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Part-of-speech (POS) tagging reaches excelled
results thanks to powerful discriminative multi-
feature models such as Conditional Random Fieldf
(Lafferty et al.,, 2001), Support Vector Machine
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Abstract

This paper describes a new part-of-speech tag-
ger including multiword unit (MWU) identifi-
cation. It is based on a Conditional Random
Field model integrating language-independent
features, as well as features computed from
external lexical resources. It was imple-
mented in a finite-state framework composed
of a preliminary finite-state lexical analysis
and a CRF decoding using weighted finite-
state transducer composition. We showed that
our tagger reaches state-of-the-art results for
French in the standard evaluation conditions
(i.e. each multiword unit is already merged in
a single token). The evaluation of the tagger
integrating MWU recognition clearly shows
the interest of incorporating features based on
MWU resources.

Introduction

si gogne@ni v-m v. fr

ing semantic processing. Indeed, taggers are gen-
erally evaluated on perfectly tokenized texts where
multiword units (MWU) have already been identi-
fied.

Our paper presents a MWU-aware POS tagger
(i.e. a POS tagger including MWU recognitign
It is based on a Conditional Random Field (CRF)
model that integrates features computed from large-
coverage morphosyntactic lexicons and fine-grained
MWU resources. We implemented it in a finite-state
framework composed of a finite-state lexical ana-
lyzer and a CRF-decoder using weighted transducer
composition.

In section 2, we will first describe statistical tag-
ging based on CRF. Then, in section 3, we will
show how to adapt the tagging models in order to
also identify multiword unit. Next, section 4 will
present the finite-state framework used to implement
the tagger. Section 5 will focus on the description of
our working corpus and the set of lexical resources
sed. In section 6, we then evaluate our tagger on
French.

Statistical POS tagging with Linear
Chain Conditional Random Fields

(Giménez and Marquez, 2004), Maximum Entropy

(Ratnaparkhi, 1996). Some studies like (Denis angdinear chain Conditional Ramdom Fields (CRF) are
Sagot, 2009) have shown that featuring these modelgscriminative probabilistic models introduced by
by means of external morphosyntactic resources st{il afferty et al., 2001) for sequential labelling. Given

improves accuracy. Nevertheless, current taggess input sequence = (z1, z2, .

..,xy) and an out-

rarely take multiword units such as compoundwords__
into account, whereas they form very frequent lexi- 1This strategy somewhat resembles the popular approach of

cal units with strong syntactic and semantic partic

L}pint word segmentation and part-of-speech tagging for- Chi

nese, e.g. (Zhang and Clark, 2008). Moreover, other similar

larities (Sag et al., 2001; Copestake et al., 2002) ar&periments on the same task for French are reported in (Con-
their identification is crucial for applications requir-stant et al., 2011).
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put sequence of labelg = (y1,y2,....,yn), the In practice, we can divide featuref, in two
model is defined as follows: families: while unigram featureq(u;) do not de-
| N K pend on thebpreced]icng tag, i.¢k(3, yt,ytd_l,m)b: )
Pa(ylz) = Z(x)-Zz/\k-fk(tayuytflaf) ug(t, ye, x), igram eatures({)k) epend on bot
iy current and preceding tags, i.€ (¢, y¢, y1—1, ) =
br(t,yt,y:—1, ). In our practical case, bigrams
where Z(z) is a normalization factor depending ex|usively depends on the two tags, i.e. they are in-
onz. Itis based onk features each of them be-dependent from the input sequence and the current
ing defined by a binary functiorf; depending on position like in the Hidden Markov Model (HMM)
the current positiory in z, the current labely,, ynigram features can be sub-divided into internal
the preceding oney_; and the whole input se- and contextual ones. Internal features provide solely
quencez. The feature is activated if a given con-characteristics of the current token: lexical form
figuration betweer, y;, y,—1 andz is satisfied (i.e. (j.e. its character sequence), lowercase form, suf-
fr(t,ye, ye—1,2) = 1). Each featurdf}, is associated fice, prefix, ambiguity classes in the external lexi-
with a weight\,. The weights are the parametersons, whether it contains a hyphen, a digit, whether
of the model. They are estimated during the trainit js capitalized, all capitalized, multiword. Contex-
ing process by maximizing the conditional loglikeli-tyal features indicate characteristics of the surround-
hood on a set of examples already labeled (traininggs of the current token: token unigrams at relative
data). The decoding procedure consists in Iabellingositions -2,-1,+1 and +2(_s, w_1, wi1,wys); tO-
a new input sequence with respect to the model, hyen bigramsw_jwo, wow+1 and w_qw,1; ambi-
maximizing P(y|x) (or minimizing —logP(y|z)).  guity classes at relative positions -2,-1,+1 and +2
There exist dynamic programming procedures Squélciz, AC_1, AC11,AC.>). The different feature

as Viterbi algorithm in order to efﬁCientIy eXplore all temp|ates used in our tagger are given in table 2.
labelling possibilities.

Features are defined by combining different prop- 'ntemil( unigram features P
erties of the tokens in the input sequence and the la-|' " fo =

Lowercase form ofvg = L &to =T
bels at the current position and the preceding one. Prefix ofwy = P with [P| < 5 &tog =T
Properties of tokens can be either binary or tex- fu‘;“g:tfaﬁ‘r’fs;fy ;Vr']t:nm <9 o
tual: e.g. token contains a digit, token is capital- w contains a digit & =T
ized (binary property), form of the token, suffix of wo :Z ;ﬁ%;‘)':f;d ;g i;
size 2 of the token (textual property). Most tag- ., is capitalized and BOS &to =T
gers exclusively use language-independent proper-wo is multiword &to =T

) X i Lexicon tagsACy of wg = A & wo is multiword &to =T
ties — e.g. (Ratnaparkhi, 1996; Toutanova et al.-grissiual unigram features

2003; Giménez and Marquez, 2004; Tsuruoka efw; = X,ie {-2,—1,1,2} &to =T
al., 2009). Itis also possible to integrate language- \'s = AX&Y@EJ}; kgﬁt&\([;é?)e ({Oig)’v:,llvg}} gig -
dependant properties computed from an externat Bigram features

broad-coverage morphosyntactic lexicon, that are: , =77 &to =T
POS tags found in the lexicon for the given token
(e.g. (Denis and Sagot, 2009)). It is of great interest
to deal with unknown wordsas most of them are
covered by the lexicon, and to somewhat filter the

list of candidate tags for each token. We thereforg MWU-aware POS tagging

added to our system a language-dependent properRyiyy-aware POS tagging consists in identifying

a token is associated with the concatenation of itgnq japelling lexical units including multiword ones.

possible tags in an external lexicon, i.e. theam-—____

bibuity class of the token4C). Hidden Markov Models of order. use strong indepen-

- - dance assumptions: a word only depends on its corresponding
2Unknown words are words that did not occur in the trainingag, and a tag only depends oniitrevious tags. In our case,

data. n=1.

Table 1: Feature templates
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It is somewhat similar to segmentation tasks likaunit: the part-of-speech of the lexical multiword unit
chunking or Named Entity Recognition, that iden{PQOS), its internal structureTRUCT), its semantic
tify the limits of chunk or Named Entity segmentsfeature SEM) and its relative position in thé OB
and classify these segments. By using 1a@B®> scheme POSI Tl ON). Table 2 shows the encoding
scheme (Ramshaw and Marcus, 1995), this task i these properties in an example. The property ex-
then equivalent to labelling simple tokens. Each totraction is performed by a longest-match context-
ken is labeled by a tag in the forid+B or X+I, free lookup in the resources. From these properties,
whereX is the POS labelling the lexical unit the to-we use 3 new unigram feature templates shown in
ken belongs to. SuffiB indicates that the token is at table 3: (1) one combining the MWU part-of-speech
the beginning of the lexical unit. Suffix indicates with the relative position; (2) another one depending
an internal position. SuffiXDis useless as the endon the internal structure and the relative position and
of a lexical unit corresponds to the beginning of an¢3) a last one composed of the semantic feature.
other one (suffixB) or the end of a sentence. Such

procedure therefore determines lexical unit limits, aSFormM T POS T STRUCT | POSITION | SEM | Transiation
well as their POS. un - - O - a
. . .. gain O gain

A simple approach is to relabel the training data ge . . o of
in thel OB scheme and to train a new model with the pouvoir mg HEE |B purchasing
same feature. templates._Wlth suc_h _method, most oﬁchat NG | NPN | power
multiword units present in the training corpus will| de - - o of
be recognized as such in a new text. The main issué'® o e ones
resides in the identification of unknown multiword| ia - o] - the
units. Itis well known that statistically inferring new gan“e m;’; |B 82@ (E)‘fa”k
multiword units from a rather small training corpus chine | NPP | ORG | China

is very hard. Most studies in the field prefer finding

methods to automatically extract, from very largerable 2: New token properties depending on Multiword
corpus, multiword lexicons, e.g. (Dias, 2003; Caseliesources

et al., 2010), to be integrated in Natural Language

Processing tools.

In order to improve the number of new multiword New internal unigram features
units detected, it is necessary to plug the tagger to POS/POSITION &to =T
: : : STRUCT,/POSITION, &to=T
multiword resources (either manually built or auto- SEMo &to =T

matically extracted). We incorporate new features
computed from such resources. The resources that Table 3: New features based on the MW resources
we use (cf. section 5) include three exploitable fea-
tures. Each MWU encoded is obligatory assigned
a part-of-speech, and optionally an internal sur-
face structure and a semantic feature. For instanc‘é,
the organization namBanque de ChinéBank of
China) is a proper noun (NPP) with the semanti¢h this section, we describe how we implemented a
feature ORG; the compound nopouvoir d’achat unified Finite-State Framework for our MWU-aware
(purchasing power) has a syntactic fof#®N be- POS tagger. It is organized in two separate clas-
cause it is composed of a nou)( a preposition®) sical stages: a preliminary resource-based lexical
and a nounk). By applying these resources to texts@nalyzer followed by a CRF-based decoder. The
it is therefore possible to add four new propertie&eXical analyzer outputs an acyclic finite-state trans-
for each token that belongs to a lexical multiworcducer (notedrST) representing candidate tagging
sequences for a given input. The decoder is in charge

51: Inside (segment); O: Outside (segment): B: Beginnind®f Selecting the most probable one (i.e. the path in
(of segment) the TFST which has the best probability).

A Finite-state Framework
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4.1 Weighted finite-state transducers is only assigned its possible tags in the lexical re-

Finite-state technology is a very powerful machinSOurces; (2) segmentfiltering, i.e. we only keep lex-
ery for Natural Language Processing (Mohri 1997ical multiword units present in the resources. This
Kornai, 1999; Karttunen, 2001), and in particu-imp”es the use of large-coverage and fine-grained

lar for POS tagging, e.g. (Roche and Schabel£Xical resources.
1995). It is indeed very convenient because it The decoding stage selects the most probable path

has simple factorized representations and interedfl the TEST. This involves that theTFST should

ing well-defined mathematical operations. For inP€ weighted by CRF-based probabilities in order
stance, weighted finite-state transducers (WFST) af@ apply & shortest path algorithm. Our weighing

often used to represent probabilistic models such &0cedure consists in composing a WFST encoding
Hidden Markov Models. In that case, they map inIhe sentence unigram probabilities (unigram WFST)

put sequences into output sequences associated vafifl @ WFST encoding the bigram probabilities (bi-
weights following a probability semiringR(. ,+,x, 9ram WFST). The two WFSTs are defined over the

0, 1) or a log semiring & U {—oc0, +00},®i0g,+ log semiring. The unigram WFST is computed from
+00, 0) for numerical stabilit§. AWFST is a finite- the TFST. Each transition corresponds to ()
state automaton which each transition is composé®ir at a given position in the sentence. So each

of an input symbol, an output symbol and a Weightt_ransmon is weighted by summing the weights of
A path in a WFST is therefore a sequence of consethe unigram features activated at this position. In our
utive transitions of the WFST going from an initial practical case, bigram features are independent from
state to a final state, i.e. it puts a binary relatiod1® sentence. The bigram WFST can therefore be
between an input sequence and an output sequerf@structed once and for all for the whole tagging
with a weight that is the product of the weights of theP"0Cess, in the same way as for order-1 HNth-

path transitions in a probability semiring (the sunsitiondiagrams (Nasr and Volanschi, 2005).

in the log semiring). Note that a finite-state trans- . .
ducer is a WFST with no weights. A very nice oper—5 Linguistic resources
ation on WFSTs is composition (Salomaa and Soi5.1  French TreeBank
tola, 1978). Letl; be a WFST mapping an input
sequence: into an output sequenaggwith a weight
wy(x,y), andTy be another WFST mapping a se-
guencey into a sequence with a weightws(y, z).
The composition of; with 75 results in a WFSTT
mappingz into z with a weightw (z, y).w2(y, 2) in
the probability semiringu; (z,y) + w2 (y, ) in the
log semiring).

The French Treebank (FTB) is a syntactically an-
notated corpusof 569,039 tokens (Abeillé et al.,
2003). Each token can be either a punctuation
marker, a number, a simple word or a multiword
unit. At the POS level, it uses a tagset of 14 cate-
gories and 34 sub-categories. This tagset has been
optimized to 29 tags for syntactic parsing (Crabbé
and Candito, 2008) and reused as a standard in a
4.2 Lexical analysis and decoding POS tagging task (Denis and Sagot, 2009). Below

The lexical analyzer is driven by lexical resourced® & sample of the FTB version annotated in POS.

represented by finite-state transducers like in (Sil- PONCT |

berztein, 2000) (cf. section 5) and generat@$8&T soit cc ie.

containing candidate analyses. Transitions of theune DET a

TFST are labeled by a simple token (as input) andaugmentation ~ NC raise

a POS tag (as output). This stage allows for re-de P of

ducing the global ambiguity of the input sentence in (}/;*-2 B(E:T (}/(—)*-2

two different ways: (1) tag filtering, i.e. each token parrapportau  P+D compared with the
A semiringK is a 5-tuple(K, @, ®,0, 1) where the seK mois NC preceding

is equipped with two operation$ and®; 0 and 1 are their ~ précédent ADJ month

respective neutral elements. The log semiring is an imageof

the probability semiring via the-log function. "It is made of journalistic texts frorhe Mondenewspaper.
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Multiword tokens encode multiword units of dif- can be compiled into equivalent finite-state trans-
ferent types: compound words and named entducers. We used a library of 211 graphs. We man-
ties. Compound words mainly include nominalaually constructed from those available in the online
such asacquis sociauxXsocial benefits), verbs suchlibrary GraalWeb (Constant and Watrin, 2007).
as faire face a (to face) adverbials likedans I
immédiat (right now), prepositions such an de- 5.3 Lexical resources vs. French Treebank

hors de(beside). Some Named Entities are also enn this section, we compare the content of the re-
coded: organization names liE®cete suisse de mi- sources described above with the encodings in the
croélectronique et d’ horlogeriefamily names like FTB-DEV corpus. We observed that around 97,4%
Strauss-Kahnlocation names likéAfrique du Sud of lexical units encoded in the corpus (excluding
(South Africa) orNew York For the purpose of our numbers and punctuation markers) are present in our
study, this corpus was divided in three parts: 80%exical resources (in particular, 97% are in the dic-
for training (TRAIN), 10% for development (DEV) tionaries). While 5% of the tokens are unknown (i.e.
and 10% for testing (TEST). not present in the training corpus), 1.5% of tokens
are unknown and not present in the lexical resources,
which shows that 70% of unknown words are cov-
The lexical resources are composed of both moered by our lexical resources.

phosyntactic dictionaries and strongly lexicalized The segmentation task is mainly driven by the
local grammars. Firstly, there are two generalmultiword resources. Therefore, they should match
language dictionaries of simple and multiwordas much as possible with the multiword units en-
forms: DELA (Courtois, 1990; Courtois et al., 1997)coded in the FTB. Nevertheless, this is practically
and Lefff (Sagot, 2010). DELA has been develvery hard to achieve because the definition of MWU
opped by a team of linguists. Lefff has been aucan never be the same between different people as
tomatically acquired and then manually validatedthere exist a continuum between compositional and
It also resulted from the merge of different |eXica|non-compositiona| sequences. In our case, we ob-
sources. In addition, we applied specific manuallgerved that 75.5% of the multiword units in the FTB-
built lexicons: Prolex (Piton at al., 1999) contain-DEV corpus are in the lexical resources (87.5% in-
ing toponyms ; others including organization namesgjuding training lexicon). This means that 12.5%
and first names (Martineau et al., 2009). Figures osf the multiword tokens are totally unknown and,

5.2 Lexical resources

these dictionaries are detailed in table 4. as a consequence, will be hardly recognized. An-
Name 7 Simple Torms | 7V Torms other S|gn|f|cant issue is that many multlword units
DELA 690,619 272,226 present in our resources are not encoded in the FTB.
Lefff 553,140 26,311 For instance, many Named Entities like dates, per-
Prolex 25,190 97,925 :
Organizations| 772 587 son hames, mail addresses, complex numbers are ab-
Firstnames | 22,074 2,220 sent. By applying our lexical resourédan a longest-

match context-free manner with the platform Unitex
(Paumier, 2011), we manually observed that 30% of

the multiword units found were not considered as
This set of dictionaries is completed by a librarysych in the FTB-DEV corpus.

of strongly lexicalized local grammars (Gross, 1997;
Silberztein, 2000) that recognize different types 06 Experiments and Evaluation

multiword units such as Named Entities (organiza-
tion names, person names, location names, date$ye firstly evaluated our system for standard tag-

locative prepositions, numerical determiners. A lo9iNg Without MWU segmentation and compare it
cal grammar is a graph representing a recursi\)@'th other available statistical taggers that we all
finite-state transducer, which recognizes sequencigined on the FTB-TRAIN corpus. We tested the

belonging to an algebraic language. Practically, they swe excluded local grammars recognizing dates, person
describe regular grammars and, as a consequenaames and complex numbers.

Table 4: Morphosynctatic dictionaries
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well-known TreeTagger (Schmid, 1994) based on Tagger | Model | ACC |

probabilistic decision trees, as well as TnT (Brants, ™nT HMM 96.3
2000) implementing second-order Hidden Markov. TreeTagger | Decision trees 96.4
We also compared our system with two existing SVMTool | SVM 97.2
discriminative taggers: SVMTool (Giménez and CRF-STD | CRF 97.4
Marquez, 2004) based on Support Vector Models MEIt MaxEnt 97.6

: . : CRF-STD+ | CRF 97.6
with language-independent features; MEIt (Denis CRE.LEX | CRE 977
and Sagot, 2009) based on a Maximum Entropy CRE-LEX+ | CRE 97.7

model also incorporating language-dependent fea-
ture computed from an external lexicon. The lexicon Table 5: Comparison of different taggers for French
used to train and test MEIt included all lexical re-
source$ described in section 5. For our CRF-based
system, we trained two models wi@RF++1% (a) ing to three CRF model€RF- STD, CRF- LEXand
STD using language-independent template featurésRF- MAE. The two first ones (STD and LEX) use
(i.e. excludingAC-based features); ()EX using the same feature templates as in the previous ex-
all feature templates described in table 2. We noteeriment. MWE includes all feature templates de-
CRF- STD and CRF- LEX the two related taggers cribed in sections 2 and 3CRF- MAE+ indicates
when no preliminary lexical analysis is performedthat a preliminary lexical analysis is performed be-
CRF- STD+ and CRF- LEX+ when a lexical analy- fore applyingCRF- MAE decoding. The lexical anal-
sis is performed. The lexical analysis in our experysis is achieved by assigning all possible tags of sim-
iment consists in assigning for each token its possple tokens found in our lexical resources, as well as
ble tags found in the lexical resouréésTokens not adding, in theTFST, new transitions corresponding
found in the resources are assigned all possible tatgs MWU segments found in the lexical resources.
in the tagset in order to ensure the system robusi¥e compared the three models with a baseline and
ness. If no lexical analysis is applied, our systensVMTool that have been learnt on the same training
constructs & FST representing all possible analyzescorpus. The baseline is a simple context-free lookup
over the tagset. The results obtained on the TESM the training MW lexicon, after a standard CRF-
corpus are summed up in table 5. ColuA@Cin- based tagging with no MW segmentation. We eval-
dicates the tagger accuracy in percentage. We caated each MWU-aware tagger on the decomposed
observe that our systenCRRF- LEX+) outperforms TEST corpus and computed the f-score, combining
the other existing taggers, especially MEIt whoserecision and recaff. The results are synthesized
authors claimed state-of-the-art results for Frenclin table 6. TheSEGcolumn shows the segmentation
We can notice the great interest of a lexical analysig-score solely taking into account the segment limits
asCRF- STD+ reaches similar results as a MaxEnbf the identified lexical unit. Th&AG column also
model based on features from an external lexicon. accounts for the label assigned. The first observation
We then evaluated our MWU-aware taggeis thatthere is a general drop in the performances for
trained on the TRAIN corpus whose complex tokenall taggers, which is not a surprise as regards with
have been decomposed in a sequence of simple tbe complexity of MWU recognition (97.7% for the
kens and relabeled in the IOB representation. Weest standard tagger vs. 94.4% for the best MWU-
used three different sets of feature templates leadware tagger). Clearly, MWU-aware taggers which
—— _ models incorporate features based on external MWU
Dictionaries were all put together, as well as with the resul
of the application of the local grammars on the corpus. resources outpgrform th? others. Nevertheless’ the
CRF++ is an open-source toolkit to train and test CRF modScores for the identification and the tagging of the
els (http://crfpp.sourceforge.net/). For training, wetbe cut-  MWUS are still rather low: 91%-precision and 71%
off threshold for features to 2 and the C value to 1. We alsd usggcgll. We can also see that a preliminary lexical

the L2 regularization algorithm. . . . .
Upractically, as the tagsets of the lexical resources and tf%nalySls Sllghtly lower the scores, which is due to

FTB were different, we had to first map tags used in the dictio-
naries into tags belonging to the FTB tagset. f.scoref = 5% wherep is precision and is recall.
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missing MWUSs in the resources and is a side effeateal with low recall. We could as well combine the

of missing encodings in the corpus. lexical analyzer with a Named Entity Recognizer.
Another step would be to modify the annotations of
| Tagger | Model | TAG | SEG | the working corpus in order to cover all MWU types
Baseline CRF | 91.2] 93.6 and to make it more homogeneous with our defini-
2;'\220_% g\é'\lf gg% gg'; tion of MWU. Another future work would be to test
“RELEX cRE 9391 959 Egnm;;:j: models that are well-suited for segmenta-
CRF-MWE | CRF 94.4| 96.4 )
CRF-MWE+ | CRF 94.3 | 96.3
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