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Abstract

Greater learnability has been offered as an ex-
planation as to why certain properties appear
in human languages more frequently than oth-
ers. Languages with greater learnability are
more likely to be accurately transmitted from
one generation of learners to the next. We ex-
plore whether such a learnability bias is suffi-
cient to result in a property becoming preva-
lent across languages by formalizing language
transmission using a linear model. We then
examine the outcome of repeated transmission
of languages using a mathematical analysis, a
computer simulation, and an experiment with
human participants, and show several ways in
which greater learnability may not result in a
property becoming prevalent. Both the ways
in which transmission failures occur and the
relative number of languages with and with-
out a property can affect whether the rela-
tionship between learnability and prevalence
holds. Our results show that simply finding
a learnability bias is not sufficient to explain
why a particular property is a linguistic univer-
sal, or even frequent among human languages.

1 Introduction

A comparison of languages around the world reveals
that certain properties are far more frequent than
others, which are taken to reflect linguistic univer-
sals (Greenberg, 1963; Comrie, 1981; Croft, 2002).
Understanding the origins of linguistic universals is
an important project for linguistics, and understand-
ing how they relate to human cognitive processes
is an important project for cognitive science. One
prominent explanation for the existence of these pat-
terns is the presence of cognitive biases that make

certain properties of language more easily learned
than others (Slobin, 1973; Wilson, 2003; Finley &
Badecker, 2007; Wilson, 2006). Under this hypothe-
sis, certain properties are common across languages
because they are more easily learned than others (a
learnability bias) and are therefore more likely to be
maintained when a language is passed from one gen-
eration to the next. These universals generally reflect
tendencies, rather than properties that are present in
each and every language (Croft, 2002).

Recent work in psycholinguistics has provided
support for a relationship between learnability bi-
ases and the properties that are prevalent in human
languages. A number of studies have shown that cer-
tain common phonological patterns, such as vowel
harmony, voicing agreement and final devoicing are,
indeed, more learnable than other unattested patterns
(Finley & Badecker, 2007; Moreton, 2008; Becker,
Ketrez, & Nevins, 2011). Based on these findings,
it is tempting to argue that learnability biases alone
might account for the prevalence of these proper-
ties in human languages. However, this argument
assumes that more accurate learning of a language
with a certain property is sufficient for that property
to become widespread across languages and does
not account for why a property might be prevalent
but not universal across languages.

In this paper, we examine the assumption that
greater learnability is sufficient for a property to be-
come prevalent. We formalize language transmis-
sion using a simple linear model, and then show two
basic scenarios in which greater learnability for a
particular language does not result in that language
becoming prevalent. We first perform a mathemat-
ical analysis to show that one way this can occur
is for errors in transmission to favor particular lan-
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guages over others. We next use a simulation to
show another scenario in which greater learnabil-
ity can fail to result in a dominant pattern: when
the number of alternative languages is large. We
conduct two experiments with human participants to
illustrate the occurrence of this second scenario in
the case of a particular property of human language,
vowel harmony.

2 Linking Learnability and Transmission

Languages change over time due to transmission
from generation to generation (e.g., Labov, 2001).
Our goal is to understand how long-term trends of
language change are related to cognitive, perceptual,
and production biases observed in a single instance
of transmission. We begin by formalizing transmis-
sion using a general mathematical model in order
to uncover what long term trends emerge given that
certain languages are more likely to be accurately
transmitted than others.

We use a linear model of cultural transmission,
in which it is assumed that each person learns a lan-
guage from utterances produced by one person in the
previous generation. This linear model of transmis-
sion has many specific instantiations in the literature
on language evolution, such as the iterated learn-
ing model (Kirby, 2001; Griffiths & Kalish, 2007)
or the replicator dynamics (Schuster & Sigmund,
1983; Komarova & Nowak, 2003). To specify this
model, we first define the set of possible languages,
denoted H. Each element h ∈ H is one possible lan-
guage. Transmission occurs when a new member of
the population receives linguistic data (a set of utter-
ances) from another member of the population and
learns a language h ∈ H. We assume transmission
occurs only from one person to another person, and
that each person learns only one language. For ex-
ample, someone who knows language j might speak
to another member of the population, and based on
hearing those utterances, the learner might also learn
the language j. Alternatively, the learner might learn
another language: The learner might not have heard
enough language to fully specify j as the language
or might have misheard something, and thus simply
infers another language i that is consistent with the
data she or he heard. More generally, we assume
that for all i, j ∈ H, qi j is the probability that some-
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This process may continue indefinitely, with the tth learner re-
ceiving the output of the (t −1)th learner. The iterated learn-
ing models we analyze make the simplifying assumptions
that language evolution occurs in only one direction (previ-
ous generations do not change their hypotheses based on the
data produced by future generations) and that each learner re-
ceives input from only one previous learner. We first charac-
terize how learning occurs, independent of specific represen-
tation, and then give a more detailed description of the form
of these hypotheses and data.

Our models assume that learners represent (or act as if they
represent) the degree to which constraints predispose them to
certain hypotheses about language through a probability dis-
tribution over hypotheses, and that they combine these pre-
dispositions with information from the data using Bayesian
inference. Starting with a prior distribution over hypotheses
p(h) for all hypotheses h in a hypothesis space H, the pos-
terior distribution over hypotheses given data d is given by
Bayes’ rule,

p(h|d) =
p(d|h)p(h)

∑h�∈H p(d|h�)p(h�)
(1)

where the likelihood p(d|h) indicates the probability of see-
ing d under hypothesis h. The learners thus shape the lan-
guage they are learning through their own biases in the form
of the prior probabilities: the prior p(h) incorporates the hu-
man learning constraints. These probabilities might, for ex-
ample, tend to favor lword forms with alternating consonant-
vowel phonemes. We assume that learners’ expectations
about the distribution of the data given the hypothesis are
consistent with the actual distribution (i.e. that the probabil-
ity of the previous learner generating data d from hypothesis
h matches the likelihood function p(d|h)). Finally, we as-
sume that learners choose a hypothesis by sampling from the
posterior distribution (although we consider other ways of se-
lecting hypotheses in the Discussion section).1

The analyses we present in this paper are based on the ob-
servation that iterated learning defines a Markov chain. A
Markov chain is a sequence of random variables Xt such that
each Xt is independent of all preceding variables when condi-
tioned on the immediately preceding variable, Xt−1. Thus,
p(xt |x1, . . . ,xt−1) = p(xt |xt−1). There are several ways of
reducing iterated learning to a Markov chain (Griffiths &
Kalish, 2007). We will focus on the Markov chain on hy-
potheses, where transitions from one state to another occur
each generation: the tth learner assumes the data were gen-
erated by ht , where these data are dependent only on the
hypothesis ht−1 chosen by the previous learner. The transi-
tion probabilities for this Markov chain are obtained by sum-
ming over the data from the previous time step di−1, with
p(ht |ht−1) = ∑di−1 p(ht |di−1)p(di−1|ht−1) (see Figure 1).

Identifying iterated learning as a Markov chain allows us to
draw on mathematical results concerning the convergence of

1Note that these various probabilities form our model of the
learners. Learners need not actually hold them explicitly, nor per-
form the exact computations, provided that they act as if they do.
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Figure 1: Language evolution by iterated learning. (a) Each
learner sees data, forms a hypothesis, and generates the data
provided to the next learner. (b) The underlying stochastic
process, with dt and ht being the data generated by the tth
learner and the hypothesis selected by that learner respec-
tively. (c) We consider the Markov chain over hypotheses
formed by summing over the data variables. All learners
share the same prior p(h), and each learner assumes the input
data were created using the same p(d|h).

Markov chains. In particular, Markov chains can converge to
a stationary distribution, meaning that after some number of
generations t, the marginal probability that a variable Xt takes
value xt becomes fixed and independent of the value of the
first variable in the chain (Norris, 1997). Intuitively, the sta-
tionary distribution is a distribution over states in which the
probability of each state is not affected by further iterations
of the Markov chain; in our case, the probability that a learner
learns a specific grammar at time t is equal to the probability
of any future learner learning that grammar. The stationary
distribution is thus an equilibrium state that iterated learn-
ing will eventually reach, regardless of the hypothesis of the
first ancestral learner, provided simple technical conditions
are satisfied (see Griffiths & Kalish, 2007, for details).

Previous work has shown that the stationary distribution
of the Markov chain defined by Bayesian learners sampling
from the posterior is the learners’ prior distribution over hy-
potheses, p(h) (Griffiths & Kalish, 2007). These results illus-
trate how constraints on learning can influence the languages
that people come to speak, indicating that it is possible for
iterated learning to converge to an equilibrium that is deter-
mined by these constraints and independent of the language
spoken by the first learner in the chain.

However, characterizing the stationary distribution of iter-
ated learning still leaves open the question of whether enough
generations of learning have occurred for convergence to this
distribution to have taken place in human languages. To un-
derstand the degree to which linguistic universals reflect con-
straints on learning rather than descent from a common ances-
tor, it is necessary to establish bounds on convergence time.
Previous work has identified factors influencing the rate of
convergence in very simple settings (e.g., Griffiths & Kalish,
2007). Our contribution is to provide analytic upper bounds
on the convergence time of iterated learning with relatively
complex representations of the structure of a language that
are consistent with linguistic theories.

Q
language language

data

Figure 1: (a) A general model of the cultural transmis-
sion of languages. A language is passed from one learner
to another, and the matrix Q encodes the probability a
learner will learn a particular language i from someone
who knows language j. (b) An example transition matrix
Q with three states. (c) The solution to the eigenvector
equation Qπ = π for this transition matrix. π gives the
equilibrium probability that a learner will learn a particu-
lar language when languages are transmitted via a process
that has transition matrix Q.

one will learn language i from someone who knows
language j. These can be encoded in a transition
matrix Q where the (i, j)th entry of the matrix cor-
responds to qi j (see Figure 1).

Using this framework, we can formally define
learnability biases and determine whether a learn-
ability bias for some property necessarily implies
that this property will be present in the majority
of languages. As mentioned previously, we define
learnability bias to mean that one type of language
is more likely to be transmitted accurately to the next
generation than another; this is similar to the notion
of “cognitive bias” discussed in Wilson (2003) and
is what is tested in experiments. Formally, a learn-
ability bias for some language i over some other
language j means that qii > q j j. For example, one
might expose one group of learners to language i and
another group to language j. If more learners in the
first group accurately learned the language they were
exposed to, this would indicate a learnability bias for
language i over language j.

We can extend the idea of a learnability bias to
a property of a language, rather than a specific lan-
guage, by applying a similar definition to sets of lan-
guages. Imagine there are two sets of languages, H1
and H2. These sets might be defined by classifying
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all languages with a particular property in H1 and
all languages without the property in H2. One way
of defining a learnability bias that favors a particular
property is for each language with that property to be
more likely to be transmitted successfully than each
language without that property. That is, for all pos-
sible pairs i ∈ H1 and j ∈ H2, qii > q j j. This would
indicate a general learnability bias for languages in
H1 over languages in H2.

Using this definition of a learnability bias, we can
determine whether such a bias is sufficient to estab-
lish that the property will be present in the majority
of languages. That is, if H1 denotes the languages
with the property of interest, we want to determine
whether a learnability bias for languages in H1 im-
plies that after many generations, the majority of the
languages in the population will be in H1 and not
in H2. We can determine the consequences of many
instances of language transmission in this model by
appealing to existing results on the equilibrium of
this linear dynamical system. As mentioned above,
this linear transmission model is related to two kinds
of models that have been used to study language
evolution: If we assume that learners are organized
in a chain, this linear model is called iterated learn-
ing (Kirby, 2001); alternatively, if we assume that
there are an infinite number of learners in the pop-
ulation, the model is called the replicator dynam-
ics (Schuster & Sigmund, 1983). In either case, the
probability that a learner will learn language h, as-
suming the population has reached equilibrium, is
given by the solution to the eigenvector equation
Qπ = π, normalized such that ∑n

i=1 πi = 1 (for de-
tails, see Griffiths & Kalish, 2007). For languages in
H1 to occur the majority of the time, it thus must be
the case that ∑h∈H1 πh > ∑h∈H2 πh.

We can now identify one context in which a learn-
ability bias is not sufficient to ensure that a property
will appear in the majority of languages. Consider
the example transition matrix Q shown in Figure 1
(b). Let H1 = {s1} and H2 = {s2,s3}, where each
state si represents a distinct language. We have that
q11 > qii for all i ∈ H2: each state in H2 has a lower
self transition probability than state s1, the only state
in H1. Thus, we have a learnability bias for state
s1 over all states in H2. However, the eigenvector
π shown in Figure 1 (c) indicates that the equilib-
rium of this system, which will be reached after lan-

guages are transmitted from person to person many
times, favors state s3 over the other states. Overall,
∑h∈H1 πh = 0.39 while ∑h∈H2 πh = 0.61: most of the
learners will learn a language in H2.1

Intuitively, this result comes from the fact that
transmission failures tend to favor languages in H2.
A learner who learns from someone who speaks a
language i in H2 will rarely learn the language in
H1, although she may learn a different language than
i in H2. This pattern of transmission failures over-
whelms the learnability bias that the language in H1
has over the languages in H2. Note that this pattern
holds even given that q1i > qi1 for all i∈H2, another
common criterion for a learnability bias.

This result implies that if the linear transmission
model is an accurate model for understanding hu-
man language evolution, then it is not sufficient to
compare how accurately languages are maintained
over a single generation in order to predict what
trends will emerge after many generations. Instead,
one must also look at what happens when languages
are not maintained accurately. The ways in which
mutations occur may be as important as the relative
fidelities of transmission in determining long term
trends. When one only looks for a learnability bias,
the rate of different mutations is not accounted for,
leaving open the possibility that predictions about
long term trends will be incorrect.

3 Simulating Language Transmission

In the previous section, we used a simple linear
transmission model to identify one context in which
a learnability bias is not sufficient for languages with
a certain property to become prevalent. We now ex-
plore a second context in which a learnability bias
is not sufficient to guarantee that languages with a
particular property become prevalent, using a sim-
ulation of language transmission. We use an iter-
ated learning model in which our representation of
language is inspired by the principles and parame-
ters approach (Chomsky & Lasnik, 1993). Rafferty,
Griffiths, and Klein (2009) present a model similar
to the one we consider here and show that compa-

1While one might try to resolve this issue by collapsing all
languages in H2 into a single state in the Markov chain, such
a transformation is possible only in cases where qi j = qik for
all languages j,k ∈ H2 and i /∈ H2 (Burke & Rosenblatt, 1958;
Kemeny & Snell, 1960).
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Figure 2: Model results for the frequency of the target language based on adjusting the bias towards that hypothesis.
The rows in the above figure correspond to two possible values of λ; larger λ results in a higher prior probability on
the target language. The leftmost column shows 1,000 samples from the transition matrix, with black x marks corre-
sponding to occurrences of the target language. The middle column corresponds to the frequency of each language in
the full 10,000 samples; the rightmost bar in each figure corresponds to the target language. The rightmost column
shows the frequency of the target language versus all other languages for the same 10,000 samples.

rable results hold using other representations of lan-
guage, such as those based on optimality theory.

In order to define the transition matrix Q, we need
to specify the process by which learners select a lan-
guage. We assume that learners are Bayesian, mean-
ing that they infer a language h based on the data d
that they receive according to Bayes’ rule. The pos-
terior probability assigned to h after observing d is
p(h|d) ∝ p(d|h)p(h), where p(d|h) (the likelihood)
indicates the probability of d being generated from
h, and p(h) (the prior) indicates the extent to which
the learner was biased towards h before observing d.
If we assume learners select hypotheses with proba-
bility equal to their posterior probability, we obtain
a transition matrix Q with entries

qi j = p(h(t+1) = i|h(t) = j)

= ∑
d

p(h(t+1) = i|d)p(d|h(t) = j)

where h(t) and h(t+1) are the languages of learners at
iterations t and t +1 respectively.

To represent languages, we use binary vectors of
length N. Each place corresponds to the setting for
a particular parameter. We consider one particular
setting of the parameters to be the target language
and include a learnability bias for this language in
the model; we then look at whether this language
is more prevalent than other languages after many
transmissions. In the iterated learning model that we
use, learners are organized into a chain, with each
learner learning from data generated by the previous
learner (Kirby, 2001). The previous learner gener-

ates k pieces of data that match her or his language.
These pieces of data each specify the correct param-
eter setting for one of the properties represented by
the binary vector. The other N−k properties are left
unspecified in the data given to the next learner.

In order to define the transition probability be-
tween languages, we need to define the two terms
in Bayes rule: the prior p(h) and the likelihood
p(d|h). Intuitively, the prior probability distribution
over languages corresponds to how much evidence
is required for the learner to learn each hypothesis.
If one hypothesis has a very high prior probability,
only a small amount of evidence will be required to
convince the learner that that hypothesis is the cor-
rect one. By controlling the prior probability of the
target language versus the other languages, we can
manipulate the learnability bias for the target lan-
guage. We thus set the prior probability of the target
language to λ and then divide the remaining proba-
bility mass of 1−λ uniformly across all of the lan-
guages (including the target language). The param-
eter λ thus controls the strength of the learnability
bias for the target language, but this language is al-
ways favored for any λ greater than 0.

The likelihood p(d|h) reflects the probability that
a given hypothesis h would produce data d. We as-
sume d is a string of length N that contains 0s, 1s,
and ?s. A ‘?’ in the ith position means that no in-
formation was given about the ith property. We also
assume there is a probability ε that the chosen lan-
guage will not match the data at each position; that
is, with probability ε, the language chosen by the
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learner will have a 1 in the ith spot if the data had a
0 in that spot. This gives:

p(d|h) = ∏N
i=1,di 6=? εI(h`di)(1− ε)I(h0di)

where h ` di means that h has the same setting of the
ith property as di.

Given these specifications for the prior and the
likelihood, we can calculate the 2N × 2N transition
matrix and sample from this matrix to simulate a
sequence of learners each learning a language from
the utterances produced by the previous learner. We
let N = 10 and k = 5. As shown in Griffiths and
Kalish (2007), in this model – iterated learning with
Bayesian learners – the equilibrium π is simply the
prior distribution p(h). The distribution over lan-
guages is thus unaffected by the error parameter ε;
this parameter only affects the time to reach equilib-
rium (Rafferty et al., 2009). We present results using
ε = 0.25. Figure 2 shows how relative frequency of
the target language is affected by changing the pa-
rameter λ, using λ = 0.6 and λ = 0.1. Frequencies
are based on taking 11,000 samples from the ma-
trix and discarding the first 1,000 to ensure that the
population had reached equilibrium.

The middle column of Figure 2 shows that the
frequency with which learners chose the target lan-
guage was greater than that of the other languages
for both values of λ. This is consistent with the
target language having a higher prior probability
than other languages. However, depending on the
strength of the bias, this language may still not be
chosen the majority of the time, as shown in the
rightmost column of Figure 2. When λ is large,
its probability overwhelms that of its competitors.
However, if λ is relatively small, the combined fre-
quencies of all other languages exceed that of the
target language. Thus, despite being favored by a
learnability bias, the target language is not chosen by
the majority of learners. Like the previous example,
this simulation demonstrates that learnability biases
may not always lead to accurate prediction of long
term trends. More specifically, it highlights that one
must consider the size of the comparison set: If there
are many alternate possible languages, learners may
tend to learn one of these languages even if some
particular language with a learnability bias is more
frequent than any other given individual language.

4 Language Transmission in the Lab

While we have shown two scenarios in which a sim-
ple linear transmission model does not predict that
learnability biases will necessarily lead to linguistic
universals, human learners are not necessarily con-
sistent with this model and could follow a differ-
ent pattern. Thus, we conducted two experiments
to determine if the same dissociation between in-
dividual bias and long-term change can be shown
when teaching human learners an artificial gram-
mar. In Experiment 1, we establish a learnability
bias for a linguistic pattern that is common in the
world’s languages over an arbitrary pattern. In Ex-
periment 2, we explore what happens when a lan-
guage with the common pattern is transmitted mul-
tiple times among learners in the lab. Each learner
learns a language and then produces data from this
language to teach the next learner. By examining the
languages that emerge after several transmissions,
we will show that the learnability bias in Experi-
ment 1 does not translate to the pattern becoming
widespread across the learned languages in Experi-
ment 2. This pattern is an instance of the scenario
in which the many alternative languages overwhelm
the language with the learnability bias.

In our experiments, we use the property of vowel
harmony. Relatively common across the world’s
languages (van der Hulst & van de Weijer, 1995),
vowel harmony is a linguistic pattern wherein the
vowels in words in a language must share some
phonological feature. For example, in Turkish, the
plural suffix is -lar in bash-lar ‘heads’, but -ler in
bebek-ler ‘babies’ so as to adhere to the requirement
that words are front-back harmonic. In the former,
both vowels are back vowels and in the latter, both
vowels are front vowels. Harmony is well-suited for
use in this case because English speakers have no fa-
miliarity with vowel harmony from their native lan-
guage input and because previous work has shown
that typologically attested vowel harmony patterns
are generally more easily learned (Moreton, 2008;
Finley & Badecker, 2009).

5 Experiment 1: Establishing a Bias

5.1 Methods
Participants. There were 40 participants who
received either monetary compensation or course

53



credit for their participation. All were native speak-
ers of English.

Stimuli. A native speaker of English was recorded
saying 160 CVCVC words. Each word began with
one of 80 CVC stems, twenty each with the vow-
els /i/, /e/, /u/ and /o/ and random consonants.
Each stem was recorded with both variants, or al-
lomorphs, of a suffix, [it] and [ut]. Thus, half the
words were front-harmonic (e.g., pel-it, bis-it) and
half were front-disharmonic (e.g., pel-ut, bis-ut).

Procedure. The procedure followed a modified arti-
ficial grammar paradigm. Participants were assigned
to one of two conditions: the harmonic condition
or the height-front dependency condition, which is
unattested. In both conditions, participants were ex-
posed in training to 40 words from the language
they were learning. In the harmonic condition, 40
harmonic words were selected. In the height-front
dependency condition, words were selected such
that mid-vowel stems received the front vowel suffix
(e.g., pel-it, bod-it) and high-vowel stems received
the back-vowel suffix (e.g., bis-ut, tug-ut). This rule
was chosen arbitrarily from the space of possible
languages to test the hypothesis that vowel harmony
would have a learnability bias over other patterns.

Participants were familiarized with the words in
the same way regardless of condition. They were
given alternating blocks of passive listening and
blocks in which for each trial, two words were
played and they were required to choose which word
they had previously heard. In the forced choice tri-
als, the choice was between a word that had been
played in the passive listening section and a word
with the same prefix and the alternate allomorph. A
total of five blocks of 40 trials each were included in
training: three passive listening blocks with a forced
choice block in between each.

Following the training trials, participants com-
pleted one block of 80 test trials. On each test
trial, participants were asked to choose which of
two words they thought was from the language they
had learned in the training trials. In each trial, the
two words both had the same stem and differed in
the suffix. 40 of the test trials included words from
training, and 40 were generalization trials involving
novel words.

Height−Frontness Harmony
0

0.5

1

P
ro

p
o
rt

io
n
 o

f 
G

en
er

al
iz

at
io

n
s

Proportion of Generalizations 
Following Training Set Rule   

Height−Frontness Harmony
0

0.5

1

T
es

t 
A

cc
u
ra

cy

Test Accuracy by Training Set Rule

Figure 3: Results for harmonic versus height-frontness
rule conditions. By condition, there are significant dif-
ferences in the proportion of generalizations following
the rule (0.70 for harmony rule versus 0.57 for height-
frontness rule, t(38) = 2.05, p < 0.05; left) and in test
accuracy (0.80 for harmony rule versus 0.68 for height-
frontness rule, t(38) = 2.23, p < 0.05; right).

5.2 Results

As shown in Figure 3, we found a learnability bias
for the harmonic language. Learners had signifi-
cantly greater accuracy in test when they learned the
vowel harmonic language than when they learned
the height-front dependency language (80% correct
for learners of the harmony rule versus 68% cor-
rect for the height-frontness rule, t(38) = 2.23, p <
0.05). Additionally, 70% of generalizations made
by learners in the harmony rule condition followed
the harmonic rule while only 57% of generaliza-
tions made by learners in the height-front depen-
dency condition followed the height-frontness rule
(t(38) = 2.05, p < 0.05).2 The result of these two
phenomena was that the final languages produced by
the learners in the harmony condition had a greater
prevalence of harmonic words than the final lan-
guages of learners in the height-frontness depen-
dency had of adhering words.

These results establish that the probability of tran-
sitioning from a harmonic language to another lan-
guage with a high proportion of harmonic words
is higher than the probability of transitioning from
a height-front dependency language to another lan-
guage with a high proportion of adhering words. In

2For the second experiment, participants who had low ac-
curacy (< 62.5% of previously heard words chosen in test as
“from the language”) were excluded. Performing this exclusion
in this experiment preserves the same results: Mean accuracy
of 87% for the harmonic condition versus 73% for the height-
front dependency condition (t(28) = 2.74, p < 0.025), and 77%
mean proportion of generalizations following the rule for the
harmonic condition versus 58% for the height-front dependency
condition (t(28) = 2.43, p < 0.025). This exclusion criterion re-
sulted in removing five participants from each condition.
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terms of the transition matrix, this corresponds to
q`harm,`harm > q`h-f,`h-f , where `harm is the set of lan-
guages with a high proportion of harmonic words
and `h-f is the set of languages with a high propor-
tion of words that follow the height-frontness rule.
In other words, the harmonic language is easier to
learn than the height-front dependency language.

6 Experiment 2: Language Transmission

6.1 Methods

Participants. There were a total of 104 partici-
pants who received either monetary compensation or
course credit for their participation. All were native
speakers of English.
Stimuli. The same stimuli were used as in Experi-
ment 1.
Procedure. The procedure for this experiment was
similar to Experiment 1, but the way that words were
chosen for training differed. For the first subject in
each chain, a total of 40 prefixes were selected at
random, and based on the starting condition of the
chain, the allophone for each prefix was selected.
For example, for the 50% harmonic starting con-
dition, 40 prefixes were chosen and of those pre-
fixes, half were chosen to have the appropriate al-
lophone to make the word harmonic and half were
chosen to have the allophone to make the word non-
harmonic. For subsequent subjects in each chain,
40 words were chosen at random from those words
which the previous subject had said was in the lan-
guage. In order to exclude subjects who had not ac-
tually learned the language in training, subjects were
not included in the chain if their accuracy in test on
previously seen words was below 62.5%; this is the
lowest level of accuracy that is significantly differ-
ent (binomial test, p < 0.05) from chance guessing.
Chains were started at 100%, 75%, 50%, 25%, and
0% harmonic. One chain with 10 subjects was run
for each starting point except for 100%. Four chains
of 10 subjects each were run at this starting point as
this is the point of most interest: given a learnabil-
ity bias, does the percentage of harmonic words in a
language remain consistently large?

6.2 Results

While Experiment 1 showed a learnability bias for
the harmonic language over an arbitrarily chosen

language, the iterated learning chains in Experiment
2 did not favor the harmonic language. As shown
in Figure 4, all chains tended toward languages with
approximately 50% harmonic words, and after sev-
eral generations, the chains that began with 100%
harmonic words did not differ significantly from the
other chains. There is also no difference in accuracy
on the harmonic items over time, as shown in Figure
5. This is empirical evidence that the pattern shown
in simulation can also occur with human learners:
One language is more accurately transmitted than
others, but due to the large number of other possi-
ble languages, this language does not predominate
after many transmissions.

7 General Discussion

In this paper, we formalized language transmission
using a linear model in order to examine whether
a learnability bias for some property of language is
sufficient for that property to become prevalent in
human languages. We showed two ways in which
a learnability bias for a property can exist but not
cause that property to become prevalent. First, using
a mathematical analysis, we showed that this can oc-
cur when transmission failures favor languages other
than those that have greater learnability. This illus-
trates the importance of considering the entire trans-
mission matrix, not just the probabilities of accurate
transmissions that are considered when establishing
a learnability bias.

Second, we showed that it is possible for the sheer
number of other possible languages to overwhelm
greater learnability for a particular language. We
then illustrated that this second scenario might lead
to incorrect predictions in an experimental context.
In artificial language experiments, greater learnabil-
ity is often established by comparing the accuracy
of transmission for a language with the property of
interest to an arbitrary language. However, in our
experiment, we established such a learnability bias
for vowel harmony, but this did not result in vowel
harmony being maintained after many instances of
transmission. This result seems to be due to the fact
that numerous languages other than harmonic lan-
guages were possible, so learners tended to learn one
of these many other languages.

One limitation of our analysis is the use of the
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Figure 4: Iterated learning chain results. Dotted lines show the two-tailed 95% confidence interval for chance re-
sponding; confidence intervals differ between the two graphs because there are 40 opportunities to generalize versus
80 opportunities to choose harmonic words.
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Figure 5: Accuracy on harmonic versus non-harmonic words by iteration. Overall, there is no difference in accuracy.

simple linear transmission model, in which each
learner learns from one member of the previous gen-
eration. It is easy to imagine variants on this model
that make more realistic assumptions about cultural
transmission of languages. However, we suspect
that these more complex models would not alter the
conclusions that we have drawn here. For exam-
ple, learning from multiple members of the previous
generation tends to dilute the effects of learnability
on the languages produced by a population (Smith,
2009; Burkett & Griffiths, 2010).

Overall, the result of a more complicated relation-
ship between learnability biases and linguistic uni-
versals is congruent with the evidence that all lan-
guages do not exhibit all properties for which learn-
ability biases have been found. Indeed, in histori-
cal linguistics, the general principle is one of lan-
guage divergence, rather than convergence on some
universal language (e.g., Greenberg, 1971). Given
this relationship, one must rethink using experimen-
tal evidence for particular learnability biases to ex-
plain linguistic tendencies. Instead, one must either

estimate all of the values in the transmission matrix,
or actually simulate the process of multiple trans-
missions in the lab to establish whether a particu-
lar property with a learnability bias is actually main-
tained over many generations. While this process is
dependent on assuming a particular model of how
transmission occurs in populations, such as the lin-
ear iterated learning paradigm we used in our exper-
iments, it provides a way of understanding what mu-
tations are likely to occur and of exploring the long
term trends that result from particular learnability bi-
ases. As we showed for vowel harmony, long term
trends may not match what one predicted based on a
learnability bias. Given such a result, one must look
to factors other than the learnability bias to explain
why a property is common across languages.
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