8 424
gameLoser 22 44 124 | 50.0 17.7 26.2
gameWinner 6 15 123 | 400 49 87
teamFinalScore 95 101 232 1 941 409 57.1
teamInGame 49 105 257 | 46.7 19.1 27.1
teamScoringAll 202 232 321 | 87.1 629 73.1
touchDownPartial Count 156 191 322 | 81.7 484 60.8
Total 595 766 1629 | 77.7 36.5 49.7

Table 3: Baseline results: stock system without any domain customization. Correct/Predicted/Actual indicate the num-
ber of mentions (entities or relations) that are correctly predicted/predicted/gold. P/R/F1 indicate precision/recall/F1

scores for the corresponding label.

entity and our EMD approach does not model
mention attributes.

e We split all n-ary relations into several new
binary relations. For example, the original
TEAMFINALSCORE(NFLTEAM, NFLGAME,
FINALSCORE) relation is split into three binary
relations: TEAMSCORINGALL(NFLTEAM,
FINALSCORE), TEAMINGAME(NFLGAME,
NFLTEAM), and TEAMFINALSCORE(NFL-
GAME, FINALSCORE).

Figure 1 shows an example annotated sentence af-
ter the above conversion and Table 2 lists the corpus
summary statistics for the new binary relations.

The purpose behind this corpus is to encourage
the development of systems that answer structured
queries that go beyond the functionality of informa-
tion retrieval engines, e.g.:

“For each NFL game, identify the win-
ning and losing teams and each team’s fi-
nal score in the game.”

“For each team losing to the Green Bay
Packers, tell us the losing team and the
number of points they scored.”®

These queries would be written in a formal language but

5 Domain Customization

Table 3 lists the results of the generic IE system de-
scribed in Section 3 on the NFL domain. Through-
out this paper we will report results using ten-fold
cross-validation on all 110 documents in the cor-
pus.” We consider an entity mention as correct if
both its boundaries and label match exactly the gold
mention. We consider a relation mention correct if
both its arguments and label match the gold relation
mention. For RMD, we report results using the ac-
tual mentions predicted by our EMD model (instead
of using gold entity mentions for RMD). For clar-
ity, we do not show in the tables some labels that are
highly uncommon in the data (e.g., SCORETYPE-5
appears only four times in the entire corpus); but the
“Total” results include all entity and relation men-
tions.

Table 3 shows that the stock IE system obtains an

are presented here in English for clarity.

"Generally, we do not condone reporting results using cross-
validation because it may be a recipe for over-fitting on the
corresponding corpus. However, all our domain customization
ideas were developed using outside world and domain knowl-
edge and were not tuned on this data, so we believe that there is
minimal over-fitting in this case.



Entity Mentions P R F1
Date 742 | 81.0 | 77.5
FinalScore 913 | 87.3 | 89.2
NFLGame 61.2 | 48.3 | 54.0
NFLPlayoffGame 333 1 21.1 | 258
NFLTeam 779 | 813 | 79.5
ScoreType-1 68.8 | 62.3 | 65.4
ScoreType-2 72.1 | 62.0 | 66.7
ScoreType-3 654 | 47.2 | 54.8
ScoreType-4 545 | 429 | 48.0
Total 75.6 | 725 | 74.0
Relation Mentions P R F1
fieldGoalPartial Count 78.0 | 31.7 | 45.1
gameDate 91.4 | 27.8 | 42.7
gameLoser 50.0 | 18.5 | 27.1
gameWinner 400 | 49| 87
teamFinalScore 94.1 | 409 | 57.1
teamInGame 459 | 195 | 27.3
teamScoringAll 87.0 | 64.8 | 74.3
touchDownPartialCount | 82.4 | 49.4 | 61.7
Total 77.6 | 37.1 | 50.2

Table 4: Performance after gazetteer-based features were
added to the EMD model.

EMD F1 score of 73.7 and a RMD F1 score of 49.7.
These are respectable results, in line with state-of-
the-art results in other domains.® However, there
are some obvious areas for improvement. For exam-
ple, the score for a few relations (e.g., GAMELOSER
and GAMEWINNER) is quite low. This is caused by
the fact that these relations are often not explicitly
stated in text but rather implied (e.g., based on team
scores). Furthermore, the low recall of entity types
that are crucial for all relations (e.g., NFLTEAM and
NFLGAME) negatively impacts the overall recall of
RMD.

5.1 Combining a Rule-based Model with
Conditional Random Fields for EMD

A straightforward way to improve EMD perfor-
mance is to construct domain-specific gazetteers and
include gazetteer-based features in the model. We
constructed a NFL-specific gazetteer as follows: (a)
we included all 32 NFL team names; (b) we built a
lexicon for NFLGame nouns and verbs that included
game types (e.g., “semi-final”, “quarter-final””) and

8As a comparison, the best RMD system in ACE 2007 ob-
tained an ACE score of less than 35%, even though the ACE
score gives credit for approximate matches of entity mention
boundaries (Surdeanu and Ciaramita, 2007).

Entity Mentions P R F1
Date 742 | 81.0 | 77.5
FinalScore 913 | 87.3 | 89.2
NFLGame 61.2 | 48.3 | 54.0
NFLPlayoffGame 333 | 21.1 | 25.8
NFLTeam 714 | 969 | 82.3
ScoreType-1 68.8 | 62.3 | 65.4
ScoreType-2 72.1 | 62.0 | 66.7
ScoreType-3 654 | 47.2 | 54.8
ScoreType-4 545 | 429 | 48.0
Total 72.8 | 784 | 75.5
Relation Mentions P R Fl1
fieldGoalPartial Count 81.2 | 38.6 | 52.3
gameDate 939 | 27.0 | 41.9
gameLoser 51.1 | 194 | 28.1
gameWinner 389 | 57| 99
teamFinalScore 94.1 | 40.9 | 57.1
teamInGame 474 | 245 | 323
teamScoringAll 87.0 | 68.8 | 76.9
touchDownPartialCount | 81.6 | 56.5 | 66.8
Total 772 | 40.6 | 53.2

Table 5: Performance after gazetteer-based features were
added to the EMD model, and NFLTeam entity mentions
were extracted using the rule-based model rather than
classification.

typical game descriptors. The game descriptors
were manually bootstrapped from three seed words
(“victory”, “loss”, “game”) using Dekang Lin’s
dependency-based thesaurus.’ This process added
other relevant game descriptors such as “triumph”,
“defeat”, etc. All in all, our gazetteer includes 32
team names and 50 game descriptors. The gazetteer
was built in less than four person hours.

We added features to our EMD model to indi-
cate if a sequence of words matches a gazetteer en-
try, allowing approximate matches (e.g., “Cowboys”
matches “Dallas Cowboys”). Table 4 lists the results
after this change. The improvements are modest: 0.3
for both EMD and RMD, caused by a 0.8 improve-
ment for NFLTEAM. The score for NFLGAME suf-
fers a loss of 1.5 F1 points, probably caused by the
fact that our NFLGAME gazetteer is incomplete.

These results are somewhat disappointing: even
though our gazetteer contains an exhaustive list of
NFL team names, the EMD recall for NFLTEAM
is still relatively low. This happens because city

http://webdocs.cs.ualberta.ca/~1lindek/
Downloads/sim.tgz



names that are not references to team names are rela-
tively common in this corpus, and the CRF model fa-
vors the generic city name interpretation. However,
since the goal is to answer structured queries over
the extracted relations, we would prefer a model
that favors recall for EMD, to avoid losing candi-
dates for RMD. While this can be achieved in dif-
ferent ways (Minkov et al., 2006), in this paper we
implement a very simple approach: we recognize
NFLTEAM mentions with a rule-based system that
extracts all token sequences that begin, end, or are
equal to a known team name. For example, “Green
Bay” and “Packers” are marked as team mentions,
but not “Bay”. Note that this approach is prone to in-
troducing false positives, e.g., “Green” in the above
example. For all other entity types we use the CRF
model with gazetteer-based features. Table 5 lists
the results for this model combination. The table
shows that the RMD performance is improved by 3
F1 points. The F1 score for NFLTEAM mentions is
also improved by 3 points, due to a significant in-
crease in recall (from 81% to 97%).

Of course, this simple idea works only for en-
tity types with low ambiguity. In fact, it does not
improve results if we apply it to NFLGAME or
SCORETYPE-*. However, low ambiguity entities
are common in many domains (e.g., medical). In
such domains, our approach offers a straightforward
way to address potential recall errors of a machine
learned model.

5.2 Improving Head Identification for Entity
Mentions

Table 1 indicates that most RMD features (e.g., lex-
ical information on arguments, dependency paths
between arguments) depend on the syntactic heads
of entity mentions. This observation applies to
other natural language processing (NLP) tasks as
well, e.g., semantic role labeling or coreference res-
olution (Gildea and Jurafsky, 2002; Haghighi and
Klein, 2009). It is thus crucial that syntactic heads
of mentions be correctly identified. Originally we
employed a common heuristic: we first try to find a
constituent with the exact same span as the given en-
tity mention in the parse tree of the entire sentence,
and extract its head. If no such constituent exists,
we parse only the text corresponding to the mention
and return the head of the generated tree (Haghighi

Entity Mentions P R F1
Date 69.5 | 75.9 | 72.5
FinalScore 90.9 | 88.8 | 89.8
NFLGame 60.5 | 51.0 | 55.4
NFLPlayoffGame 37.0 | 26.3 | 30.8
NFLTeam 72.4 | 983 | 834
ScoreType-1 69.7 | 62.1 | 65.7
ScoreType-2 76.9 | 63.3 | 69.4
ScoreType-3 64.3 | 50.0 | 56.3
ScoreType-4 727 | 57.1 | 64.0
Total 732 | 79.2 | 76.1
Relation Mentions P R Fl1
fieldGoalPartial Count 81.2 | 554 | 659
gameDate 939 | 27.0 | 41.9
gameLoser 512 | 17.7 | 26.3
gameWinner 500 | 89 | 152
teamFinalScore 96.5 | 47.4 | 63.6
teamInGame 48.3 | 33.5 | 395
teamScoringAll 86.7 | 72.9 | 79.2
touchDownPartialCount | 89.1 | 61.2 | 72.6
Total 78.5 | 459 | 579

Table 6: Performance with the improved syntactic head
identification rules.

and Klein, 2009). Here we argue that the last step of
this heuristic is flawed: since most parsers are heav-
ily context dependent, they are likely to not parse
correctly arbitrarily short text fragments. For exam-
ple, the Stanford parser generates the incorrect parse
tree:

NP
NP - S

N | —
DT CcD - NP VP

| | | —

a 5 NN VBG NP

| | =N
yard scoring pass

The syntactic head is “5” for the mention “a 5-yard
scoring pass” instead of “pass.”!® This problem is
exacerbated out of domain, where the parse tree of
the entire sentence is likely to be incorrect, which
will often trigger the parsing of the isolated men-
tion text. For example, in the NFL domain, more
than 25% of entity mentions cannot be matched to
a constituent in the parse tree of the corresponding
sentence.

%We tokenize around dashes in this domain because scores
are often dash separated. However, this mention is incorrectly
parsed even when “5-yard” is a single token.



teamFinalScore (G, S) :— teamInGame (T, G),

teamFinalScore (G, S) :— gameWinner (T, G),

teamFinalScore (G, S) :-— gamelLoser (T,
teamInGame (G, T) :-— teamScoringAll (T, S),
gameWinner (G, T1l) :- teamInGame (G,

teamFinalScore (G,
teamScoringAll (T1,
greaterThan (S1,
teamInGame (G,
teamFinalScore (G,
teamScoringAll (T1,
lessThan (S1,

gameLoser (G, T1l) :-

teamScoringAll (T, S).
teamScoringAll (T, S).

G), teamScoringAll (T, S).
teamFinalScore (G, S).
teamInGame (G, T2),
S1), teamFinalScore (G,
S1), teamScoringAll (T2,
S2) .

Tl), teamInGame (G, T2),
S1), teamFinalScore (G,
S1), teamScoringAll (T2,

1),
s2),
s2),

s2),
52),
S2).

Table 7: Deterministic inference rules for the NFL domain as first-order Horn clauses. G, T, and S indicate game,

team, and score variables.

In this work, we propose several simple heuristics
that improve the parsing of isolated mention texts:

e We append “It was ” to the beginning of the text
to be parsed. Since entity mentions are noun
phrases (NP), the new text is guaranteed to be
a coherent sentence. A similar heuristic was
used by Moldovan and Rus for the parsing of
WordNet glosses (2001).

e Because dashes are uncommon in the Penn
Treebank, we remove them from the text before
parsing.

e We guide the Stanford parser such that the final
tree contains a constituent with the same span
as the mention text.!!

After implementing these heuristics, the Stanford
parser correctly parses the mention in the above ex-
ample as a NP headed by “pass”. Table 6 lists
the overall extraction scores after deploying these
heuristics. The table shows that the RMD F1 score
is a considerable 4.7 points higher than before this
change (Table 5).

5.3 Deterministic Inference for RMD

Figure 1 underlines the fact that relations in the NFL
domain are highly inter-dependent. This is a com-
mon occurrence in many extraction tasks and do-
mains (Poon and Vanderwende, 2010; Carlson et
al., 2010). The typical way to address these situa-
tions is to jointly model these relations, e.g., using
Markov logic networks (MLN) (Poon and Vander-
wende, 2010). However, this implies a complete
redesign of the corresponding IE system, which
would essentially ignore all the effort behind exist-
ing pipeline systems.

""This is supported by the parser AP

Relation Mentions P R F1
fieldGoalPartialCount 81.2 | 554 | 659
gameDate 939 | 27.0 | 41.9
gameLoser 459 | 274 | 343
gameWinner 456 | 25.2 | 325
teamFinalScore 96.5 | 47.4 | 63.6
teamInGame 48.1 | 44.7 | 464
teamScoringAll 86.7 | 72.9 | 79.2
touchDownPartialCount | 89.1 | 61.2 | 72.6
Total 742 | 49.6 | 59.5

Table 8: Performance after adding deterministic infer-
ence. The EMD scores are not affected by this change,
so they are not listed here.

In this work, we propose a simple method that
captures some of the joint domain structure indepen-
dently of the IE architecture and the EMD and RMD
models. We add a deterministic inference compo-
nent that generates new relation mentions based on
the data already extracted by the pipeline model. Ta-
ble 7 lists the rules of this inference component that
were developed for the NFL domain. These rules
are domain-dependent, but they are quite simple: the
first four rules implement transitive-closure rules for
relation mentions centered around the same NFL-
GAME mention; the last two add domain knowledge
that is not captured by the text extractors, e.g., the
game winner is the team with the higher score. Ta-
ble 8, which lists the RMD scores after inference, in-
dicates that the inference component is responsible
for an increase of approximately 2 F1 points, caused
by a recall boost of approximately 4%.

Table 9 lists the results of a post-hoc experiment,
where we removed several relation types from the
RMD classifier (the ones predicted with poor perfor-
mance) and let the deterministic inference compo-
nent generate them instead. This experiment shows



Without Inference With Inference
P R F1 P R F1
Skip gameWinner, gameLoser 786 456 5777 | 751 484 58.8
Skip teamInGame 77.0 43.6 557 | 71.7 494 585
Skip teamInGame, teamFinalScore | 74.5 37.1 49.6 | 70.9 47.6 56.9
Skip nothing 78.5 459 579 | 742 49.6 59.5

Table 9: Analysis of different combination strategies between the RMD classifier and inference: the RMD model skips
the relation types listed in the first column; the inference component generates all relation types. The other columns
show relation mention scores under the various configurations.

EMD | RMD

F1 F1

Baseline 73.7 49.7
+ gazetteer features 74.0 50.2
+ rule-based model for NFLTeam | 75.5 53.2
+ improved head identification 76.1 | 579
+ inference 76.1 59.5

Table 10: Summary of domain customization results.

that inference helps in all configurations, and, most
importantly, it is robust: even though the RMD score
without inference decreases by up to 8 F1 points
as relations are removed, the score after inference
varies by less than 3 F1 points (from 56.9 to 59.5
F1). This proves that deterministic inference is ca-
pable of generating relation mentions that are either
missed or cannot be modeled by the RMD classifier.

Finally, Table 10 summarizes the experiments
presented in this paper. It is clear that, despite their
simplicity, all our proposed ideas help. All in all,
our contributions yielded an improvement of 9.8 F1
points (approximately 20% relative) over the stock
IE system without these changes. Our best IE sys-
tem was used in a blind evaluation within the Ma-
chine Reading project. In this evaluation, systems
were required to answer 50 queries similar to the
examples in Section 4 and were evaluated on the
correctness of the individual facts extracted. Note
that this evaluation is more complex than the exper-
iments reported until now, because the correspond-
ing IE system requires additional components, e.g.,
the normalization of all DATE mentions and event
coreference (i.e., are two different game mentions
referring to the same real-world game?). For this
evaluation, we used an internal script for date nor-
malization and we did not implement event corefer-
ence. This system was evaluated at 46.7 F1 (53.7
precision and 41.2 recall), a performance that was
approximately 80% of the F1 score obtained by hu-
man annotators. This further highlights that strong

IE performance can be obtained with simple models.

6 Conclusions

This paper introduces a series of simple ideas that
improve the performance of IE systems when they
are customized to new domains. We evaluated our
contributions on a sports domain (NFL game sum-
maries) that is significantly different from the do-
mains used to develop our IE system or the language
processors used by our system.

Our analysis revealed several interesting and non-
obvious facts. First, we showed that accurate identi-
fication of syntactic heads of entity mentions, which
has received little attention in IE literature, is cru-
cial for good performance. Second, we showed that
a deterministic inference component captures some
of the joint domain structure, even when the under-
lying system follows a pipeline architecture. Lastly,
we introduced a simple way to tune precision and
recall by combining our entity mention extractor
with a rule-based system. Overall, our contributions
yielded a 20% improvement in the F1 score for rela-
tion mention extraction.

We believe that our contributions are model inde-
pendent and some, e.g., the better head identifica-
tion, even task independent. Some of our ideas re-
quire domain knowledge, but they are all very sim-
ple to implement. We thus expect them to impact
other problems as well, e.g., coreference resolution,
semantic role labeling.
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