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Abstract

Multi-word expressions (MWEs) account for
a large portion of the language used in day-
to-day interactions. A formal system that is
flexible enough to model these large and often
syntactically-rich non-compositional chunks as
single units in naturally occurring text could
considerably simplify large-scale semantic an-
notation projects, in which it would be un-
desirable to have to develop internal compo-
sitional analyses of common technical expres-
sions that have specific idiosyncratic meanings.
This paper will first define a notion of functor-
argument decomposition on phrase structure
trees analogous to graph coloring, in which the
tree is cast as a graph, and the elementary
structures of a grammar formalism are colors.
The paper then presents a formal argument
that tree-rewriting systems, a class of grammar
formalism that includes Tree Adjoining Gram-
mars, are able to produce a proper superset
of the functor-argument decompositions that
string-rewriting systems can produce.

1 Introduction

Multi-word expressions (MWEs), whose structure
and meaning cannot be derived from their compo-
nent words as they occur independently, account for
a large portion of the language used in day-to-day
interactions. Indeed, the relatively low frequency of
comparable single-word paraphrases for elementary
spatial relations like ‘in front of’ (compare to ‘be-
fore’) or ‘next to’ (compare to ‘beside’) suggest a
fundamentality of expressions, as opposed to words,
as a basic unit of meaning in language (Becker, 1975;
Fillmore, 2003). Other examples of MWEs are id-
ioms such as ‘kick the bucket’ or ‘spill the beans’,
which have figurative meanings as expressions that
sometimes even allow modification (‘spill some of the
beans’) and variation in sentence forms (‘which beans

were spilled?’), but are not available when the com-
ponent words of the MWE occur independently. A
formal system that is flexible enough to model these
large and often syntactically-rich non-compositional
chunks as single units in naturally occurring text
could considerably simplify large-scale semantic an-
notation projects, in which it would be undesirable
to have to develop internal compositional analyses
of common technical expressions that have specific
idiosyncratic meanings.

Models have been proposed for MWEs based on
string-rewriting systems such as HPSG (Sag et al.,
2002), which model compositionality as string ad-
jacency of a functor and an argument substring.
This string-rewriting model of compositionality es-
sentially treats each projection of a head word as
a functor, each capable of combining with an argu-
ment to yield a higher-level projection or functor.
The set of projections from a lexical head can there-
fore be thought of as a single elementary structure:
an n-ary functor, subsuming the arguments of the
individual functors at each projection. This kind of
approach is intuitive for fully-compositional analy-
ses (e.g. in which a transitive verb like ‘hold’ is a
functor and a NP complement like ‘the basket’ is an
argument), but is less natural when applied to sub-
strings of MWEs (e.g. treating pick as a functor and
up as an argument in the verb-particle MWE pick

. . . up), since some of these arguments do not have
any semantic significance (in the pick . . . up exam-
ple , there is no coherent meaning for Up such that
Jpick X upK = Pick(JXK,Up)).

This paper will argue that tree-rewriting systems,
a class of grammar formalisms that includes Tree
Adjoining Grammars (Joshi, 1985; Joshi and Sch-
abes, 1997), are a more natural candidate for mod-
eling MWEs since they can model entire fragments
of phrase structure trees as elementary (locally non-
compositional) semantic building blocks, in addition
to the set of head-projections used in string-rewriting
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Figure 1: Composition of elementary trees for idiom
MWE ‘kick the bucket’ and adjective ‘proverbial,’ with
the same semantics as an adverb ‘proverbially’ adjoining
at the VP.

systems. This allows more flexibility in defining the
functor-argument decomposition of a given phrase
structure tree.

This will be demonstrated by reducing the functor-
argument decompositions (compositional accounts of
semantics assigned to portions of phrase structure
trees) of string-rewriting systems to a special case
of functor-argument decompositions of tree-rewriting
systems. Discussion in this paper will focus on
string-rewriting systems augmented with unification
(such as HPSG) because in this framework the issue
of multi-word expressions has been discussed (Sag
et al., 2002). The arguments in this paper also ap-
ply to other string rewriting systems such as catego-
rial grammars (Ajdukiewicz, 1935; Bar-Hillel, 1953;
Steedman, 2000), but in these formalisms the issues
concerning MWEs have not been extensively devel-
oped. Essentially, this paper formalizes the intuition
(Abeillé, 1993) that the extended domain of locality
of tree-rewriting systems allows them to provide a
compositional account of the semantics assigned to
multi-word or idiomatic portions of phrase structure
trees using elementary units that, after composition,
may end up partially discontinuous in these trees.
For example, a portion of a phrase structure tree for
‘kick the bucket’ with a single interpretation equiv-
alent to ‘die’ can be modified through adjunction
of the adjective ‘proverbial’ at the noun constituent
‘bucket’ without postulating separate semantics for
‘kick’ (see Figure 1).

2 Definitions

String rewriting systems are sets of rules for re-
placing symbols with other symbols in strings. A
rewriting of some start symbol into a set of lexical
symbols is called a derivation. Rewrite rules in a
string rewriting system can be defined to have des-
ignated functor and argument symbols. Any deriva-

tion τ can therefore yield a functor-argument decom-
position D(τ), essentially defining a set of semantic
functor-argument dependencies among structured el-
ementary categories.

For simplicity, a functor-argument decomposition
will be defined as a mapping from the constituent
nodes in a phrase structure tree to the nodes in
the elementary structures used to derive that tree.
This can be thought of as a coloring of phrase struc-
ture nodes, in which colors correspond to elementary
structures in the rewriting system. The elementary
structures used in such a decomposition may then
be considered n-ary functors, which may take sev-
eral arguments, each of a different color.

In string-rewriting systems such as HPSG, these
n-ary functors consist of a head word and its pro-
jections, and the arguments of the functor are the
non-projecting child of each such projection. Fig-
ure 2 shows feature-based and categorial analyses
for the MWE ‘. . . to the . . . power’ (as in ‘raise Y

to the X power’) which is taken here to have unam-
biguous meaning (in a technical context) as Y X or
Pow(Y,X), and is analyzed here to wrap around an
ordinal number argument X and then adjoin onto a
verb phrase ‘raise Y ’ as a modifier.1 Because their
elementary structures are projected up from individ-
ual head words, these systems prohibit an analysis
of this MWE as a single wrapping functor. Instead,
MWEs like this must be decomposed into individual
functor words (e.g. power) and argument words (e.g.
the, and to).

Tree-rewriting systems, on the other hand, allow
elementary structures to contain nodes which are nei-
ther projections nor argument sites. This permits
an analysis of ‘to the . . . power’ as a single functor
wrapped around its argument (see Figure 3), with-
out having to specify functor-argument relations be-
tween power, to, and the.

More generally, string-rewriting systems use ele-
mentary structures (n-ary functors) that originate
at the lexical item and exhibit a bottom-up branch-
ing structure, branching to an argument site and a
higher level projection at each step. In contrast, tree-
rewriting systems use elementary structures that
originate at a phrasal or clausal node and exhibit

1We are using the MWE ‘. . . to the . . . power’ as a sim-
ple example with an unambiguous meaning in the domain
of mathematics to illustrate our main points in the context
of both adjunction and substitution operations. Alternative
analyses are possible (e.g. with ‘the’ or additional modifiers
adjoining in, to allow variations like ‘to every even power un-

der six’), but in any case the words ‘to’ and ‘power’ on either
side of the X argument are taken to be idiosyncratic to this
expression of Y X . Since it is analyzed as a modifier, this ex-
ample can be used to demonstrate coindexation of structure
in a tree-rewriting system.
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Figure 2: Elementary structures for a verb-phrase-modifying preposition in a functor-argument analysis derived from
a feature structure grammar. Here, ǫ indicates the origin node and boxed numbers indicate coindexations.

a top-down branching structure that mirrors that of
a phrase structure tree. As one might expect, there
are tree-rewriting systems (namely those whose el-
ementary structures contain multiple lexical items)
that can produce functor-argument decompositions
(‘colorings’) of a phrase structure tree which can-
not be produced by a string-rewriting system. More
surprisingly however, this paper will show that the
converse is not true: in other words, for any string-
rewriting system there always exists a tree-rewriting
system that can produce the same functor-argument
decomposition of a phrase structure tree. Thus, the
set of functor-argument decompositions that can be
produced by tree-rewriting systems is a proper super-
set of those that can be produced by string-rewriting
systems.

This is surprising because, taken as a class,
there is no inherent difference in recognition com-
plexity between string-rewriting systems and tree-
rewriting systems (as may be the case between spe-
cific members of these classes, say between CGs
and TAGs), since both are worst-case exponential
if unconstrained coindexation of structure is allowed
(as in unification grammars). This is also surpris-
ing because, since they branch upward, the ele-
mentary structures of string-rewriting systems can
specify complex functors as arguments, which the
downward-branching elementary structures of tree-
rewriting systems cannot. However, this paper will
show that this ability to specify complex functors
as arguments does not confer any additional flexibil-
ity in calculating functor-argument decompositions
of phrase structure trees, and can be factored out
with no loss in expressivity.
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Figure 3: Elementary structure for a verb-phrase-
modifying prepositional phrase ‘to the . . . power’ in a
tree-rewriting system, derived from a tree-adjoining
grammar. Here, ǫ indicates the origin node, ⋄ indicates a
non-argument node (or lexical ‘anchor’), and boxed num-
bers indicate coindexations.

3 Reduction of string-rewriting

systems to tree-rewriting systems

The first step will be to define an n-ary functor in a
string-rewriting system as a kind of elementary struc-
ture α (a tree in fact), whose nodes αµ branch ‘up-
ward’ into sub-structure nodes (connected by depart-
ing arcs labeled l, r, or p,) specifying a left or right
argument category (αµ·l or αµ·r) and a projected
category (αµ·p), rather than branching ‘downward’
into left and right child constituents as in an ordi-
nary phrase structure tree.2 In order to extend this
reduction to feature-based systems, these elemen-
tary structures will also be augmented with coindex-
ation sets I of elementary structure nodes that must
be identical (in terms of labels and departing arcs)
in any functor-argument decomposition of a phrase
structure tree.

2Here, a node αµ is defined by the path of concatenated
arcs µ that lead to it from the origin or root αǫ .
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Figure 4: Decomposition (‘coloring’) of a phrase structure tree τ for the sentence ‘Cube raises the sum to the third
power’, using elementary structures α and β shown at right. Dotted lines from phrase structure tree nodes τη to
elementary structure nodes αµ indicate that αµ generates τη in the functor-argument decomposition: αµ∈DFA(τη).
Dashed lines from elementary structure nodes βν to other elementary structure nodes αµ indicate that αµ is among
the nodes identified with βν as arguments of β in the decomposition. Boxed identifiers indicated coindices between
nodes βν and βν′ in β such that ∃I∈β . βν , βν′ ∈I.

Figure 4 shows a functor-argument decomposition
(or ‘coloring’) of a phrase structure tree using these
upward-branching elements.

The upward-branching elementary structures used
in any such decomposition can then be converted
into a normal form in which all argument nodes are
atomic (have no departing arcs), using the following
transformations of elementary structures to equiva-
lent structures that fit together generate the same
functor-argument decomposition. This is done by si-
multaneously excising ‘matched’ material from both
the argument branch of an elementary structure and
the top of the elementary structure that is its argu-
ment in the given decomposition.

The use of coindexation sets complicates this
transformation somewhat. Initial configurations of
coindexation sets in upward-branching elementary
structures can be exhaustively partitioned into three
classes, defined with respect to the ‘trunk’ of the el-
ementary structure, which is the set of nodes con-
nected to the origin by paths containing only p arcs.
These classes are:

1. coindexations with more than one coindexed
node on the trunk,

2. coindexations with fewer than one coindexed
node on the trunk, and

3. coindexations with exactly one coindexed node

on the trunk.

Elementary structures in the first class, with more
than one coindexed node on the trunk, are equivalent
to graphs with directed cycles, and are ordinarily
excluded from feature-based analyses, so they will
be ignored here.

Elementary structures in the second class, with
fewer than one coindexed node on the trunk,
can be converted to equivalent structures with
no coindices (which trivially satisfies the above
argument-atomicity requirement), using the simulta-
neous excision of ‘matched’ structure in functor and
argument structures described above, by simply ex-
tending this to cover the portion of the argument
elementary structure that extends all the way to the
top of the trunk.

Elementary structures in the third class, with
exactly one coindexed node on the trunk, can
be converted to equivalent structures that sat-
isfy argument-atomicity using a three-step process.
First, the upward-branching sub-structures above
these coindexed nodes (if any) are unified, so the arcs
departing from each coindexed node will be recur-
sively identical (this must be possible in any feature-
based grammar, or the coindexation would be ill-
formed, and should therefore be excluded). The coin-
dexation is then recursively slid up along the p arc
departing from each such node, until the coindexa-
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tion set contains nothing but atomic categories (with
no departing arcs). Finally, the argument nodes are
made to be atomic using the simultaneous excision of
‘matched’ structure in functor and argument struc-
tures described above, leaving an (atomic) coindex-
ation at each (atomic) argument position in each af-
fected branch.

Elementary structures with multiple class 3 coin-
dexation sets I and I ′ (which cannot be deleted
as described above for class 2 sets) can be trans-
formed into structures with a single coindexation
set I by copying the portion of the trunk between
the (unique) on-trunk members of each initial set I

and I ′ onto every other node in the set I ′ that con-
tains the lower trunk node (this copy should include
the coindex belonging to I). The coindexation set
I ′ containing the lower on-trunk node is then simply
deleted.

The normal-form upward-branching structures re-
sulting from this transformation can now be con-
verted into downward-branching elementary trees in
a tree-rewriting system (with coindexed nodes corre-
sponding to ‘root’ and ‘foot’ nodes as defined for tree-
adjoining grammars) by simply replacing each pair
of argument and conclusion arcs with a pair of left-
child and right-child arcs departing the conclusion
node. Since the normal form for upward-branching
elementary structures allows only atomic arguments,
this re-drawing of arcs must result in well-formed
downward-branching elementary trees in every case.3

In particular, this conversion results in a subset of
tree-rewriting systems in which each (binary) branch
of every elementary tree must have exactly one argu-
ment position and one non-argument position among
its two children. This is a special case of a more
general class of tree-rewriting systems, which may
have two argument positions or no argument po-
sitions among the children at each binary branch.
Such trees are not equivalent to trees with a single ar-
gument position per branch, because they will result
in different functor-argument decompositions (‘col-
orings’) of a target phrase structure tree. Moreover,
it is precisely these non-string-rewriting-equivalent
elementary trees that are needed to model the lo-
cal non-compositionality of larger multi-word expres-
sions like ‘threw X to the lions’ (see Figure 5), be-
cause only downward branches with multiple non-

3Recognition and parsing of feature-based grammars, and
of tree-rewriting systems whose elementary trees contain mul-
tiple foot nodes, are both exponential in the worst case. How-
ever, both types of grammars are amenable to regular-from re-
strictions which prohibit recursive adjunction at internal (non-
root, non-foot) tree nodes, and thereby constrain recognition
and parsing complexity to cubic time for most kinds of natural
language grammars (Rogers, 1994).
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PP
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Figure 5: Elementary structure for MWE idiom ‘threw
. . . to the lions,’ allowing modification to both VP, PP
and NP sub-constituents (e.g. ‘threw your friends today
right to the proverbial lions).

argument children can produce the multi-level sub-
trees containing the word ‘threw’ and the word ‘lions’
in the same elementary unit.

4 Conclusion

This paper has shown that tree-rewriting systems
are able to produce a superset of the functor-
argument decompositions that can be produced by
string-rewriting systems such as categorial gram-
mars and feature-structure grammars such as HPSG.
This superset additionally allows elementary units
to contain multiple (lexical) leaves, which a string-
rewriting system cannot. This makes tree-rewriting
systems ideally suited to the analysis of natural lan-
guage texts that contain many multi-word expres-
sions with idiosyncratic (non-compositional) mean-
ings. Although neither the tree-rewriting nor the
string-rewriting analyses defined above can be gen-
erated in guaranteed polynomial time (since they
may require the construction of unbounded stacks
of unrecognized structure during bottom-up recogni-
tion), they can both be made polynomial (indeed, cu-
bic) by the introduction of ‘regular form’ constraints
(Rogers, 1994), which limit this stack in the same
way in both cases.

In contrast with representations like that of
(Villavicencio et al., 2004), in which concepts are dis-
tributed over several lexical entries, a tree-rewriting
representation such as the one described in this pa-
per allows only a single lexical entry to be listed for
each concept. For example:

... throw ... to the lions:
(s(np0!)(vp(v)(np1!)(pp(p)(np(d)(n)))))
... to the ... power:
(vp(vp0*)(pp(p)(np(d)(n(a1!)(n)))))

(using the notation ‘!’ and ‘*’ for substitution sites
and foot nodes, respectively). It is anticipated that
this will simplify the organization of lexical resources
for multi-word expressions.
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