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Preface

The ACL 2011 Workshop on Relational Models of Semantics (RELMS 2011) took place on June 23,
2011 in Portland, Oregon, USA, immediately following the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies (ACL 2011).

We had envisioned the workshop as a meeting place for those concerned with a view of semantics
deeper than what a word or a collocation carry in text. A non-trivial text describes relations among the
entities and events to which it refers. While models of meaning which focus on the lexical stratum are
undoubtedly important, it is relations that bind individual pieces together.

The modelling of semantic relations has taken a variety of forms in natural language processing.
Ontology learning and information extraction focus on learning “encyclopedic” relations between
entities in the domain of the discourse. Structured prediction tasks such as semantic role labelling
or biomedical event extraction require reasoning about the relational content of a text: which entities
and events mentioned are interrelated. The interpretation of compound nouns – in the presence of
little contextual knowledge – benefits from recognizing probable and plausible relations between two
entities. And so on.

Reality seldom lives up to expectations, so we have been fortunate to receive a number of good
submissions. The participants found out how rich language resources can advance the cause of deep
semantic analysis (the invited talk by Martha Palmer and the paper by Coyne et al.) and how such
resources can be built up (Ayşe et al. and Bonial et al.). They further heard about discovering elements
implicit in texts (Tonelli and Delmonte, Gerber and Chai). There were also papers on classifying
relations (Choi, Palmer and Jamison), on information extraction (Surdeanu et al.) and even on the
connection between relations and sentiment (Kolya et al.). We thank the Authors for letting us put
together such an interestingly varied program.

The success of the workshop was only possible with the support of all of the authors who submitted
their papers for review and then presented them, the program committee members who constructively
assessed the submissions, the invited speaker (Martha Palmer) and the panelists (Timothy Baldwin,
Eduard Hovy, Saif Mohammad, and Sebastian Riedel) who shared their views on interesting topics,
and the registered participants. We thank them all for their support for this workshop.

The RELMS 2011 co-organizers:
Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, and Stan
Szpakowicz
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Şerbetçi Ayşe, Orhan Zeynep and Pehlivan İlknur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Identifying Event – Sentiment Association using Lexical Equivalence and Co-reference Approaches
Anup Kolya, Dipankar Das, Asif Ekbal and Sivaji Bandyopadhyay . . . . . . . . . . . . . . . . . . . . . . . . . 19

VigNet: Grounding Language in Graphics using Frame Semantics
Bob Coyne, Daniel Bauer and Owen Rambow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Transition-based Semantic Role Labeling Using Predicate Argument Clustering
Jinho D. Choi and Martha Palmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Using Grammar Rule Clusters for Semantic Relation Classification
Emily Jamison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Desperately Seeking Implicit Arguments in Text
Sara Tonelli and Rodolfo Delmonte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Joint Model of Implicit Arguments for Nominal Predicates
Matthew Gerber, Joyce Chai and Robert Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Incorporating Coercive Constructions into a Verb Lexicon
Claire Bonial, Susan Windisch Brown, Jena D. Hwang, Christopher Parisien, Martha Palmer and

Suzanne Stevenson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii





RELMS’2011 Workshop Program

Thursday: June 23, 2011

09:00-09:05 Welcome

09:05-10:30 Session 1

(09:05-10:05)
Invited Talk
Going Beyond Shallow Semantics
Martha Palmer, University of Colorado

(10:05-10:30)
Customizing an Information Extraction System to a New Domain
Mihai Surdeanu, David McClosky, Mason Smith, Andrey Gusev and Christopher
Manning

10:30-11:00 Morning break

11:00-12:15 Session 2

(11:00-11:25)
Extraction of Semantic Word Relations in Turkish from Dictionary Definitions
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Going Beyond Shallow Semantics
(invited talk)

Martha Palmer
University of Colorado at Boulder

Martha.Palmer@colorado.edu

Abstract

Shallow semantic analyzers, such as semantic role labeling and sense tagging, are increasing in ac-
curacy and becoming commonplace. However, they only provide limited and local representations of
local words and individual predicate-argument structures. This talk will address some of the current
challenges in producing deeper, connected representations of eventualities. Available resources, such
as VerbNet, FrameNet and TimeBank, that can assist in this process will also be discussed, as well as
some of their limitations.

Speaker’s Bio

Martha Palmer is a Full Professor at the University of Colorado with joint appointments in Linguistics
and Computer Science and is an Institute of Cognitive Science Faculty Fellow. She recently won a
Boulder Faculty Assembly 2010 Research Award. Beginning with her dissertation work at Edinburgh
and her first job as a Research Scientist at Unisys, her research has been focused on trying to capture
the meanings of words in representations that the computer can use to build up meanings of complex
sentences and documents. These representations can in turn be used to improve the computer’s ability
to perform question answering, information retrieval, and machine translation. Current approaches rely
on techniques for applying supervised machine learning algorithms, which use vast amounts of anno-
tated training data. Therefore, she and her students, both at Colorado and previously at the University of
Pennsylvania, are engaged in providing data with word sense tags and semantic role labels for English,
Chinese, Arabic, and Hindi, funded by DARPA and NSF. They also use machine learning algorithms
to develop automatic sense taggers and semantic role labelers, and to extract bilingual lexicons from
parallel corpora. A more recent focus is the application of these methods to biomedical journal articles
and clinical notes, funded by NIH. She is a co-editor for both the Journal of Natural Language Engi-
neering and LiLT, Linguistic Issues in Language Technology. She is a past President of the Association
for Computational Linguistics, past Chair of SIGLEX and SIGHAN, and is currently the Director of
the 2011 Linguistics Institute to be held in Boulder, Colorado.
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Customizing an Information Extraction System to a New Domain

Mihai Surdeanu, David McClosky, Mason R. Smith, Andrey Gusev,
and Christopher D. Manning

Department of Computer Science
Stanford University
Stanford, CA 94305

{mihais,mcclosky,mrsmith,manning}@stanford.edu
agusev@cs.stanford.edu

Abstract

We introduce several ideas that improve the
performance of supervised information ex-
traction systems with a pipeline architecture,
when they are customized for new domains.
We show that: (a) a combination of a se-
quence tagger with a rule-based approach for
entity mention extraction yields better perfor-
mance for both entity and relation mention
extraction; (b) improving the identification of
syntactic heads of entity mentions helps rela-
tion extraction; and (c) a deterministic infer-
ence engine captures some of the joint domain
structure, even when introduced as a post-
processing step to a pipeline system. All in all,
our contributions yield a 20% relative increase
in F1 score in a domain significantly differ-
ent from the domains used during the devel-
opment of our information extraction system.

1 Introduction

Information extraction (IE) systems generally con-
sist of multiple interdependent components, e.g., en-
tity mentions predicted by an entity mention detec-
tion (EMD) model connected by relations via a re-
lation mention detection (RMD) component (Yao et
al., 2010; Roth and Yih, 2007; Surdeanu and Cia-
ramita, 2007). Figure 1 shows a sentence from a
sports domain where both entity and relation men-
tions are annotated. When training data exists, the
best performance in IE is generally obtained by su-
pervised machine learning approaches. In this sce-
nario, the typical approach for domain customiza-
tion is apparently straightforward: simply retrain
on data from the new domain (and potentially tune

model parameters). In this paper we argue that, even
when considerable training data is available, this is
not sufficient to maximize performance. We apply
several simple ideas that yield a significant perfor-
mance boost, and can be implemented with minimal
effort. In particular:
• We show that a combination of a conditional

random field model (Lafferty et al., 2001) with
a rule-based approach that is recall oriented
yields better performance for EMD and for
the downstream RMD component. The rule-
based approach includes gazetteers, which have
been shown to be important by Mikheev et al.
(1999), among others.
• We improve the unification of the predicted se-

mantic annotations with the syntactic analy-
sis of the corresponding text, i.e., finding the
syntactic head of a given semantic constituent.
Since many features in an IE system depend on
syntactic analysis, this leads to more consistent
features and better extraction models.
• We add a simple inference engine that gener-

ates additional relation mentions based solely
on the relation mentions extracted by the RMD
model. This engine mitigates some of the limi-
tations of a text-based RMD model, which can-
not extract relations not explicitly stated in text.

We investigate these ideas using an IE system that
performs recognition of entity mentions followed by
extraction of binary relations between these men-
tions. We used as target a sports domain that is sig-
nificantly different from the corpora previously used
with this IE system. The target domain is also sig-
nificantly different from the dataset used to train the
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  Anderson	
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teamFinalScore	
  
teamFinalScore	
  

Figure 1: Sample sentence from the NFL domain. The domain contains entity mentions (underlined with entity types
in bold) and binary relations between entity mentions (indicated by arrows; relation types are italicized).

supporting natural language processing tools (e.g.,
syntactic parser). Our investigation shows that, de-
spite their simplicity, all our proposals help, yielding
a 20% relative improvement in RMD F1 score.

The paper is organized as follows: Section 2 sur-
veys related work. Section 3 describes the IE system
used. We cover the target domain that serves as use
case in this paper in Section 4. Section 5 introduces
our ideas and evaluates their impact in the target do-
main. Finally, Section 6 concludes the paper.

2 Related Work
Other recent works have analyzed the robustness of
information extraction systems. For example, Flo-
rian et al. (2010) observed that EMD systems per-
form badly on noisy inputs, e.g., automatic speech
transcripts, and propose system combination (sim-
ilar to our first proposal) to increase robustness in
such scenarios. Ratinov and Roth (2009) also in-
vestigate design challenges for named entity recog-
nition, and showed that other design choices, such
as the representation of output labels and using fea-
tures built on external knowledge, are more impor-
tant than the learning model itself. These works are
conceptually similar to our paper, but we propose
several additional directions to improve robustness,
and we investigate their impact in a complete IE sys-
tem instead of just EMD.

Several of our lessons are drawn from the BioCre-
ative challenge1 and the BioNLP shared task (Kim

1http://biocreative.sourceforge.net/

et al., 2009). These tasks have shown the impor-
tance of high quality syntactic annotations and using
heuristic fixes to correct systematic errors (Schuman
and Bergler, 2006; Poon and Vanderwende, 2010,
among others). Systems in the latter task have also
shown the importance of high recall in the earlier
stages of pipeline system.

3 Description of the Generic IE System

We illustrate our proposed ideas using a simple IE
system that implements a pipeline architecture: en-
tity mention extraction followed by relation men-
tion extraction. Note however that the domain cus-
tomization discussion in Section 5 is independent of
the system architecture or classifiers used for EMD
and RMD, and we expect the proposed ideas to ap-
ply to other IE approaches as well.

We performed all pre-processing (tokenization,
part-of-speech (POS) tagging) with the Stanford
CoreNLP toolkit.2 For EMD we used the Stanford
named entity recognizer (Finkel et al., 2005). In all
our experiments we used a generic set of features
(“macro”) and the IO notation3 for entity mention la-
bels (e.g., the labels for the tokens “over the Seattle
Seahawks on Sunday” (from Figure 1) are encoded
as “O O NFLTEAM NFLTEAM O DATE”).

2http://nlp.stanford.edu/software/
corenlp.shtml

3The IO notation facilitates faster inference than the IOB
or IOB2 notations with minimal impact on performance, when
there are fewer adjacent mentions with the same type.
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Argument
Features

– Head words of the two arguments
and their combination
– Entity mention labels of the two
arguments and their combination

Syntactic
Features

– Sequence of dependency labels
in the dependency path linking the
heads of the two arguments
– Lemmas of all words in the de-
pendency path
– Syntactic path in the constituent
parse tree between the largest con-
stituents headed by the same words
as the two arguments (similar
to Gildea and Jurafsky (2002))

Surface
Features

– Concatenation of POS tags be-
tween arguments
– Binary indicators set to true if
there is an entity mention with a
given type between the two argu-
ments

Table 1: Feature set used for RMD.

The RMD model was built from scratch as a
multi-class classifier that extracts binary relations
between entity mentions in the same sentence. Dur-
ing training, known relation mentions become pos-
itive examples for the corresponding label and all
other possible combinations between entity men-
tions in the same sentence become negative exam-
ples. We used a multiclass logistic regression classi-
fier with L2 regularization. Our feature set is taken
from (Yao et al., 2010; Mintz et al., 2009; Roth and
Yih, 2007; Surdeanu and Ciaramita, 2007) and mod-
els the relation arguments, the surface distance be-
tween the relation arguments, and the syntactic path
between the two arguments, using both constituency
and dependency representations. For syntactic in-
formation, we used the Stanford parser (Klein and
Manning, 2003) and the Stanford dependency repre-
sentation (de Marneffe et al., 2006).

For RMD, we implemented an additive feature se-
lection algorithm similar to the one in (Surdeanu
et al., 2008), which iteratively adds the feature
with the highest improvement in F1 score to the
current feature set, until no improvement is seen.
The algorithm was configured to select features
that yielded the best combined performance on the
dataset from Roth and Yih (2007) and the training
partition of ACE 2007.4 We used ten-fold cross val-

4LDC catalog numbers LDC2006E54 and LDC2007E11

Documents Words Entity Relation
Mentions Mentions

110 70,119 2,188 1,629

Table 2: Summary statistics of the NFL corpus, after our
conversion to binary relations.

idation on both datasets. We decided to use a stan-
dard F1 score to evaluate RMD performance rather
than the more complex ACE score because we be-
lieve that the former is more interpretable. We used
gold entity mentions for the feature selection pro-
cess. Table 1 summarizes the final set of features
selected.

Despite its simplicity, our approach achieves
comparable performance with other state-of-the-art
results reported on these datasets (Roth and Yih,
2007; Surdeanu and Ciaramita, 2007). For exam-
ple, Surdeanu and Ciaramita report a RMD F1 score
of 59.4 for ACE relation types (i.e., ignoring sub-
types) when gold entity mentions are used. Under
the same conditions, our RMD model obtains a F1
score of 59.2.

4 Description of the Target Domain
In this paper we report results on the “Machine
Reading NFL Scoring” corpus.5 This corpus was
developed by LDC for the DARPA Machine Read-
ing project. The corpus contains 110 newswire arti-
cles on National Football League (NFL) games. The
annotations cover game information, such as partici-
pating teams, winners and losers, partial (e.g., a sin-
gle touchdown or three field goals) and final scores.
Most of the annotated relations in the original corpus
are binary (e.g. GAMEDATE(NFLGAME, DATE))
but some are n-ary relations or include other at-
tributes in addition of the relation type. We reduce
these to annotations compatible with our RMD ap-
proach as follows:

• We concatenate the cardinality of each scoring
event (i.e. how many scoring events are be-
ing talked about) to the corresponding SCORE-
TYPE entity label. Thus SCORETYPE-2 in-
dicates that there were two of a given type
of scoring event (touchdown, field goal, etc.).
This operation is necessary because the cardi-
nality of scoring events is originally annotated
as an additional attribute of the SCORETYPE

5LDC catalog number LDC2009E112
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Entity Mentions Correct Predicted Actual P R F1
Date 141 190 174 74.2 81.0 77.5
FinalScore 299 328 347 91.2 86.2 88.6
NFLGame 71 109 147 65.1 48.3 55.5
NFLPlayoffGame 8 25 38 32.0 21.1 25.4
NFLTeam 651 836 818 77.9 79.6 78.7
ScoreType-1 329 479 525 68.7 62.7 65.5
ScoreType-2 49 68 79 72.1 62.0 66.7
ScoreType-3 17 26 36 65.4 47.2 54.8
ScoreType-4 6 11 14 54.5 42.9 48.0
Total 1571 2076 2188 75.7 71.8 73.7

Relation Mentions Correct Predicted Actual P R F1
fieldGoalPartialCount 33 41 101 80.5 32.7 46.5
gameDate 32 36 115 88.9 27.8 42.4
gameLoser 22 44 124 50.0 17.7 26.2
gameWinner 6 15 123 40.0 4.9 8.7
teamFinalScore 95 101 232 94.1 40.9 57.1
teamInGame 49 105 257 46.7 19.1 27.1
teamScoringAll 202 232 321 87.1 62.9 73.1
touchDownPartialCount 156 191 322 81.7 48.4 60.8
Total 595 766 1629 77.7 36.5 49.7

Table 3: Baseline results: stock system without any domain customization. Correct/Predicted/Actual indicate the num-
ber of mentions (entities or relations) that are correctly predicted/predicted/gold. P/R/F1 indicate precision/recall/F1
scores for the corresponding label.

entity and our EMD approach does not model
mention attributes.
• We split all n-ary relations into several new

binary relations. For example, the original
TEAMFINALSCORE(NFLTEAM, NFLGAME,
FINALSCORE) relation is split into three binary
relations: TEAMSCORINGALL(NFLTEAM,
FINALSCORE), TEAMINGAME(NFLGAME,
NFLTEAM), and TEAMFINALSCORE(NFL-
GAME, FINALSCORE).

Figure 1 shows an example annotated sentence af-
ter the above conversion and Table 2 lists the corpus
summary statistics for the new binary relations.

The purpose behind this corpus is to encourage
the development of systems that answer structured
queries that go beyond the functionality of informa-
tion retrieval engines, e.g.:

“For each NFL game, identify the win-
ning and losing teams and each team’s fi-
nal score in the game.”

“For each team losing to the Green Bay
Packers, tell us the losing team and the
number of points they scored.”6

6These queries would be written in a formal language but

5 Domain Customization

Table 3 lists the results of the generic IE system de-
scribed in Section 3 on the NFL domain. Through-
out this paper we will report results using ten-fold
cross-validation on all 110 documents in the cor-
pus.7 We consider an entity mention as correct if
both its boundaries and label match exactly the gold
mention. We consider a relation mention correct if
both its arguments and label match the gold relation
mention. For RMD, we report results using the ac-
tual mentions predicted by our EMD model (instead
of using gold entity mentions for RMD). For clar-
ity, we do not show in the tables some labels that are
highly uncommon in the data (e.g., SCORETYPE-5
appears only four times in the entire corpus); but the
“Total” results include all entity and relation men-
tions.

Table 3 shows that the stock IE system obtains an

are presented here in English for clarity.
7Generally, we do not condone reporting results using cross-

validation because it may be a recipe for over-fitting on the
corresponding corpus. However, all our domain customization
ideas were developed using outside world and domain knowl-
edge and were not tuned on this data, so we believe that there is
minimal over-fitting in this case.
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Entity Mentions P R F1
Date 74.2 81.0 77.5
FinalScore 91.3 87.3 89.2
NFLGame 61.2 48.3 54.0
NFLPlayoffGame 33.3 21.1 25.8
NFLTeam 77.9 81.3 79.5
ScoreType-1 68.8 62.3 65.4
ScoreType-2 72.1 62.0 66.7
ScoreType-3 65.4 47.2 54.8
ScoreType-4 54.5 42.9 48.0
Total 75.6 72.5 74.0

Relation Mentions P R F1
fieldGoalPartialCount 78.0 31.7 45.1
gameDate 91.4 27.8 42.7
gameLoser 50.0 18.5 27.1
gameWinner 40.0 4.9 8.7
teamFinalScore 94.1 40.9 57.1
teamInGame 45.9 19.5 27.3
teamScoringAll 87.0 64.8 74.3
touchDownPartialCount 82.4 49.4 61.7
Total 77.6 37.1 50.2

Table 4: Performance after gazetteer-based features were
added to the EMD model.

EMD F1 score of 73.7 and a RMD F1 score of 49.7.
These are respectable results, in line with state-of-
the-art results in other domains.8 However, there
are some obvious areas for improvement. For exam-
ple, the score for a few relations (e.g., GAMELOSER

and GAMEWINNER) is quite low. This is caused by
the fact that these relations are often not explicitly
stated in text but rather implied (e.g., based on team
scores). Furthermore, the low recall of entity types
that are crucial for all relations (e.g., NFLTEAM and
NFLGAME) negatively impacts the overall recall of
RMD.

5.1 Combining a Rule-based Model with
Conditional Random Fields for EMD

A straightforward way to improve EMD perfor-
mance is to construct domain-specific gazetteers and
include gazetteer-based features in the model. We
constructed a NFL-specific gazetteer as follows: (a)
we included all 32 NFL team names; (b) we built a
lexicon for NFLGame nouns and verbs that included
game types (e.g., “semi-final”, “quarter-final”) and

8As a comparison, the best RMD system in ACE 2007 ob-
tained an ACE score of less than 35%, even though the ACE
score gives credit for approximate matches of entity mention
boundaries (Surdeanu and Ciaramita, 2007).

Entity Mentions P R F1
Date 74.2 81.0 77.5
FinalScore 91.3 87.3 89.2
NFLGame 61.2 48.3 54.0
NFLPlayoffGame 33.3 21.1 25.8
NFLTeam 71.4 96.9 82.3
ScoreType-1 68.8 62.3 65.4
ScoreType-2 72.1 62.0 66.7
ScoreType-3 65.4 47.2 54.8
ScoreType-4 54.5 42.9 48.0
Total 72.8 78.4 75.5

Relation Mentions P R F1
fieldGoalPartialCount 81.2 38.6 52.3
gameDate 93.9 27.0 41.9
gameLoser 51.1 19.4 28.1
gameWinner 38.9 5.7 9.9
teamFinalScore 94.1 40.9 57.1
teamInGame 47.4 24.5 32.3
teamScoringAll 87.0 68.8 76.9
touchDownPartialCount 81.6 56.5 66.8
Total 77.2 40.6 53.2

Table 5: Performance after gazetteer-based features were
added to the EMD model, and NFLTeam entity mentions
were extracted using the rule-based model rather than
classification.

typical game descriptors. The game descriptors
were manually bootstrapped from three seed words
(“victory”, “loss”, “game”) using Dekang Lin’s
dependency-based thesaurus.9 This process added
other relevant game descriptors such as “triumph”,
“defeat”, etc. All in all, our gazetteer includes 32
team names and 50 game descriptors. The gazetteer
was built in less than four person hours.

We added features to our EMD model to indi-
cate if a sequence of words matches a gazetteer en-
try, allowing approximate matches (e.g., “Cowboys”
matches “Dallas Cowboys”). Table 4 lists the results
after this change. The improvements are modest: 0.3
for both EMD and RMD, caused by a 0.8 improve-
ment for NFLTEAM. The score for NFLGAME suf-
fers a loss of 1.5 F1 points, probably caused by the
fact that our NFLGAME gazetteer is incomplete.

These results are somewhat disappointing: even
though our gazetteer contains an exhaustive list of
NFL team names, the EMD recall for NFLTEAM

is still relatively low. This happens because city

9http://webdocs.cs.ualberta.ca/˜lindek/
Downloads/sim.tgz
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names that are not references to team names are rela-
tively common in this corpus, and the CRF model fa-
vors the generic city name interpretation. However,
since the goal is to answer structured queries over
the extracted relations, we would prefer a model
that favors recall for EMD, to avoid losing candi-
dates for RMD. While this can be achieved in dif-
ferent ways (Minkov et al., 2006), in this paper we
implement a very simple approach: we recognize
NFLTEAM mentions with a rule-based system that
extracts all token sequences that begin, end, or are
equal to a known team name. For example, “Green
Bay” and “Packers” are marked as team mentions,
but not “Bay”. Note that this approach is prone to in-
troducing false positives, e.g., “Green” in the above
example. For all other entity types we use the CRF
model with gazetteer-based features. Table 5 lists
the results for this model combination. The table
shows that the RMD performance is improved by 3
F1 points. The F1 score for NFLTEAM mentions is
also improved by 3 points, due to a significant in-
crease in recall (from 81% to 97%).

Of course, this simple idea works only for en-
tity types with low ambiguity. In fact, it does not
improve results if we apply it to NFLGAME or
SCORETYPE-*. However, low ambiguity entities
are common in many domains (e.g., medical). In
such domains, our approach offers a straightforward
way to address potential recall errors of a machine
learned model.

5.2 Improving Head Identification for Entity
Mentions

Table 1 indicates that most RMD features (e.g., lex-
ical information on arguments, dependency paths
between arguments) depend on the syntactic heads
of entity mentions. This observation applies to
other natural language processing (NLP) tasks as
well, e.g., semantic role labeling or coreference res-
olution (Gildea and Jurafsky, 2002; Haghighi and
Klein, 2009). It is thus crucial that syntactic heads
of mentions be correctly identified. Originally we
employed a common heuristic: we first try to find a
constituent with the exact same span as the given en-
tity mention in the parse tree of the entire sentence,
and extract its head. If no such constituent exists,
we parse only the text corresponding to the mention
and return the head of the generated tree (Haghighi

Entity Mentions P R F1
Date 69.5 75.9 72.5
FinalScore 90.9 88.8 89.8
NFLGame 60.5 51.0 55.4
NFLPlayoffGame 37.0 26.3 30.8
NFLTeam 72.4 98.3 83.4
ScoreType-1 69.7 62.1 65.7
ScoreType-2 76.9 63.3 69.4
ScoreType-3 64.3 50.0 56.3
ScoreType-4 72.7 57.1 64.0
Total 73.2 79.2 76.1

Relation Mentions P R F1
fieldGoalPartialCount 81.2 55.4 65.9
gameDate 93.9 27.0 41.9
gameLoser 51.2 17.7 26.3
gameWinner 50.0 8.9 15.2
teamFinalScore 96.5 47.4 63.6
teamInGame 48.3 33.5 39.5
teamScoringAll 86.7 72.9 79.2
touchDownPartialCount 89.1 61.2 72.6
Total 78.5 45.9 57.9

Table 6: Performance with the improved syntactic head
identification rules.

and Klein, 2009). Here we argue that the last step of
this heuristic is flawed: since most parsers are heav-
ily context dependent, they are likely to not parse
correctly arbitrarily short text fragments. For exam-
ple, the Stanford parser generates the incorrect parse
tree:

The syntactic head is “5” for the mention “a 5-yard
scoring pass” instead of “pass.”10 This problem is
exacerbated out of domain, where the parse tree of
the entire sentence is likely to be incorrect, which
will often trigger the parsing of the isolated men-
tion text. For example, in the NFL domain, more
than 25% of entity mentions cannot be matched to
a constituent in the parse tree of the corresponding
sentence.

10We tokenize around dashes in this domain because scores
are often dash separated. However, this mention is incorrectly
parsed even when “5-yard” is a single token.
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teamFinalScore(G, S) :- teamInGame(T, G), teamScoringAll(T, S).
teamFinalScore(G, S) :- gameWinner(T, G), teamScoringAll(T, S).
teamFinalScore(G, S) :- gameLoser(T, G), teamScoringAll(T, S).

teamInGame(G, T) :- teamScoringAll(T, S), teamFinalScore(G, S).
gameWinner(G, T1) :- teamInGame(G, T1), teamInGame(G, T2),

teamFinalScore(G, S1), teamFinalScore(G, S2),
teamScoringAll(T1, S1), teamScoringAll(T2, S2),
greaterThan(S1, S2).

gameLoser(G, T1) :- teamInGame(G, T1), teamInGame(G, T2),
teamFinalScore(G, S1), teamFinalScore(G, S2),
teamScoringAll(T1, S1), teamScoringAll(T2, S2),
lessThan(S1, S2).

Table 7: Deterministic inference rules for the NFL domain as first-order Horn clauses. G, T, and S indicate game,
team, and score variables.

In this work, we propose several simple heuristics
that improve the parsing of isolated mention texts:
• We append “It was ” to the beginning of the text

to be parsed. Since entity mentions are noun
phrases (NP), the new text is guaranteed to be
a coherent sentence. A similar heuristic was
used by Moldovan and Rus for the parsing of
WordNet glosses (2001).
• Because dashes are uncommon in the Penn

Treebank, we remove them from the text before
parsing.
• We guide the Stanford parser such that the final

tree contains a constituent with the same span
as the mention text.11

After implementing these heuristics, the Stanford
parser correctly parses the mention in the above ex-
ample as a NP headed by “pass”. Table 6 lists
the overall extraction scores after deploying these
heuristics. The table shows that the RMD F1 score
is a considerable 4.7 points higher than before this
change (Table 5).

5.3 Deterministic Inference for RMD
Figure 1 underlines the fact that relations in the NFL
domain are highly inter-dependent. This is a com-
mon occurrence in many extraction tasks and do-
mains (Poon and Vanderwende, 2010; Carlson et
al., 2010). The typical way to address these situa-
tions is to jointly model these relations, e.g., using
Markov logic networks (MLN) (Poon and Vander-
wende, 2010). However, this implies a complete
redesign of the corresponding IE system, which
would essentially ignore all the effort behind exist-
ing pipeline systems.

11This is supported by the parser API.

Relation Mentions P R F1
fieldGoalPartialCount 81.2 55.4 65.9
gameDate 93.9 27.0 41.9
gameLoser 45.9 27.4 34.3
gameWinner 45.6 25.2 32.5
teamFinalScore 96.5 47.4 63.6
teamInGame 48.1 44.7 46.4
teamScoringAll 86.7 72.9 79.2
touchDownPartialCount 89.1 61.2 72.6
Total 74.2 49.6 59.5

Table 8: Performance after adding deterministic infer-
ence. The EMD scores are not affected by this change,
so they are not listed here.

In this work, we propose a simple method that
captures some of the joint domain structure indepen-
dently of the IE architecture and the EMD and RMD
models. We add a deterministic inference compo-
nent that generates new relation mentions based on
the data already extracted by the pipeline model. Ta-
ble 7 lists the rules of this inference component that
were developed for the NFL domain. These rules
are domain-dependent, but they are quite simple: the
first four rules implement transitive-closure rules for
relation mentions centered around the same NFL-
GAME mention; the last two add domain knowledge
that is not captured by the text extractors, e.g., the
game winner is the team with the higher score. Ta-
ble 8, which lists the RMD scores after inference, in-
dicates that the inference component is responsible
for an increase of approximately 2 F1 points, caused
by a recall boost of approximately 4%.

Table 9 lists the results of a post-hoc experiment,
where we removed several relation types from the
RMD classifier (the ones predicted with poor perfor-
mance) and let the deterministic inference compo-
nent generate them instead. This experiment shows
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Without Inference With Inference
P R F1 P R F1

Skip gameWinner, gameLoser 78.6 45.6 57.7 75.1 48.4 58.8
Skip teamInGame 77.0 43.6 55.7 71.7 49.4 58.5
Skip teamInGame, teamFinalScore 74.5 37.1 49.6 70.9 47.6 56.9
Skip nothing 78.5 45.9 57.9 74.2 49.6 59.5

Table 9: Analysis of different combination strategies between the RMD classifier and inference: the RMD model skips
the relation types listed in the first column; the inference component generates all relation types. The other columns
show relation mention scores under the various configurations.

EMD RMD
F1 F1

Baseline 73.7 49.7
+ gazetteer features 74.0 50.2
+ rule-based model for NFLTeam 75.5 53.2
+ improved head identification 76.1 57.9
+ inference 76.1 59.5

Table 10: Summary of domain customization results.

that inference helps in all configurations, and, most
importantly, it is robust: even though the RMD score
without inference decreases by up to 8 F1 points
as relations are removed, the score after inference
varies by less than 3 F1 points (from 56.9 to 59.5
F1). This proves that deterministic inference is ca-
pable of generating relation mentions that are either
missed or cannot be modeled by the RMD classifier.

Finally, Table 10 summarizes the experiments
presented in this paper. It is clear that, despite their
simplicity, all our proposed ideas help. All in all,
our contributions yielded an improvement of 9.8 F1
points (approximately 20% relative) over the stock
IE system without these changes. Our best IE sys-
tem was used in a blind evaluation within the Ma-
chine Reading project. In this evaluation, systems
were required to answer 50 queries similar to the
examples in Section 4 and were evaluated on the
correctness of the individual facts extracted. Note
that this evaluation is more complex than the exper-
iments reported until now, because the correspond-
ing IE system requires additional components, e.g.,
the normalization of all DATE mentions and event
coreference (i.e., are two different game mentions
referring to the same real-world game?). For this
evaluation, we used an internal script for date nor-
malization and we did not implement event corefer-
ence. This system was evaluated at 46.7 F1 (53.7
precision and 41.2 recall), a performance that was
approximately 80% of the F1 score obtained by hu-
man annotators. This further highlights that strong

IE performance can be obtained with simple models.

6 Conclusions
This paper introduces a series of simple ideas that
improve the performance of IE systems when they
are customized to new domains. We evaluated our
contributions on a sports domain (NFL game sum-
maries) that is significantly different from the do-
mains used to develop our IE system or the language
processors used by our system.

Our analysis revealed several interesting and non-
obvious facts. First, we showed that accurate identi-
fication of syntactic heads of entity mentions, which
has received little attention in IE literature, is cru-
cial for good performance. Second, we showed that
a deterministic inference component captures some
of the joint domain structure, even when the under-
lying system follows a pipeline architecture. Lastly,
we introduced a simple way to tune precision and
recall by combining our entity mention extractor
with a rule-based system. Overall, our contributions
yielded a 20% improvement in the F1 score for rela-
tion mention extraction.

We believe that our contributions are model inde-
pendent and some, e.g., the better head identifica-
tion, even task independent. Some of our ideas re-
quire domain knowledge, but they are all very sim-
ple to implement. We thus expect them to impact
other problems as well, e.g., coreference resolution,
semantic role labeling.
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Abstract 

Many recent studies have been dedicated to the 
extraction of semantic connections between 
words. Using such information at semantic 
level is likely to improve the performance of 
Natural Language Processing (NLP) systems, 
such as text categorization, question answering, 
information extraction, etc. The scarcity of such 
resources in Turkish, obstructs new 
improvements. There are many examples of 
semantic networks for English and other 
widely-used languages to lead the way for 
studies in Turkish. In this study, developing a 
semantic network for Turkish is aimed by using 
structural and string patterns in a dictionary. 
The results are promising, so that 
approximately two relations can be extracted 
from 3 definitions. The overall accuracy is 86% 
if we consider the correct sense assignment, 
94% without considering word sense 
disambiguation. 

1 Introduction 

Nowadays, the internet is the primary media, 
people use for communicating with each other and 
sharing their ideas with the rest of the world. 
Therefore, a massive amount of data is available 
but it is not understandable to computers. Wide 
usage of the web brings some requirements to 
make this data more beneficial for people. 
Understanding text from a foreign language or 

accessing relevant ones among millions of 
documents has become crucially important.  
However, due to the large size of data, it is very 
difficult for human to maintain these tasks without 
rapid computer processing. Automatic text 
summarization, information extraction and text 
categorization are all important NLP areas, which 
aim to help humans benefit from computer systems 
to perform these tasks.  

The process of obtaining robust computer 
systems capable of handling these tasks involves 
supporting machines with semantic knowledge. 
The type of necessary knowledge depends on the 
target system. Nevertheless, the information of 
what kinds of relations exist between the words 
can be very useful for many purposes especially 
for NLP applications. Starting with the WordNet 
project in 1985, semantic networks or lexical 
databases have been among the important study 
areas in NLP up to the present. WordNet project 
(http://wordnet.princeton.edu/wordnet/download/). 

Obtaining a semantic network for Turkish 
language is the goal of this study. Since this study 
is an initial step of developing a semantic network 
in Turkish, basic relationship of hyponymy and 
synonymy are primarily handled. For this purpose, 
the investigation of dictionary definitions and the 
morphological richness of Turkish language are 
utilized. Different types of relationships are shown 
in Table 1. Since these relationships are very basic, 
they are likely to be used in various kinds of NLP 
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tasks. 
Various patterns are extracted from dictionary 

by using both syntax and string features of the 
definitions. Each definition represents particular 
sense of a word, so they can be considered as 
different words. For more accurate semantic 
analysis, the connection between words should be 
established between appropriate senses of the 
words. To be more concrete, an example can be 
given on the semantically ambiguous word as; yüz 
‘face’ or ‘hundred’. When a has-a relation is 
detected between the words vücut ‘body’ and yüz, 
the appropriate sense for yüz should be selected as 
‘face’, instead of ‘hundred’. 

 
Relationship Example 
Is-a(hyponymy) flower-plant 
Synonym-of initial-first 
Antonym-of quick-slow 
Member-of academician-academy 
Amount-of kg-weight 
Group-of forest-tree 
Has-a office-computer 
 

Table 1: Basic word relationships 

The rest of the paper is organized as follows: 
Section 2 discusses the previous work in this field. 
Section 3 explains the implementation methods, 
details and approaches to some NLP problems, like 
morphology or word sense ambiguity. This section 
also gives some statistics about the results. The 
future work to be performed for both improving 
and extending the network is also discussed in this 
section. Section 4 evaluates the overall system. 

2 Previous Work 

Cyc (http://www.opencyc.org) project is one of the 
first attempts of obtaining computer accessible 
world knowledge. Many other studies have been 
performed for constructing large lexical databases 
or semantic networks by extracting the semantic 
connections between words.  

In fact, both the number and types of the 
possible relationships are not clearly identified in 
this area. However, there are some widely accepted 
basic relationships, which can be considered as the 
backbone of semantic networks. No matter which 
method is followed for extracting these 
connections, most of the studies including 

WordNet (Miller, 1995; Fellbaum, 1998) and 
ConceptNet(Havasi et al., 2007) are based on this 
set of specific relationships such as hyponymy, 
synonymy, meronymy etc. These are the most 
basic but also the most informative ones among the 
common relation types. 

Some manual work has been performed at the 
beginning for constructing this kind of semantic 
networks, including but not limited with Wordnet. 
Nowadays, however, semi or fully automatic 
systems capable of performing these processes are 
worked on. Different methods have been used from 
collecting online data to corpus analysis and from 
defining syntactical rules to string patterns. 

ConceptNet collects its data from Open Mind 
Common Sense Project 
(http://commons.media.mit.edu/en/), which is a 
web-based collaboration (Havasi et al., 2007). 
Over 15,000 authors enter sentences to contribute 
to the project. Users can answer questions via the 
web interface, which aim to fill the gaps in the 
project. However, in the study of Nakov and 
Hearts (2008), the whole web is treated like a 
corpus and the occurrences of the noun pairs 
together are converted into feature vectors to 
perform a classification for semantic relations. 

There are various methods under the subject of 
string or structural patterns that represent specific 
semantic relations. Barriere(1997) investigates 
some syntactical rules in her study and matches the 
dictionary definitions to these rules for figuring out 
the relations. Also, in some languages in which 
prepositions are used frequently, some relations 
can be extracted depending on the prepositions, 
like in the study of Celli and Nessim (2009). 

In addition, there are some studies which aim to 
extract some patterns for each relation for the 
purpose of finding new instances.  

Turney’s study (2006) is a good example, 
which uses a corpus based method for finding high 
quality patterns. It searches the noun pairs through 
the corpus to extract some row patterns. The 
patterns are ranked by a ranking algorithm in order 
to determine the most qualified patterns for the 
further steps. Espresso (Pantel and Pennacchiotti, 
2006) is also concerned in finding patterns to 
represent relations. It starts with a few reliable seed 
of relations and iteratively learns the surface 
patterns in a given corpus. 

There is a lot of work to be done for Turkish in 
this area. Except one project (Bilgin et al., 2004), 
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which was performed and limited within the scope 
of BalkaNet project, there is no significant work in 
this area for Turkish.  

BalkaNet project is valuable in the sense of 
being one of the first attempts for developing 
Turkish Wordnet. It differs from our study in its 
methodology, which involves translation of basic 
concepts in EuroWordNet and then using some 
string patterns to extend the network. In addition, 
target relationships and obtained results are quite 
different and will be handled in the following 
sections.  

 Another work (Önder, 2009) which aimed to 
extract the relations from dictionary definitions by 
using string patterns but was not completed, 
constructs the basics of our study.  

3 Experimental Setup 

In this section, the implementation process is 
discussed in the following order of sub topics: 
• Data 
• Morphological features of Turkish 
• Extracted patterns  
• Morphological analysis and disambiguation 
• Word sense disambiguation 
• Stop word removal 
• Results 

 
Using a dictionary can ease the process of 

extracting semantic relations in a language in many 
aspects. First of all, every word occurs in the 
dictionary at least once, hence the probability of 
missing a word decreases. Secondly, it consists of 
definitions of the words, which are relatively 
informative. Lastly, the sentences in a dictionary 
are generally simple and similar to each other. 
Therefore, they generally follow a set of syntactic 
patterns. This enables to perform easy detection of 
relations. 

 For all the reasons listed above, a dictionary of 
Turkish Language Association (TLA) is used in 
this study. There are 63110 words and 88268 
senses in this dictionary. This concludes that nearly 
25000 of the words are ambiguous. In Table 2, the 
distributions of these words among the most 
frequent parts of speech are given.  

The first step is investigating the dictionary 
definitions manually in order to explore some 
patterns which are likely to keep a particular 
semantic relation inside. The patterns should be 

general enough for obtaining a reasonable recall. In 
addition, they should be specific enough not to 
cause low precision. After a rough analysis, the 
dictionary is scanned for some row patterns to 
evaluate the results in terms of both accuracy and 
comprehensiveness. According to the results, 
either patterns are reorganized or some additional 
features are determined to be used for increasing 
the number of matches and decreasing the error 
rate. Different kinds of features in the dictionary 
definitions and the words being explained are used. 
Morphological structures, noun clauses, clue words 
and the order of the words in the sentence are the 
examples of these features. 

 
Part of Speech Number 
Noun 56400 
Adjective 14554 
Adverb 3011 
Pronoun 104 
Verb 11408 

 

Table 2: The distributions of words in TLA dictionary 

 
Turkish is an agglutinative language which 

results in a rich but rather complex morphological 
structure. Thus, the words do keep a very 
important part of the sense. They can be converted 
from one part of speech into another by adding 
derivational suffixes. For example, from the verb 
gelmek ‘to come’ the adjective gelen ‘the one who 
comes’ can be derived. This feature of Turkish 
constructs the most important effect of increasing 
the number of matches between patterns and 
definitions. In addition, indefinite noun phrases are 
detected with the help of morphological analysis 
and lots of relations are extracted as a result. These 
are only a few examples of where morphology is 
used when extracting the relations. 

Some clue words in the definitions are also 
searched for. In dictionaries, some similar words 
are explained by using the same words and they 
can represent some specific relations. To be more 
concrete, the adjectives that represent the opposite 
of another adjective can be considered. These types 
of words are usually defined by using the words 
olmayan ‘not’ and karşıtı ‘opposite of’. For 
example, in the definition of the word fantasik 
‘fantastic’ there exists the phrase gerçek olmayan 
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‘not real’. An antonymy relation can be established 
between the word fantastic ‘fantastic’ and gerçek 
‘real’ as a result. For some other types of relations, 
different words are detected and handled. For 
example, for member-of relation, sınıfından ‘from 
the class of’; for is-a relation, türü ‘type of’ are 
selected. 

Additionally, noun clauses, which are defined 
in the dictionary, are investigated. Most of the time 
a noun phrase represents an ‘is-a’ relation. The 
word balık ‘fish’ and kılıç balığı ‘sword fish’ are 
both in the dictionary and kılıç balığı ‘sword fish’ 
is a noun phrase that has balık ‘fish’ in it. It is 
obvious that there is a connection between the 
words kılıç balığı ‘sword fish’ and  balık ‘fish’. 

Various patterns are obtained by using at least 
one of the above features. The obtained patterns 
for each type of relation are shown in Table 3. 
When analyzing the table, the representatives to be 
considered are as follows: X and Y are used for 
representing the words being connected to each 
other, punc represents one of the specified 
punctuations like comma or full stop, w* 
represents zero or more sequential words, w*no_punct 

represents zero or more sequential words without 
any punctuation inside, wx is a word which keeps a 
specific part of speech x, depending on the pattern. 

The extracted relations for the provided word 
definitions are not limited with those mentioned in 
the table. If possible, two or more relations can be 
extracted from a single definition. For instance, 
besides the ‘member-of’ relation between çakal 
‘jackal’ and etoburlar ‘carnivora’, a ‘kind-of’ 
relation is extracted also for çakal ‘jackal’ with 
hayvan ‘animal’, since the definition matches with 
the fourth pattern of ‘kind-of’ relation. Although 
only the relation between pinhan ‘latent’ and saklı 
‘hidden’ is given, another synonymy relation is 
also obtained from this pattern between pinhan 
‘latent’ and gizli ‘ulterior’.  

The morphological structures of the words are 
obtained by using Zemberek project 
(http://code.google.com/p/zemberek), which is an 
open source morphological analyzer for Turkish. 
The analysis result of the word atan ‘be assigned’ 
or ‘your ancestor’ or ‘the one who throws’ is 
displayed with Figure 1.  

The morphological ambiguity is handled with 

two different methods. Firstly, as a pre-processing 
step, some suffixes are determined, which cannot 
occur in the dictionary, such as time suffixes. The 
analyses are pruned from those results that include 
one or more of these suffixes. Secondly, according 
to the pattern requirements, the convenient result is 
selected as the correct one. For example, if a word 
is required to have a particular chain of suffixes, 
the first result providing this necessity is selected. 
If there is no assumption, the first result is selected 
by default. 

The relations are established between the exact 
senses of the words in order to obtain a reliable 
network. Therefore, word sense disambiguation 
should also be performed. One of the words is not 
ambiguous, since one of its particular senses 
(definition) is already being handled for most of 
the relations. On the other hand, for the purpose of 
determining the correct sense of the remaining 
word, simplified Lesk algorithm is used(Lesk, 
1986). Simplified Lesk algorithm benefits from the 
similarity measurements between each sense of the 
ambiguous word and the concept. The algorithm is 
given in Figure 2 and the details are provided in 
the http://en.wikipedia.org/wiki/Lesk_algorithm. 

In order to obtain more accurate results, 
stemming and stop word removal is applied for 
both relation extraction and word sense 
disambiguation. A connection can be established 
only if both of the words are not stop words. Stop 
words are dictionary specific and obtained by 
counting the occurrences of word stems in the 
dictionary. Not all frequent stems are assumed to 
be stop words but the useless ones among the all 
stems whose occurrences are above an upper limit 
are ignored. There are 22 stop words specified, 
including için ‘for’, başka ‘another’ and en ‘the 
most’. 

The system was evaluated by manual 
calculation of the accuracy. Equal number of 
samples is chosen randomly from each pattern. 
Two types of accuracy were obtained, which are 
with and without consideration of correct sense 
assignment. 

The obtained results are given in Table 4. The 
first accuracy column represents the accuracy 
percentage by considering whether the correct 
sense could be matched or not. The second column 
ignores the senses and evaluates the results in 
terms of the correct word relation only. 
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Relation  P 
no Pattern specification Example 

Hyponymy 

1 
X: (w*) (wadj) (w*) Y punc (w*). 
where X is noun, Y is a noun root. 
(X-Y) 

göl: Önceden denizken kurumalar, çekilmeler 
 yüzünden göl durumuna gelmiş yer.(göl-yer) 
lake: a piece of land, previously existing as sea and 
becoming dry due to droughts,  turns into a small 
body of water(lake-land) 

2 

X: (w*) (wadv) (w*no_punct) (Y) punc (w*) 
where X is verb, wadv is a derived adverb, Y is a 
verb. 
(X-Y) 

hicvetmek: Alay yoluyla yermek.(hicvetmek-
yermek) 
satirize: To criticize by mocking(satirize-criticize) 

3 
X Y : w*. 
where X and Y is an indefinite noun phrase 
(X Y-Y) 

ada çayı: Bu bitkiden yapılan sıcak içecek.(ada çayı-
çay) 
sage tea: The tea that is made of this plant(sage tea-
tea) 

4 
X: w* wnoun Y punc w*. 
where wnoun and Y compose a noun phrase. 
(X-Y) 

post : Tüylü hayvan derisi. (post-deri) 
fur : Hairy animal skin.(fur-skin) 

5 

X : w* Y türü(kind of) | tipi(type of) | çeşidi(sort 
of). 
where X and Y nouns 
(X-Y) 

limuzin: İçinde her türlü donanım bulunan lüks, uzun 
ve geniş otomobil türü.(limuzin-otomobil) 
limousine: The type of long, wide and luxury 
automobile in which there exist various 
equipment(limousine- automobile) 

Synonymy 

1 
X : w* punc Y 
where X and Y are nouns, adverbs, or adjectives 
(X-Y) 

pinhan: Gizli, saklı, gizlenmiş.(pinhan-saklı) 
latent: Ulterior, hidden, covert. (latent-hidden) 

2 

Z : w* punc X, Y punc w* 
where X, Y have equal chain of suffixes and they 
are verbs, adjectives or nouns 
(X-Y) 

razı: Uygun bulan, benimseyen, isteyen, kabul eden 
(benimsemek-istemek) 
willing : The one who approves, embraces, wants, 
agrees on sth.(embrace-want) 

Group-of 1 

X: w* Y bütünü(whole of) | topluluğu(group of) | 
tümü(all of) | kümesi(set of) | sürüsü(flock of) | 
birliği(union of) w* 
where X and Y are nouns. 
(X-Y) 

âlem: Hayvan veya bitkilerin bütünü.(alem - bitki) 
kingdom : The whole of plants or animals.(kingdom-
plant)  

Antonym 1 
X: w* Y olmayan(not) | karşıtı(the opposite of). 
where X and Y are nouns or adjectives. 
(X-Y) 

acı: Bazı maddelerin dilde bıraktığı yakıcı duyu, tatlı 
karşıtı. (acı-tatlı) 
bitter: The feeling of pain which some matters leave 
on tongue, the opposite of sweet. (bitter-sweet) 

Member-of 

1 

X: w* Y sınıfı(class of) | üyesi(member of) | 
takımı(set of). 
where X and Y are nouns 
(X-Y) 

senatör: Senato üyesi.(senatör-senato) 
senator: Member of senate.(senator-senate) 

2 

X :  Ygillerden(from the family of Y) | 
Ylerden(from the family of Y) w*. 
where X and Y nouns. 
(X-Y) 

çakal: Etoburlardan, sürü hâlinde yaşayan, kurttan 
küçük bir yaban hayvanı.(çakal-etobur) 
jackal: From carnivora, a kind of wild animal 
smaller than wolf, which lives in flocks.(jackal-
carnivora) 

Amount-of 1 

X: w* Y miktarı(amount-of) | ölçüsü(measure-of) | 
birimi(unit-of) . 
where X and Y are nouns 
(X-Y) 

amper: Elektrik akımında şiddet birimi.(amper-
şiddet) 
amper: The unit of intensity in electrical 
current.(amper- intensity) 

Has-a 1 
X: w* Y [wnoun] punc w*. 
where Y has the suffix of ‘LI’,  X and Y are nouns 
(X-Y) 

sof : Bir çeşit sertçe, ince yünlü kumaş. (sof,yün) 
alpaca : A kind of hard, thin, wooled cloth. (alpaca, 
wool) 

 

Table 3: The obtained patterns for each type of relation 
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1. {Icerik:atan Kok:ata tip:FIIL} Ekler:FIIL_KOK+FIIL_EDILGENSESLI_N 

{Content : be assigned Root : assign Pos: Verb} Suffixes : Verb Root + Passive 

2. {Icerik:atan Kok:ata tip:ISIM}  Ekler:ISIM_KOK+ISIM_SAHIPLIK_SEN_IN 

{Content : your ancestor Root : ancestor Pos: Noun} Suffixes : Noun Root + Possesive_you 

3. {Icerik:atan Kok:at tip:FIIL}  Ekler:FIIL_KOK+ FIIL_DONUSUM_EN 

{Content : the one throws Root : throw Pos: Verb} Suffixes : Verb Root + Participle 

 

Figure 1: The morphological analysis result of the word atan(be assigned | your ancestor | the one who throws) 

function SIMPLIFIED LESK(word,sentence) returns best sense of word  
best-sense <- most frequent sense for word 
max-overlap <- 0 
context <- set of words in sentence 
for each sense in senses of word do  

signature <- set of words in the gloss and examples of sense 
overlap <- COMPUTEOVERLAP (signature,context) 
if overlap > max-overlap then  

max-overlap <- overlap 
best-sense <- sense 

end return (best-sense) 
 

Figure 2: Simplified Lesk algorithm 

 Relation Pattern Number of Relations Accuracy % Accuracy(ambiguous) % 

Hyponymy 

1 20566 84 94 
2 1448 84 89 
3 5127 84 90 
4 3502 74 95 
5 387 90 96 

Synonymy 
1 2313 76 88 
2 22518 96 100 

Group-of 1 435 87 97 
Antonym 1 380 99 100 

Member-of 
1 128 92 97 
2 634 100 100 

Amount-of 1 119 81 92 
Has a 1 2430 82 89 
Total   59987 86,85 94,38 
NET   58125     

 

Table 4: The number of relations and the accuracy results for each relation and each pattern rule 
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It should be considered that the number of 
relations extracted per pattern is counted 
individually in order to show the performance of 
each pattern separately. Some of the relations can 
be extracted by different patterns of that relation 
type, so the net total, which is cleaned from the 
repetitions, is less than overall total. 

The results are promising in terms of both the 
comprehensiveness and the accuracy. If some more 
effort can be spent on word sense disambiguation, 
the accuracy may rise to a considerable ratio. The 
comprehensiveness is intended to be increased 
with further work, which is discussed in the 
following section. 

The numbers of relation instances are quite 
greater when compared to BalkaNet project. There 
are nearly 34,000 relation instances in the project, 
including the synonym relations among synset 
members. In this study 58,000 relations are 
available. Also, it is more likely to be extendible, 
since not only string patterns but also structural 
patterns are benefitted from, which will be 
increased with future work. 

4 Conclusion 

The semantic relations between the words are 
extracted in order to develop a semantic network. 
Some basic relation types such as is-a, group-of, 
synonym-of, etc. are targeted to obtain an initial 
network to be extended with further work.  

The words are investigated according to their 
definition in the TLA dictionary. Some row 
patterns which consist of morphological features of 
the words, parts of speech or strings in some 
specific positions and compound words are 
defined. After that, the dictionary is scanned for 
searching the definitions that matches one of these 
patterns. Depending on the results, patterns are 
reformed and additional features are inserted with 
the purpose of increasing pattern quality and 
number of matches. Exact senses of the words are 
tried to be matched by applying a word sense 
disambiguation algorithm. 

The study has shown that, by taking advantage 
of the morphological richness of Turkish language 
and using some structural patterns, it is possible to 
construct a reasonable semantic network. This 
study can pave the way for more complex NLP 
applications and can be used for improving 
ordinary processes such as word sense 

disambiguation. The network can be converted into 
a knowledge base by inserting more accurate 
relationships and investigating larger and more 
comprehensive corpora as the future work. 

5 Future Work 

There is a set of processes to do both for 
improving and extending the network. Firstly, in 
order to eliminate erroneous connections from the 
obtained network, statistical information such as 
co-occurrence of the words can be investigated. 
The assumption here is that if two words are 
related to each other, the possibility of their being 
together in a corpus increases. The existing 
connections can be verified or ranked in terms of 
their reliability by using such information. 

In addition, to remove erroneous sense 
determination, word sense disambiguation method 
can be improved. After obtaining a reliable, small 
network, which will serve as seed, new patterns 
can be extracted by following Turney (2006) and 
by using these patterns more instances can be 
extracted from larger corpora. As an alternative, 
the words can be first tagged with concrete or 
abstract labels automatically. This information can 
limit the types of connections a word can 
contribute. For example, an abstract word cannot 
connect to another word with a part-whole relation. 
For this task, a pre-processing step should be 
applied to classify the words as concrete or 
abstract.  

In addition, with the purpose of improving the 
network, some other resources will be benefitted 
from. The existing patterns will be applied to 
Wikipedia (http://www.wikipedia.org/) entries, by 
selecting only the definitions of the concepts. An 
advantage of this process is that it can be re-
performed periodically to keep the network up-to-
date and dynamic. Also, the number of relation 
types will be increased. Currently, only the nouns, 
noun phrases consisting from two words, 
adjectives and verbs are handled. Also, only the 
relationships within the same type of words are 
extracted that is, a noun can be connected only to 
another noun, not an adjective or a verb. Finer 
grained relationships can establish connections 
among different parts of speech.  
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Abstract 

In this paper, we have identified event and sen-
timent expressions at word level from the sen-
tences of TempEval-2010 corpus and evaluated 
their association in terms of lexical equivalence 
and co-reference. A hybrid approach that con-
sists of Conditional Random Field (CRF) based 
machine learning framework in conjunction 
with several rule based strategies has been 
adopted for event identification within the 
TimeML framework. The strategies are based 
on semantic role labeling, WordNet relations 
and some handcrafted rules. The sentiment ex-
pressions are identified simply based on the 
cues that are available in the sentiment lexicons 
such as Subjectivity Wordlist, SentiWordNet 
and WordNet Affect. The identification of lexi-
cal equivalence between event and sentiment 
expressions based on the part-of-speech (POS) 
categories is straightforward. The emotional 
verbs from VerbNet have also been employed 
to improve the coverage of lexical equivalence. 
On the other hand, the association of sentiment 
and event has been analyzed using the notion of 
co-reference. The parsed dependency relations 
along with basic rhetoric knowledge help to 
identify the co-reference between event and 
sentiment expressions. Manual evaluation on 
the 171 sentences of TempEval-2010 dataset 
yields the precision, recall and F-Score values 
of 61.25%, 70.29% and 65.23% respectively.  

1 Introduction 

Event and Sentiment are two abstract entities 
closely coupled with each other from social, psy-

chological and commercial perspectives. Some 
kind of action that is going on or something that is 
being happened are addressed as events in general 
by the Natural Language (NL) researchers. The 
events are described in texts where the time, tem-
poral location and ordering of the events are speci-
fied. Event entities are represented by finite 
clauses, nonfinite clauses, nominalizations, event-
referring nouns, adjectives and even some kinds of 
adverbial clauses.  

On the other hand, text not only contains the in-
formative contents, but also some attitudinal pri-
vate information that includes sentiments. 
Nowadays, in the NLP communities, research ac-
tivities on sentiment analysis are in full swing. But, 
the identification of sentiment from texts is not an 
easy task as it is not open to any objective observa-
tion or verification (Quirk et al., 1985).  

Sometimes, similar or different types of senti-
ments are expressed on a single or multiple events. 
Sentiment of people over different events is impor-
tant as it has great influence on our society. Track-
ing users’ sentiments about products or events or 
about political candidates as expressed in online 
forums, customer relationship management, stock 
market prediction, social networking etc., temporal 
question answering, document summarization, in-
formation retrieval systems are some of the impor-
tant applications of sentiment analysis.  

The identification of the association between 
event and sentiment is becoming more popular and 
interesting research challenge in the area of Natu-
ral Language Processing (NLP). Our present task is 
to identify the event and sentiment expressions 
from the text, analyze their associative relationship 

19



and investigate the insides of event-sentiment rela-
tions.  

For example, in the following sentence, the an-
notated events are, talked, sent and hijacked .But, 
it also shows the presence of underlying sentiments 
(as shown in underlined script) inscribed in the 
sentence. Here, sentiment helps to evoke the event 
property at lexical entity level (e.g. negative (-ve) 
sentiment for only the event word hijacked) as well 
as at context level (e.g. positive (+ve) sentiment 
associated with the event hijacked as the event 
word appears with the evaluative expression, re-
cover that gives the +ve polarity).  

 
“The prime minister of India told Friday that he 

has talked with top commander of Indian military 
force and sent a team to recover the host of Taj 
Hotel hijacked.”  
 

 Hence, we have organized the entire task into 
three different steps i) event identification, ii) sen-
timent expression identification and iii) identifica-
tion of event sentiment relationships at context 
level using lexical equivalence and co-reference 
approaches.  

In the first step, we propose a hybrid approach 
for event extraction from the text under the Tem-
pEval-2010 framework. Initially, we have used a 
Conditional Random Field (CRF) (Lafferty et al., 
2001) machine learning framework but we observe 
that it often makes the errors in extracting the 
events denoted by deverbial entities. This observa-
tion prompts us to employ several strategies in 
conjunction with machine learning. These strate-
gies are implemented based on semantic role labe-
ling, WordNet (Miller, 1990) and some 
handcrafted rules. We have experimented with the 
TempEval-2010 evaluation challenge setup (Kolya 
et al., 2010).  Evaluation results yield the preci-
sion, recall and F-measure values of approximate-
ly 93.00%, 96.00% and 94.47% respectively. This 
is approximately 12% higher F-measure in com-
parison to the best system (Llorens et al., 2010) of 
TempEval-2010. 
    On the other hand, the identification of the sen-
timent expressions is carried out based on the sen-
timent word. The words are searched in three 
different sentiment lexicons, the Subjectivity Word 
lists (Banea et al., 2008), SentiWordNet (Baccia-
nella et al., 2010) and WordNet Affect (Strapparava 
and Valitutti, 2004). The coarse-grained (positive 

and negative) as well as Ekman’s (1993) six fine- 
grained sentiment or emotion expressions (happy, 
sadness, anger, disgust, fear and surprise) are 
tagged in the corpus. As there is no annotation in 
the TemEval-2010 corpus for sentiment expres-
sions, the evaluation has been carried out by the 
authors and it achieves the precision, recall and F-
measure values of approximately 73.54%, 86.04% 
and 79.30% respectively 

Determining the lexical equivalence of event 
and sentiment expressions based on the POS prop-
erty at the lexical entity level is straightforward. If 
an event word also expresses the sentiment word, 
we have associated the corresponding sentiment 
type with the event word directly. In addition to the 
sentiment lexicons, the emotional verbs extracted 
from the VerbNet (Kipper-Schuler, 2005) are used 
in this phase. It improves the coverage of lexical 
equivalence by 12.76%. 

But, if the event and sentiment expressions oc-
cupy separate text spans in a sentence, we have 
adopted a co-reference approach for identifying 
their association. The parsed dependency relations 
along with some basic rhetoric components, such 
as nucleus, satellite and locus help in identifying 
the co-reference between the event and sentiment 
expressions. The text span containing sentiment 
word is hypothesized as the locus, the main effec-
tive part of the nucleus or satellite. The text span 
that reflects the primary goal of the writer is 
termed as nucleus (marked as “{ }”) whereas the 
span that provides supplementary material is 
termed as satellite (marked as “[ ]”). The distin-
guished identification of nucleus and satellite as 
well as their separation from each other is carried 
out based on the direct and transitive dependency 
relations, causal verbs, relaters or discourse mark-
ers. If both the locus and event are identified to-
gether in either nucleus or satellite, we term their 
association as co-referenced. If they occur sepa-
rately in nucleus and satellite and share at least one 
direct dependency relation, we consider their asso-
ciation as co-referenced.  

The evaluation of the lexical equivalence as 
well as co-reference systems has been performed 
by the authors. Primarily, the evaluation of both 
systems has been conducted on the random sam-
ples of 200 sentences of the TempEval-2010 train-
ing dataset.  Finally, the co-reference system 
achieves the precision, recall and F-Scores of 
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61.25%, 70.29% and 65.23% respectively on 171 
sentences of the TempEval-2010 test corpus.  

The rest of the paper is organized as follows. 
Section 2 describes the related work. The event 
identification is discussed in Section 3. The identi-
fication of sentiment expressions is described in 
Section 4. Determination of lexical equivalence 
between event and sentiment expressions is speci-
fied in Section 5. The co-reference approach for 
identifying the association between event and sen-
timent is described in Section 6. Finally Section 7 
concludes the paper. 

2 Related Work 

The existing works on event extraction are based 
either on pattern-matching rules (Mani and Wilson 
2000), or on the machine learning approach (Bo-
guraev and Ando, 2005). But, still the problems 
persist with the high complexities involved in the 
proper extractions of events. The events expres-
sions were annotated in the TempEval 2007 
source in accordance with the TimeML standard 
(Pustejovsky et al., 2003). On the other hand, the 
Task B of TempEval-2010 evaluation challenge 
setup (Verhagen et al., 2010) was aimed at identi-
fying events from text. The best achieved result 
was obtained by (Llorens et al., 2010). 

The majority of subjective analysis methods 
that are related to emotion is based on textual key-
words spotting that use specific lexical resources. 
A lexicon that provides appraisal attributes for 
terms was constructed and the features were used 
for emotion classification (Whitelaw et al., 2005). 
The features along with the bag-of-words model 
give 90.2% accuracy. UPAR7 (Chaumartin, 2007), 
a rule-based system uses a combination of Word-
Net Affect and SentiWordNet. The system was 
semi-automatically enriched with the original trial 
data provided during the SemEval task (Strappara-
va and Mihalcea, 2007). SWAT (Katz et al., 2007) 
is another supervised system that uses a unigram 
model trained to annotate emotional content. 

Our motivation is that though events and senti-
ments are closely coupled with each other from 
social, psychological and commercial perspectives, 
very little attention has been given about their de-
tection and analysis. To the best of our knowledge, 
only a few tasks have been attempted (Fukuhara et 
al., 2007) (Das et al., 2010).  

Sometimes, the opinion topics are not neces-
sarily spatially coherent as there may be two opi-
nions in the same sentence on different topics, as 
well as opinions that are on the same topic sepa-
rated by opinions that do not share that topic 
(Stoyanov and Cardie 2008). The authors have es-
tablished their hypothesis by applying the co-
reference technique. Similarly, we have adopted 
the co-reference technique based on basic rhetoric 
components for identifying the association be-
tween event and sentiment expressions.  In addi-
tion to that, we have also employed the lexical 
equivalence approach for identifying their associa-
tion.  

3 Event Identification 

In this work, we propose a hybrid approach for 
event identification from the text under the Tem-
pEval-2010 framework. We use Conditional Ran-
dom Field (CRF) as the underlying machine 
learning algorithm. We observe that this machine 
learning based system often makes the errors in 
identifying the events denoted by deverbial enti-
ties. This observation prompts us to employ several 
strategies in conjunction with machine learning 
techniques. These strategies have been imple-
mented based on semantic role labeling, WordNet 
senses and some handcrafted rules.  

We have experiment with the TempEval-2010 
evaluation challenge setup (Kolya et al., 2010).  
Evaluation results yield the precision, recall and F-
measure values of approximately 93.00%, 96.00% 
and 94.47% respectively. This is approximately 
12% higher F-measure in comparison to the best 
system (Llorens et al., 2010) of TempEval-2010. 

3.1 CRF based Approach for Event Identifi-
cation 

We extract the gold-standard TimeBank features 
for events in order to train/test the CRF model. In 
the present work, we mainly use the various com-
binations of the following features:  

Part of Speech (POS) of event terms (e.g. Ad-
jective, Noun and Verb), Tense (Present, Past, Fu-
ture, Infinitive, Present part, Past part, or NONE), 
Aspect (Progressive, Perfective and Perfective 
Progressive or NONE), Class (Reporting, Percep-
tion, Aspectual, I_action, I_state, State, Occur-
rence), Stem (e.g., discount /s/).  
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3.2 Use of Semantic Roles for Event Identifi-
cation 

We use an open source Semantic Role Labeler 
1(SRL) (Gildea et al., 2002) (Pradhan et al., 2004) 
to identify different features of the sentences. For 
each predicate in a sentence acting as event word, 
semantic roles extract all constituents, determining 
their arguments (agent, patient etc.) and adjuncts 
(locative, temporal etc.). Semantic roles can be 
used to detect the events that are the nominaliza-
tions of verbs such as agreement for agree or con-
struction for construct. Nominalizations (or, 
deverbal nouns) are commonly defined as nouns 
that are morphologically derived from verbs, 
usually by suffixation (Quirk et al., 1985). Event 
nominalizations often afford the same semantic 
roles as verbs and often replace them in written 
language (Gurevich et al., 2006).  Event nominali-
zations constitute the bulk of deverbal nouns.  The 
following example sentence shows how semantic 
roles can be used for event identification.  
 
[ARG1 All sites] were [TARGET inspected] to the satis-
faction of the inspection team and with full coope-
ration of Iraqi authorities, [ARG0 Dacey] [TARGET 
said]. 
 
   The extracted target words are treated as the 
event words. It has been observed that many of 
these target words are identified as the event ex-
pressions by the CRF model. But, there exists ma-
ny nominalised event expressions (i.e., deverbal 
nouns) that are not identified as events by the su-
pervised CRF. These nominalised expressions are 
correctly identified as events by SRL.  

3.3 Use of WordNet for Event Identification 

WordNet is mainly used to identify non-deverbal 
event nouns. We observed that the event entities 
like ‘war’, ‘attempt’, ‘tour’ are not properly identi-
fied. These words have noun (NN) POS informa-
tion as the previous approaches, i.e., CRF and SRL 
can only identify those event words that have verb 
(VB) POS information. We know from the lexical 
information of WordNet that the words like ‘war’ 
and ‘tour’ are generally used as both noun and 
verb forms in the sentence. Therefore, we have 

                                                        
1 http://cemantix.org/assert.html 

designed the following two rules based on the 
WordNet: 
 
Rule 1: The word tokens having Noun (NN) POS 
categories are looked into the WordNet. If it ap-
pears in the WordNet with noun and verb senses, 
then that word token is considered as an event.  For 
example, war has both noun and verb senses in the 
WordNet, and hence war is considered as an event.  
 
Rule 2: The stems of the noun word tokens are 
looked into the WordNet. If one of the WordNet 
senses is verb then the token is considered as verb. 
For example, the stem of proposal, i.e., propose 
has two different senses, noun and verb in the 
WordNet, and thus it is considered as an event.  

3.4    Use of Rules for Event Identification 

Here, we mainly concentrate on the identification 
of specific lexical classes like ‘inspection’ and 
‘resignation’. These can be identified by the suf-
fixes such as (‘-ción’), (‘-tion’) or (‘-ion’), i.e., the 
morphological markers of deverbal derivations. 
  Initially, we have employed the CRF based Stan-
ford Named Entity (NE) tagger2 on the TempEval-
2 test dataset. The output of the system is tagged 
with Person, Location, Organization and Other 
classes. The words starting with the capital letters 
are also considered as NEs. Thereafter, we came 
up with the following rules for event identification: 
  
Cue-1: The deverbal nouns are usually identified 
by the suffixes like ‘-tion’, ’-ion’, ’-ing’ and ’-ed’ 
etc. The nouns that are not NEs, but end with these 
suffixes are considered as the event words. 
  
Cue 2: The verb-noun combinations are searched 
in the sentences of the test set. The non-NE noun 
word tokens are considered as the events.  
 
Cue 3: Nominals and non-deverbal event nouns 
can be identified by the complements of aspectual 
PPs headed by prepositions like during, after and 
before, and complex prepositions such as at the 
end of and at the beginning of etc.  The next word 
token(s) appearing after these clue word(s) or 
phrase(s) are considered as events.  

                                                        
2 http://nlp.stanford.edu/software/CRF-NER.shtml 
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Cue 4: The non-NE nouns occurring after the ex-
pressions such as frequency of, occurrence of and 
period of are most probably the event nouns. 
 
Cue 5: Event nouns can also appear as objects of 
aspectual and time-related verbs, such as have be-
gun a campaign or have carried out a campaign 
etc. The non-NEs that appear after the expressions 
like “have begun a”, “have carried out a” etc.  are 
also denoted as the events.   

4 Sentiment Expression Identification 

Sentiment is an important cue that effectively de-
scribes the events associated with it. The binary 
classification of the sentiments (positive and nega-
tive) as well as the fine-grained categorization into 
Ekman’s (1993) six emotions is therefore em-
ployed for identifying the sentiment expressions. 
200 sentences are randomly selected from the 
training dataset of the TempEval-2010 corpus. 
These sentences have been considered as our de-
velopment set. On the other hand, 171 sentences 
were already provided as the test sentences in the 
TempEval-2010 evaluation challenge.   

The events are already annotated in the Tem-
pEval-2010 corpus. But, no sentiment or emotion 
related annotation is available in the corpus. 
Hence, we have annotated the sentiment expres-
sions at word level in a semi-supervised way. The 
word level entities are tagged by their coarse and 
fine grained sentiment tags using the available sen-
timent related lexical resources. Then the automat-
ic annotation has been evaluated manually by the 
authors. The semi-supervised sentiment annotation 
agreements were 90.23% for the development set 
and 92.45% for the test sets respectively.  

4.1 Lexicon based Approach 

The tagging of the evaluative expressions or more 
specifically the sentiment expressions on the Tem-
pEval-2010 corpus has been carried out using the 
available sentiment lexicons. We passed the sen-
tences through three sentiment lexicons, Subjectivi-
ty Wordlists (Banea et al., 2008), SentiWordNet 
(Baccianella et al., 2010) and WordNet Affect 
(Strapparava and Valitutti, 2004). Subjectivity 
Wordlist assigns words with the strong or weak 
subjectivity and prior polarities of types positive, 
negative and neutral. SentiWordNet, used in opi-

nion mining and sentiment analysis, assigns three 
sentiment scores such as positive, negative and 
objective to each synset of WordNet. WordNet Af-
fect, a small well-used lexical resource but valua-
ble for its affective annotation contains the words 
that convey emotion.  

The algorithm is that, if a word in a sentence is 
present in any of these resources; the word is 
tagged as the sentiment expression. But, if any 
word is not found in any of them, each word of the 
sentence is passed through the WordNet Morpho-
logical analyzer (Miller, 1990) to identify its root 
form and the root form is searched through the re-
sources again. If the root form is found, the corres-
ponding word is tagged as sentiment expression 
accordingly.  

The identified sentiment expressions have been 
evaluated by the authors and it achieves the preci-
sion, recall and F-Score of 73.54%, 86.04% and 
79.30%, respectively on a total of 171 test sen-
tences of the TempEval-2010 corpus.   

The identification of event words that also ex-
press sentiment is straightforward. But, the prob-
lem arises when the event and sentiment 
expressions are present separately in a sentence 
and the sentiment is either closely associated with 
the event or affects it. In case of the former, we 
have adopted the approach of lexical equivalence 
between the event and sentiment entities whereas 
the co-reference technique has been introduced for 
resolving the latter case.  

5 Lexical Equivalence between Event and 
Sentiment Expressions  

It is observed that in general the verbs, nouns and 
adjectives represent events. The sentences are 
passed through an open source Stanford Maximum 
Entropy based POS tagger (Manning and Toutano-
va, 2000). The best reported accuracy for the POS 
tagger on the Penn Treebank is 96.86% overall and 
86.91% on previously unseen words. Our objective 
was to identify the event words that also express 
sentiments. Hence, we have identified the event 
words that have also been tagged as the sentiment 
expressions. The coverage of these lexical re-
sources in identifying the event sentiment associa-
tion is shown in Table 1. 

On the other hand, not only the adjectives or 
nouns, the sentiment or emotional verbs play an 
important role in identifying the sentiment expres-
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sions. Hence, in addition to the above mentioned 
sentiment resources, we have also incorporated 
English VerbNet (Kipper-Schuler, 2005) for the 
automatic annotation process. VerbNet associates 
the semantics of a verb with its syntactic frames 
and combines traditional lexical semantic informa-
tion such as thematic roles and semantic predi-
cates, with syntactic frames and selectional 
restrictions. Verb entries in the same VerbNet class 
share common syntactic frames and thus they are 
believed to have the same syntactic behavior. For 
example, the emotional verbs “love” and “enjoy” 
are members of the admire-31.2-1 class and “en-
joy” also belongs to the class want-32.1-1.  

The XML files of VerbNet are preprocessed to 
build up a general list that contains all member 
verbs and their available syntax information re-
trieved from VerbNet. The main criterion for se-
lecting the member verbs as sentiment expressions 
is the presence of “emotional_state” type predicate 
in their frame semantics. The frequencies of the 
event words matched against the above said four 
resources are shown in Table 1.  It has been ob-
served that the adjective events are not identified 
by the lexical resources as their frequency in the 
test corpus was very low. But, the lexical coverage 
has been improved by 12.76% by incorporating 
VerbNet. 

 
Resources Noun   Adjective  Verb 

#114    #4              #380 
Subjectivity Wordlists 
SentiWordNet 
WordNet Affect List 
VerbNet (emotional 
verbs) 

24            --             35 
32            --             59  
12            --             25 
 --            --             79 

Accuracy (in %) 59.64                    52.57 
 

Table 1: Results of Lexical Equivalence between 
Event and Sentiment based on different resources  

6 Co-reference between Event and Senti-
ment Expressions  

The opinion and/or sentiment topics are not neces-
sarily spatially coherent as there may be two opi-
nions in the same sentence on different topics. 
Sometimes, the opinions that are on the same topic 
are separated by opinions that do not share that 
topic (Stoyanov and Cardie, 2008). We observe the 
similar situation in case of associating sentiments 

with events. Hence, the hypothesis for opinion top-
ic is established for sentiment events by applying 
the co-reference technique along with the rhetori-
cal structure. We have proposed two different sys-
tems for identifying the association of sentiments 
with the events at context level. 

6.1 Baseline Co-reference System 

The baseline system has been developed based on 
the object information present in the dependency 
relations of the parsed sentences. Stanford Parser 
(Marneffe et al., 2006), a probabilistic lexicalized 
parser containing 45 different part of speech (POS) 
tags of Pen Treebank tagset  has been used to get 
the parsed sentences and dependency relations. 
The dependency relations are checked for the pre-
dicates “dobj” so that the related components 
present in the predicate are considered as the prob-
able candidates for the events.  

If a dependency relation contains both the event 
and sentiment words, we have considered the pres-
ence of co-reference between them. But, it has 
been observed that the event and sentiment expres-
sions are also present in two different relations that 
share a common word element. Hence, if the event 
and sentiment words appear in two different rela-
tions but both of the relations contain at least one 
common element, the event and sentiment words 
are termed as co-referenced.    

Overall, the baseline co-reference system 
achieves the precision, recall and F-Scores of 
40.03%, 46.10% and 42.33% for event-sentiment 
co-reference identification. For example in the fol-
lowing sentence, the writer’s direct as well as indi-
rect emotional intentions are reflected by 
mentioning one or more topics or events (spent, 
thought) and their associated sentiments (great).  

 
“When Wong Kwan spent seventy million dol-

lars for this house, he thought it was a great deal.” 
 
The baseline co-reference system fails to asso-

ciate the sentiment expressions with their corres-
ponding event expressions. Hence, we aimed for 
the rhetoric structure based co-reference system to 
identify their association. 

6.2  Rhetoric Co-reference System 

The distribution of events and sentiment expres-
sions in different text spans of a sentence needs the 
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analysis of sentential structure. We have incorpo-
rated the knowledge of Rhetorical Structure 
Theory (RST) (Mann and Thompson 1987) for 
identifying the events that are co-referred by their 
corresponding sentiment expressions.  

The theory maintains that consecutive discourse 
elements, termed text spans, are related by a rela-
tively small set (20–25) of rhetorical relations. 
But, instead of identifying the rhetorical relations, 
the present task acquires the basic and coarse rhe-
torical components such as locus, nucleus and sa-
tellite from a sentence.  These rhetoric clues help 
in identifying the individual event span associated 
with the span denoting the corresponding senti-
ment expression in a sentence. The text span that 
reflects the primary goal of the writer is termed as 
nucleus (marked as “{ }”) whereas the span that 
provides supplementary material is termed as satel-
lite (marked as “[ ]”). For example, the nucleus and 
satellite textual spans are shown in the following 
sentence as, 

 
{Traders said the market remains extremely 

nervous} because [the wild swings seen on the 
New York Stock Exchange last week]. 

 
The event or topic of an opinion or sentiment 

depends on the context in which the associated 
opinion or sentiment expression occurs (Stoyanov 
and Cardie 2008). Considering the similar hypo-
thesis in case of events instead of topics, the co-
reference between an event and a sentiment ex-
pression is identified from the nucleus and/or satel-
lite by positioning the sentiment expression as 
locus. We have also incorporated the WordNet’s 
(Miller 1990) morphological analyzer to identify 
the stemmed forms of the sentiment words.  

The preliminary separation of nucleus from sa-
tellite was carried out based on the list of frequent-
ly used causal keywords (e.g., as, because, that, 
while, whether etc) and punctuation markers (,) (!) 
(?).The discourse markers and causal verbs are 
also the useful clues if they are explicitly specified 
in the text. The identification of discourse markers 
from written text itself is a research area (Azar 
1999). Hence, our task was restricted to identify 
only the explicit discourse markers that are tagged 
by conjunctive_() or mark_() type dependency re-
lations of the parsed constituents. The dependency 
relations containing conjunctive markers (e.g., 
conj_and(), conj_or(), conj_but()) were considered 

for separating nucleus from satellite if the markers 
are present in between two successive clauses. 
Otherwise, the word token contained in the 
mark_() type dependency relation was considered 
as a discourse marker. 

The list of causal verbs is prepared by 
processing the XML files of VerbNet. If any Verb-
Net class file contains any frame with semantic 
type as Cause, we collect the member verbs of that 
XML class file and term the member verbs as 
causal verbs. We used a list that contains a total 
number of 253 causal verbs.  

If any clause tagged as S or SBAR in the parse 
tree contains any causal verb, that clause is consi-
dered as the nucleus and the rest of the clauses de-
note the satellites. Considering the basic theory of 
rhetorical structure (Mann and Thompson 1987), 
the clauses were separated into nucleus and satel-
lite to identify the event and sentiment expressions. 

The direct dependency is identified based on the 
simultaneous presence of locus and the event word 
in the same dependency relation whereas the tran-
sitive dependency is verified if the word is con-
nected to locus and event via one or more 
intermediate dependency relations.  

If the event and sentiment words are together 
present in either nucleus or satellite, the associa-
tion between the two expressions is considered as 
co-referenced. If they occur in nucleus and satellite 
separately, but the event and sentiment words are 
present in at least one direct dependency relation, 
the expressions are termed as co-referenced.  

In the previous example, the event expressions, 
“said” and “remains” are associated with the sen-
timent expression “nervous” as both the event ex-
pressions share the direct dependency relations 
“cop(nervous-7, remains-5)” and “ccomp(said-2, 
nervous-7)” in the nucleus segment. Similarly, the 
event word, “seen” and sentiment word “wild” are 
present in the satellite part and they share a direct 
dependency relation “partmod(swings-12, seen-
13)”. But, no direct dependency relation is present 
between the “nervous” and “seen” or “said” and 
“wild” or “remains” and “wild”.  

6.3 Results 

Though the event annotation is specified in the 
TempEval-2010 corpus, the association between 
the event and sentiment expressions was not speci-
fied in the corpus. Hence, we have carried out the 
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evaluation manually. The 200 random samples of 
the training set that were used in sentiment expres-
sion identification task have been considered as 
our development set. The Evaluation Vectors 
(EvalV) are prepared manually from each sentence 
of the development and test sets. The vectors 
<EvExp, SentiExp> are filled with the annotated 
events and sentiment expressions by considering 
their association. The annotation of sentiment ex-
pressions using the semi-supervised process has 
been described in Section 4. 
    The rule based baseline and rhetoric based co-
reference systems identify the event and sentiment 
expressions from each sentence and stores them in 
a Co-reference Vector (CorefV). The evaluation is 
carried out by comparing the system generated Co-
reference Vectors (CorefV) with their correspond-
ing Evaluation Vectors (EvalV). The evaluation 
results on 171 test sentences are shown in Table 2. 

 
Co-reference  
Approaches 

Prec.     Rec.    F-Score 
(in %) 

Baseline System 40.03    46.10       42.33 
Rhetoric System 61.25    70.29       65.23 

 
Table 2: Precision (Prec.), Recall (Rec.) and F-

Scores (in %) of the event-sentiment co-reference 
systems  

 
Overall, the precision, recall and F-Scores are 

61.25%, 70.29% and 65.23% for event-sentiment 
co-reference identification using rhetoric clues. 
Though the co-reference technique performs satis-
factorily for identifying the event-sentiment co-
reference, the problem arises in distinguishing the 
corresponding spans of events from an overlapped 
text span of multi-word tokens.  

7 Conclusion  

In this present work, we have identified event and 
sentiment expressions at word level from the sen-
tences of TempEval-2010 corpus and evaluated 
their association in terms of lexical equivalence 
and co-reference. It has been observed that the lex-
ical equivalence based on lexicons performs satis-
factorily but overall, the co-reference entails that 
the presence of indirect affective clues can also be 
traced with the help of rhetoric knowledge and de-
pendency relations. The association of the senti-
ments with their corresponding events can be used 

in future concerning the time based sentiment 
change over events.  

Acknowledgments 
The work is supported by a grant from the India-
Japan Cooperative Programme (DST-JST) 2009 
Research project entitled “Sentiment Analysis 
where AI meets Psychology” funded by Depart-
ment of Science and Technology (DST), Govern-
ment of India. 

References  
Baccianella Stefano, Esuli Andrea and Sebas-tiani Fa-

brizio. 2010. SentiWordNet 3.0: An Enhanced Lexi-
cal Re-source for Sentiment Analysis and Opinion 
Mining. In Proceedings of the 7th Conference on 
Language Resources and Evaluation, pp. 2200-2204. 

Banea, Carmen, Mihalcea Rada, Wiebe Janyce. 2008.  
A Bootstrapping Method for Building Subjectivity 
Lexicons for Languages with Scarce Resources. The 
Sixth International Conference on Language Re-
sources and Evaluation. 

Boguraev, B., Ando, R. K. 2005. TimeBank-
DrivenTimeML Analysis. Annotating, Extracting and 
Reasoning about Time and Events 2005. 

Chaumartin, F. 2007. Upar7: A knowledge-based sys-
tem for headline sentiment tagging. SemEval-200,  
Czech Republic. 

Ekman Paul. 1993. An argument for basic emotions, 
Cognition and Emotion, 6(3-4):169-200. 

Fukuhara T., Nakagawa, H. and Nishida, T. 2007. Un-
derstanding Sentiment of People from News Articles: 
Temporal Sentiment Analysis of Social Events. 
ICWSM’2007, Boulder, Colorado. 

Gildea, D. and Jurafsky, D. 2002. Automatic Labeling 
of Semantic Roles. Computational Linguistics, 
28(3):245–288. 

Gurevich, O., R. Crouch, T. King, and V. de Paiva. 
2006. Deverbal Nouns in Knowledge Representation. 
Proceedings of FLAIRS, pages 670–675, Melbourne 
Beach, FL. 

Katz, P., Singleton, M. and Wicentowski, R. 2007. 
Swat-mp: the semeval-2007 systems for task 5 and 
task SemEval-2007.  

Kipper-Schuler, K. 2005.  VerbNet: A broad-coverage, 
comprehensive verb lexicon. Ph.D. thesis, Computer 
and Information Science Dept., University of Penn-
sylvania, Philadelphia, PA. 

26



Kolya, A., Ekbal, A. and Bandyopadhyay, S. 2010. 
JU_CSE_TEMP: A First Step towards Evaluating 
Events, Time Expressions and Temporal Relations. 
In Proceedings of the 5th International Workshop on 
Semantic Evaluation, ACL 2010, July 15-16, Swe-
den, pp. 345–350. 

Lafferty, J., McCallum, A.K., Pereira, F. 2001. Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. International 
Conference on Machine Learning. 

Llorens Hector, Estela Saquete, Borja Navarro. 2010. 
TIPSem (English and Spanish): Evaluating CRFs and 
Semantic Roles. Proceedings of the 5th International 
Workshop on Semantic Evaluation, ACL 2010, pages 
284–291, Uppsala, Sweden, 15-16 July 2010. 

Mani, I., and Wilson G. 2000. Processing of News. In 
Proceedings of the 38th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 69-76. 

Mann, W. and S. Thompson. 1987. Rhetorical Structure 
Theory: Description and Construction of Text Struc-
ture. In G. Kempen (ed.), Natural Language Genera-
tion, Martinus Nijhoff, The Hague, pp. 85–96. 

Manning Christopher and Toutanova, Kristina. 2000. 
Enriching the Knowledge Sources Used in a Maxi-
mum Entropy Part-of-Speech Tagger. Proceedings of 
the Joint SIGDAT Conference on Empirical Methods 
in Natural Language Processing and Very Large 
Corpora (EMNLP/VLC)  

Marneffe, Marie-Catherine de, Bill MacCartney, and 
Christopher D.Manning. 2006. Generating Typed 
Dependency Parses from Phrase Structure Parses. 5th 
International Conference on Language Resources 
and Evaluation.  

Miller George A. 1990. WordNet: An on-line lexical 
database. International Journal of Lexicography, 
3(4): 235–312 

Pradhan S., Wayne W., Hacioglu, K., Martin, J.H. and 
Jurafsky, D. 2004. Shallow Semantic Parsing using 
Support Vector Machines. Proceedings of the Human 
Language Technology Conference/North American 
chapter of the Association for Computational Lin-
guistics annual meeting Boston, MA, May 2-7. 

Pustejovsky, J., Castano, J., Ingria, R., Sauri, R., Gai-
zauskas, R., Setzer, A., Katz, G. and Radev, D. 
TimeML: Robust specification of event and temporal 
expressions in text. In AAAI Spring Symposium on 
New Directions in Question-Answering, pp. 28-34, 
CA, 2003. 

Quirk, R., Greenbaum, S. Leech, G. and Svartvik, J. 
1985. A Comprehensive Grammar of the English 
Language. Longman.  

Strapparava C. and Valitutti, A. 2004. Wordnet-affect: 
an affective extension of wordnet. In 4th Internation-
al Conference on Language Resources and Evalua-
tion, pp. 1083-1086. 

Strapparava Carlo and Mihalcea Rada. 2007. SemEval-
2007 Task 14: Affective Text. 45th Aunual Meeting 
of Association for Computational linguistics. 

Stoyanov, V., and Cardie, C. 2008. Annotating topics of 
opinions. In Proceedings of LREC.  

 

27



Proceedings of the ACL 2011 Workshop on Relational Models of Semantics (RELMS 2011), pages 28–36,
Portland, Oregon, USA, June 23, 2011. c©2011 Association for Computational Linguistics

VigNet: Grounding Language in Graphics using Frame Semantics

Bob Coyne and Daniel Bauer and Owen Rambow
Columbia University

New York, NY 10027, USA
{coyne, bauer, rambow}@cs.columbia.edu

Abstract

This paper introduces Vignette Semantics, a
lexical semantic theory based on Frame Se-
mantics that represents conceptual and graph-
ical relations. We also describe a lexical re-
source that implements this theory, VigNet,
and its application in text-to-scene generation.

1 Introduction

Our goal is to build a comprehensive text-to-
graphics system. When considering sentences such
as John is washing an apple and John is washing
the floor, we discover that rather different graphical
knowledge is needed to generate static scenes rep-
resenting the meaning of these two sentences (see
Figure 1): the human actor is assuming different
poses, he is interacting differently with the thing be-
ing washed, and the water, present in both scenes,
is supplied differently. If we consider the types of
knowledge needed for scene generation, we find that
we cannot simply associate a single set of knowl-
edge with the English verb wash. The question
arises: how can we organize this knowledge and
associate it with lexical items, so that the resulting
lexical knowledge base both is usable in a wide-
coverage text-to-graphics system, and can be pop-
ulated with the required knowledge using limited re-
sources?

In this paper, we present a new knowledge base
that we use for text-to-graphics generation. We dis-
tinguish three types of knowledge needed for our
task. The first is conceptual knowledge, which is
knowledge about concepts, often evoked by words.
For example, if I am told John bought an apple, then
I know that that event necessarily also involved the
seller and money. Second, we need world knowl-

Figure 1: Mocked-up scenes using the WASH-SMALL-
FRUIT vignette (“John washes the apple”) and WASH-
FLOOR-W-SPONGE vignette (“John washes the floor”).

edge. For example, apples grow on trees in cer-
tain geographic locations at certain times of the year.
Third, we need grounding knowledge, which tells
us how concepts are related to sensory experiences.
In our application, we model grounding knowledge
with a database of 3-dimensional graphical models.
We will refer to this type of grounding knowledge
as graphical knowledge. An example of grounding
knowledge is knowing that several specific graphical
models represent apple trees.

Conceptual knowledge is already the object of ex-
tensive work in frame semantics; FrameNet (Rup-
penhofer et al., 2010) is an extensive (but not com-
plete) relational semantic encoding of lexical mean-
ing in a frame-semantic conceptual framework. We
use this prior work, both the theory and the resource,
in our work. The encoding of world knowledge has
been the topic of much work in Artificial Intelli-
gence. Our specific contribution in this paper is the
integration of the representation for world knowl-
edge and graphical knowledge into a frame-semantic
approach. In order to integrate these knowledge
types, we extend FrameNet in three manners.

1. Frames describe complex relations between
their frame elements, but these relations, i.e.
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the internal structure of a frame, is not explic-
itly formulated in frame semantics. FrameNet
frames do not have any intensional meaning
besides the informal English definition of the
frames (and what is expressed by so-called
“frame-to-frame relations”). From the point
of view of graphics generation, internal struc-
ture is necessary. While for many applications
a semantic representation can remain vague, a
scene must contain concrete objects and spatial
relations between them.

2. Some frames are not semantically specific
enough. For example, there is a frame
SELF MOTION, which includes both walk and
swim; these verbs clearly need different graph-
ical realizations, but they are also different
from a general semantic point of view. While
this situation could be remedied by extend-
ing the inventory of frames by adding WALK

and SWIM frames, which would inherit from
SELF MOTION, the situation is more complex.
Consider wash an apple and wash the floor,
discussed above. While the core meaning of
wash is the same in both phrases, the graphi-
cal realization is again very different. However,
we cannot simply create two new frames, since
at some level (though not the graphical level)
the meaning is indeed compositional. We thus
need a new mechanism.

3. FrameNet is a lexical resource that illustrates
how language can be used to refer to frames,
which are abstract definitions of concepts, and
their frame elements. It is not intended to be
a formalism for deep semantic interpretation.
The FrameNet annotations show the frame ele-
ments of frames (e.g. the goal frame element of
the SELF MOTION frame) being filled with text
passages (e.g. into the garden) rather than with
concrete semantic objects (e.g. an ‘instance’
of a LOCALE BY USE frame evoked by gar-
den). Because such objects are needed in or-
der to fully represent the meaning of a sentence
and to assert world knowledge, we introduce
semantic nodes which are discourse referents
of lexical items (whereas frames describe their
meanings).

In this paper, we present VigNet, a resource which
extends FrameNet to incorporate world and graph-
ical knowledge. We achieve this goal by address-
ing the three issues above. We first extend frames
by adding more information to them (specifically,
about decomposition relevant to graphical ground-
ing and more precise selectional restrictions). We
call a frame with graphical information a vignette.
We then extend the structure defined by FrameNet
by adding new frames and vignettes, for example
for wash an apple. The result we call VigNet. Fi-
nally, we extend VigNet with a system of nodes
which instantiate frames; these nodes we call se-
mantic nodes. They get their meaning only from the
frames they instantiate. All three extensions are con-
servative extensions of frames and FrameNet. The
semantic theory that VigNet instantiates we call Vi-
gnette Semantics and we believe it to be a conser-
vative extension (and thus in the spirit of) frame se-
mantics.

This paper is structured as follows. In Section 2,
we review frame semantics and FrameNet. Section 3
presents a more detailed description of VigNet, and
we provide examples in Section 4. Since VigNet is
intended to be used in a large-coverage system, the
population of VigNet with knowledge is a crucial is-
sue which we address in Section 5. We discuss re-
lated work in Section 6 and conclude in Section 7.

2 Frame Semantics and FrameNet

Frame Semantics (FS; Fillmore (1982)) is based on
the idea that the meaning of a word can only be fully
understood in context of the entire conceptual struc-
ture surrounding it, called the word’s frame. When
the meaning of a word is evoked in a hearer’s mind
all related concepts are activated simultaneously and
we can rely on this structure to transfer information
in a conversation. Frames can describe states-of-
affairs, events or complex objects. Each frame con-
tains a set of specific frame elements (FEs), which
are labeled semantic argument slots describing par-
ticipants in the frame. For instance, the word buy
evokes the frame for a commercial transaction sce-
nario, which includes a buyer and a seller that ex-
change money for goods. A speaker is aware of what
typical buyers, sellers, and goods are. He may also
have a mental prototype of the visual scenario itself
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(e.g. standing at a counter in a store). In FS the
role of syntactic theory and the lexicon is to explain
how the syntactic dependents of a word that realizes
a frame (i.e. arguments and adjuncts) are mapped to
frame elements via valence patterns.

FrameNet (FN; Baker et al. (1998), Ruppenhofer
et al. (2010)) is a lexical resource based on FS.
Frames in FN (around 1000) 1 are defined in terms
of their frame elements, relations to other frames
and semantic types of FEs. Beyond this, the mean-
ing of the frame (how the FEs are related to each
other) is only described in natural language. FN
contains about 11,800 lexical units, which are pair-
ings of words and frames. These come with anno-
tated example sentences (about 150,000) to illustrate
their valence patterns. FN contains a network of
directed frame-to-frame relations. In the INHERI-
TANCE relation a child-frame inherits all semantic
properties from the superframe. The frame rela-
tions SUBFRAME and PRECEDES refer to sub-events
and events following in temporal order respec-
tively. The parent frame’s FEs are mapped to the
child’s FEs. For instance CAUSE TO WAKE inher-
its from TRANSITIVE ACTION and its sleeper FE
maps to agent. Other relations include PERSPEC-
TIVE ON, CAUSATIVE OF, and INCHOATIVE OF.
Frame relations captures important semantic facts
about frames. For instance the hierarchical organi-
zation of INHERITANCE allows to view an event on
varying levels of specificity. Finally, FN contains
a small ontology of semantic types for frame ele-
ments, which can be interpreted as selectional re-
strictions (e.g. an agent frame element must be
filled by a sentient being).

3 Vignette Semantics

In Section 1, we motivated VigNet by the need
for a resource that allows us to relate language to
a grounded semantics, where for us the graphical
representation is a stand-in for grounding. We de-
scribed three reasons for extending FrameNet to Vi-
gNet: we need more meaning in a frame, we need
more frames and more types of frames, and we need
to instantiate frames in a clean manner. We discuss
these refinements in more detail in this section.

1Numbers refer to FrameNet 1.5

• Vignettes are frames that are decomposed into
graphical primitives and can be visualized.
Like other fames they are motivated by frame
semantics; they correspond to a conceptual
structure evoked by the lexical units which are
associated with it.

• VigNet includes individual frames for each
(content) lexical item. This provides finer-
grained semantics than given with FrameNet
frames themselves. These lexically-coupled
frames leverage the existing structure of their
parent frames. For example, the SELF MOTION

frame contains lexical items for run and swim
which have very different meaning even though
they share the same frame and FEs (such as
SOURCE, GOAL, and PATH). We therefore
define frames for RUN and SWIM which in-
herit from SELF MOTION. We assume also that
frames and lexical items that are missing from
FrameNet are defined and linked to the rest of
FrameNet as needed.

• Even more specific frames are created to rep-
resent composed vignettes. These are vi-
gnettes that ground meaning in different ways
than the primitive vignette that they special-
ize. The only motivation for their existence
is the graphical grounding. For example, we
cannot determine how to represent washing an
apple from the knowledge of how to repre-
sent generic washing and an apple. So we de-
fine a new vignette specifically for washing a
small fruit. From the point of view of lexi-
cal semantics, it uses two lexical items (wash
and apple) and their interpretation, but for us,
since we are interested in grounding, it is a
single vignette. Note that it is not necessary
to create specific vignettes for every concrete
verb/argument combination. Because vignettes
are visually inspired relatively few general vi-
gnettes (e.g. manipulate an object on a fixture)
suffices to visualize many possible scenarios.

• A new type of frame-to-frame relation, which
we call SUBFRAME-PARALLEL is used to de-
compose vignettes into a set of more primitive
semantic relations between their arguments.
Unlike FrameNet’s SUBFRAME relation which
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represents temporally sequential subframes, in
SUBFRAME-PARALLEL, the subframes are all
active at the same time, provide a conceptual
and spatial decomposition of the frame, and can
serve as spatial constraints on the frame ele-
ments. A frame is called a vignette if it can
be decomposed into graphical primitives using
SUBFRAME-PARALLEL relations. For instance
in the vignette WASH-SMALL-OBJ for washing
a small object in a sink, the washer has to be
in front of the sink. We assert a SUBFRAME-
PARALLEL relation between WASH-SMALL-
OBJ and FRONTOF, mapping the washer FE
to the figure FE and sink to ground.

• FrameNet has a very limited number of seman-
tic types that are used to restrict the values
of FEs. Vignette semantics uses selectional
restrictions to differentiate between vignettes
that have the same parent. For example, the
vignette invoked for washing a small object in
a sink would restrict the semantic type of the
theme (the entity being washed) to anything
small, or, more generally, to any object that is
washed in this way (apples, hard-boiled eggs,
etc). The vignette used for washing a vehicle in
a driveway with a hose would restrict its theme
to some set of large objects or vehicle types.
Selectional restrictions are asserted using the
same mechanism as decompositions.

• As mentioned in Section 1, in FrameNet an-
notations frame elements (FEs) are filled with
text spans. Therefore, while frame seman-
tics in general is a deep semantic theory,
FrameNet annotations only represent shallow
semantics and it is not immediately obvious
how FrameNet can be used to build a full se-
mantic representations of a sentence. In Vi-
gnette semantics, when a frame is evoked by
a lexical item, it is instantiated as a semantic
node. Its FEs are then bound not to subphrases,
but to semantic nodes which are the instantia-
tions of the frames evoked by those subphrases.

Section 3.1 investigates semantic nodes in more de-
tail. Section 3.2 illustrates different types of vi-
gnettes (objects, actions, locations) and how they are

defined using the SUBFRAME PARALLEL relation.
In Section 3.3 we discuss selectional restrictions.

3.1 Semantic Nodes and Relational Knowledge

The intuition behind semantic nodes is that they rep-
resent objects, events or situations. They can also
represent plurals or generics. For instance we could
have semantic node city, denoting the class of cities
and a semantic node paris, that denotes the city
Paris. Note that there is also a frame CITY and a
frame PARIS that contain the conceptual structure
associated with the words city and Paris. Frames
represent the linguistic and the conceptual aspect
of knowledge; the intensional meaning of a word.
They provide knowledge to answer questions such
as “What is an apple?” or “How do you wash an ap-
ple?”. In contrast, semantic nodes are extensional,
i.e. denotations. They represent the knowledge to
answer questions such as “In what season are apples
harvested?” or “How did Percy wash that apple just
now?”.

As mentioned above semantic nodes allow us to
build full meaning representations of entire sen-
tences in discourse. Therefore, while frame defi-
nitions are fixed, semantic nodes can be added dy-
namically during discourse understanding or gener-
ation to model the instances of frames that language
is evoking. We call such nodes temporary seman-
tic nodes. They they are closely related to the dis-
course referents of Discourse Representation Theory
(Kamp, 1981) and related concepts in other theories.
In contrast, persistent semantic nodes are used to
store world knowledge which is distinct from the
conceptual knowledge encoded within frames and
their relations; for example, the frame for moon will
not encode the fact that the moon’s circumference is
6,790 miles, but we may record that using a knowl-
edge based of external assertions semantic nodes are
given their meaning by corresponding frames (CIR-
CUMFERENCE, MILE, etc.). A temporary semantic
node can become persistent by being retained in the
knowledge base.

3.2 Vignette Types and their Decomposition

A vignette is a frame in the FrameNet sense that is
decomposed to a set of more primitive frames us-
ing the SUBFRAME-PARALLEL frame-to-frame re-
lation. The frame elements (FEs) of a vignette are
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defined as in FrameNet, except that our grounding
in the graphical representation gives us a new, strong
criterion to choose what the FEs are: they are the ob-
jects necessarily involved in the visual scene associ-
ated with that vignette. The subframes represent the
spatial and other relations between the FEs. The re-
sulting semantic relations specify how the scene el-
ements are spatially arranged. This mechanism cov-
ers several different cases.

For actions, we conceptually freeze the action in
time, much as in a comic book panel, and repre-
sent it in a vignette with a set of objects, spatial
relations between those objects, and poses charac-
teristic for the humans (and other pliable beings) in-
volved in that action. Action vignettes will typically
be specialized to composed vignettes, so that the ap-
plicability of different vignettes with the same par-
ent frame will depend on the values of the FEs of
the parent. In the process of creating composed vi-
gnettes, FEs are often added because additional ob-
jects are required to play auxiliary roles. As a re-
sult, the FEs of an action vignette are the union of
the semantic roles of the important participants and
props involved in that enactment of the action with
the FEs of the parent frame. For instance the follow-
ing vignette describes one concrete way of washing
a small fruit. Note that we have included a new FE
sink which is not motivated in the frame WASH.2

Note also that this vignette also contains a selec-
tional restriction on its theme, which we will dis-
cuss in the next subsection and which is not shown
here.

WASH-SMALL-FRUIT(washer, theme, sink)
FRONTOF(figure:washer, figure:sink)
FACING(figure:washer, figure:sink)
GRASP(grasper:washer, theme:theme)
REACH(reacher:washer, target:sink)

In this notation the head row contains the vignette
name and its FEs in parentheses. For readability we
will often omit FEs that are part of the vignette but
not restricted or used in any mentioned relation. The
lower box contains the vignette decomposition and
implicitly specifies SUBFRAME-PARALLEL frame-
to-frame relations. In the decomposition of a vi-
gnette V we use the notation F(a:b, · · · ) to indicate
that the FE a of frame F is mapped to the FE b of V.

2FrameNet does not currently contain a WASH frame, but if
it did, it would not contain an FE sink.

When V is instantiated the semantic node binding to
a must also be able to bind to b in F.

Locations are represented by vignettes which ex-
press constraints between a set of objects character-
istic for the given location. The FEs of location vi-
gnettes include these constituent objects. For exam-
ple, one type of living room (of many possible ones)
might contain a couch, a coffee table, and a fireplace
in a certain arrangement.

LIVING-ROOM 42(left wall, far wall, couch,
coffee table, fireplace)

TOUCHING(figure:couch, ground:left wall)
FACING(figure:couch, ground:right wall)
FRONTOF(figure:coffee table, ground: sofa)
EMBEDDED(figure:fire-place, ground:far wall)

Even ordinary physical objects will have certain
characteristic parts with size, shape, and spatial re-
lations that can be expressed by vignettes. For ex-
ample, an object type such as a kind of stop sign can
be defined as a two-foot-wide, red, hexagonal metal
sheet displaying the word “STOP” positioned on the
top of a 6 foot high post.

STOP-SIGN(sign-part, post-part, texture)
MATERIAL(theme:sign-part, material:METAL)
MATERIAL(theme:post-part, material:METAL)
DIAMETER(theme:sign-part, diameter:2 feet)
HEIGHT(theme:post-part, height:6 feet)
ONTOP(figure:sign-part, ground:post-part)
TEXTURE(theme:sign-part, texture:“STOP”)

In addition, many real-world objects do not corre-
spond to lexical items but are elaborations on them
or combinations. These sublexical entities can be
represented by vignettes as well. For example, one
such 3D object in our text-to-scene system is a goat
head mounted on a piece of wood. This object is
represented by a vignette with two FEs (ghead,
gwood) representing the goat’s head and the wood.
The vignette decomposes into ON(ghead, gwood).

While there can be many vignettes for a single
lexical item, representing the many ways a location,
action, or object can be constituted, vignettes need
not be specialized for every particular situation and
can be more or less general. In one exteme creat-
ing vignettes for every verb/argument combination
would clearly lead to a combinatorial explosion and
is not feasible. In the other extreme we can define
rather general vignettes. For example, a vignette
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USE-TOOL for using a tool on a theme can be repre-
sented by the user GRASPING the tool and REACH-
ING towards the theme. These vignettes can be
used in decompositions of more concrete vignettes
(e.g. HAMMER-NAIL-INTO-WALL). They can also
be used directly if no other more concrete vignette
can be applied (because it does not exist or its selec-
tional restrictions cannot be satisfied). In this way
by defining a small set of such vignettes we can vi-
sualize approximate scenes for a large number of de-
scriptions.

3.3 Selectional Restrictions on Frame Elements

To define a frame we need to specify selectional re-
strictions on the semantic type of its FEs. Instead
of relying on a fixed inventory of semantic types,
we assert conceptual knowledge and external asser-
tions over persistent semantic types. This allows us
to use VigNet’s large set of frames to represent such
knowledge. For example, an apple can be defined as
a small round fruit.

APPLE(self)
SHAPEOF(figure:self, shape:spherical)
SIZEOF(figure:self, size:small)

APPLE is simply a frame that contains a self FE,
which allows us to make assertions about the con-
cept (i.e. about any semantic node bound to the
self FE). Frame elements of this type are not un-
usual in FrameNet, where they are mainly used for
frames containing common nouns (for instance the
Substance FE contains a substance FE). In Vi-
gNet we implicitly use self in all frames, including
frames describing situations and events.

We use the same mechanism to define specialized
compound vignettes such as WASH SMALL FRUIT.
We extend WASH in the following way to restrict
it to small fruits (we abreviate F(self:a) as a=F for
readability).

WASH-SMALL-FRUIT(washer, theme, sink)
% selectional restrictions
sink=SINK, washer=PERSON,
theme=x, x=FRUIT,
SIZEOF(figure:x,size:small)
% decomposition
FRONTOF(figure:washer, figure:sink)
FACING(figure:washer, figure:sink)
GRASP(grasper:washer, theme:theme)
REACH(reacher:washer, target:sink)

4 Examples

In this section we give further examples of visual
action vignettes for the verb wash. The selectional
restrictions and graphical decomposition of these vi-
gnettes vary depending on the type of object be-
ing washed. The first example shows a vignette for
washing a vehicle.

WASH-VEHICLE(washer, theme, instr, location)
washer=PERSON, theme=VEHICLE,
instr=HOSE, location=DRIVEWAY

ONSURFACE(figure:theme, ground:location)
FRONTOF(figure:washer, ground:theme)
FACING(figure:washer, ground:theme)
GRASP(grasper:washer, theme:instrument)
AIM(aimer:washer, theme:instr, target:theme)

The following two vignettes represent a case where
the object being washed alone does not determine
which vignette to apply. If the instrument is unspec-
ified one or the other could be used. We illustrate
one option in figure 1 (right).

WASH-FLOOR-W-SPONGE(washer,theme,instr)
washer=PERSON, theme=FLOOR,
instr=SPONGE

KNEELING(agent:washer),
GRASP(grasper:washer, theme:instr),
REACH(reacher:washer, target:theme)

WASH-FLOOR-W-MOP(washer, theme, instr)
washer=PERSON, theme=FLOOR, instr=MOP

GRASP(grasper:washer, theme:instr),
REACHWITH(reacher:washer, target:theme,
instr:instr)

It is easy to come up with other concrete vi-
gnettes for wash (washing windows, babies, hands,
dishes...). As mentioned in section 3.2 more gen-
eral vignettes can be defined for very broad object
classes. In choosing vignettes, the most specific will
be used (looking at type matching hierarchies), so
general vignettes will only be chosen when more
specific ones are unavailable. The following generic
vignette describes washing any large object.

WASH-LARGE-OBJECT(washer, theme instrument)
washer=PERSON, theme=OBJECT,
instrument=SPONGE,
SIZEOF(figure:theme, size:large)
FACING(figure:washer, ground:theme)
GRASP(grasper:washer, theme:instrument)
REACH(reacher:washer, target:theme)
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In our final example, a vignette for picking fruit uses
the following assertion of world knowledge about
particular types of fruit and the trees they come
from:
SOURCE-OF(theme:x, source:y), APPLE(self:x),
APPLETREE(self:y)
In matching the vignette to the verb frame and its ar-
guments, the source frame element is bound to the
type of tree for the given theme (fruit).

PICK-FRUIT(picker, theme, source)
picker=PERSON, theme=FRUIT, source=TREE,
SOURCEOF(theme:theme, source:source)
UNDERCANOPY(figure:picker, canopy:source)
GRASP(grasper:picker, theme:theme)
REACH(reacher:picker, target:source.branch)

5 VigNet

We are developing VigNet as a general purpose re-
source, but with the specific goal of using it in text-
to-scene generation. In this section we first describe
various methods to populate VigNet. We then sketch
how we create graphical representations from Vi-
gNet meaning representations.

5.1 Populating VigNet
VigNet is being populated using several approaches:

• Amazon Mechanical Turk is being used to ac-
quire scene elements for location and action vi-
gnettes as well as the spatial relations among
those elements. For locations, Turkers are
shown representative pictures of different lo-
cations as well as variants of similar locations,
thereby providing distinct vignettes for each lo-
cation. We also use Mechanical Turk to acquire
general purpose relational information for ob-
jects and actions such as default locations, ma-
terials, contents, and parts.

• We extract relations such as typical locations
for actions from corpora based on co-occurance
patterns of location and action terms. This is
based on ideas described in (Sproat, 2001). We
also rely on corpora to induce new lexical units
and selectional preferences.

• A large set of semantic nodes and frames for
nouns has been imported from the noun lexicon
of the WordsEye text-to-scene system (Coyne

and Sproat, 2001). This lexicon currently con-
tains 15,000 lexical items and is tied to a li-
brary of 2,200 3D objects and 10,000 images
Semantic relations between these nodes include
parthood, containment, size, style (e.g. antique
or modern), overall shape, material, as well as
spatial tags denoting important spatial regions
on the object. We also import graphically-
oriented vignettes from WordsEye. These are
used to capture the meaning of sub-lexical 3D
objects such as the mounted goat head de-
scribed earlier.

• Finally, we intend to use WordsEye itself to al-
low users to visualize vignettes as they define
them, as a way to improve vignette accuracy
and relevancy to the actual use of the system.

While the population of VigNet is not the fo-
cus of this paper, it is our goal to create a usable
resource that can be populated with a reasonable
amount of effort. We note that opposed to resources
like FrameNet that require skilled lexicographers,
we only need simple visual annotation that can eas-
ily be done by untrained Mechanical Turkers. In
addition, as described in section 3.2, vignettes de-
fined at more abstract levels of the frame hierar-
chy can be used and composed to cover large num-
bers of frames in a plausible manner. This allows
more specific vignettes to be defined where the dif-
ferences are most significant. VigNet is is focused
on visually-oriented language involving tangible ob-
jects. However, abstract, process-oriented language
and relations such as negation can be depicted icon-
ically with general vignettes. Examples of these can
be seen in the figurative and metaphorical depictions
shown in (Coyne and Sproat, 2001).

5.2 Using VigNet in Text-to-Scene Generation
To compose a scene from text input such as the
man is washing the apple it is necessary to parse
the sentence into a semantic representation (evoking
frames for each content word) and to then resolve
the language-level semantics to a set of graphical
entities and relations. To create a low-level graph-
ical representation all frame elements need to be
filled with appropriate semantic nodes. Frames sup-
port the selection of these nodes by specifying con-
straints on them using selectional restrictions. The
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SUBFRAME-PARALLEL decomposition of vignettes
then ultimately relates these nodes using elementary
spatial vignettes (FRONTOF, ON, ...).

Note that it is possible to describe scenes directly
using these vignettes (such as The man is in front of
the sink. He is holding an apple.), as was used to
create the mock-ups in figure 1.

Vignettes can be directly applied or composed to-
gether. Composing vignettes involves unifying their
frame elements. For example, in washing an ap-
ple, the WASH-SMALL-FRUIT vignette uses a sink.
From world knowledge we know (via instances of
the TYPICAL-LOCATION frame) that washing food
typically takes place in the KITCHEN. To create a
scene we compose the two vignettes together by uni-
fying the sink in the location vignette with the sink
in the action vignette.

6 Related Work

The grounding of natural language to graphical re-
lations has been investigated in very early text-to-
scene systems (Boberg, 1972), (Simmons, 1975),
(Kahn, 1979), (Adorni et al., 1984), and then later
in Put (Clay and Wilhelms, 1996), and WordsEye
(Coyne and Sproat, 2001). Other systems, such as
CarSim (Dupuy et al., 2001), Jack (Badler et al.,
1998), and CONFUCIUS (Ma and McKevitt, 2006)
target animation and virtual environments rather
than scene construction. A graphically grounded
lexical-semantic resource such as VigNet would be
of use to these and related domains. The concept of
vignettes as graphical realizations of more general
frames was introduced in (Coyne et al., 2010).

In addition to FrameNet, much work has been
done in developing theories and resources for lexi-
cal semantics and common-sense knowledge. Verb-
Net (Kipper et al., 2000) focuses on verb subcat pat-
terns grouped by Levin verb classes (Levin, 1993),
but also grounds verb semantics into a small num-
ber of causal primitives representing temporal con-
straints tied to causality and state changes. VerbNet
lacks the ability to compose semantic constraints
or use arbitrary semantic relations in those con-
straints. Conceptual Dependency theory (Schank
and Abelson, 1977) specifies a small number of
state-change primitives into which all verbs are re-
duced. Event Logic (Siskind, 1995) decomposes ac-

tions into intervals describing state changes and al-
lows visual grounding by specifying truth conditions
for a small set of spatial primitives (a similar for-
malism is used by Ma and McKevitt (2006)). (Bai-
ley et al., 1998) and related work proposes a rep-
resentation in many ways similar to ours, in which
lexical items are paired with a detailed specifica-
tion of actions in terms of elementary body poses
and movements. In contrast to these temporally-
oriented approaches, VigNet grounds semantics in
spatial constraints active at a single moment in time.
This allows for and emphasizes contextual reason-
ing rather than causal reasoning. In addition, VigNet
emphasizes a holistic frame semantic perspective,
rather than emphasizing decomposition alone. Sev-
eral resources for common-sense knowledge exist or
have been proposed. In OpenMind and ConceptNet
(Havasi et al., 2007) online crowd-sourcing is used
to collect a large set of common-sense assertions.
These assertions are normalized into a set of a cou-
ple dozen relations. The Cyc project is using the web
to augment its large ontology and knowledge base of
common sense knowledge (Matuszek et al., 2005).
PRAXICON (Pastra, 2008) is a grounded concep-
tual resources that integrates motor-sensoric, visual,
pragmatic and lexical knowledge (via WordNet). It
targets the embodied robotics community and does
not directly focus on scene generation. It also fo-
cuses on individual lexical items, while VigNet, like
FrameNet, takes syntactic context into account.

7 Conclusion

We have described a new semantic paradigm that we
call vignette semantics. Vignettes are extensions of
FrameNet frames and represent the specific ways in
which semantic frames can be realized in the world.
Mapping frames to vignettes involves translating be-
tween high-level frame semantics and the lower-
level relations used to compose a scene. Knowledge
about objects, both in terms of their semantic types
and the affordances they provide is used to make that
translation. FrameNet frames, coupled with seman-
tic nodes representing entity classes, provide a pow-
erful relational framework to express such knowl-
edge. We are developing a new resource VigNet
which will implement this framework and be used
in our text-to-scene generation system.
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Abstract

This paper suggests two ways of improving
semantic role labeling (SRL). First, we intro-
duce a novel transition-based SRL algorithm
that gives a quite different approach to SRL.
Our algorithm is inspired by shift-reduce pars-
ing and brings the advantages of the transition-
based approach to SRL. Second, we present
a self-learning clustering technique that effec-
tively improves labeling accuracy in the test
domain. For better generalization of the sta-
tistical models, we cluster verb predicates by
comparing their predicate argument structures
and apply the clustering information to the
final labeling decisions. All approaches are
evaluated on the CoNLL’09 English data. The
new algorithm shows comparable results to
another state-of-the-art system. The cluster-
ing technique improves labeling accuracy for
both in-domain and out-of-domain tasks.

1 Introduction

Semantic role labeling (SRL) has sparked much in-
terest in NLP (Shen and Lapata, 2007; Liu and
Gildea, 2010). Lately, dependency-based SRL has
shown advantages over constituent-based SRL (Jo-
hansson and Nugues, 2008). Two main benefits can
be found. First, dependency parsing is much faster
than constituent parsing, whereas constituent pars-
ing is usually considered to be a bottleneck to SRL in
terms of execution time. Second, dependency struc-
ture is more similar to predicate argument struc-
ture than phrase structure because it specifically de-
fines relations between a predicate and its arguments
with labeled arcs. Unlike constituent-based SRL

that maps phrases to semantic roles, dependency-
based SRL maps headwords to semantic roles be-
cause there is no phrasal node in dependency struc-
ture. This may lead to a concern about getting the
actual semantic chunks back, but Choi and Palmer
(2010) have shown that it is possible to recover the
original chunks from the headwords with minimal
loss, using a certain type of dependency structure.

Traditionally, either constituent or dependency-
based, semantic role labeling is done in two steps,
argument identification and classification (Gildea
and Jurafsky, 2002). This is from a general be-
lief that each step requires a different set of fea-
tures (Xue and Palmer, 2004), and training these
steps in a pipeline takes less time than training them
as a joint-inference task. However, recent machine
learning algorithms can deal with large scale vector
spaces without taking too much training time (Hsieh
et al., 2008). Furthermore, from our experience in
dependency parsing, handling these steps together
improves accuracy in identification as well as clas-
sification (unlabeled and labeled attachment scores
in dependency parsing). This motivates the develop-
ment of a new semantic role labeling algorithm that
treats these two steps as a joint inference task.

Our algorithm is inspired by shift-reduce pars-
ing (Nivre, 2008). The algorithm uses several transi-
tions to identify predicates and their arguments with
semantic roles. One big advantage of the transition-
based approach is that it can use previously identi-
fied arguments as features to predict the next argu-
ment. We apply this technique to our approach and
achieve comparable results to another state-of-the-
art system evaluated on the same data sets.
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NO-PRED
( λ1 , λ2, j, λ3, [i|λ4], A )⇒ ( [λ1|j], λ2, i, λ3, λ4 , A )
∃j. oracle(j) 6= predicate

SHIFT
( λ1 , λ2, j, [i|λ3], λ4, A )⇒ ( [λ2|j], [ ] , i, [ ] , λ3, A )
∃j. oracle(j) = predicate ∧ λ1 = [ ] ∧ λ4 = [ ]

NO-ARC←
( [λ1|i], λ2 , j, λ3, λ4, A )⇒ ( λ1 , [i|λ2], j, λ3, λ4, A )
∃j. oracle(j) = predicate ∧ ∃i.oracle(i, j) = {i 6← j}

NO-ARC→
( λ1, λ2, j, λ3 , [i|λ4], A )⇒ ( λ1, λ2, j, [λ3|i], λ4 , A )
∃j. oracle(j) = predicate ∧ ∃i.oracle(i, j) = {j 6→ i}

LEFT-ARC←L
( [λ1|i], λ2 , j, λ3, λ4, A )⇒ ( λ1 , [i|λ2], j, λ3, λ4, A ∪ {i L← j} )
∃j. oracle(j) = predicate ∧ ∃i.oracle(i, j) = {i L← j}

RIGHT-ARC→L
( λ1, λ2, j, λ3 , [i|λ4], A )⇒ ( λ1, λ2, j, [λ3|i], λ4 , A ∪ {j L→ i} )
∃j. oracle(j) = predicate ∧ ∃i.oracle(i, j) = {j L→ i}

Table 1: Transitions in our bidirectional top-down search algorithm. For each row, the first line shows a transition and
the second line shows preconditions of the transition.

For better generalization of the statistical models,
we apply a self-learning clustering technique. We
first cluster predicates in test data using automati-
cally generated predicate argument structures, then
cluster predicates in training data by using the previ-
ously found clusters as seeds. Our experiments show
that this technique improves labeling accuracy for
both in-domain and out-of-domain tasks.

2 Transition-based semantic role labeling

Dependency-based semantic role labeling can be
viewed as a special kind of dependency parsing in
the sense that both try to find relations between
word pairs. However, they are distinguished in two
major ways. First, unlike dependency parsing that
tries to find some kind of relation between any word
pair, semantic role labeling restricts its search only
to top-down relations between predicate and argu-
ment pairs. Second, dependency parsing requires
one head for each word, so the final output is a tree,
whereas semantic role labeling allows multiple pred-
icates for each argument. Thus, not all dependency
parsing algorithms, such as a maximum spanning
tree algorithm (Mcdonald and Pereira, 2006), can be
naively applied to semantic role labeling.

Some transition-based dependency parsing algo-
rithms have been adapted to semantic role labeling
and shown good results (Henderson et al., 2008;
Titov et al., 2009). However, these algorithms are
originally designed for dependency parsing, so are
not necessarily customized for semantic role label-

ing. Here, we present a novel transition-based algo-
rithm dedicated to semantic role labeling. The key
difference between this algorithm and most other
transition-based algorithms is in its directionality.
Given an identified predicate, this algorithm tries to
find top-down relations between the predicate and
the words on both left and right-hand sides, whereas
other transition-based algorithms would consider
words on either the left or the right-hand side, but
not both. This bidirectional top-down search makes
more sense for semantic role labeling because predi-
cates are always assumed to be the heads of their ar-
guments, an assumption that cannot be generalized
to dependency parsing, and arguments can appear
either side of the predicate.

Table 1 shows transitions used in our algorithm.
All parsing states are represented as tuples (λ1, λ2,
p, λ3, λ4, A), where λ1..4 are lists of word indices
and p is either a word index of the current predi-
cate candidate or @ indicating no predicate candi-
date. λ1,4 contain indices to be compared with p and
λ2,3 contain indices already compared with p. A is a
set of labeled arcs representing previously identified
arguments with respect to their predicates. ← and
→ indicate parsing directions. L is a semantic role
label, and i, j represent indices of their correspond-
ing word tokens. The initial state is ([ ], [ ], 1, [ ],
[2, . . . , n], ∅), where w1 and wn are the first and the
last words in a sentence, respectively. The final state
is (λ1, λ2, @, [ ], [ ],A), i.e., the algorithm terminates
when there is no more predicate candidate left.
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John1 wants2 to3 buy4 a5 car6Root0

SBJ
ROOT

OPRD
OBJ

IM NMOD

A0 A1
A0 A1

Figure 1: An example of a dependency tree with semantic roles. The upper and lower arcs stand for syntactic and
semantic dependencies, respectively. SBJ, OBJ, OPRD, IM, NMOD stand for a subject, object, object predicative,
infinitive marker, and noun-modifier. A0, A1 stand for ARG0, ARG1 in PropBank (Palmer et al., 2005).

Transition λ1 λ2 p λ3 λ4 A
0 [ ] [ ] 1 [ ] [2..6] ∅
1 NO-PRED [1] [ ] 2 [ ] [3..6]
2 LEFT-ARC [ ] [1] 2 [ ] [3..6] A ∪ {1←A0− 2}
3 RIGHT-ARC [ ] [1] 2 [3] [4..6] A ∪ {2 −A1→ 3}
4 NO-ARC [ ] [1] 2 [3..4] [5..6]
5 NO-ARC [ ] [1] 2 [3..5] [6]
6 NO-ARC [ ] [1] 2 [3..6] [ ]
7 SHIFT [1..2] [ ] 3 [ ] [4..6]
8 NO-PRED [1..3] [ ] 4 [ ] [5..6]
9 NO-ARC [1..2] [3] 4 [ ] [5..6]

10 NO-ARC [1] [2..3] 4 [ ] [5..6]
11 LEFT-ARC [ ] [1..3] 4 [ ] [5..6] A ∪ {1←A0− 4}
12 NO-ARC [ ] [1..3] 4 [5] [6]
13 RIGHT-ARC [ ] [1..3] 4 [5..6] [ ] A ∪ {4 −A1→ 6}
14 SHIFT [1..4] [ ] 5 [ ] [6]
15 NO-PRED [1..5] [ ] 6 [ ] [ ]
16 NO-PRED [1..6] [ ] @ [ ] [ ]

Table 2: Parsing states generated by our algorithm for the example in Figure 1.

The algorithm uses six kinds of transitions. NO-
PRED is performed when an oracle identifies wj as
not a predicate. All other transitions are performed
when wj is identified as a predicate. SHIFT is per-
formed when both λ1 and λ4 are empty, meaning
that there are no more argument candidates left for
the predicate wj . NO-ARC is performed when wi

is identified as not an argument of wj . LEFT-ARCL
and RIGHT-ARCL are performed when wi is identi-
fied as an argument of wj with a label L. These tran-
sitions can be performed in any order as long as their
preconditions are satisfied. For our experiments, we
use the following generalized sequence:

[ (NO-PRED)∗ ⇒ (LEFT-ARC←L |NO-ARC←)∗ ⇒
(RIGHT-ARC→L |NO-ARC→)∗ ⇒ SHIFT ]∗

Notice that this algorithm does not take separate
steps for argument identification and classification.

By adding the NO-ARC transitions, we successfully
merge these two steps together without decrease in
labeling accuracy.1 Since each word can be a predi-
cate candidate and each predicate considers all other
words as argument candidates, a worst-case com-
plexity of the algorithm is O(n2). To reduce the
complexity, Zhao et al. (2009) reformulated a prun-
ing algorithm introduced by Xue and Palmer (2004)
for dependency structure by considering only direct
dependents of a predicate and its ancestors as ar-
gument candidates. This pruning algorithm can be
easily applied to our algorithm: the oracle can pre-
filter such dependents and uses the information to
perform NO-ARC transitions without consulting sta-
tistical models.

1We also experimented with the traditional approach of
building separate classifiers for identification and classification,
which did not lead to better performance in our case.
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Table 2 shows parsing states generated by our al-
gorithm. Our experiments show that this algorithm
gives comparable results against another state-of-
the-art system.

3 Predicate argument clustering

Some studies showed that verb clustering informa-
tion could improve performance in semantic role la-
beling (Gildea and Jurafsky, 2002; Pradhan et al.,
2008). This is because semantic role labelers usually
perform worse on verbs not seen during training, for
which the clustering information can provide useful
features. Most previous studies used either bag-of-
words or syntactic structure to cluster verbs; how-
ever, this may or may not capture the nature of predi-
cate argument structure, which is more semantically
oriented. Thus, it is preferable to cluster verbs by
their predicate argument structures to get optimized
features for semantic role labeling.

In this section, we present a self-learning clus-
tering technique that effectively improves labeling
accuracy in the test domain. First, we perform se-
mantic role labeling on the test data using the algo-
rithm in Section 2. Next, we cluster verbs in the test
data using predicate argument structures generated
by our semantic role labeler (Section 3.2). Then, we
cluster verbs in the training data using the verb clus-
ters we found in the test data (Section 3.3). Finally,
we re-run our semantic role labeler on the test data
using the clustering information. Our experiments
show that this technique gives improvement to la-
beling accuracy for both in and out-of domain tasks.

3.1 Projecting predicate argument structure
into vector space

Before clustering, we need to project the predicate
argument structure of each verb into vector space.
Two kinds of features are used to represent these
vectors: semantic role labels and joined tags of
semantic role labels and their corresponding word
lemmas. Figure 2 shows vector representations of
predicate argument structures of verbs, want and
buy, in Figure 1.

Initially, all existing and non-existing features are
assigned with a value of 1 and 0, respectively. How-
ever, assigning equal values to all existing features
is not necessarily fair because some features have

want 1 1 1 1 00s 0s
buy 1 1 1 0 10s 0s

A0 A1 john:A0 to:A1 car:A1... ...Verb

Figure 2: Projecting the predicate argument structure of
each verb into vector space.

higher confidence, or are more important than the
others; e.g., ARG0 and ARG1 are generally predicted
with higher confidence than modifiers, nouns give
more important information than some other gram-
matical categories, etc. Instead, we assign each ex-
isting feature with a value computed by the follow-
ing equations:

s(lj |vi) =
1

1 + exp(−score(lj |vi))

s(mj , lj) =

{
1 (wj 6= noun)

exp(
count(mj ,lj)∑
∀k count(mk,lk))

vi is the current verb, lj is the j’th label of vi, and
mj is lj’s corresponding lemma. score(lj |vi) is a
score of lj being a correct argument label of vi; this
is always 1 for training data and is provided by our
statistical models for test data. Thus, s(lj |vi) is an
approximated probability of lj being a correct argu-
ment label of vi, estimated by the logistic function.
s(mj , lj) is equal to 1 if wj is not a noun. If wj is
a noun, it gets a value ≥ 1 given a maximum likeli-
hood of mj being co-occurred with lj .2

With the vector representation, we can apply any
kind of clustering algorithm (Hofmann and Puzicha,
1998; Kamvar et al., 2002). For our experiments,
we use k-best hierarchical clustering for test data,
and k-means clustering for training data.

3.2 Clustering verbs in test data
Given automatically generated predicate argument
structures in the test data, we apply k-best hierar-
chical clustering; that is, a relaxation of classical hi-
erarchical agglomerative clustering (from now on,
HAC; Ward (1963)), to find verb clusters. Unlike
HAC that merges a pair of clusters at each iteration,
k-best hierarchical clustering merges k-best pairs at

2Assigning different weights for nouns resulted in more
meaningful clusters in our experiments. We will explore addi-
tional grammatical category specific weighting schemes in fu-
ture work.
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each iteration (Lo et al., 2009). Instead of merging a
fixed number of k-clusters, we use a threshold to dy-
namically determine the top k-clusters. Our studies
indicate that this technique produces almost as fine-
grained clusters as HAC, yet converges much faster.

Our algorithm for k-best hierarchical clustering is
presented in Algorithm 1. thup is a threshold that de-
termines which k-best pairs are to be merged (in our
case, kup = 0.8). sim(ci, cj) is a similarity between
clusters ci and cj . For our experiments, we use co-
sine similarity with average-linkage. It is possible
that other kinds of similarity metrics would work
better, which we will explore as future work. Con-
ditions in line 15 ensure that each cluster is merged
with at most one other cluster at each iteration, and
conditions in line 17 force at least one cluster to
be merged with one other cluster at each iteration.
Thus, the algorithm is guaranteed to terminate after
at most (n− 1) iterations.

When the algorithm terminates, it returns a set of
one cluster with different hierarchical levels. For
our experiments, we set another threshold, thlow, for
early break-out: if there is no cluster pair whose sim-
ilarity is greater than thlow, we terminate the algo-
rithm (in our case, thlow = 0.7). A cluster set gen-
erated by this early break-out contains several unit
clusters that are not merged with any other cluster.
All of these unit clusters are discarded from the set
to improve set quality. This is reasonable because
our goal is not to cluster all verbs but to find a useful
set of verb clusters that can be mapped to verbs in
training data, which can lead to better performance
in semantic role labeling.

3.3 Clustering verbs in training data

Given the verb clusters we found in the test data,
we search for verbs that are similar to these clusters
in the training data. K-means clustering (Hartigan,
1975) is a natural choice for this case because we
already know k-number of center clusters to begin
with. Each verb in the training data is compared with
all verb clusters in the test data, and merged with the
cluster that gives the highest similarity. To maintain
the quality of the clusters, we use the same thresh-
old, thlow, to filter out verbs in the training data that
are not similar enough to any verb cluster in the test
data. By doing so, we keep only verbs that are more
likely to be helpful for semantic role labeling.

input : C = [c1, .., cn]: ci is a unit cluster.
thup ∈ R: threshold.

output: Ĉ = [c1, .., cm]: cj is a unit or merged
cluster, where m ≤ n.

begin1

while |C| > 1 do2

L← list()3

for i ∈ [1, |C| − 1] do4

for j ∈ [i+ 1, |C|] do5

t← (i, j, sim(ci, cj))6

L.add(t)7

end8

end9

descendingSortBySimilarity(L)10

S ← set()11

for k ∈ [1, |L|] do12

t← L.get(k)13

i← t(0); j ← t(1); sim← t(2)14

if i ∈ S or j ∈ S then15

continue16

if k = 1 or sim > thup then17

C.add(ci ∪ cj); S.add(i, j)18

C.remove(ci, cj)19

else20

break21

end22

end23

end24

end25
Algorithm 1: k-best hierarchical clustering.

4 Features

4.1 Baseline features

For a baseline approach, we use features similar to
ones used by Johansson and Nugues (2008). All fea-
tures are assumed to have dependency structures as
input. Table 3 shows n-gram feature templates used
for our experiments (f: form, m: lemma, p: POS tag,
d: dependency label). warg andwpred are the current
argument and predicate candidates. hd(w) stands for
the head of w, lm(w), rm(w) stand for the leftmost,
rightmost dependents of w, and ls(w), rs(w) stand
for the left-nearest, right-nearest siblings of w, with
respect to the dependency structures. Some of these
features can be presented as a joined feature; e.g., a
combination of warg’s POS tag and lemma.
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Word tokens Features
warg, wpred f,m,p,d
warg±1, hd, lm, rm, ls, rs (warg) m,p
wpred±1, hd, lm, rm (wpred) m,p

Table 3: N -gram feature templates.

Besides the n-gram features, we use several struc-
tural features such as dependency label set, subcat-
egorization, POS path, dependency path, and depen-
dency depth. Dependency label set features are de-
rived by collecting all dependency labels of wpred’s
direct dependents. Unlike Johansson and Nugues,
we decompose subcategorization features into two
parts: one representing the left-hand side and the
other representing the right-hand side dependencies
of wpred. For the predicate wants in Figure 3, we
generate ←−SBJ and −−−→OPRD as separate subcategoriza-
tion features.

wants

PRP:John TO:to

VB:buy

SBJ OPRD

IM

Figure 3: Dependency structure used for subcategoriza-
tion, path, and depth features.

We also decompose path features into two parts:
given the lowest common ancestor (LCA) of warg

and wpred, we generate path features from warg to
the LCA and from the LCA to wpred, separately.
For example, the predicate buy and the argument
John in Figure 3 have a LCA at wants, so we gen-
erate two sets of path features, {↑PRP, ↓TO↓VB}
with POS tags, and {↑SBJ, ↓OPRD↓IM} with depen-
dency labels. Such decompositions allow more gen-
eralization of those features; even if one part is not
matched to the current parsing state, the other part
can still participate as a feature. Throughout our
experiments, these generalized features give slightly
higher labeling accuracy than ungeneralized features
although they form a smaller feature space.

In addition, we apply dependency path features to
wpred’s highest verb chain, which often shares ar-
guments with the predicate (e.g., John is a shared
argument of the predicate buy and its highest verb
chain wants). To retrieve the highest verb chain, we
apply a simple heuristic presented below. The func-

tion getHighestVerbChain takes a predicate,
pred, as input and returns its highest verb chain,
vNode, as output. If there is no verb chain for the
predicate, it returns null instead. Note that this
heuristic is designed to work with dependency rela-
tions and labels described by the CoNLL’09 shared
task (Hajič et al., 2009).

func getHighestVerbChain(pred)
vNode = pred;
regex = "CONJ|COORD|IM|OPRD|VC";

while (regex.matches(vNode.deprel))
vNode = vNode.head;

if (vNode != pred) return vNode;
else return null;

Dependency depth features are a reduced form of
path features. Instead of specifying POS tags or de-
pendency labels, we indicate paths with their depths.
For instance, John and buy in Figure 3 have a depen-
dency depth feature of ↑1↓2, which implies that the
depth between John and its LCA (wants) is 1, and
the depth between the LCA and buy is 2.

Finally, we use four kinds of binary features: if
warg is a syntactic head of wpred, if wpred is a syn-
tactic head ofwarg, ifwpred is a syntactic ancestor of
warg, and if wpred’s verb chain has a subject. Each
feature gets a value of 1 if true; otherwise, it gets a
value of 0.

4.2 Dynamic and clustering features
All dynamic features are derived by using previ-
ously identified arguments. Two kinds of dynamic
features are used for our experiments. One is a la-
bel of the very last predicted numbered argument of
wpred. For instance, the parsing state 3 in Table 2
uses a label A0 as a feature to make its prediction,
wants

A1→ to, and the parsing states 4 to 6 use a label
A1 as a feature to make their predictions, NO-ARC’s.
With this feature, the oracle can narrow down the
scope of expected arguments of wpred. The other is
a previously identified argument label of warg. The
existence of this feature implies that warg is already
identified as an argument of some other predicate.
For instance, when warg = John and wpred = buy in
Table 2, a label A0 is used as a feature to make the
prediction, John A0← buy, because John is already
identified as an A0 of wants.
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Finally, we use wpred’s cluster ID as a feature. The
dynamic and clustering features combine a very
small portion of the entire feature set, but still give a
fair improvement to labeling accuracy.

5 Experiments

5.1 Corpora
All models are trained on Wall Street Journal sec-
tions 2-21 and developed on section 24 using auto-
matically generated lemmas and POS tags, as dis-
tributed by the CoNLL’09 shared task (Hajič et al.,
2009). CoNLL’09 data contains semantic roles for
both verb and noun predicates, for which we use
only ones related to verb predicates. Furthermore,
we do not include predicate sense classification as a
part of our task, which is rather a task of word sense
disambiguation than semantic role labeling.

For in-domain and out-of-domain evaluations,
WSJ section 23 and the Brown corpus are used, also
distributed by CoNLL’09. To retrieve automatically
generated dependency trees as input to our semantic
role labeler, we train our open source dependency
parser, called ClearParser3, on the training set and
run the parser on the evaluation sets. ClearParser
uses a transition-based dependency parsing algo-
rithm that gives near state-of-the-art results (Choi
and Palmer, 2011), and mirrors our SRL algorithm.

5.2 Statistical models
We use Liblinear L2-L1 SVM for learning; a linear
classification algorithm using L2 regularization and
L1 loss function. This algorithm is designed to han-
dle large scale data: it assumes the data to be lin-
early separable so does not use any kind of kernel
space (Hsieh et al., 2008). As a result, it significantly
reduces training time compared to typical SVM, yet
performs accurately. For our experiments, we use
the following learning parameters: c = 0.1 (cost),
e = 0.2 (termination criterion), B = 0 (bias).

Since predicate identification is already provided
in the CoNLL’09 data, we do not train NO-PRED.
SHIFT does not need to be trained in general be-
cause the preconditions of SHIFT can be checked
deterministically without consulting statistical mod-
els. NO-ARC← and LEFT-ARC←L are trained to-
gether using the one-vs-all method as are NO-ARC→

3http://code.google.com/p/clearparser/

and RIGHT-ARC→L . Even with multi-classifications,
it takes less than two minutes for the entire training
using Liblinear.

5.3 Accuracy comparisons
Tables 4 and 5 show accuracy comparisons between
three models evaluated on the WSJ and Brown cor-
pora, respectively. ‘Baseline’ uses the features de-
scribed in Section 4.1. ‘+Dynamic’ uses all baseline
features and the dynamic features described in Sec-
tion 4.2. ‘+Cluster’ uses all previous features and the
clustering feature. Even though our baseline system
already has high performance, each model shows an
improvement over its previous model (very slight
for ‘+Cluster’). The improvement is greater for the
out-of-domain task, implying that the dynamic and
clustering features help more on new domains. The
differences between ‘Baseline’ and ‘+Dynamic’ are
statistically significant for both in and out-of domain
tasks (Wilcoxon signed-rank test, treating each sen-
tence as an individual event, p ≤ 0.025).

Task P R F1

Baseline
AI 92.57 88.44 90.46
AI+AC 87.20 83.31 85.21

+Dynamic
AI 92.38 88.76 90.54
AI+AC 87.33 83.91 85.59∗

+Cluster
AI 92.62 88.90 90.72
AI+AC 87.43 83.92 85.64

JN (2008) AI+AC 88.46 83.55 85.93

Table 4: Labeling accuracies evaluated on the WSJ (P:
precision, R: recall, F1: F1-score, all in %). ‘AI’ and
‘AC’ stand for argument identification and argument clas-
sification, respectively.

Task P R F1

Baseline
AI 90.96 81.57 86.01
AI+AC 77.11 69.14 72.91

+Dynamic
AI 90.90 82.25 86.36
AI+AC 77.41 70.05 73.55∗

+Cluster
AI 90.87 82.43 86.44
AI+AC 77.47 70.28 73.70

JN (2008) AI+AC 77.67 69.63 73.43

Table 5: Labeling accuracies evaluated on the Brown.

We also compare our results against another state-
of-the-art system. Unfortunately, no other system

43



has been evaluated with our exact environmental set-
tings. However, Johansson and Nugues (2008), who
showed state-of-the-art performance in CoNLL’08,
evaluated their system with settings very similar to
ours. Their task was exactly the same as ours;
given predicate identification, they evaluated their
dependency-based semantic role labeler for argu-
ment identification and classification on the WSJ

and Brown corpora, distributed by the CoNLL’05
shared task (Carreras and Màrquez, 2005). Since
the CoNLL’05 data was not dependency-based, they
applied heuristics to build dependency-based predi-
cate argument structures. Their converted data may
appear to be a bit different from the CoNLL’09 data
we use (e.g., hyphenated words are tokenized by the
hyphens in CoNLL’09 data whereas they are not in
CoNLL’05 data), but semantic role annotations on
headwords should look very similar.

Johansson and Nugues’s results are presented as
JN (2008) in Tables 4 and 5. Our final system shows
comparable results against this system. These re-
sults are meaningful in two ways. First, JN used a
graph-based dependency parsing algorithm that gave
higher parsing accuracy for these test sets than the
transition-based dependency parsing algorithm used
in ClearParser (about 0.9% better in labeled attach-
ment score). Even with poorer parse output, our SRL

system performed as well as theirs. Furthermore,
our system used only one set of features, which
makes the feature engineering easier than JN’s ap-
proach that used different sets of features for argu-
ment identification and classification.

6 Conclusion and future work

This paper makes two contributions. First, we in-
troduce a transition-based semantic role labeling al-
gorithm that shows comparable performance against
another state-of-the-art system. The new algorithm
takes advantage of using previous predictions as fea-
tures to make the next predictions. Second, we
suggest a self-learning clustering technique that im-
proves labeling accuracy slightly in both the do-
mains. The clustering technique shows potential for
improving performance in other new domains.

These preliminary results are promising; however,
there is still much room for improvement. Since our
algorithm is transition-based, many existing tech-

niques such as k-best ranking (Zhang and Clark,
2008) or dynamic programming (Huang and Sagae,
2010) designed to improve transition-based parsing
can be applied. We can also apply different kinds of
clustering algorithms to improve the quality of the
verb clusters. Furthermore, more features, such as
named entity tags or dependency labels, can be used
to form a better representation of feature vectors for
the clustering.

One of the strongest motivations for designing our
transition-based SRL system is to develop a joint-
inference system between dependency parsing and
semantic role labeling. Since we have already de-
veloped a dependency parser, ClearParser, based
on a parallel transition-based approach, it will be
straightforward to integrate this SRL system with the
parser. We will also explore the possiblity of adding
empty categories during semantic role labeling.

7 Related work

Nivre (2008) introduced several transition-based de-
pendency parsing algorithms that have been widely
used. Johansson and Nugues (2008) and Zhao
et al. (2009) presented dependency-based semantic
role labelers showing state-of-the-art performance
for the CoNLL’08 and ’09 shared tasks in English.
Scheible (2010) clustered predicate argument struc-
tures using EM training and the MDL principle.
Wagner et al. (2009) used predicate argument clus-
tering to improve verb sense disambiguation.
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Abstract

Automatically-derived grammars, such as the
split-and-merge model, have proven helpful
in parsing (Petrov et al., 2006). As such
grammars are refined, latent information is
recovered which may be usable for linguis-
tic tasks besides parsing. In this paper, we
present and examine a new method of seman-
tic relation classification: using automatically-
derived grammar rule clusters as a robust
knowledge source for semantic relation clas-
sification. We examine performance of this
feature group on the SemEval 2010 Relation
Classification corpus, and find that it improves
performance over both more coarse-grained
and more fine-grained syntactic and colloca-
tional features in semantic relation classifica-
tion.

1 Introduction

In the process of discovering a refined grammar
starting from rules in the original treebank gram-
mar, latent-variable grammars recover latent infor-
mation. Intuitively, the new split grammar states
should reflect linguistic information that has been
generalized from the lexical level but is not so gen-
eral as the original syntactic level. While the in-
tended use of this information is to improve syntac-
tic parsing, the lexically-derived nature of the split
grammar states suggests it may contain semantic in-
formation as well.

Petrov et al. (2006) note that while some of these
split grammar states reflect true linguistic informa-
tion, such as the clustering of verbs with similar de-

pendencies, other grammar states may reflect use-
less information, such as a split between rules that
each terminate in a comma. However, it is the auto-
matic nature of grammar splitting which shows po-
tential for deriving semantic knowledge; such split
grammar states may reflect statistical and linguistic
observations not noticed by humans.

In this paper, we use this recovered latent infor-
mation for the classification of semantic relations.
Our goal is to determine whether recovered latent
grammatical information is capable of contributing
to the real-world linguistic task of relation classifica-
tion. We will compare the feature performance of re-
covered latent information with that of other syntac-
tic and collocational features to determine whether
or not the recovered latent information is helpful in
semantic relation classification.

2 Task Description

We performed the task of classifying semantic rela-
tions from SemEval 2010 Task 8: Multi-way Clas-
sification of Semantic Relations between Pairs of
Nominals. Each instance consists of a sentence,
marked with two nominals, e1 and e2. One of 19
possible direction-sensitive relations is annotated for
each pair of nominals. Two examples are shown be-
low.

• The <e1>author</e1> of a keygen uses a
<e2>disassembler</e2> to look at the raw
assembly code.
Relation: Instrument-Agency(e2,e1)
• Their <e1>knowledge</e1> of the power

and rank symbols of the Continental em-
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pires was gained from the numerous Germanic
<e2>recruits</e2> in the Roman army, and
from the Roman practice of enfeoffing various
Germanic warrior groups with land in the im-
perial provinces.
Relation: Entity-Origin(e1,e2)

We classified the semantic relations using a
Maximum Entropy classifier. In our system,
classification was 19-way, direction-sensitive1

between the classifications: Entity-Origin, Entity-
Destination, Cause-Effect, Product-Producer,
Content-Container, Instrument-Agency, Member-
Collection, Component-Whole, Message-Topic,
and Other (non-directional). The model was trained
on the 8000-instance training section of the Se-
mEval 2010 Task 8 Semantic Relations Corpus.
Distribution of the training data is shown in Table 1
(Hendrickx et al., 2010).

Class count % of Data
Other 1410 17.63%
Cause-Effect 1003 12.54%
Component-Whole 941 11.76%
Entity-Destination 845 10.56%
Product-Producer 717 8.96%
Entity-Origin 716 8.95%
Member-Collection 690 8.63%
Message-Topic 634 7.92%
Content-Container 540 6.75%
Instrument-Agency 504 6.30%

Table 1: Class distribution in the training section of Se-
mEval 2010 Task 8 Semantic Relations Corpus.

We tested the model on the 2717-instance testing
section of the same corpus. For each instance, the
user was provided with a sentence containing two
marked entities, e1 and e2. We structured the task
such that, for each instance, we chose the best se-
mantic relation out of the 19 available.

In this paper, we use grammatical cluster infor-
mation (i.e., recovered latent information) from the
Berkeley Parser (Petrov 2006) as semantic features
of syntactic origin to classify semantic relations in
the SemEval 2010 Semantic Relations corpus, in a

1i.e., with a Content-Container relation, the nominal that is
the container and the nominal that is the content cannot be re-
versed.

Maximum Entropy model. We conduct two sets of
experiments. In the first experiment, we examine the
effect of using Berkeley Parser latent cluster features
to enhance specificity over more general features
(POS tags and others), where the cluster features are
inherently more closely tuned with the data than the
other features, and more likely to lead to an over-
fitted model. In the second experiment, we examine
the effect of using cluster features to enhance gener-
alizability over more specific features (the words of
the cluster features’ terminal nodes), in which case
the cluster features generalize over othe more spe-
cific features, but are more likely to miss detailed
patterns.

2.1 Previous Work

The classification of semantic relations has been
proposed to help NLP tasks ranging from word sense
disambiguation, language modelling, paraphrasing,
and recognising textual entailment (Hendrickx et al.,
2010).

Semantic world knowledge is crucial for accurate
semantic classification of many types, and sources
range from the hand-crafted-yet sparse (such as
WordNet) to the robust-yet-noisy (such as the In-
ternet). For this community task, teams proposed
a variety of knowledge sources and other fea-
tures for their relation classification, from knowl-
edge databases (Tymoshenko and Giuliano, 2010),
WordNet (Rink and Harabagiu, 2010), Wikipedia
(Szarvas and Gurevych, 2010), to formal linguistic
Levin classes (Rink and Harabagiu, 2010), to col-
locational metrics (Rink and Harabagiu, 2010) and
stems (Chen et al., 2010).

Syntactic features present special benefits to any
semantic classification task: they can generalize
over the local context in ways that collocational met-
rics cannot, and unlike knowledge database sources
which assign the most common word sense to a
word, syntactic features are sensitive to the word’s
sense, as determined by the local context of the
word. Several teams in SemEval 2010 Task 8 used
syntactic features for semantic relation classifica-
tion. Chen et al. (2010) use a feature set of the
syntactic parent node held in common by the two
nominals. Rink and Harabagiu (2010) use a feature
set of dependency paths of length 1 or 2 from the
dependency tree around the two nominals.
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2.2 Grammatical cluster information

For our investigations, we used the Berkeley Parser
(Petrov et al 2006, Petrov and Klein 2007) as a
source of grammar rule clusters. We used the
eng sm6.gr off-the-shelf model.

The Berkeley Parser starts with an initial gram-
mar extracted from Wall Street Journal corpus sec-
tions 2-22. The parser then tries to learn a set of rule
probabilities over latent annotations to maximize the
likelihood of the training trees using Expectation-
Maximization (EM).

Consider a sentence w and its unannotated tree T ,
a non-terminal A spanning (r, t), and its children B
and C spanning (r, s) and (s, t). Ax is a subsymbol
ofA, Bx ofB, and Cx of C. We calculate the poste-
rior probability of all annotated rules and positions
for each training set tree T in the Expectation step
(Petrov et al., 2006):

(1)

P ((r, s, t, Ax → ByCz) | w, T ) ∝ POUT(r, t, Ax)
×β(Ax → ByCz)PIN(r, s, By)PIN(s, t, Cz)

The probabilities from the Expectation step act as
weighted observations to update the rule probabili-
ties in the Maximization step:

β(Ax → ByCz) :=
#{Ax → ByCz}

Σy′,z′#{Ax → By′Cz′}
(2)

In each cycle of EM, the grammar is split ran-
domly in halves, and some halves are merged back
together. The grammar is retrained, and the results
are used to initialize the next round of EM.

In the splitting step, all grammatical nodes are
split in two. Although the grammar grows more
finely fitted to the training data with each splitting
step, its size quickly becomes unmanageable, its
rules become overfitted, and because the splits are
not a result of likelihood calculation, many unhelp-
ful rules are produced. The merging step functions
to remove unhelpful rules. In the merging step, each
split is examined for the loss of likelihood removing
it would cause; splits whose likelihood contribution
is below a cutoff are re-combined.

The experiments we perform in this paper are a
gamble on the possibility that the saved splits are
picking up semantic information from the rule struc-
ture they reflect in the increased likelihood. We use

the final split cluster ID’s (PP-5, PP-8, etc.) as fea-
tures in our experiments.2

2.3 Features

We used several sets of features in our experi-
ments. All POS-tags, syntactic structure, and Clus-
ter ID features come from the Berkeley Parser. The
lemmatization comes from Morpha (Minnen et al.,
2001). All features occurring less than two times in
the training data were discarded, for ease of process-
ing. A sample sentence and the resulting features
are shown in Table 2. Note that all features, col-
locational and syntactic, were used for discovering
semantic knowledge.

The Crayola <e1>box</e1> con-
tained two <e2>pencils</e2>.

SW the-dt, crayola-jj, contain-vbd,
two-cd, pencil-nns, box-nn

IBW contained, two, contained∧two
OCW crayola-jj, box-nn, contain-vbd,

pencil-nns
POS-tags vbd, cd, vbd∧cd
ID’s vbd6, cd1, vbd6∧cd1

Table 2: A sample sentence and its accompanying fea-
tures.

Collocational Features:

• Surrounding Words (SW): From Ye and
Baldwin’s (2007) preposition sense disam-
biguation system, this set of features consists
of lemmas of all of the words within a window
of seven words before and after each of e1 and
e2. Features are not, however, marked with rel-
ative location, as we found that this reduced ac-
curacy.

• In-Between Words (IBW): This bag of fea-
tures consists of the string of words occuring in
the sentence in between e1 and e2, exclusive, as
well as all the substrings of those consecutive
words. We tried marking each feature with its
relative location, but we found that results im-
proved without location marking, and so we do
not use location marking in these experiments.

2Note that cluster ID’s are only meaningful when compared
to other cluster ID’s split from the same parent node.
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Syntactic Features:

• Open Class Words (OCW): from Ye and
Baldwin’s (2007) preposition sense disam-
biguation system, this set of features consists
of the lemmas of all of the open-class words in
the sentence (i.e., NP, VP, ADJP, ADVP).

• POS-tags: The POS tags of the words (i.e., ter-
minal nodes) and all consecutive strings of POS
tags in between e1 and e2, exclusive. Tags are
from the Berkeley Parser.

• Cluster ID’s: The Berkeley Parser syntactic
rule cluster ID’s and POS-tags of the termi-
nal nodes in between e1 and e2. ID numbers
are only relevant when comparing ID’s with the
same POS tag.

3 Experiment: Cluster ID’s as more spcific
features

In our first experiment, we compared two sys-
tems of Surrounding Words, Open-Class Words, and
In-Between Terminal Tags, with and without In-
Between Terminal Cluster ID’s. The results are
shown in Table 3.
3.1 Results and Analysis

Table 3 shows the results of adding more spe-
cific Cluster ID features to the more general POS-
tag, Open-Class, and Surrounding-Words features.
While this could have led to an over-fitted model, ap-
parently it did not. Overall precision increased from
66.60% to 68.62%, an increase of 2.02%, yet recall
also increased, from 64.26% to 65.33%, an increase
of 1.07%. The more precise, more closely-fitted
features did not harm performance, but actually en-
hanced it. The Maximum Entropy learner itself pre-
ferred the Cluster ID features: Table 4 shows per-
class POS-tag and Cluster-ID features with a lambda
value over 0.25, comparing when both POS-tag fea-
tures and Cluster ID tags are available, versus just
POS-tags (all among other features used in Experi-
ment 1). When given the opportunity, the MaxEnt
learner considered the Cluster ID features more im-
portant than the POS-tag features.

As shown in Table 3, we can see that adding
the Cluster ID’s did mildly increase F-measure

(by 1.41 %, from 65.01% to 66.42%3. How-
ever, when viewed on a class-by-class basis, some
classes show great improvement with the addition
of Cluster ID’s while others remain unchanged. The
classes Cause-Effect, Component-Whole, Content-
Container, Instrument-Agency, and Message-Topic
all gained significantly with the addition of cluster
ID features. We investigated important features of
these classes more carefully.

Classes that significantly improved with Cluster
ID’s:

• Cause-Effect: Cluster ID features that cor-
related highly with Cause-Effect, besides
keyword-type single word clusters (from, that),
were a cluster of certain occurances of the
prepositions by, from, of, in; and a cluster of
cause-type verbs (shown in Table 5) plus the
phrase by.
• Content-Container: Features positively corre-

lated with Content-Container, besides some
keywords and phrases such as full of, was, in,
and the/a, included a Cluster ID feature with
a number of verbs commonly used to refer to
containers and the processes of filling and emp-
tying them, such as leaked, contained, poured,
stuffed, took, injected, inserted, and found. The
verbs from this feature are listed in Table 6.
• Instrument-Agency: Several Cluster ID fea-

tures of verbs correlate with this class. Al-
though it is not as obvious as the verb list with
Cause-Effect, Table 7 compares several verb
clusters that did have a noticeable positive cor-
relation with Instrument-Agency with several
verb clusters of the same POS-tags that did not
correlate.
• Component-Whole: Notable keyword and key

phrase features include of the/a/an, has a, and
has. One Cluster ID feature is a cluster of third-
person, possessive, and reflexive pronouns. Al-

3An F-measure of 66.42% would have put our system in the
middle of the pack on Task performance if it had participated
in the actual SemEval 2010 Task 8. Task results for the entire
dataset ranged from 82.18% F-m with a carefully-design knowl-
edge database, to 52.16% with parse features, NE’s, and seman-
tic seed lists, and 26.67% using punctuation, prepositional pat-
terns, and context words. Our goal, however, is to determine
whether recovered latent grammatical information is capable of
contributing to relation classification at all.

49



Precision Recall F-measure
Class no ID w/ ID diff no ID w/ ID diff no ID w/ ID diff
Cause-Effect 79.43 82.62 3.19 76.52 76.83 0.31 77.95 79.62 1.67
Component-Whole 56.58 61.86 5.28 55.13 57.69 2.56 55.84 59.70 3.86
Content-Container 74.37 77.04 2.67 77.08 78.65 1.57 75.70 77.84 2.14
Entity-Destination 73.30 72.60 -0.70 88.36 88.01 -0.35 80.12 79.57 -0.55
Entity-Origin 67.42 66.67 -0.75 69.77 69.77 0.00 68.57 68.18 -0.35
Instrument-Agency 55.73 56.30 0.57 46.79 48.72 1.93 50.87 52.23 1.36
Member-Collection 68.40 67.57 -0.83 73.39 75.11 1.72 70.81 71.14 0.33
Message-Topic 65.95 70.47 4.52 46.74 52.11 5.37 54.71 59.91 5.20
Product-Producer 58.19 62.50 4.31 44.59 41.13 -3.46 50.49 49.61 -0.88
Other 30.97 28.65 -2.32 36.56 35.46 -1.10 33.54 31.69 -1.85
Total, Macro-Avg 66.60 68.62 2.02 64.26 65.33 1.07 65.01 66.42 1.41

Table 3: Comparison of Open-Class Words, Surrounding Words, and POS-tags, with and without Cluster ID features.
Per SemEval2010 task standards, total does not include ’Other’. Directionality is evaluated, but results are combined
for viewability. Bold-font differences are most notable.

POS only POS &
Cluster ID

Class POS POS ID’s
Cause-Effect 5 0 6
Component-Whole 4 1 6
Content-Container 4 0 7
Entity-Destination 4 0 4
Entity-Origin 2 1 6
Instrument-Agency 7 0 6
Member-Collection 3 0 2
Message-Topic 3 0 6
Product-Producer 5 1 5
Other 1 1 0

Table 4: Number of POS-tag and Cluster ID features
with a lambda value over 0.25, with and without Clus-
ter ID features being available. High lambda values are
assigned when a classifier finds the features has a high
positive correlation with correct examples in the training
data.

though it is a somewhat rare feature, when it
occurs it is positively-correlated. An example
of a Component-Whole pronoun is below:

He stopped rowing when the
boat was opposite to the paddle
wheel of the steamer, and the
<e1>steamer</e1> stopped her
<e2>engine</e2> at the same
time.

accompanied, affected, built, caused, completed,
composed, contained, cooked, covered, created,
derived, developed, discovered, distilled, driven,
enclosed, fabricated, followed, founded, generated,
given, known, led, made, manufactured, obtained,
offered, produced, published, raised, represented,
run, shared, supported, transmitted, triggered, used,
wrapped, written

Table 5: Contents of the VBN-12 Cluster that occurred 3
or more times in the Relational Semantics corpus training
data. Many of the verbs denote a cause-effect relation-
ship.

• Message-Topic: Some helpful keyword fea-
tures were in, to, and that. A helpful Cluster ID
feature was a cluster of the prepositions about,
over, upon, around, and between. The model
also ranked highly a Cluster ID feature contain-
ing a number of ‘discussion’ and ‘document’
verbs, shown in Table 8.

Classes that did not significantly improve with
Cluster ID’s:

• Entity-Origin: This class is suspected to have
been plagued by faulty annotation. 7 out of
the first 24 training examples are incorrectly
marked as Entity-Origin, according to the cor-
pus’s definitions. This noise in the data likely
prevents effective comparison of features. De-
spite the noise, some clusters with a high cor-
relation to the class include: a cluster of verbs
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adjusted, applied, became, brought, built,
caused, contained, created, described, did,
established, examined, featured, followed,
formed, found, gave, included, injected,
inserted, introduced, involved, joined,
leaked, made, marked, posted, poured,
produced, released, reported, saw, sent,
spotted, stuffed, took, used, was, were, won,
wrote, wrapped, written

Table 6: Contents of the VBD-5 Cluster that occurred 3
or more times in the Relational Semantics corpus training
data. A number of the verbs can refer to actions involving
containers and their contents.

consisting of mostly made, kept, and left; and
a cluster of verbs consisting mostly of made,
left, kept, departed, arrived, travelled, and con-
sisted.

• Entity-Destination: The Cluster ID features
that correlated highly with this class mark in-
dividual key words and phrases: for the, on the,
to the, and to. Clusters of words were not help-
ful for this class.

• Product-Producer: The Cluster ID features
that strongly correlated with this class con-
sisted mostly of the words who/whom and by;
individual key word features would have been
just as good. Several clusters of verbs were
highly correlated as well, but apparently there
was too much noise in the clusters for them to
be effective.

• Member-Collection: This class used the ‘jj-
24’ POS cluster, which contains the word other
among other adjectives. This is probably from
the classic Member-Collection phrase “Y and
other X’s”. However, this features, along with a
feature mostly consisting of of, was not enough
to make much difference (0.33%) over POS
features.

• Other: The class Other decreased in F-
measure with the addition of cluster ID fea-
tures. Combined with the overall F-measure
increase for all the regular classes, we inter-
pret this decrease in F-measure as an increase
in entropy, as more examples with identifiable

useful features are removed from the Other cat-
egory, and the MaxEnt learner has fewer accu-
rate patterns with which to cluster this diverse
group of examples. In order words, we actually
desire to see a decrease in Other F-measure, as
the examples in Other have almost nothing in
common with eachother and should be hard to
identify.

Overall, some of the semantic relation classes
were correlated with features of syntactic clusters,
and the clusters boosted scores, while other classes
weren’t, and their scores remained roughly the same.
The results of this experiment show that syntactic
clusters did not lead to overtraining of data, and were
helpful with semantic relation classification.

4 Experiment: Cluster ID’s as more
general features

In our second experiment, using the same experi-
mental set-up but different features, we compared
In-Between Words (IBW), IBW Plus POS-tags, and
IBW Plus POS-tags Plus Cluster ID features. The
results are shown in Table 9. The goal of this exper-
iment is to compare Cluster ID features to an even
more fine-grained feature, the words themselves.
The words, POS-tags, and Cluster ID tags all con-
cern the same nodes in the sentence.

4.1 Results and Analysis

Table 9 shows the results of adding coarser-grained
Cluster ID features to the more specific In-Between-
Words features, as well as to the POS-tag features.
The addition of Cluster ID features improved clas-
sification over IBW plus POS-tags, as well as IBW
alone. While the previous experiment showed that
Cluster ID features were not too specific to be help-
ful, this experiment shows that they are also not too
general as to blur lexical patterns. While overall F-
measure increased 2.13% from IBW with the addi-
tion of POS-tag features, from 63.35% to 65.48%,
F-measure also increased further by the addition of
Cluster ID features to IBW plus POS-tags, with a to-
tal increase of 2.72% over IBW features alone, from
63.35% to 66.07%.

Table 10 breaks down results into Precision and
Recall for the different groups of features. Since this
experiment was starting with a more precise base-
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Cluster Words
Instrument-Agency Positively-correlated Clusters:

VBD-7 approached, arrived, attached, bought, built, carried, caught, changed, chose, clicked, contained, covered,
deposited, described, directed, donated, dragged, dropped, entered, erected, established, explained, fetched,
fired, fled, gave, grabbed, hit, inserted, joined, kept, killed, knew, left, lived, lost, made, moved, noticed,
observed, opened, organized, packed, passed, performed, placed, poured, prepared, presented, pressed,
pulled, pushed, put, removed, rescheduled, saw, scaled, searched, sent, sold, spent, stirred, struck, stuffed,
threw, took, tore, turned, used, was, wrote

VBZ-9 applies, assists, brings, builds, changes, comprises, considers, contains, converts, covers, creates, cuts,
describes, emits, encloses, enters, gets, hits, holds, joins, keeps, leaves, makes, needs, offers, plays, portrays,
prepares, provides, removes, s, spreads, stirs, studies, teaches, uses, writes
Non-positively-correlated Clusters:

VBD-4 became, bought, carried, caused, completed, contained, created, developed, dug, filled, formed, got, had,
held, issued, killed, made, presented, produced, reached, received, required, saw, showed, stopped, took,
triggered

VBD-9 began, kept, started, stopped
VBD-8 continued, decided, had, happened, managed, needed, seemed, tried, used, wanted
VBD-2 found, learned, noted, noticed, read, revealed, saw
VBZ-8 arrives, brings, comes, comprises, consists, contains, contributes, copes, departs, extends, falls, feels, flows,

focuses, goes, grows, hangs, leads, looks, moves, originates, passes, pulls, refers, relates, rests, results,
returns, runs, s, sits, speaks, starts, stops, talks, travels, uprises

Table 7: Some positively-correlating and non-correlating verb clusters for Instrument-Agency. Verbs occurred at
least 3 times in the Relational Semantics corpus training data. Many verbs from positively-correlating Cluster ID
features may occur with mention of a tool or object to be used to carry out the action.

attaches, builds, carries, causes, combines,
comprises, contains, creates, describes, discusses,
encloses, gives, holds, includes, keeps, makes,
manipulates, means, needs, offers, performs,
presents, processes, provides, represents,
requires, s, shows, takes, wears, writes

Table 8: Contents of the VBZ-11 Cluster that occurred 3
or more times in the Relational Semantics corpus training
data. Many of the verbs are associated with documents or
speaking.

line, IBW features, and adding coarser grained fea-
tures, POS-tags and Cluster IDs, we might expect
to see a simultaneous decrease in precision and in-
crease in recall from the baseline IBW to the en-
hanced, POS-tag and Cluster ID versions. As can be
seen in Table 10, this is exactly what happens. How-
ever, Cluster ID features are found to be helpful to
the overall goal of semantic relation classification,
because they increase recall by much more (4.44%)
than they decrease precision (-0.44%).

Classes for which the Cluster ID plus
POS-tag plus IBW combo was highest in-
clude Content-Container, Entity-Destination,

Member-Collection, Message-Topic, and Other.
Component-Whole, Instrument-Agency, and
Product-Producer all showed gains over just IBW,
but had lower scores than IBW plus just POS-tags.
Only Cause-Effect and Entity-Origin failed to
show any improvement with POS-tags or Cluster
ID’s over the baseline IBW features.

A comparison of features between Experiments
1 and 2 showed that nearly all of the significantly
helpful positive-corellated Cluster ID features (with
lambda greater than 0.25) in Experiment 2 were also
important in Experiment 1. Some cluster ID features
in Experiment 1 that isolated out a single word were
replaced in Experiment 2 by a more-accurate indi-
vidual IBW word feature.

5 Conclusion

In this paper, we presented a new method of se-
mantic relation classification: using automatically-
derived grammar rule clusters as a semantic knowl-
edge source for relation classification. We tested
performance of the feature on the SemEval 2010
Relation Classification corpus, and found that it im-
proved performance over both more coarse-grained
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F-measure
Class IBW +POS IBW+POS diff +ID IBW+ID diff
Cause-Effect 83.39 80.19 -3.20 81.55 -1.84
Component-Whole 52.50 56.07 3.57 55.06 2.56
Content-Container 73.79 73.27 -0.52 75.19 1.40
Entity-Destination 77.98 80.06 2.08 81.49 3.51
Entity-Origin 68.56 67.21 -1.35 67.33 -1.23
Instrument-Agency 54.29 56.43 2.14 55.63 1.34
Member-Collection 73.22 75.30 2.08 75.50 2.28
Message-Topic 39.59 47.06 7.47 49.45 9.86
Product-Producer 46.88 53.77 6.89 53.46 6.58
Other 27.69 30.08 2.39 30.63 2.94
Total, Macro-Avg 63.35 65.48 2.13 66.07 2.72

Table 9: F-measure comparison of In-Between Words, IBW plus POS-tags, and IBW plus POS-tags plus Cluster
ID features. Per SemEval2010 task standards, total does not include Other. Bold-font differences are the highest
improvements (or baseline, whichever is higher).

Analysis iBW +POS iBW
+POS
diff

+ID iBW
+ID
diff

Precision 67.03 66.28 -0.75 66.59 -0.44
Recall 62.10 66.12 4.02 66.54 4.44

Table 10: Comparison of IBW, IBW plus POS-tags,
and IBW plus POS-tags plus Cluster ID features. Per
SemEval2010 Task 8 standards, total does not include
Other. Bold-font differences are the highest improve-
ments (or baseline).

and more fine-grained syntactic and collocational
features in semantic relation classification.
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Abstract

In this paper, we address the issue of automat-
ically identifying null instantiated arguments
in text. We refer to Fillmore’s theory of prag-
matically controlled zero anaphora (Fillmore,
1986), which accounts for the phenomenon of
omissible arguments using a lexically-based
approach, and we propose a strategy for iden-
tifying implicit arguments in a text and finding
their antecedents, given the overtly expressed
semantic roles in the form of frame elements.
To this purpose, we primarily rely on linguis-
tic knowledge enriched with role frequency
information collected from a training corpus.
We evaluate our approach using the test set
developed for the SemEval task 10 and we
highlight some issues of our approach. Be-
sides, we also point out some open problems
related to the task definition and to the general
phenomenon of null instantiated arguments,
which needs to be better investigated and de-
scribed in order to be captured from a compu-
tational point of view.

1 Introduction

In natural language, lexically unexpressed linguistic
items are very frequent and indirectly weaken any
attempt at computing the meaning of a text or dis-
course. However, the need to address semantic in-
terpretation is strongly felt in current advanced NLP
tasks, in particular, the issue of transforming a text
or discourse into a set of explicitly interconnected
predicate-argument/adjunct structures (hence PAS).
The aim of this task would be to unambiguously
identify events and participants and their association

to spatiotemporal locations. However, in order to do
that, symbolic and statistical approaches should be
based on the output representation of a deep parser,
which is currently almost never the case. Current
NLP technologies usually address the surface level
linguistic information with good approximation in
dependency or constituency structures, but miss im-
plicit entities (IEs) altogether. The difficulties to
deal with lexically unexpressed items or implicit en-
tities are related on the one hand to recall problems,
i.e. the problem of deciding whether an item is im-
plicit or not, and on the other hand to precision prob-
lems, i.e. if an implicit entity is accessible to the
reader from the discourse or its context, an appropri-
ate antecedent has to be found. However, a system
able to derive the presence of IEs may be a deter-
mining factor in improving performance of QA sys-
tems and, in general, in Informations Retrieval and
Extraction systems.

The current computational scene has witnessed an
increased interest in the creation and use of semanti-
cally annotated computational lexica and their asso-
ciated annotated corpora, like PropBank (Palmer et
al., 2005), FrameNet (Baker et al., 1998) and Nom-
Bank (Meyers, 2007), where the proposed annota-
tion scheme has been applied in real contexts. In all
these cases, what has been addressed is a basic se-
mantic issue, i.e. labeling PAS associated to seman-
tic predicates like adjectives, verbs and nouns. How-
ever, what these corpora have not made available is
information related to IEs. For example, in the case
of eventive deverbal nominals, information about the
subject/object of the nominal predicate is often im-
plicit and has to be understood from the previous
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discourse or text, e.g. “the development of a pro-
totype [→ implicit subject]”. As reported by Gerber
and Chai (2010), introducing implicit arguments to
nominal predicates in NomBank would increase the
resource coverage of 65%.

Other IEs can be found in agentless passive con-
structions ( e.g.“Our little problem will soon be
solved ∅ [→ unexpressed Agent ]”1) or as unex-
pressed arguments such as addressee with verbs of
commitment, for example “I can promise ∅ that one
of you will be troubled [→ unexpressed Addressee]”
and “I dare swear ∅ that before tomorrow night he
will be fluttering in our net [→ unexpressed Ad-
dressee]”.

In this paper we discuss the issues related to the
identification of implicit entities in text, focussing in
particular on omissions of core arguments of pred-
icates. We investigate the topic from the perspec-
tive proposed by (Fillmore, 1986) and base our ob-
servations on null instantiated arguments annotated
for the SemEval 2010 Task 10, ‘Linking Events and
Their Participants in Discourse’ (Ruppenhofer et al.,
2010)2. The paper is structured as follows: in Sec-
tion 2 we detail the task of identifying null instan-
tiated arguments from a theoretical perspective and
describe related work. In Section 3 we briefly in-
troduce the SemEval task 10 for identifying implicit
arguments in text, while in Section 4 we detail our
proposal for NI identification and binding. In Sec-
tion 5 we give a thorough description of the types of
null instantiations annotated in the SemEval data set
and we explain the behavior of our algorithm w.r.t.
such cases. We also compare our results with the
output of the systems participating to the SemEval
task. Finally, we draw some conclusions in Section
6.

2 Related work

In this work, we focus on null complements, also
called pragmatically controlled zero anaphora (Fill-
more, 1986), understood arguments or linguistically

1Unless otherwise specified, the following examples are
taken from the data sets made available in the SemEval 2010
task ‘Linking Events and Their Participants in Discourse’.
Some of them have been slightly simplified for purposes of ex-
position.

2http://semeval2.fbk.eu/semeval2.php?
location=tasks&taskid=9

unrealized arguments. We focus on Fillmore’s the-
ory because his approach represents the backbone of
the FrameNet project, which in turn inspired the Se-
mEval task we will describe below. Fillmore (1986)
shows that in English and many other languages
some verbs allow null complements and some oth-
ers don’t. The latter require that, when they ap-
pear in a sentence, all core semantic roles related
to the predicate are expressed. For example, sen-
tences like “Mary locked ∗∗” or “John guaranteed
∗∗” are not grammatically well-formed, because they
both require two mandatory linguistically inherent
participants. Fillmore tries to explain why seman-
tic roles can sometimes be left unspoken and what
constraints help the interpreter recover the missing
roles. He introduces different factors that can in-
fluence the licensing of null complements. These
can be lexically-based, (semantically close predi-
cates like ‘promise’ and ‘guarantee’ can license the
omission of the theme argument in different cases),
motivated by the interpretation of the predicate (“I
was eating ∅” licenses a null object because it has
an existential interpretation) and depending on the
context (see for example the use of impress in an
episodic context like “She impressed the audience”,
where the null complement is not allowed, compared
to “She impresses ∅ every time” in habitual interpre-
tation; examples from Ruppenhofer and Michaelis
(2009)).

The fact that Fillmore explains the phenomenon
of omissible arguments with a lexically-based ap-
proach implies that from his perspective neither a
purely pragmatic nor a purely semantic approach
can account for the behavior of omissible arguments.
For example, he argues that some verbs, such as to
lock will never license a null complement, no matter
in which pragmatic context they are used. Besides,
there are synonymous verbs which behave differ-
ently as regards null complementation, which Fill-
more sees as evidence against a purely semantic ex-
planation of implicit arguments.

Another relevant distinction drawn in Fillmore
(1986) is the typology of omitted arguments, which
depends on the type of licensor and on the interpre-
tation of the null complement. Fillmore claims that
with some verbs the missing complement can be re-
trieved from the context, i.e. it is possible to find a
referent previously mentioned in the text / discourse
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and bearing a definite, precise meaning. These cases
are labeled as definite null complements or instantia-
tions (DNI) and are lexically specific in that they ap-
ply only to some predicates. We report an example
of DNI in (1), taken from the SemEval task 10 data
set (see Section 3). The predicate ‘waiting’ has an
omitted object, which we understand from the dis-
course context to refer to ‘I’.

(1) I saw him rejoin his guest, and I crept quietly
back to where my companions were waiting ∅
to tell them what I had seen.

DNIs can also occur with nominal predicates, as
reported in (2), where the person having a thought,
the baronet, is mentioned in the preceding sentence:

(2) Stapleton was talking with animation, but the
baronet looked pale and distrait. Perhaps the
thought of that lonely walk across the
ill-omened moor was weighing heavily upon
his mind.

In contrast to DNIs, Fillmore claims that with
some verbs and in some interpretations, a core ar-
gument can be omitted without having a referent
expressing the meaning of the null argument. The
identity of the missing argument can be left un-
known or indefinite. These cases are labeled as in-
definite null complements or instantiations (INI) and
are constructionally licensed in that they apply to
any predicate in a particular grammatical construc-
tion. See for example the following cases, where the
omission of the agent is licensed by the passive con-
struction:

(3) One of them was suddenly shut off ∅.

(4) I am reckoned fleet of foot ∅.

Cases of INI were annotated by the organizers of
the SemEval task 10 also with nominal predicates,
as shown in the example below, where the perceiver
of the odour is left unspecified:

(5) Rank reeds and lush, slimy water-plants sent
an odour ∅ of decay and a heavy miasmatic
vapour.

Few attempts have been done so far to automati-
cally deal with the recovery of implicit information

in text. One of the earliest systems for identifying
extra-sentential arguments is PUNDIT by Palmer et
al. (1986). This Prolog-based system comprises a
syntactic component for parsing, a semantic compo-
nent, which decomposes predicates into component
meanings and fills their semantic roles with syntactic
constituents based on a domain-specific model, and
a reference resolution component, which is called
both for explicit constituents and for obligatory im-
plicit constituents. The reference resolution process
is based on a focus list with all potential pronominal
referents identified by the semantic component. The
approach, however, has not been evaluated on a data
set, so we cannot directly compare its performance
with other approaches. Furthermore, it is strongly
domain-dependent.

In a case study, Burchardt et al. (2005) propose
to identify implicit arguments exploiting contex-
tual relations from deep-parsing and lexico-semantic
frame relations encoded in FrameNet. In particu-
lar, they suggest converting a text into a network of
lexico-semantic predicate-argument relations con-
nected through frame-to-frame relations and recur-
rent anaphoric linking patterns. However, the au-
thors do not implement and evaluate this approach.

Most recently, Gerber and Chai (2010) have pre-
sented a supervised classification model for the re-
covery of implicit arguments of nominal predicates
in NomBank. The model features are quite different
from those usually considered in standard SRL tasks
and include among others information from Verb-
Net classes, pointwise mutual information between
semantic arguments, collocation and frequency in-
formation about the predicates, information about
parent nodes and siblings of the predicates and dis-
course information. The authors show the feasibility
of their approach, which however relies on a selected
group of nominal predicates with a large number of
annotated instances.

The first attempt to evaluate implicit argument
identification over a common test set and consider-
ing different kinds of predicates was made by Rup-
penhofer et al. (2010). Further details are given in
the following section.
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Data set Sentences Frame inst. Frame types Overt FEs DNIs (resolved) INIs
Train 438 1,370 317 2,526 303 (245) 277
Test 525 1,703 452 3,141 349 (259) 361

Table 1: Data set statistics from SemEval task 10

3 SemEval 2010 task 10

The SemEval-2010 task for linking events and their
participants in discourse (Ruppenhofer et al., 2010)
introduced a new issue w.r.t. the SemEval-2007
task ‘Frame Semantic Structure Extraction’ (Baker
et al., 2007), in that it focused on linking local se-
mantic argument structures across sentence bound-
aries. Specifically, the task included first the identi-
fication of frames and frame elements in a text fol-
lowing the FrameNet paradigm (Baker et al., 1998),
then the identification of locally uninstantiated roles
(NIs). If these roles are indefinite (INI), they have
to be marked as such and no antecedent has to be
found. On the contrary, if they are definite (DNI),
their coreferents have to be found in the wider dis-
course context. The challenge comprised two tasks,
namely the full task (semantic role recognition and
labeling + NI linking) and the NIs only task, i.e. the
identification of null instantiations and their refer-
ents given a test set with gold standard local seman-
tic argument structure. In this work, we focus on the
latter task.

The data provided to the participants included a
training and a test set. The training data comprised
438 sentences from Arthur Conan Doyle’s novel
‘The Adventure of Wisteria Lodge’, manually an-
notated with frame and INI/DNI information. The
test set included 2 chapters of the Sherlock Holmes
story ‘The Hound of Baskervilles’ with a total of
525 sentences, provided with gold standard frame
information. The participants had to i) assess if a lo-
cal argument is implicit; ii) decide whether it is an
INI or a DNI and iii) in the second case, find the
antecedent of the implicit argument. We report in
Table 1 some statistics about the provided data sets
from Ruppenhofer et al. (2010). Note that overt FEs
are the explicit frame elements annotated in the data
set.

Although 26 teams downloaded the data sets,
there were only two submissions, probably depend-
ing on the intrinsic difficulties of the task (see dis-

cussion in Section 5). The best performing system
(Chen et al., 2010) is based on a supervised learn-
ing approach using, among others, distributional se-
mantic similarity between the heads of candidate
referents and role fillers in the training data, but
its performance is strongly affected by data sparse-
ness. Indeed, only 438 sentences with annotated
NIs were made available in the training set, which
is clearly insufficient to capture such a multifaceted
phenomenon with a supervised approach. The sec-
ond system participating in the task (Tonelli and
Delmonte, 2010) was an adaptation of an exist-
ing LFG-based system for deep semantic analysis
(Delmonte, 2009), whose output was mapped to
FrameNet-style annotation. In this case, the major
challenge was to cope with the classification of some
NI phenomena which are very much dependent on
frame specific information, and can hardly be gener-
alized in the LFG framework.

4 A linguistically motivated proposal for
NI identification and binding

In this section, we describe our proposal for dealing
with INI/DNI identification and evaluate our output
against SemEval gold standard data. As discussed in
the previous section, existing systems dealing with
this task suffer on the one hand from a lack of train-
ing data and on the other hand from the dependence
of the task on frame annotation, which makes it diffi-
cult to adapt existing unsupervised approaches. We
show that, given this state of the art, better results
can be achieved in the task by simply developing an
algorithm that reflects as much as possible the lin-
guistic motivations behind NI identification in the
FrameNet paradigm. Our approach is divided into
two subtasks: i) identify INIs/DNIs and ii) for each
DNI, find the corresponding referent in text.

We develop an algorithm that incorporates the fol-
lowing linguistic information:

FE coreness status Null instantiated arguments as
defined in FrameNet are always core arguments, i.e.
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they are central to the meaning of a frame. Since
the coreness status of the arguments is encoded in
FrameNet, we limit our search for an NI only if a
core frame element is not overtly expressed in the
text.

Incorporated FEs Although all lexical units be-
longing to the same frame in the FrameNet database
are characterized by the same set of core FEs, a fur-
ther distinction should be introduced when dealing
with NIs identification. For example, in PERCEP-
TION ACTIVE, several predicates are listed, which
however have a different behavior w.r.t. the core
Body part FE. ‘Feel.v’, for instance, is underspec-
ified as regards the body part perceiving the sensa-
tion, so we can assume that when it is not overtly
expressed, we have a case of null instantiation. For
other verbs in the same frame, such as ‘glance.v’ or
‘listen.v’, the coreness status of Body part seems to
be more questionable, because the perceiving organ
is already implied by the verb meaning. For this rea-
son, we argue that if Body part is not expressed with
‘glance.v’ or ‘listen.v’, it is not a case of null instan-
tiation. Such FEs are defined as incorporated in the
lexical unit and are encoded as such in FrameNet.

Excludes and Includes relation In FrameNet,
some information about the relationship between
certain FEs is encoded. In particular, some FEs are
connected by the Excludes relation, which means
that they cannot occur together, and others by the
Requires relation, which means that if a given FE
is present, then also the other must be overtly or
implicitly present. An example of Excludes is the
relationship between the FE Entity 1 / Entity 2 and
Entities, because if Entity 1 and Entity 2 are both
present in a sentence, then Entities cannot be co-
present. Conversely, Entity 1 and Entity 2 stand in a
Requires relationship, because the first cannot occur
without the second. This kind of information can
clearly be helpful in case we have to automatically
decide whether an argument is implicit or is just not
present because it is not required.

INI/DNI preference Ruppenhofer and Michaelis
(2009) suggest that omissible arguments in particu-
lar frames tend to be always interpreted as definite or
indefinite. For example, they report that in a sample
from the British National Corpus, the interpretation

for a null instantiated Goal argument is definite in
97.5% of the observed cases. We take this feature
into account by considering the frequency of an im-
plicit argument being annotated as definite/indefinite
in the training set.

The algorithm incorporating all this linguistic in-
formation is detailed in the following subsection.

4.1 INI/DNI identification
In a preliminary step, we collect for each frame the
list of arguments being annotated as DNI/INI with
the corresponding frequency in the training set. For
example, in the CALENDRIC UNIT frame, the Whole
argument has been annotated 11 times as INI and
5 times as DNI. Some implicit frame elements oc-
cur only as INI or DNI, for example Goal, which is
annotated 14 times as DNI and never as INI in the
ARRIVING frame. This frequency list (FreqList)
is collected in order to decide if candidate null in-
stantiations have to be classified as DNI or INI.

We consider each sentence in the test data pro-
vided with FrameNet annotation, and for each pred-
icate p annotated with a set of overt frame elements
FEs, we run the first module for DNI/INI identi-
fication. The steps followed are reported in Algo-
rithm 1. We first check if the annotated FEs con-
tain all core frame elements C listed in FrameNet for
p. If the two sets are identical, we conclude that no
core frame element can be implicit and we return an
empty set both for DNI and INI . For example, in
the test sentence (6), the BODY MOVEMENT frame
appears in the sentence with its two core frame el-
ements, i.e. Body part and Agent. Therefore, no
implicit argument can be postulated.

(6) Finally [she]Agent openedBODY MOVEMENT [her
eyes]Body part again.

If the core FEs in C are not all overtly expressed
in FEs, we run two routines to check if the miss-
ing FEs CandNIs are likely to be null instantiated
elements. First, we discard all candidate NIs that ap-
pear as incorporated FEs for the given p. Second, we
discard as well candidate NIs if they are excluded by
the overtly annotated FEs.

The last steps of the algorithm are devoted to de-
ciding if the candidate null instantiation is definite
or indefinite. For this step, we rely on the observa-
tions collected in FreqList. In particular, for each
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candidate c we check if it was already present as INI
or DNI in the training set. If yes, we label c accord-
ingly. In case c was observed both as INI and as
DNI, the most probable label is assigned based on
its frequency in the training set.

Input: TestSet with annotated core FEs;
FreqList

Output: INI and DNI for p
foreach p ∈ TestSet do

extract annotated core FEs;
extract set C of core FEs for p in FrameNet;
if C ⊆ FEs then

DNI = ∅;
INI = ∅;

else
C \ FEs = CandNIs;
foreach c ∈ CandNIs do

if c is incorporated FE of p then
delete c

foreach fe ∈ FEs do
if fe excludes c then

delete c
end
foreach nip ∈ FreqListp do

if c = nip then
if nip is only dnip then

c ∈ DNI
if nip is only inip then

c ∈ INI
if nip is inip and nip is dnip
then

if Freq(inip) >
Freq(dnip) then

c ∈ INI
else

c ∈ DNI
end

end
return(INI);
return(DNI);

end
Algorithm 1: DNI/INI identification

4.2 DNI binding
Given that both the supervised approach exploited
by Chen et al. (2010) and the methodology pro-
posed in Tonelli and Delmonte (2010) based on

deep-semantic parsing achieved quite poor results
in the DNI-binding task, we devise a third approach
that relies on the observed heads of each FE in the
training set and assigns a relevance score to each
candidate antecedent.

We first collect for each FE the list of heads
Htrain assigned to FE in the training set, and we ex-
tract for each head htrain ∈ Htrain the correspond-
ing frequency fhtrain

. Then, for each dni ∈ DNI
identified with Algorithm 1 in the test set, we collect
all nominal heads Htest occurring in a window of
(plus/minus) 5 sentences and we assign to each can-
didate head htest ∈ Htest a relevance score relhtest

w.r.t. dni computed as follows:

relhtest =
fhtrain

dist(sentdni, senthtest)
(7)

where fhtrain
is the number of times h has been

observed in the training set with a FE label, and
dist(sentdni, senthtest) is the distance between the
sentence where the dni has been detected and the
sentence where the candidate head htest occurs (0 ≤
dist(sentdni, senthtest) ≤ 5).

The best candidate head for dni is the one with
the highest relhtest , given that it is (higher) than 0.
The way we compute the relevance score is based on
the intuition that, if a head was frequently observed
for FE in the training set, it is likely that it is a good
candidate. However, the more distant it occurs from
dni, then less probable it is as antecedent.

5 Evaluation and error analysis

We present here an evaluation of the system output
on test data. We further comment on some difficult
aspects of the task and suggest some solutions.

5.1 Results
Evaluation consists of different layers, which we
consider separately. The first task was to decide
whether an argument is implicit or not. We were
able to identify 53.8% of all null instantiated ar-
guments in text, which is lower than the recall of
63.4% achieved by SEMAFOR (Chen et al., 2010),
the best performing system in the challenge. How-
ever, in the following subtask of deciding whether an
implicit argument is an INI or a DNI, we achieved
an accuracy of 74.6% (vs. 54.7% of SEMAFOR,
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even if our result is based on fewer proposed clas-
sifications). Note that the majority-class accuracy
reported by Ruppenhofer et al. (2010) is 50.8%.

In Table 2 we further report precision, recall and
F1 scores computed separately on all DNIs and all
INIs automatically detected. Precision corresponds
to the percentage of null instantiations found (either
INI or DNI) that are correctly labeled as such, while
recall indicates the amount of INI or DNI that were
correctly identified compared to the gold standard
ones. Our approach does not show significant dif-
ferences between the result obtained with INIs and
DNIs, while the evaluation of SEMAFOR (between
parenthesis) shows that its performance suffers from
low recall as regards DNIs and low precision as re-
gards INIs.

P R F1
DNI 0.39 (0.57) 0.43 (0.03) 0.41 (0.06)
INI 0.46 (0.20) 0.38 (0.61) 0.42 (0.30)

Table 2: Evaluation of INI/DNI identification.
SEMAFOR performance between parenthesis.

Another evaluation step concerns the binding of
DNIs with the corresponding antecedents by apply-
ing the equation reported in Section 4.2. Results are
shown in Table 3:

P R F1
DNI 0.13 (0.25) 0.06 (0.01) 0.08 (0.02)

Table 3: Evaluation of DNI resolution. SEMAFOR per-
formance between parenthesis.

Although the binding quality still needs to be im-
proved, two main factors have a negative impact on
our performance, which do not depend on our al-
gorithm: first, 9% of the DNIs we bound to an an-
tecedent don’t have a referent in the gold standard.
Second, 26% of the wrong assignments concern an-
tecedents found for the Topic frame element in test
sentences where the STATEMENT frame has been
annotated together with the overtly expressed core
FE Message. In all these gold cases, Topic is not
considered null instantiated if the Message FE is ex-
plicit in the clause. Therefore, we can conclude that
the mistake done by our algorithm depends on the
missing Excludes relation between Topic and Mes-

sage, i.e. a rule should be introduced saying that
one of the two roles is redundant (and not null in-
stantiated) if the other is overtly expressed.

5.2 Open issues related to our approach
Even if with a small set of rules our approach
achieved state-of-the-art results in the SemEval task,
our performance clearly requires further improve-
ments. Indeed, we currently rely only on the back-
ground knowledge about core FEs from FrameNet,
combined with statistical observations about role
fillers acquired from the training set. Additional
morphological, syntactic, semantic and discourse in-
formation could be exploited in different ways. For
example, since the passive voice of a verb can con-
structionally license INIs, this kind of information
would greatly improve our performance with verbal
predicates (i.e. 46% of all annotated predicates in
the test set).

As for nominal predicates, consider for example
sentence (8) extracted from the test set:

(8) ‘Excuse the admirationJUDGMENT [of a
connoisseur]Evaluee,’ said [he]Cognizer.

In this case, ‘admiration’ is a nominal predicate
with two explicit FEs, namely Evaluee and Cog-
nizer. The JUDGMENT frame includes also the Rea-
son core FE, which can be a candidate for a null in-
stantiation. In fact, it is annotated as INI in the gold
standard data, because in the previous sentences a
reason for such admiration is not mentioned. How-
ever, this could have been annotated as DNI as well,
if only some specific quality of the person had been
previously introduced. This shows that the current
sentence does not present any inherent characteris-
tic motivating the presence of a definite instantia-
tion. In this case, a strategy based on some kind of
history list may be very helpful. This could con-
tain, for example, all subjects and direct objects pre-
viously mentioned in text and selected according to
some relevance criteria, as in (Tonelli and Delmonte,
2010). A further improvement may derive from the
integration of an anaphora resolution step, as first
proposed by Palmer et al. (1986) and more recently
by Gerber and Chai (2010).
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5.3 Open issues related to the task
Other open issues are related to the specification of
the task and to the nature of implicit entities, which
make it difficult to account for this phenomenon
from a computational point of view. We report be-
low the main issues that need to be tackled:

INI Linking: Table 1 shows that 28% of DNIs
in the test set are not linked to any referent. This
puts into question one of the main assumptions of
the task, that is the connection between a definite
instantiation and a referent. In the test set, there are
also 14 cases of indefinite null instantiations (out of
361) that are provided with a referent. Consider for
example the following sentence with gold standard
annotation, in which the INI label Path is actually
instantiated and refers to ‘we’:

(9) (We)Path allowed [him]Theme to passTRAVERSING

before we had recovered our nerve.

This again may be a controversial annotation choice,
since the annotation guidelines of the task reported
that ‘in cases of indefinite omission, there need not
be any overt mention of an indefinite NP in the lin-
guistic context nor does there have to be a referent
of the kind denoted by the omitted argument in the
physical discourse setting’ (Ruppenhofer, 2010).

Position of referent: Although we suggested that
the History List may represent a good starting point
for finding antecedents to DNIs, searching only in
the context preceding the current predicate is not
enough because the referent can occur after such
predicate. Also, the predicate with a DNI and the
referent can be divided by a very large text span. In
the test data, 38% of the DNIs referent occur in the
same sentence of the predicate, while 14% are men-
tioned after that (in a text span of max. 4 sentences).
Another 38% of DNIs are resolved in a text span
preceding the current predicate of max. 5 sentences,
while the rest has a very far antecedent (up to 116
sentences before the current predicate). The notion
of context where the antecedent should be searched
for is clearly lacking an appropriate definition.

Diversity of lexical fillers: In general, it is pos-
sible to successfully obtain information about the
likely fillers of a missing FE from annotated data
sets only in case all FE labels are semantically well
identifiable: in fact many FE labels are devoid of

any specific associated meaning. Furthermore, lex-
ical fillers of a given semantic role in the FrameNet
data sets can be as diverse as possible. For exam-
ple, a complete search in the FrameNet database for
the FE Charges will reveal heads like ‘possession,
innocent, actions’, where the significant portion of
text addressed by the FE would be in the specifica-
tion - i.e. ‘possession of a gun’ etc. Only in case of
highly specialized FEs there will be some help in the
semantic characterization of a possible antecedent.

6 Conclusions

In this paper, we have described the phenomenon
of null instantiated arguments according to the
FrameNet paradigm and we have proposed a strat-
egy for identifying implicit arguments and find-
ing their antecedents, if any, using a linguistically-
motivated approach. We have evaluated our system
using the test set developed for the SemEval task
10 and we have discussed some problems in our ap-
proach affecting its performance. Besides, we have
also pointed out some issues related to the task defi-
nition and to the general phenomenon of null instan-
tiated arguments that make the identification task
challenging from a computational point of view. We
have shed some light on the syntactic, semantic and
discourse information that we believe are necessary
to successfully handle the task.

In the future, we plan to improve on our binding
approach by making our model more flexible. More
specifically, we currently treat DNI referents occur-
ring before and after the sentence containing the
predicate as equally probable. Instead, we should
penalize less those preceding the predicate because
they are more frequent in the training set. For this
reason, the number of observations for the candi-
date head and the distance should be represented
as different weighted features. Another direction to
explore is to extend the training set to the whole
FrameNet resource and not just to the SemEval
data set. However, our approach based on the ob-
servations of lexical fillers is very much domain-
dependent, and a larger training set may introduce
too much variability in the heads. An approach ex-
ploiting some kind of generalization, for example by
linking the fillers to WordNet synsets as proposed by
(Gerber and Chai, 2010), may be more appropriate.
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Abstract

Many prior studies have investigated the re-
covery of semantic arguments for nominal
predicates. The models in many of these stud-
ies have assumed that arguments are indepen-
dent of each other. This assumption simpli-
fies the computational modeling of semantic
arguments, but it ignores the joint nature of
natural language. This paper presents a pre-
liminary investigation into the joint modeling
of implicit arguments for nominal predicates.
The joint model uses propositional knowledge
extracted from millions of Internet webpages
to help guide prediction.

1 Introduction

Much recent work on semantic role labeling has fo-
cused on joint models of arguments. This work is
motivated by the fact that one argument can either
promote or inhibit the presence of another argument.
Because most of this work has been done for verbal
SRL, nominal SRL has lagged behind somewhat. In
particular, the “implicit” nominal SRL model cre-
ated by Gerber and Chai (2010) does not address
joint argument structures. Implicit arguments are
similar to standard SRL arguments, a primary differ-
ence being their ability to cross sentence boundaries.
In the model created by Gerber and Chai, implicit ar-
gument candidates are classified independently and
a heuristic post-processing method is applied to de-
rive the final structure. This paper presents a prelim-
inary joint implicit argument model.

Consider the following sentences:1

1We will use the notation of Gerber and Chai (2010), where

(1) [c1 The president] is currently struggling to
manage [c2 the country’s economy].

(2) If he cannot get it under control, [p loss] of
[arg1 the next election] might result.

In Example 2, we are searching for theiarg0 of loss
(the entity that is losing). The sentence in Exam-
ple 1 supplies two candidatesc1 andc2. If one only
considers the predicateloss, thenc1 and c2 would
both be reasonable fillers for theiarg0: presidents
often lose things (e.g., votes and allegiance) and
economies often lose things (e.g., jobs and value).
However, the sentence in Example 2 supplies addi-
tional information. It tells the reader thatthe next
election is the entity being lost. Given this infor-
mation, one would likely preferc1 over c2 because
economies don’t generally lose elections, whereas
presidents often do. This type of inference is com-
mon in textual discourses because authors assume
a shared knowledge base with their readers. This
knowledge base contains information about events
and their typical participants (e.g., the fact that pres-
idents lose elections but economies do not).

The model presented in this paper relies on a
knowledge base constructed by automatically min-
ing semantic propositions from Internet webpages.
These propositions help to identify likely joint im-
plicit argument configurations. In the following sec-
tion, we review work on joint inference within se-
mantic role labeling. In Sections 4 and 5, we present
the joint implicit argument model and its features.
Evaluation results for this model are given in Sec-

standard nominal arguments are indicated withargn and im-
plicit arguments are indicated withiargn.
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tion 6. The joint model contains many simplifying
assumptions, which we address in Section 7. We
conclude in Section 8.

2 Related work

A number of recent studies have shown that seman-
tic arguments are not independent and that system
performance can be improved by taking argument
dependencies into account. Consider the following
examples, due to Toutanova et al. (2008):

(3) [TemporalThe day] that [arg0 the ogre]
[Predicatecooked] [arg1 the children] is still
remembered.

(4) [arg1 The meal] that [arg0 the ogre]
[Predicatecooked] [Beneficiarythe children]
is still remembered.

These examples demonstrate the importance of
inter-argument dependencies. The change fromday
in Example 3 tomeal in Example 4 affects more
than just theTemporallabel: additionally, thearg1
changes toBeneficiary, even though the underlying
text (the children) does not change. To capture this
dependency, Toutanova el al. first generate ann-
best list of argument labels for a predicate instance.
They then re-rank this list using joint features that
describe multiple arguments simultaneously. The
features help prevent globally invalid argument con-
figurations (e.g., ones with multiplearg0 labels).

Punyakanok et al. (2008) formulate a variety of
constraints on argument configurations. For exam-
ple, arguments are not allowed to overlap the predi-
cate, nor are they allowed to overlap each other. The
authors treat these constraints as binary variables
within an integer linear program, which is optimized
to produce the final labeling.

Ritter et al. (2010) investigated joint selectional
preferences. Traditionally, a selectional preference
model provides the strength of association between
a predicate-argument position and a specific textual
expression. Returning to Examples 1 and 2, one
sees that the selectional preference forpresidentand
economyin theiarg0 position oflossshould be high.
Ritter et al. extended this single-argument model
using a joint formulation of Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003). In the generative

version of joint LDA, text for the argument posi-
tions is generated from a common hidden variable.
This approach reflects the intuition behind Exam-
ples 1 and 2 and would help identifypresidentas the
iarg0. Training data for the model was drawn from
a large corpus of two-argument tuples extracted by
the TextRunner system, which we describe next.

Both Ritter et al.’s model and the model described
in this paper rely heavily on information extracted
by the TextRunner system (Banko et al., 2007).
The TextRunner system extracts tuples from Inter-
net webpages in an unsupervised fashion. One key
difference between TextRunner and other informa-
tion extraction systems is that TextRunner does not
use a closed set of relations (compare to the work
described by ACE (2008)). Instead, the relation set
is left open, leading to the notion of Open Informa-
tion Extraction (OIE). Although OIE often has lower
precision than traditional information extraction, it
is able to extract a wider variety of relations at preci-
sion levels that are often useful (Banko and Etzioni,
2008).

3 Using TextRunner to assess joint
argument assignments

Returning again to Examples 1 and 2, one can query
TextRunner in the following way:

arg0 : ?

Predicate : lose2

arg1 : election

In the TextRunner system,arg0 typically indicates
the Agentand arg1 typically indicates theTheme.
TextRunner provides many tuples in response to this
query, two of which are shown below:

(5) Usually, [arg0 the president’s party]
[Predicateloses] [arg1 seats in the mid-term
election].

(6) [arg0 The president] [Predicatelost] [arg1 the
election].

The tuples present in these sentences give strong in-
dicators about the type of entity that loses elections.

2Nominal predicates are mapped to their verbal forms using
information provided by the NomBank lexicon.
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Given all of the returned tuples, only a single one
involveseconomyin thearg0 position:

(7) Any president will take credit for [arg0 a good
economy] or [Predicatelose] [arg1 an
election] over a bad one.

In Example 7, TextRunner has not analyzed the ar-
guments correctly (presidentshould be thearg0, not
economy).3 In Section 5, we show how evidence
from the tuple lists can be aggregated such that cor-
rect analyses (5 and 6) are favored over incorrect
analyses (7). The primary contribution of this paper
is an exploration of how the aggregated evidence can
be used to identify implicit arguments (e.g.,presi-
dentin Example 1).

4 Joint model formulation

To simplify the experimental setting, the model de-
scribed in this paper targets the specific situation
where a predicate instancep takes an implicitiarg0
and an implicitiarg1.4 Whereas the model proposed
by Gerber and Chai (2010) classifies candidates for
these positions independently, the model in this pa-
per classifies joint structures by evaluating the fol-
lowing binary prediction function:

P (+| 〈p, iarg0, ci, iarg1, cj〉) (8)

Equation 8 gives the probability of the joint assign-
ment ofci to iarg0 andcj to iarg1. Given a set ofn
candidatesc1, . . . , cn ∈ C, the best labeling is found
by considering all possible assignments ofci andcj :

argmax
(ci,cj)∈CxC s.t. i 6=j

P (+| 〈p, iarg0, ci, iarg1, cj〉)

(9)

Consider modified versions of Examples 1 and 2:

(10) [c1 The president] is currently struggling to
manage [c2 the country’s economy].

(11) If he cannot get it under control before [c3 the
next election], a [p loss] might result.

3Banko and Etzioni (2008) cite a precision score of 88% for
their system.

4This simplifying assumption does not hold for real data,
and is addressed further in Section 7.2.

In this case, we are looking for theiarg0 as well as
theiarg1 for thelosspredicate. Three candidatesc1,
c2, andc3 are marked. The joint model would eval-
uate the following probabilities, taking the highest
scoring to be the final assignment:

P (+| 〈loss, iarg0, president, iarg1, economy〉)

*P (+| 〈loss, iarg0, president, iarg1, election〉)

P (+| 〈loss, iarg0, economy, iarg1, president〉)

P (+| 〈loss, iarg0, economy, iarg1, election〉)

P (+| 〈loss, iarg0, election, iarg1, president〉)

P (+| 〈loss, iarg0, election, iarg1, economy〉)

Intuitively, only the starred item should have a high
probability. In the following section, we describe
how these probabilities can be estimated using in-
formation extracted by TextRunner.

5 Joint model features

As mentioned in Section 2, the TextRunner system
has been extracting massive amounts of knowledge
in the form of tuples such as the following:

〈president, lose, election〉

The database of tuples can be queried by supplying
one or more of the tuple arguments. For example,
the following is a partial result list for the query
〈president, lose, ?〉:

〈Kenyan president, lose, election〉
〈president’s party, lose seat in, election〉
〈president, lose, ally〉

The final position in each of these tuples (e.g.,
election) provides a single answer to the question
“What might a president lose?”. Aggregation begins
by generalizing each answer to its WordNet synset
(glosses are shown after the arrows):

〈Kenyan president, lose, election〉 → a vote
〈president’s party, lose seat in, election〉 (same)
〈president, lose, ally〉 → friendly nation

In cases where a tuple argument has multiple
WordNet senses, the tuple is mapped to the most
common sense as listed in the WordNet database.
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Having mapped each tuple to its synset, each synset
is ranked according to the number of tuples that
it covers. For the query〈president, lose, ?〉, this
produces the following ranked list of WordNet
synsets (only the top five are shown, with the
number in parentheses indicating how many tuples
are covered):

1. election (77)

2. war (51)

3. vote (39)

4. people (34)

5. support (26)

...

The synsets above indicate likely answers to the pre-
vious question of “What might a president lose?”.

In a similar manner, one can answer a question
such as “What might lose an election?” using tu-
ples extracted by TextRunner. The procedure de-
scribed above produces the following ranked list of
WordNet synsets to answer this question:

...

9. people (62)

10. Republican (51)

11. Republican party (51)

12. Hillary (50)

13. president (49)

...

In this case, the expected answer (president) ranks
13th in the list of answer synsets. It is important
to note that lower ranked answers are not necessar-
ily incorrect answers. It is a simple fact that a wide
variety of entities can lose an election. Items 9-13
are all reasonable answers to the original question
of what might lose an election.

The two symmetric questions defined and an-
swered above are closely connected to the implicit
argument situation discussed in Examples 10 and
11. In Example 11, one is searching for the implicit
iarg0 andiarg1 to thelosspredicate. Candidatesci
andcj that truly fill these positions should be com-
patible with questions in the following forms:

Question: What didci lose?

Answer:cj

Question: What entity lostcj?

Answer:ci

If either of these question-answer pairs is not satis-
fied, then the joint assignment ofci to iarg0 andcj
to iarg1 should be considered unlikely. Using the
first question-answer pair above as an example, sat-
isfaction is determined in the following way:

1. Query TextRunner for〈ci, lose, ?〉, retrieving
the topn tuples.

2. Map the final argument of each tuple to its
WordNet synset and rank the synsets by fre-
quency, producing the ranked listA of answer
synsets.

3. Map cj to its most common WordNet synset
synsetcj and determine whethersynsetcj ex-
ists inA. If it does, the question-answer pair is
satisfied.

Some additional processing is required to determine
whethersynsetcj exists inA. This is due to the hi-
erarchical organization of WordNet. For example,
suppose thatsynsetcj is the synset containing “pri-
mary election” andA contains synsets paraphrased
as follows:

1. election

2. war

3. vote

...

synsetcj does not appear directly in this list; how-
ever, its existence in the list is implied by the follow-
ing hypernymy path within WordNet:

primary election
is-a
−−→ election

Intuitively, if synsetcj is connected to a highly
ranked synset inA by a short path, then one has ev-
idence thatsynsetcj answers the original question.
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The evidence is weaker if the path is long, as in the
following example:

open primary
is-a
−−→ direct primary

is-a
−−→ primary election

is-a
−−→ election

Additionally, a path between more specific synsets
(i.e., those lower in the hierarchy) indicates a
stronger relationship than a path between more gen-
eral synsets (i.e., those higher in the hierarchy).
These two situations are depicted in Figure 1. The
synset similarity metric defined by Wu and Palmer
(1994) combines the path length and synset depth
intuitions into a single numeric score that is defined
as follows:

2 ∗ depth(lca(synset1, synset2))

depth(synset1) + depth(synset2)
(12)

In Equation 12,lca returns the lowest common an-
cestor of the two synsets within the WordNetis-a
hierarchy.

To summarize, Equation 12 indicates the strength
of association betweensynsetcj (e.g., primary elec-
tion) and a ranked synsetsynseta from A that an-
swers a question such as “What might a president
lose?”. If the association betweensynsetcj and
synseta is small, then the assignment ofcj to iarg1
is unlikely. The process works similarly for assess-
ing ci as the filler ofiarg0. In what follows, we
quantify this intuition with features used to repre-
sent the conditioning information in Equation 8.

Feature 1: Maximum association strength.Given
the conditioning variables in Equation 8, there are
two questions that can be asked:

Question: What didci p?

Answer:cj

Question: What entityp cj?

Answer:ci

Each of these questions produces a ranked list of
answer synsets using the approach described previ-
ously. The synset for each answer string will match
zero or more of the answer synsets, and each of these

matches will be associated with a similarity score as
defined in Equation 12. Feature 1 considers all such
similarity scores and selects the maximum. A high
value for this feature indicates that one (or both) of
the candidates (ci or cj) is likely to fill its associated
implicit argument position.

Feature 2: Maximum reciprocal rank. Of all the
answer matches described for Feature 1, Feature 2
selects the highest ranking and forms the reciprocal
rank. Thus, values for Feature 2 are in [0,1] with
larger values indicating matches with higher ranked
answer synsets.

Feature 3: Number of matches. This feature
records the total number of answer string matches
from either of the questions described for Feature 1.

Feature 4: Sum reciprocal rank. Feature 2 consid-
ers answer synset matches from either of the posed
questions; ideally, each question-answer pair should
have some influence on the probability estimate in
Equation 8. Feature 4 looks at the answer synset
matches from each question individually. The match
with highest rank for each question is selected, and
the reciprocal rank 2

r1 + r2
is computed. The value

of this feature is zero if either of the questions fails
to produce a matching answer synset.

Features 5 and 6: Local classification scores.The
joint model described in this paper does not replace
the local prediction model presented by Gerber and
Chai (2010). The latter uses a wide variety of impor-
tant features that cannot be ignored. Like previous
joint models (e.g., the one described by Toutanova et
al. (2008)), the joint model works on top of the lo-
cal prediction model, whose scores are incorporated
into the joint model as feature-value pairs. Given the
local prediction scores for theiarg0 andiarg1 posi-
tions in Equation 8, the joint model forms two fea-
tures: (1) the sum of the scores forci filling iarg0
andcj filling iarg1, and (2) the product of these two
scores.

6 Evaluation

We evaluated the joint model described in the pre-
vious sections over the manually annotated implicit
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entity (a)

physical entity (b)

thing

body of water (c)

bay (d)

matter

abstract entity

Figure 1: Effect of depth on WordNet synset similarity. All links indicateis-a relationships. Although the link
distance from (a) to (b) equals the distance from (c) to (d), the latter are more similar due to their lower depth within
the WordNet hierarchy.

argument data created by Gerber and Chai (2010).
This dataset contains full-text implicit argument
annotations for approximately 1,200 predicate in-
stances within the Penn TreeBank. As mentioned
in Section 4, all experiments were conducted us-
ing predicate instances that take aniarg0 andiarg1
in the ground-truth annotations. We used a ten-
fold cross-validation setup and the evaluation met-
rics proposed by Ruppenhofer et al. (2009), which
were also used by Gerber and Chai. For each evalu-
ation fold, features were selected using only the cor-
responding training data and the greedy selection al-
gorithm proposed by Pudil et al. (1994), which starts
with an empty feature set and incrementally adds
features that provide the highest gains.

For comparison with Gerber and Chai’s model,
we also evaluated the local prediction model on the
evaluation data. Because this model predicted im-
plicit arguments independently, it continued to use
the heuristic post-processing algorithm to arrive at
the final labeling. However, the prediction threshold
t was eliminated because the system could safely as-
sume that a true filler for theiarg0 andiarg1 posi-
tions existed.

Table 1 presents the evaluation results. The first
thing to note is that these results are not comparable
to the results presented by Gerber and Chai (2010).
In general, performance is much higher because
predicate instances reliably take implicit arguments
in theiarg0 andiarg1 positions. The overall perfor-

mance increase versus the local model is relatively
small (approximately 1 percentage point); however,
the bid predicate in particular showed a substantial
increase (greater than 11 percentage points).

7 Discussion

7.1 Example improvement versus local model

The bid and investment predicates showed the
largest increase for the joint model versus the local
model. Below, we give an example of theinvestment
predicate for which the joint model correctly identi-
fied theiarg0 and the local model did not.

(13) [Big investors] can decide to ride out market
storms without jettisoning stock.

(14) Most often, [c they] do just that, because
stocks have proved to be the best-performing
long-term [Predicateinvestment], attracting
about $1 trillion from pension funds alone.

Both models identified theiarg1 as moneyfrom a
prior sentence (not shown). The local model in-
correctly predicted$1 trillion in Example 14 as the
iarg0 for theinvestmentevent. This mistake demon-
strates a fundamental limitation of the local model:
it cannot detect simple incompatibilities in the pre-
dicted argument structure. It does not know that
“money investing money” is a rare or impossible
event in the real world.

For the joint model’s prediction, consider the con-
stituent marked withc in Example 14. This con-
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Local model Joint model
# Imp. args. P R F1 P R F1

price 40 65.0 65.0 65.0 67.5 67.5 67.5
sale 34 86.5 86.5 86.5 84.3 84.3 84.3
plan 30 60.0 60.0 60.0 56.7 56.7 56.7
bid 26 66.7 66.7 66.7 78.2 78.2 78.2
fund 18 83.3 83.3 83.3 83.3 83.3 83.3
loss 14 100.0 100.0 100.0 100.0 100.0 100.0
loan 12 63.6 58.3 60.9 50.0 50.0 50.0
investment 8 57.1 50.0 53.3 62.5 62.5 62.5

Overall 182 72.6 71.8 72.2 73.1 73.1 73.1

Table 1: Joint implicit argument evaluation results. The second column gives the total number of implicit arguments
in the ground-truth annotations.P , R, andF1 indicate precision, recall, and f-measure (β = 1) as defined by Ruppen-
hofer et al. (2009).

stituent is resolved toBig investorsin the preceding
sentence. Thus, the two relevant questions are as
follows:

Question: What did big investors invest?

Answer: money

Question: What entity invested money?

Answer: big investors

The first question produces the following ranked list
of answer synsets (the number in parentheses indi-
cates the number of answer tuples mapped to the
synset):

money (71)

amount (38)

million (38)

billion (22)

capital (21)

As shown, the answer string ofmoneymatches the
top-ranked answer synset. The second question pro-
duces the following ranked list of answer synsets:

company (642)

people (460)

government (275)

business (75)

investor (70)

In this case, the answer stringBig investorsmatches
the fifth answer synset. The combined evidence
of these two question-answer pairs allows the joint
system to successfully identifyBig investorsas the
iarg0 of the investmentpredicate in Example 14.

7.2 Toward a generally applicable joint model

The joint model presented in this paper assumes that
all predicate instances take aniarg0 andiarg1. This
assumption clearly does not hold for real data (these
positions are often not expressed in the text), but re-
laxing it will require investigation of the following
issues:

1. Explicit arguments should also be considered
when determining whether a candidatec fills
an implicit argument positioniargn. The mo-
tivation here is similar to that given elsewhere
in this paper: arguments (whether implicit or
explicit) are not independent. This is demon-
strated by Example 2 at the beginning of this
paper, whereelectionis an explicit argument to
the predicate and affects the implicit argument
inference. The model developed in this paper
only considers jointly occurring implicit argu-
ments.

2. Other implicit argument positions (e.g.,
iarg2, iarg3, etc.) need to be accounted
for as well. This will present a challenge
when it comes to extracting the necessary
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propositions from TextRunner. Currently,
TextRunner only handles tuples of the form
〈arg0, p, arg1〉. Other argument positions are
not directly analyzed by the system; however,
because TextRunner also returns the sentence
from which a tuple is extracted, these addi-
tional argument positions could be extracted in
the following way:

(a) For an instance of thesale predicate
with an arg0 of company, to find
likely arg2 fillers (the entity purchas-
ing the item), query TextRunner with
〈company, sell, ?〉.

(b) Perform standard verbal SRL on the sen-
tences for the resulting tuples, identifying
anyarg2 occurrences.

(c) Cluster and rank thearg2 fillers according
to the method described in this paper.

This approach combines Open Information Ex-
traction with traditional information extraction
(i.e., verbal SRL).

3. Computational complexity and probability
estimation is a problem for many joint mod-
els. The model presented in this paper quickly
becomes computationally intractable when the
number of candidates and implicit argument
positions becomes moderately large. This is
because Equation 9 considers all possible as-
signments of candidates to implicit argument
positions. With as few as thirty candidates and
five argument positions (not uncommon), one
must evaluate30!/25! = 17, 100, 720 possible
assignments. Although this particular formula-
tion is not tractable, one based on dynamic pro-
gramming or heuristic search might give rea-
sonable results. Efficient estimation of the joint
probability via Gibbs sampling would also be a
possible approach (Resnik and Hardisty, 2010).

8 Conclusions

Many prior studies have investigated the recovery
of semantic arguments for nominal predicates. The
models in many of these studies have assumed that
the arguments are independent of each other. This
assumption simplifies the computational modeling

of semantic arguments, but it ignores the joint na-
ture of natural language. In order to take advantage
of the information provided by jointly occurring ar-
guments, the independent prediction models must be
enhanced.

This paper has presented a preliminary investiga-
tion into the joint modeling of implicit arguments
for nominal predicates. The model relies heavily
on information extracted by the TextRunner extrac-
tion system, which pulls propositional tuples from
millions of Internet webpages. These tuples encode
world knowledge that is necessary for resolving se-
mantic arguments in general and implicit arguments
in particular. This paper has proposed methods of
aggregating tuple knowledge to guide implicit argu-
ment resolution. The aggregated knowledge is ap-
plied via a re-ranking model that operates on top
of the local prediction model described in previous
work.

The performance gain across all predicate in-
stances is relatively small; however, larger gains are
observed for thebid andinvestmentpredicates. The
improvement in Example 14 shows that the joint
model is capable of correcting a bad local predic-
tion using information extracted by the TextRunner
system. This type of information is not used by the
local prediction model.

Although the results in this paper show that some
improvement is possible through the use of a joint
model of implicit arguments, a significant amount
of future work will be required to make the model
widely applicable.
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Abstract 

We take the first steps towards augmenting a lexical 

resource, VerbNet, with probabilistic information 

about coercive constructions. We focus on CAUSED-

MOTION as an example construction occurring with 

verbs for which it is a typical usage or for which it 

must be interpreted as extending the event semantics 

through coercion, which occurs productively and adds 

substantially to the relational semantics of a verb. 

However, through annotation we find that VerbNet 

fails to accurately capture all usages of the 

construction. We use unsupervised methods to 

estimate  probabilistic measures from corpus data for 

predicting usage of the construction across verb 

classes in the lexicon and evaluate against VerbNet. 

We discuss how these methods will form the basis for 

enhancements for VerbNet supporting more accurate 

analysis of the relational semantics of a verb across 

productive usages. 

1 Introduction  

Automatic semantic analysis has been very successful 

when taking a supervised learning approach on data 

labeled with sense tags and semantic roles (e.g., see 

Màrquez et al., 2008). Underlying these recent successes 

are lexical resources, such as PropBank (Palmer et al., 

2005), VerbNet (Kipper et al., 2008), and FrameNet 

(Baker et al., 1998; Fillmore et al., 2002), which encode 

the relational semantics of numerous lexical items, 

especially verbs. However, because authors and speakers 

use verbs productively in previously unseen ways, 

semantic analysis systems must not be limited to direct 

extrapolation from previously seen usages licensed by 

static lexical resources (cf. Pustejovsky & Jezek, 2008). 

To achieve more accurate semantic analyses, we must 

augment such resources with knowledge of the 

extensibility of verbs. 

Central to verb extensibility is the process of semantic 

and syntactic coercion. Coercion allows a verb to be used 

in “atypical” contexts that extend its relational semantics, 

thereby enabling expression of a novel concept, or simply 

more fluid expression of a complex concept. For 

example, consider a strictly intransitive action verb such 

as blink. This verb may instead be used in a construction 

with an object, as in She blinked the snow off her lashes, 

leading to an interpretation of the verb in which the object 

is causally affected and changes location (the CAUSED-

MOTION construction; Goldberg, 1995). This type of 

constructional coercion is common in language and 

underlies much extensibility of verb usages. 

Understanding such coercive processes thus has 

significant impact on how we should represent 

knowledge about verbs in a lexical resource. 

Importantly, constructional coercion is not an all-or-

nothing process – a word must be semantically and 

syntactically compatible in some respects with a context 

in order for its use to be extended to that context, but the 

restrictions on compatibility are not hard-and-fast rules 

(Langacker, 1987; Kay & Fillmore, 1999; Goldberg, 

2006; Goldberg, to appear). Gradience of compatibility 

plays an important role in coercion, suggesting that a 

probabilistic approach may be necessary for encoding 

knowledge of constructional coercion in a verb lexicon 

(cf. Lapata & Lascarides, 2003). 

Our hypothesis here is that, due to this gradient process 

of productivity, existing verb lexicons do not adequately 

capture the actual patterns of use of extensible 

constructions. In this paper, we focus on the CAUSED-

MOTION (CM) construction as an initial test case. We first 

annotate the classes of an extensive verb lexicon, 

VerbNet, as to whether the CM construction is allowed 

for all, some, or none of the verbs in the class, noting 

additionally whether it is a typical or coerced usage. We 

find that many of the classes that allow the construction 

for at least some verbs do not include the CM frame in 

their definition, indicating a significant shortcoming in the 

relational knowledge encoded in the lexicon. Next, we 
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develop probabilistic measures for determining to what 

degree a class is likely to admit the CM construction. We 

then test our measures over corpus data, manually 

annotated for use of the CM construction. Finally, we 

present preliminary work on automatic techniques for 

calculating the proposed measures in an unsupervised 

way, to avoid the need for expensive manual annotation. 

This work forms the preliminary steps toward empirically 

augmenting VerbNet‟s predictive capabilities concerning 

the event semantics of verbs in coercible constructions. 

2 Extensible Constructions and VerbNet 

Construction grammar has much insight to offer on the 

topic of productivity and on the resulting statistical 

patterns and gradience of usages (e.g., Langacker, 1987; 

Kay & Fillmore, 1999; Goldberg, 2006). A construction 

is formally defined to be any pairing of linguistic form 

(e.g., a syntactic frame) and meaning. Words can be used 

in constructions to the extent that their lexical semantics is 

compatible with – or can be coerced to be compatible 

with – the semantic constraints on the construction. 

It is this notion of constructional coercion, and degree 

of coercibility, that accounts for the richness of usages 

that go beyond those thought of as typical or definitional 

for a verb: by coercing a verb not normally associated 

with a particular frame to occur in it, the meaning of the 

event can take on additional properties not considered a 

core part of the verb‟s semantics. For example, in the case 

of the sentence discussed above, She blinked the snow off 

her lashes, it is not the verb but rather the CM 

construction itself that licenses the direct object and adds 

the notion of “motion causally affecting the object” to the 

event semantics. Amongst other examples of well-known 

constructional coercions are: (1) The CAUSE-RECEIVE 

construction has the syntactic form of NP-V-NP-NP. For 

example, in Bob painted Sally a picture, the simple 

transitive verb paint gains the CAUSE TO RECEIVE sense, 

in which Sally is the recipient and the picture is the 

transferred item. (2) The WAY construction has the form 

of NP-V-[POSS way]-PP. For example, in Frank found 

his way to New York, the construction allows the verb 

find to gain a motion reading (i.e., “Frank traveled to New 

York”) that would not otherwise be allowed (e.g., *Frank 

found to New York).  

Recognizing such extensions to the relational 

semantics of verbs is very important for accurate 

semantic interpretation in NLP. However, precise 

specifications for capturing the notion of coercible 

constructions, such as are needed for a computational 

resource, have heretofore been lacking. 

2.1 VerbNet & Knowledge of Constructions 

Computational verb lexicons are key to supporting NLP 

systems aimed at semantic interpretation. Verbs express 

the semantics of an event being described as well as the 

relational information among participants in that event, 

and project the syntactic structures that encode that 

information. Verbs are also highly variable, displaying a 

rich range of semantic and syntactic behavior. 

Verb classifications help NLP systems to deal with 

this complexity by organizing verbs into groups that 

share core semantic and syntactic properties. For 

example, VerbNet (derived from Levin‟s [1993] work, 

Kipper et al., 2008) is widely used for a number of 

semantic processing tasks, including semantic role 

labeling (Swier and Stevenson, 2004), the creation of 

semantic parse trees (Shi and Mihalcea, 2005), and 

implicit argument resolution (Gerber and Chai, 2010). 

The detailed semantic predicates listed with each 

VerbNet class also have the potential to contribute to text-

specific semantic representations and, thereby, to tasks 

requiring inferencing (Zaenen et al., 2008; Palmer et al., 

2009). 

VerbNet identifies semantic roles and syntactic 

patterns characteristic of the verbs in each class makes 

explicit the connections between the syntactic patterns 

and the underlying semantic relations that can be inferred 

for all members of the class. Each syntactic frame in a 

class has a corresponding semantic representation that 

details the semantic relations between event participants 

across the course of the event. For example, one of the 

characteristic patterns listed for the Pour class is a 

CAUSED-MOTION pattern, which accounts for sentences 

like She poured water from the pitcher into the bowl. This 

is represented in VerbNet as follows: 

Syntactic representation: 
NP V NP PP PP 

Agent V Theme Source Location 

Semantic representation: 
MOTION (DURING(E), THEME)  

NOT (PREP (START(E), THEME, LOCATION)) 

PREP (START(E), THEME, SOURCE) 

PREP (END(E), THEME, LOCATION) 

CAUSE (AGENT, E) 

This representation details connections between the 

syntax and semantics using the semantic roles as links, 

indicating that the Agent is the Subject NP and has 

CAUSED the Event, and that the Theme is the Object NP 

and has a new LOCATION at the end of the event. These 

types of inferences provide the foundation for deep 

semantic analysis of text.  
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However, the specifications in VerbNet (as in other 

predicate lexicons, such as FrameNet, Baker et al., 1998; 

Fillmore et al., 2002) are seen as definitional – they are 

restricted to the core usages of the verbs that are valid for 

all verbs in the class. However, as noted above, people 

often use verbs productively, in ways that go beyond the 

boundaries of the verb class structure. It is important to 

correctly identify these productive usages when they 

occur, since they may be explicitly adding crucial 

inferences. If a construction is not recognized in the form 

of a syntactic frame in VerbNet, such inferences are not 

possible, greatly reducing VerbNet‟s utility and coverage. 

For example, creative uses of a verb, such as She blinked 

the snow off her lashes, would have no corresponding 

frame in blink‟s class, the Hiccup class.  It contains one 

intransitive frame: 

 NP V 

Agent V 
  

 

BODY_PROCESS (E, AGENT) 

INVOLUNTARY (E, AGENT) 
 

Sentences that coerce the meaning of blink to fit with a 

CM event would currently be misanalysed. One option 

might be to augment the Hiccup class with the CM frame 

from the Pour class, which would ensure that such 

sentences would be analyzed more accurately. However, 

given the productive nature of constructional coercion 

and its widespread applicability, the approach of adding 

any possible pattern to each class is not appropriate: this 

would undermine the definitional distinctions between 

classes and greatly lessen their usefulness.  

Complicating the issue is the phenomenon of regular 

sense extensions (Dang et al., 1998), where what once 

may have been coercion has become entrenched and is 

now seen as a different sense of the verb. For example, 

the verbs in the Push class express the general meaning of 

exerting force on an object, such as She pushed on the 

wall. Often, the exertion of force moves the object, which 

can be expressed in a CM construction such as She 

pushed the box across the room. VerbNet accounts for 

this regular sense extension by including most of the Push 

verbs in the Carry class as well, which has the CM 

construction as one of its frames. Deciding when to 

include a verb in another class based on regular sense 

extensions, when to add a frame for a construction to a 

class, or when to reject the frame as a defining part of a 

class, is made difficult by the graded nature of matches 

between verbs and a construction. Our goal is to maintain 

the advantages of the class structure of VerbNet while 

enhancing it with a graded view of the applicability of a 

construction for each class. Noting the applicability of a 

construction will enable the inclusion of its appropriate 

semantic predicates, and the inferencing over them, 

which are currently not supported. 

3 Our Proposal: Constructional Profiles 

We aim to augment VerbNet with knowledge of 

constructions that are likely to be used extensibly with a 

range of verbs. Such extensible constructions will be core 

usages for some classes (such as the CM for the Pour 

class, as noted above) but will be less characteristic of the 

fundamental semantics of other verb classes (such as CM 

for the Hiccup class). We propose to identify such a 

construction and its varying roles in the different classes 

by using relevant statistics over usages of verbs in a 

corpus – what we call a constructional profile. 

A constructional profile is a probabilistic assessment 

of the usage of a particular construction by the verbs in a 

class. We developed the following three measures to 

capture the relevant behavior, with the goal of providing 

both type- and token-based views of the behavior of a 

verb class with respect to a target construction: 

P1 Ptype(X|C): probability that a verb type in class C is 

attested in construction X 

P1 gives a type-based assessment, indicating how 

widespread the use of the construction is across the 

verb types in the class. For example, if 8 out of 10 

members of a class appear with the construction, we 

might estimate P1 as 0.8. 

P2 Ptoken(X|C): probability that the instances of a typical 

verb in class C occur in construction X 

P2 gives a token-based assessment, indicating, for a 

typical verb in the class, the relative amount of usage of 

the construction among all usages of the verb. For 

example, to estimate this, we might average across all 

verbs in the class, the percentage of tokens in this 

construction. 

P3: Ptoken(X|X-verbs-in-C): same as P2 but considering 

only verbs that have been attested in construction X 

P3 is the same as P2, but looking only at those verbs in 

the class that have an attested usage of the construction, 

removing verbs without attested usages. 

We hypothesize that these measures will have high 

values for those classes for which the construction should 

be definitional; very low values for those classes that are 

not compatible with the construction; and varying values 

for those classes that allow coerced usages to a greater or 

lesser extent. 

Although these probabilities are intuitively very 

simple, estimating them from corpus data poses a 

significant challenge. Since a construction is a pairing of 

form with meaning, recognizing the use of a particular 
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construction is not simply a matter of determining the 

syntactic pattern of the usage; rather, certain semantic 

properties and relations must co-occur with the syntactic 

pattern. Earlier work has shown that a supervised learning 

method was able to discriminate potential usages of the 

CM construction given training sentences manually 

labeled as either CM or not (Hwang et al., 2010). Here, 

we aim instead to identify usages of the CM construction, 

but without requiring an expensive manual annotation 

effort. That is, we seek an unsupervised method for 

estimating the probabilities in P1–P3 above. 

We approach this goal in steps as follows. First, we 

examine all the classes in VerbNet to see which allow the 

CM construction (Section 4). This anno-tation reveals 

shortcomings in VerbNet‟s representa-tion (classes that 

allow the CM construction but do not list it) and also 

provides a gold standard with which to evaluate our 

method of identifying an exten-sible construction using 

our constructional profiles. Second, we use the manually 

annotated CM construction data from Hwang et al. 

(2010) to estimate probabilities P1–P3 using maximum 

likelihood formulations (Section 5). An analysis of the 

predictive power of these constructional profile measures 

shows a good match with the distinctions made in the 

human annotation of the classes. Thus, our annotation 

based constructional profile measures show promise for 

identifying relevant behaviors of the construction across 

the classes. Third, we explore automatic methods for 

estimating the constructional profile measures without the 

need for manual annotations (Section 6). We use a 

hierarchical Bayesian model that learns verb classes from 

corpus data to provide unsupervised estimates of the 

constructional profiles, which also exhibit the relevant 

distinctions across the classes. 

4 Annotating the VerbNet Resource  

We begin with a manual examination of the resource and 

a thorough annotation of the status of each class with 

respect to the CM construction. This effort reveals a 

number of shortcomings in VerbNet, and the need for 

developing methods that can support the extension of 

VerbNet to better reflect the coercive uses of 

constructions across the classes. The annotation described 

here also forms the basis for the evaluation in the 

following sections of our new probabilistic measures, by 

motivating hypotheses about the expected patterns of use 

of the CM construction across the classes. 

4.1 Annotation Guidelines and Results 

The first goal of our manual annotation of VerbNet 

classes was to determine which classes currently 

represent CM in one of their frames. To this end, we 

identified which classes contain the following frame:  

NP [Agent/Cause]-V-NP [Patient/Theme]- 

PP [Source/Destination/Recipient/Location]  

These frames correspond to classes such as Slide, with its 

frame NP-V-NP-PP.Destination: Carla slid the books to 

the floor. We also examined classes with the patterns NP-

V-NP-PP.Oblique, NP-V-NP-PP. Theme2, and NP-V-

NP-PP.Patient2. In these classes, annotators had to judge 

whether the final PP was compatible with CM. For 

example, the Breathe class contains the frame NP-V-

NP.Theme-PP.Oblique, The dragon breathed fire on 

Mary, which is compatible with CM; whereas the same 

basic frame in the Other_cos class is not: NP V NP 

PP.Oblique, The summer sun tanned her skin to a golden 

bronze. 

In addition, we annotated which classes were 

potentially compatible with CM for either all verbs in the 

class or only some verbs. The "some" classification has 

the drawback that it may be applied to classes with very 

different proportions of compatible verbs; while suitable 

for our exploratory work here, we plan to make finer 

distinctions in the future. A secondary determination was 

whether or not the class was compatible with CM as part 

of its core semantics, or if it was compatible with CM 

because it was coercible into the construction. A verb was 

considered “compatible with CM” and “not coerced” if 

the verb could be used in the CM construction and its 

semantics, as reflected in VerbNet‟s semantic predicates, 

involved a CAUSE predicate in combination with another 

predicate such as CONTACT, TRANSFER, (EN)FORCE, 

EMIT, TAKE_IN (predicates potentially involving 

movement along some path). For example, although CM 

is not already included as a frame for the Bend class 

containing the verb fold, the semantics of this class 

include CAUSE and CONTACT, and the verb can be used 

in a CM construction: She folded the note into her 

journal. Therefore, this class would have been considered 

“compatible with CM” but “not coerced”. Conversely, a 

verb was considered “compatible with CM” and 

“coerced” if the verb could be used in the CM 

construction, yet its semantics, again as reflected in 

VerbNet, did not involve CAUSE and MOVEMENT 

ALONG A PATH (e.g., the verb wiggle of the 

Body_internal_motion class: She wiggled her foot out of 

the boot). 

In summary, as presented in the table below, we 

annotated each class according to whether (1) the CM 

construction was already represented in VerbNet for this 

class, (2) the construction was possible for all, some, or 
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none of the verbs in that class, and (3) the verbs of any 

class compatible with CM were coerced into the 

construction or not. The classification for (3) was made 

regardless of whether “all” verbs or only “some” were 

compatible with CM. This determination was made 

uniformly for a class: there were no classes in which only 

certain CM-compatible verbs were considered “coerced”.  

VN class example  

[# of classes like this] 

CM in 

VN 

CM is 

possible 

CM is 

coerced 

Banish [50] Yes All No 

Nonverbal_Expression [2] Yes All Yes 

Cheat [6] Yes Some No 

Exhale [18] No All No 

Hiccup [30] No All Yes 

Fill [46] No Some No 

Wish [54] No Some Yes 

Matter [64] No None N/A 

Notably, we identified 206 classes where at least some of 

the verbs in that class are compatible with the CM 

construction; however, VerbNet currently only 

recognizes the CM construction in 58 classes. There were 

several classes of interest: First, although it may seem 

unusual that CM is represented in 6 classes where we 

found that only “some” verbs were compatible with CM 

(e.g., Cheat class), these were cases where only more 

restricted subclasses are compatible with CM, and this 

syntactic frame is listed for that subclass. This suggests 

subclasses may provide a more precise characterization 

of which verbs are compatible with a construction.  

Secondly, we identified 18 classes in which all verbs 

were compatible with CM without coercion; thus, these 

classes could likely be improved by the addition of the 

CM syntactic frame. Additionally, we found 30 classes in 

which all verbs are coercible into the CM construction; 

however, the actual likelihood of a verb in those classes 

occurring in a CM construction remains to be 

investigated in the following sections. Like those classes 

where it was determined that only “some” verbs are 

compatible with CM, usefully incorporating the CM 

construction into classes that require coercion relies on 

accurately determining the probability that verbs in those 

classes will actually appear in the CM construction.  

For those classes in which “all” verbs are compatible 

with CM, our intuition was that some aspect of the verb‟s 

semantics either inherently includes or allows the verb to 

be coerced into the CM construction. Conversely, for 

those classes in which no verbs are compatible with CM, 

presumably some aspect of the verb‟s semantics is 

logically incompatible with CM. Although pinpointing 

precisely what aspect of a verb‟s semantics makes it 

compatible with CM may not be possible, we can 

investigate whether or not our intuitions are supported by 

examining the actual frequencies of CM constructions for 

given verbs or a given class.  

4.2 Hypotheses  

Using these annotations, we were able to develop two 

simple hypotheses. 

Hypothesis 1: We expect the constructional profile 

measures for the CM construction in a given corpus to be 

highest for those classes in which all verbs were found to 

be compatible with CM; lower for classes in which only 

some verbs were found to be compatible; and lowest for 

classes in which no verbs were found to be compatible. 

Hypothesis 2: We expect the constructional profile 

measures for the CM construction in a given corpus to be 

highest for verbs that fall into classes where CM is not 

considered coerced (for either some or all of the verbs in 

the class); lower for verbs that fall into classes in which 

the CM construction only works through coercion (for 

either some or all of the verbs in the class); and lowest for 

verbs that fall into classes in which no verbs are 

compatible with CM.  

To investigate Hypothesis 1, we grouped the annotated 

classes according to whether all, some, or no verbs in the 

class are compatible with CM: 

 Class example # of classes 

Allowed by All Bring, Carry 106 

Allowed by Some Appoint, Lodge 100 

Allowed by None Try, Own 64 

To investigate Hypothesis 2, we did a second grouping 

of the classes according to whether CM is not coerced, 

CM is coerced, or CM is simply not compatible with the 

class. This second grouping did not distinguish whether 

CM was compatible with “all” or “some” of the verbs in 

a given class. 

 Class example # of classes 

Not Coerced Put, Throw 120 

Coerced Floss, Wink 86 

Not Compatible Differ 64 

5 Evaluation using Constructional Profiles 

5.1 Annotated data description 

Our research uses the data annotated for Hwang et al. 

(2010), in which 1800 instances in the form NP-V-NP-

PP were identified in the Wall Street Journal portion of 

the Penn Treebank II (Marcus et al., 1994). Each instance 
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of the data was single annotated with one of the two 

labels: CM or non-CM. The annotation guidelines were 

based on the CM analysis of Goldberg (1995). 

Our analysis began with the same data but adopted a 

slightly narrower definition of CM. We diverged from 

the Hwang et al. (2010) study in the following two ways: 

(1) sentences where the object NP is an item that is 

created by the event denoted by the verb were not 

considered CM (e.g., Mr. Pilson scribbled a frighteningly 

large figure on a slip of paper, where the figure is created 

through the scribbling event); and (2) sentences in which 

movement is prevented were not considered CM (e.g., 

He kept her at arm’s length). In agreement with Hwang 

et al., our annotation included both metaphorical senses 

(e.g., [It] cast a shadow over world oil markets) and 

literal senses (e.g., The company moved the employees to 

New York) of CM. Our annotation using the narrower 

guidelines resulted in 85.8% agreement with the original 

annotation.
1
 The distribution of labels in our data is 

21.8% for CM and 78.2% for NON-CM. 

5.2 Annotated data description 

Using statistics over the manually annotated data, we 

calculate maximum likelihood estimates of the three 

constructional profile measures introduced in Section 3, 

as follows. First, let the probability that a verb v is used in 

the CM construction be estimated as: 

P(CM|v,C) = 
#(CM usages of      ) 
#(CM+non-CM usages of    ) 

That is, P(CM|v,C) is estimated as the relative frequency 

of the CM construction for v out of all annotated usages 

of v that are labeled as class C. Now let CCM be all verbs v 

in C with at least one usage annotated as CM; i.e.: 

    *      |  (  |   )    + 

Then we calculate estimates of P1–P3 as: 

P1: Ptype(CM|C) = |CCM |/|C| 

This measure indicates how widespread the use of CM is 

across the verb types in the class. 

P2: Ptoken(CM|C) =,∑  (  |   )   - | |⁄  

The average over all verbs v in C of P(CM|v,C) 

This indicates the relative amount of usage of CM among 

all usages of the verbs in the class.  

P3: Ptoken(CM|v,C) = [∑  (  |   ))- |   |       
The average over all verbs v in CCM of P(CM|v,C) 

P3 narrows the P2 measure to only those verbs in the 
                                                           
1
We found that 34.0% of the disagreements were directly due to 

the changes in annotation resulting from our two new criteria. 

class for which there is an attested usage of CM. 

5.3 Analysis of the Constructional Profiles 

The tables below provide a summary of the profile 

measures P1-P3 for the groups of VerbNet classes as 

defined in section 4.2. For each group listed, we report 

the averages of P1-P3 over all classes in the group where 

at least one verb in the class occurred in the data 

manually annotated for CM usage. 

 P1 P2 P3 

CM Allowed by All 0.413 0.323 0.437 

CM Allowed by Some 0.087 0.078 0.224 

CM Not Allowed 0.055 0.055 0.083 

As seen here, the constructional profile measures over 

CM in the data corroborate our Hypothesis 1 (Section 

4.2). All three measures on average are highest for the 

classes that fall into the “all allowed” group, next highest 

for those in the “some allowed” group, and lowest for the 

“not allowed” classes.  

 P1 P2 P3 

CM Non-Coerced 0.354 0.274 0.418 

CM Coerced 0.091 0.091 0.185 

CM Not Allowed
2
 0.056 0.056 0.083 

Furthermore, the second table here confirms our 

expectations for Hypothesis 2 (Section 4.2). Again, all 

three measures on average are highest for classes that fall 

into the “non-coerced” group, next highest for classes in 

the “coerced” group (in which the construction is 

achievable only through coercion), and lowest for the 

“not allowed” group.  

Thus, our two hypotheses are borne out, showing that 

our constructional profile measures, when estimated over 

manually annotated data, can be useful in capturing 

important distinctions among classes of verbs with regard 

to their usage in an extensible construction such as CM. 

6 Automatic Creation of Constructional 

Profiles Using a Bayesian Model  

Manually annotating a corpus for usages of a con-

struction can be prohibitively expensive, so we also 

investigate the use of automatic methods to estimate 

constructional profile measures. By using a hierarchi-cal 

Bayesian model (HBM) that acquires latent prob-abilistic 

verb classes from corpus data, we provide unsupervised 

                                                           
2
 Note the non-zero values result from actual CM verb usages in 

the data belonging to classes believed to be not compatible with 

CM by VerbNet expert annotators. 
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estimates of the constructional profiles. 

6.1 Overview of Model and Data 

We use the HBM of Parisien & Stevenson (2011), a 

model that automatically acquires probabilistic 

knowledge about verb argument structure and verb 

classes from large-scale corpora. The model is based on a 

large body of research in nonparametric Bayesian topic 

modeling (e.g., Teh et al., 2004), a robust method of 

discovering syntactic and semantic structure in very large 

datasets. For each verb encountered in a corpus, the 

model provides an estimate of the verb‟s expected overall 

pattern of usage. By using latent probabilistic verb classes 

to influence these expected usage patterns, the model can, 

for example, estimate the probability that a verb like blink 

might occur in a CM construction, even if no such 

attested usages appear in the corpus. 

In this preliminary study, we use the corpus data from 

Parisien & Stevenson (2011), since the model has been 

trained and evaluated on this data. As that study was 

aimed at modeling facts of child language acquisition, it 

uses child-directed speech from the Thomas corpus 

(Lieven et al., 2009), part of the CHILDES database 

(MacWhinney, 2000). In this preliminary study, we use 

their development dataset containing approx. 170,000 

verb usages, covering approx. 1,400 verb types. (We 

reserve the test set for future experiments.) For each verb 

usage in the input, a number of features are automatically 

extracted that indicate the number and type of syntactic 

arguments occurring with the verb and general semantic 

properties of the verb. The semantic features are drawn 

from the set of VerbNet semantic predicates, such as 

CAUSE, MOTION, and CONTACT. These are automatically 

extracted from all classes compatible with the verb (with 

no sense disambiguation). 

6.2 Measures for Constructional Profiles 

Using the argument structure constructions, verb usage 

patterns and classes learned by the model, we estimate 

the three constructional profile measures in Section 3, as 

follows. First, we note that since the constructions 

acquired by the model are probabilistic in nature, a 

particular CM instance may be a partial match to more 

than one of the model‟s constructions.  

For each verb in the input, we consider the likelihood 

of use of the CM construction to be the likelihood of a 

contrived frame intended to capture the important 

properties of a CM usage. FCM is a usage taking a direct 

object and a prepositional phrase, and including the 

semantic features CAUSE and MOTION, with all other 

semantic features left unspecified. For a given verb v, we 

estimate the likelihood of this CM usage, over all 

constructions in the model, as follows: 

 (   | )  ∑ (   | ) (

 

 | ) 

Here, P(FCM |k) is the likelihood of the CM usage FCM 

being an instance of the probabilistic construction k, and 

P(k|v) is the likelihood that verb v occurs with 

construction k. These component probabilities are 

estimated using the probability distributions acquired by 

the model and averaged over 100 samples from the 

Markov Chain Monte Carlo simulation, as described in 

Parisien & Stevenson (2011). 

Now, we let CCM be the set of verbs in VerbNet class 

C where the expected likelihood of a CM usage is non-

negligible (akin to the set of verbs with attested usage in 

Section 5.2): 

CCM = {v C | P(FCM|v)>λ } 

where λ is a small threshold, here 0.0001. Note that since 

v is not disambiguated for class in our data, all usages of v 

contribute to this estimate. 

The estimates of P1-P3 are comparable to those in 

Section 5.2. The difference is that since we are un-able to 

disambiguate individual usages of the verbs, each usage 

of v is considered to belong to all possible classes C of 

which v is a member. P1 is estimated as before; P2 and 

P3 are averages of P(FCM|v). 

6.3 Analysis of the Constructional Profiles 

The tables below provide a summary of the profile 

estimates P1-P3 for the groups of VerbNet classes as 

given in Section 4.2. For each group listed, we report the 

averages of P1-P3 over all classes in the group where at 

least one of the verbs in the class occurred in the training 

input to the model. 

 P1 P2 P3 

All allowed 0.569 0.0180 0.0250 

Some allowed 0.449 0.0106 0.0192 

Not allowed 0.363 0.0044 0.0079 

These profile measures align with the hypotheses in 

Section 4.2 and with the measures based on manually 

annotated data in Section 5.2. The estimates are high-est 

for classes where all verbs permit the CM con-struction, 

second highest for classes where only some permit it, and 

lowest for classes that do not permit it. 

 P1 P2 P3 

CM non-coerced 0.546 0.0178 0.0260 

CM coerced 0.458 0.0095 0.0167 

CM not allowed 0.363 0.0044 0.0079 
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Again, the overall patterns of the profile measures align 

with Sections 4.2 and 5.2. The profile estimates are 

highest for classes annotated to be non-coerced usages of 

CM, second highest for coerced classes, and lowest for 

“not allowed”.  

The measures show the overall differences among 

classes in the different groups (for both groupings) – i.e., 

the average behavior among classes in the different 

groups varies as we predicted.  This indicates that the 

measures are tapping into aspects of construction usage 

that are relevant to making the desired distinctions in 

VerbNet, and validates the use of automatic 

techniques.  However, there is a substantial amount of 

variability in these measures across the classes, so we also 

consider how well the estimates can predict the 

appropriate group for individual classes. That is, can we 

automatically predict whether the CM construction can 

be used by all, some, or none of the verbs in a given verb 

class, and can we predict whether such usages are 

coerced? 

We consider the P3 measure as it provides the best 

separation among the class groupings. The tables below 

report precision (P), recall (R) and F-measures (F) for 

each group, where „all‟ and „some‟ have been collapsed. 

For exploratory purposes, we pick P3 = 0.006 as the 

value that optimizes F-measures of this classification. 

Future work will explore more principled means for 

setting these thresholds. 

 P R F 

CM allowed 0.880 0.742 0.806 

CM not allowed 0.407 0.636 0.497 

Only a 2-way distinction can be made reliably for the 

allowed grouping. The F-score of over 80% for the 

“allowed” label is very promising. The low precision for 

the “not allowed” case suggests that the model can‟t 

generalize sufficiently due to sparse data. 

 P R F 

CM non-coerced 0.691 0.491 0.574 

CM coerced 0.461 0.417 0.438 

CM not allowed 0.406 0.709 0.517 

We use thresholds of P3 = 0.021 to separate non-coerced 

from coerced classes, and P3 = 0.007 to separate coerced 

from not allowed classes. The model estimates show 

moderate success in distinguishing classes with coerced 

vs. non-coerced usage of the CM construction. However, 

our measures simply cannot distinguish non-occurrence 

due to semantic incompatibility from non-occurrence due 

to chance, given the expected low frequency of a novel 

coerced use of a construction.  To separate the allowed 

cases into whether they are coerced or not requires a 

more detailed assessment of the semantic compatibility of 

the class, which means looking at finer-grained features 

of verb usages that are indicative of the semantic 

predicates compatible with the particular construction.  

Moreover, this kind of assessment likely needs to be 

applied on a verb-specific (and not just class-specific) 

level, in order to identify those verbs out of a potentially 

coercible class that are indeed coercible (i.e., identifying 

the coercible verbs in a class labeled as "some allowed"). 

7 Conclusion 

Our investigation demonstrates that VerbNet does not 

currently represent the CM construction for all verbs or 

verb classes that are compatible with this construction, 

and the existing static representation of verbs is 

inadequate for analyzing extensions of verb meaning 

brought about by coercion. The utility of VerbNet would 

be greatly enhanced by an improved representation of 

constructions: specifically, the incorporation of 

probabilities that verbs in a given (sub)class would occur 

in a particular construction, and whether this constitutes a 

regular sense extension. This addition to VerbNet would 

increase the resource‟s coverage of syntactic frames that 

are compatible with a given verb, and therefore enable 

appropriate inferences when coercion occurs. We have 

made preliminary steps towards developing this 

probabilistic distribution over both verb instances and 

classes, based on a large corpus. Unsupervised methods 

for estimating the probabilities achieve an F-score of over 

80% in distinguishing the classes that allow the target 

construction. However, making distinctions among 

coerced and non-coerced cases will require us to go 

beyond these class-based probabilities to finer-grained, 

corpus-based assessments of a verb‟s semantic 

compatibility with a coercible construction.  

To move beyond these preliminary findings, we must 

therefore shift our focus to the behavior of individual 

verbs. Additionally, to reduce the impact of errors 

resulting from low-frequency verbs and classes, we plan 

to expand our research to more data, specifically the 

OntoNotes TreeBank data (Weischedel et al., 2011). 

Finally, to achieve our ultimate goal of creating a lexicon 

that can flexibly account for a variety of constructions, we 

will examine other constructions as well. While 

determining the set of coercible constructions in a 

language is itself a topic of current research, we propose 

initially to include the widely recognized CAUSE-

RECEIVE and WAY constructions in addition to CM. 
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