
Proceedings of the Fifth Law Workshop (LAW V), pages 101–109,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

Assessing the Practical Usability
of an Automatically Annotated Corpus

Md. Faisal Mahbub Chowdhury † ‡ and Alberto Lavelli ‡

‡ Human Language Technology Research Unit, Fondazione Bruno Kessler, Trento, Italy
† Department of Information Engineering and Computer Science, University of Trento, Italy

{chowdhury,lavelli}@fbk.eu

Abstract

The creation of a gold standard corpus (GSC)
is a very laborious and costly process. Silver
standard corpus (SSC) annotation is a very re-
cent direction of corpus development which
relies on multiple systems instead of human
annotators. In this paper, we investigate the
practical usability of an SSC when a machine
learning system is trained on it and tested on
an unseen benchmark GSC. The main focus of
this paper is how an SSC can be maximally ex-
ploited. In this process, we inspect several hy-
potheses which might have influenced the idea
of SSC creation. Empirical results suggest that
some of the hypotheses (e.g. a positive impact
of a large SSC despite of having wrong and
missing annotations) are not fully correct. We
show that it is possible to automatically im-
prove the quality and the quantity of the SSC
annotations. We also observe that considering
only those sentences of SSC which contain an-
notations rather than the full SSC results in a
performance boost.

1 Introduction

The creation of a gold standard corpus (GSC) is
not only a very laborious task due to the manual ef-
fort involved but also a costly and time consuming
process. However, the importance of the GSC to ef-
fectively train machine learning (ML) systems can-
not be underestimated. Researchers have been trying
for years to find alternatives or at least some com-
promise. As a result, self-training, co-training and
unsupervised approaches targeted for specific tasks
(such as word sense disambiguation, syntactic pars-
ing, etc) have emerged. In the process of these re-
searches, it became clear that the size of the (manu-

ally annotated) training corpus has an impact on the
final outcome.

Recently an initiative is ongoing in the context of
the European project CALBC1 which aims to create
a large, so called silver standard corpus (SSC) us-
ing harmonized annotations automatically produced
by multiple systems (Rebholz-Schuhmann et al.,
2010; Rebholz-Schuhmann et al., 2010a; Rebholz-
Schuhmann et al., 2010b). The basic idea is that
independent biomedical named entity recognition
(BNER) systems annotate a large corpus of biomed-
ical articles without any restriction on the methodol-
ogy or external resources to be exploited. The differ-
ent annotations are automatically harmonized using
some criteria (e.g. minimum number of systems to
agree on a certain annotation) to yield a consensus
based corpus. This consensus based corpus is called
silver standard corpus because, differently from a
GSC, it is not created exclusively by human anno-
tators. Several factors can influence the quantity and
quality of the annotations during SSC development.
These include varying performance, methodology,
annotation guidelines and resources of the SSC an-
notation systems (henceforth annotation systems).

The annotation of SSC in the framework of the
CALBC project is focused on (bio) entity mentions
(a specific application of the named entity recogni-
tion (NER)2 task). However, the idea of SSC cre-
ation might also be applied to other types of anno-
tations, e.g. annotation of relations among entities,
annotation of treebanks and so on. Hence, if it can be

1http://www.ebi.ac.uk/Rebholz-srv/CALBC/project.html
2Named entity recognition is the task of locating boundaries

of the entity mentions in a text and tagging them with their cor-
responding semantic types (e.g. person, location, disease and
so on).
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shown that an SSC is a useful resource for the NER
task, similar resources can be developed for anno-
tation of information other than entities and utilized
for the relevant natural language processing (NLP)
tasks.

The primary objective of SSC annotation is to
compensate the cost, time and manual effort re-
quired for a GSC. The procedure of SSC develop-
ment is inexpensive, fast and yet capable of yielding
huge amount of annotated data. These advantages
trigger several hypotheses. For example:

• The size of annotated training corpus always
plays a crucial role in the performance of ML
systems. If the annotation systems have very
high precision and somewhat moderate recall,
they would be also able to annotate automat-
ically a huge SSC which would have a good
quality of annotations. So, one might assume
that, even if such an SSC may contain wrong
and missing annotations, a relatively 15 or 20
times bigger SSC than a smaller GSC should
allow an ML based system to ameliorate the ad-
verse effects of the erroneous annotations.

• Rebholz-Schuhmann et al. (2010) hypothesized
that an SSC might serve as an approximation of
a GSC.

• In the absence of a GSC, it is expected that
ML systems would be able to exploit the har-
monised annotations of an SSC to annotate un-
seen text with reasonable accuracy.

• An SSC could be used to semi-automate the an-
notations of a GSC. However, in that case, it
is expected that the annotation systems would
have very high recall. One can assume that
converting an SSC into a GSC would be less
time consuming and less costly than develop-
ing a GSC from scratch.

All these hypotheses are yet to be verified. Nev-
ertheless, once we have an SSC annotated with cer-
tain type of information, the main question would be
how this corpus can be maximally exploited given
the fact that it might be created by annotation sys-
tems that used different resources and possibly not
the same annotation guidelines. This question is di-

rectly related to the practical usability of an SSC,
which is the focus of this paper.

Taking the aforementioned hypotheses into ac-
count, our goal is to investigate the following re-
search questions which are fundamental to the max-
imum exploitation of an SSC:

1. How can the annotation quality of an SSC be
improved automatically?

2. How would a system trained on an SSC per-
form if tested on an unseen benchmark GSC?

3. Can an SSC combined with a GSC produce a
better trained system?

4. What would be the impact on system perfor-
mance if unannotated sentences3 are removed
from an SSC?

5. What would be the effects of the variation in
the size of an SSC on precision and recall?

Our goal is not to judge the procedure of SSC cre-
ation, rather our objective is to examine how an SSC
can be exploited automatically and maximally for a
specific task. Perhaps this would provide useful in-
sights to re-evaluate the approach of SSC creation.

For our experiments, we use a benchmark GSC
called the BioCreAtIvE II GM corpus (Smith et
al., 2008) and the CALBC SSC-I corpus (Rebholz-
Schuhmann et al., 2010a). Both of these corpora
are annotated with genes. Our motivation behind the
choice of a gene annotated GSC for the SSC evalu-
ation is that ML based BNER for genes has already
achieved a sufficient level of maturity. This is not
the case for other important bio-entity types, primar-
ily due to the absence of training GSC of adequate
size. In fact, for many bio-entity types there exist no
GSC. If we can achieve a reasonably good baseline
for gene mention identification by maximizing the
exploitation of SSC, we might be able to apply al-
most similar strategies to exploit SSC for other bio-
entity types, too.

The remaining of this paper is organised as fol-
lows. Section 2 includes brief discussion of the re-
lated work. Apart from mentioning the related liter-
ature, this section also underlines the difference of

3For the specific SSC that we use in this work, unannotated
sentences correspond to those sentences that contain no gene
annotation.
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SSC development with respect to approaches such
as self-training and co-training. Then in Section 3,
we describe the data used in our experiments and the
experimental settings. Following that, in Section 4,
empirical results are presented and discussed. Fi-
nally, we conclude with a description of what we
learned from this work in Section 5.

2 Related Work

As mentioned, the concept of SSC has been initi-
ated by the CALBC project (Rebholz-Schuhmann et
al., 2010a; Rebholz-Schuhmann et al., 2010). So far,
two versions of SSC have been released as part of the
project. The CALBC SSC-I has been harmonised
from the annotations of the systems provided by
the four project partners. Three of them are dictio-
nary based systems while the other is an ML based
system. The systems utilized different types of re-
sources such as GENIA corpus (Kim et al., 2003),
Entrez Genes4, Uniprot5, etc. The CALBC SSC-
II corpus has been harmonised from the annotations
done by the 11 participants of the first CALBC chal-
lenge and the project partners.6 Some of the par-
ticipants have used the CALBC SSC-I versions for
training while others used various gene databases or
benchmark GSCs such as the BioCreAtIvE II GM
corpus.

One of the key questions regarding an SSC would
be how close its annotation quality is to a corre-
sponding GSC. On the one hand, every GSC con-
tains its special view of the correct annotation of a
given corpus. On the other hand, an SSC is created
by systems that might be trained with resources hav-
ing different annotation standards. So, it is possible
that the annotations of an SSC significantly differ
with respect to a manually annotated (i.e., gold stan-
dard) version of the same corpus. This is because
human experts are asked to follow specific annota-
tion guidelines.

Rebholz-Schuhmann and Hahn (2010c) did an in-
trinsic evaluation of the SSC where they created an

4http://jura.wi.mit.edu/entrez gene/
5http://www.uniprot.org/
6See proceedings of the 1st CALBC Work-

shop, 2010, Editors: Dietrich Rebholz-Schuhmann
and Udo Hahn (http://www.ebi.ac.uk/Rebholz-
srv/CALBC/docs/FirstProceedings.pdf) for details.

SSC and a GSC on a dataset of 3,236 Medline7 ab-
stracts. They were not able to make any specific con-
clusion whether the SSC is approaching to the GSC.
They were of the opinion that SSC annotations are
more similar to terminological resources.

Hahn et al. (2010) proposed a policy where sil-
ver standards can be dynamically optimized and cus-
tomized on demand (given a specific goal function)
using a gold standard as an oracle. The gold stan-
dard is used for optimization only, not for training
for the purpose of SSC annotation. They argued that
the nature of diverging tasks to be solved, the lev-
els of specificity to be reached, the sort of guide-
lines being preferred, etc should allow prospective
users of an SSC to customize one on their own and
not stick to something that is already prefabricated
without concrete application in mind.

Self-training and co-training are two of the exist-
ing approaches that have been used for compensat-
ing the lack of a training GSC with adequate size
in several different tasks such as word sense disam-
biguation, semantic role labelling, parsing, etc (Ng
and Cardie, 2003; Pierce and Cardie, 2004; Mc-
Closky et al., 2006; He and Gildea, 2006). Accord-
ing to Ng and Cardie (2003), self-training is the pro-
cedure where a committee of classifiers are trained
on the (gold) annotated examples to tag unannotated
examples independently. Only those new annota-
tions to which all the classifiers agree are added to
the training set and classifiers are retrained. This
procedure repeats until a stop condition is met. Ac-
cording to Clark et al. (2003), self-training is a pro-
cedure in which “a tagger is retrained on its own la-
beled cache at each round”. In other words, a sin-
gle classifier is trained on the initially (gold) anno-
tated data and then applied on a set of unannotated
data. Those examples meeting a selection criterion
are added to the annotated dataset and the classifier
is retrained on this new data set. This procedure can
continue for several rounds as required.

Co-training is another weakly supervised ap-
proach (Blum and Mitchell, 1998). It applies for
those tasks where each of the two (or more) sets of
features from the initially (gold) annotated training
data is sufficient to classify/annotate the unannotated
data (Pierce and Cardie, 2001; Pierce and Cardie,

7http://www.nlm.nih.gov/databases/databases medline.html
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2004; He and Gildea, 2006). As with SSC annota-
tion and self-training, it also attempts to increase the
amount of annotated data by making use of unanno-
tated data. The main idea of co-training is to repre-
sent the initially annotated data using two (or more)
separate feature sets, each called a “view”. Then,
two (or more) classifiers are trained on those views
of the data which are then used to tag new unanno-
tated data. From this newly annotated data, the most
confident predictions are added to the previously an-
notated data. This whole process may continue for
several iterations. It should be noted that, by limit-
ing the number of views to one, co-training becomes
self-training.

Like the SSC, the multiple classifier approach
of self-training and co-training, as described above,
adopts the same vision of utilizing automatic sys-
tems for producing the annotation. Apart from that,
SSC annotation is completely different from both
self-training and co-training. For example, classi-
fiers in self-training and co-training utilizes the same
(manually annotated) resource for their initial train-
ing. But SSC annotation systems do not necessar-
ily use the same resource. Both self-training and
co-training are weakly supervised approaches where
the classifiers are based on supervised ML tech-
niques. In the case of SSC annotation, the annota-
tion systems can be dictionary based or rule based.
This attractive flexibility allows SSC annotation to
be a completely unsupervised approach since the
annotation systems do not necessarily need to be
trained.

3 Experimental settings

We use the BioCreAtIvE II GM corpus (henceforth,
only the GSC) for evaluation of an SSC. The training
corpus in the GSC has in total 18,265 gene annota-
tions in 15,000 sentences. The GSC test data has
6,331 annotations in 5,000 sentences.

Some of the CALBC challenge participants have
used the BioCreAtIvE II GM corpus for training to
annotate gene/protein in the CALBC SSC-II corpus.
We wanted our benchmark corpus and benchmark
corpus annotation to be totally unseen by the sys-
tems that annotated the SSC to be used in our experi-
ments so that there is no bias in our empirical results.
SSC-I satisfies this criteria. So, we use the SSC-I
(henceforth, we would refer the CALBC SSC-I as

simply the SSC) in our experiments despite the fact
that it is almost 3 times smaller than the SSC-II.
The SSC has in total 137,610 gene annotations in
316,869 sentences of 50,000 abstracts.

Generally, using a customized dictionary of en-
tity names along with annotated corpus boosts NER
performance. However, since our objective is to ob-
serve to what extent a ML system can learn from
SSC, we avoid the use of any dictionary. We use
an open source ML based BNER system named
BioEnEx8 (Chowdhury and Lavelli, 2010). The
system uses conditional random fields (CRFs), and
achieves comparable results (F1 score of 86.22% on
the BioCreAtIvE II GM test corpus) to that of the
other state-of-the-art systems without using any dic-
tionary or lexicon.

One of the complex issues in NER is to come to an
agreement regarding the boundaries of entity men-
tions. Different annotation guidelines have different
preferences. There may be tasks where a longer en-
tity mention such as “human IL-7 protein” may be
appropriate, while for another task a short one such
as “IL-7” is adequate (Hahn et al., 2010).

However, usually evaluation on BNER corpora
(e.g., the BioCreAtIvE II GM corpus) is performed
adopting exact boundary match. Given that we have
used the official evaluation script of the BioCre-
AtIvE II GM corpus, we have been forced to
adopt exact boundary match. Considering a relaxed
boundary matching (i.e. the annotations might dif-
fer in uninformative terms such as the, a, acute, etc.)
rather than exact boundary matching might provide
a slightly different picture of the effectiveness of the
SSC usage.

4 Results and analyses

4.1 Automatically improving SSC quality

The CALBC SSC-I corpus has a negligible num-
ber of overlapping gene annotations (in fact, only 6).
For those overlapping annotations, we kept only the
longest ones. Our hypothesis is that a certain token
in the same context can refer to (or be part of) only
one concept name (i.e. annotation) of a certain se-
mantic group (i.e. entity type). After removing these
few overlaps, the SSC has 137,604 annotations. We

8Freely available at http://hlt.fbk.eu/en/people/chowdhury/research
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will refer to this version of the SSC as the initial
SSC (ISSC).

We construct a list9 using the lemmatized form
of 132 frequently used words that appear in gene
names. These words cannot constitute a gene name
themselves. If (the lemmatized form of) all the
words in a gene name belong to this list then that
gene annotation should be discarded. We use this list
to remove erroneous annotations in the ISSC. After
this purification step, the total number of annotations
is reduced to 133,707. We would refer to this version
as the filtered SSC (FSSC).

Then, we use the post-processing module of
BioEnEx, first to further filter out possible wrong
gene annotations in the FSSC and then to automati-
cally include potential gene mentions which are not
annotated. It has been observed that some of the
annotated mentions in the SSC-I span only part of
the corresponding token10. For example, in the to-
ken “IL-2R”, only “IL-” is annotated. We extend
the post-processing module of BioEnEx to automat-
ically identify all such types of annotations and ex-
pand their boundaries when their neighbouring char-
acters are alphanumeric.

Following that, the extended post-processing
module of BioEnEx is used to check in every sen-
tence whether there exist any potential unannotated
mentions11 which differ from any of the annotated
mentions (in the same sentence) by a single charac-
ter (e.g. “IL-2L” and “IL-2R”), number (e.g. “IL-
2R” and “IL-345R”) or Greek letter (e.g. “IFN-
alpha” and “IFN-beta”). After this step, the total
number of gene annotations is 144,375. This means
that we were able to remove/correct some specific
types of errors and then further expand the total
number of annotations (by including entities not an-
notated in the original SSC) up to 4.92% with re-
spect to the ISSC. We will refer to this expanded
version of the SSC as the processed SSC (PSSC).

When BioEnEx is trained on the above versions
9The words are collected from

http://pir.georgetown.edu/pirwww/iprolink/general name
and the annotation guideline of GENETAG (Tanabe et al.,
2005).

10By token we mean a sequence of consecutive non-
whitespace characters.

11Any token or sequence of tokens is considered to verify
whether it should be annotated or not, if its length is more than
2 characters excluding digits and Greek letters.

TP FP FN P R F1

ISSC 2,396 594 3,935 80.13 37.85 51.41
FSSC 2,518 557 3,813 81.89 39.77 53.54
PSSC 2,606 631 3,725 80.51 41.16 54.47

Table 1: The results of experiments when trained with
different versions of the SSC and tested on the GSC test
data.

of the SSC and tested on the GSC test data, we ob-
served an increase of more than 3% of F1 score be-
cause of the filtering and expansion (see Table 1).
One noticeable characteristic in the results is that the
number of annotations obtained (i.e. TP+FP12) by
training on any of the versions of the SSC is almost
half of the actual number annotations of the GSC test
data. This has resulted in a low recall. There could
be mainly two reasons behind this outcome:

• First of all, it might be the case that a consid-
erable number of gene names are not annotated
inside the SSC versions. As a result, the fea-
tures shared by the annotated gene names (i.e.
TP) and unnannotated gene names (i.e. FN)
might not have enough influence.

• There might be a considerable number of
wrong annotations which are actually not genes
(i.e. FP). Consequently, a number of bad fea-
tures might be collected from those wrong an-
notations which are misleading the training
process.

To verify the above conditions, it would be re-
quired to annotate the huge CALBC SSC manually.
This would be not feasible because of the cost of
human labour and time. Nevertheless, we can try to
measure the state of the above conditions roughly by
using only annotated sentences (i.e. sentences con-
taining at least one annotation) and varying the size
of the corpus, which are the subjects of our next ex-
periments.

12TP (true positive) = corresponding annotation done by the
system is correct, FP (false positive) = corresponding anno-
tation done by the system is incorrect, FN (false negative) =
corresponding annotation is correct but it is not annotated by
the system.
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Figure 1: Graphical representation of the experimental
results with varying size of the CSSC.

4.2 Impact of annotated sentences and
different sizes of the SSC

We observe that only 77,117 out of the 316,869
sentences in the PSSC contain gene annotations.
We will refer to the sentences having at least one
gene annotation collectively as the condensed SSC
(CSSC). Table 2 and Figure 1 show the results when
we used different portions of the CSSC for training.

There are four immediate observations on the
above results:

• Using the full PSSC, we obtain total (i.e.
TP+FP) 3,237 annotations on the GSC test
data. But when we use only annotated sen-
tences of the PSSC (i.e. the CSSC), the total
number of annotations is 4,562, i.e. there is an
increment of 40.93%.

• Although we have a boost in F1 score due to the
increase in recall using the CSSC in place of the
PSSC, there is a considerable drop in precision.

• The number of FP is almost the same for the
usage of 10-75% of the CSSC.

• The number of FN kept decreasing (and TP
kept increasing) for 10-75% of the CSSC.

These observations can be interpreted as follows:

• Unannotated sentences inside the SSC in real-
ity contain many gene annotations; so the in-
clusion of such sentences misleads the training
process of the ML system.

• Some of the unannotated sentences actually
do not contain any gene names, while others
would contain such names but the automatic
annotations missed them. As a consequence,
the former sentences contain true negative ex-
amples which could provide useful features that
can be exploited during training so that less FPs
are produced (with a precision drop using the
CSSC). So, instead of simply discarding all the
unannotated sentences, we could adopt a filter-
ing strategy that tries to distinguish between the
two classes of sentences above.

• The experimental results with the increasing
size of the CSSC show a decrease in both pre-
cision (74.55 vs 76.17) and recall (53.72 vs
54.04). We plan to run again these experiments
with different randomized splits to better assess
the performance.

• Even using only 10% of the whole CSSC does
not produce a drastic difference with the results
when the full CSSC is used. This indicates that
perhaps the more CSSC data is fed, the more
the system tends to overfit.

• It is evident that the more the size of the CSSC
increases, the lower the improvement of F1

score, if the total number of annotations in
the newly added sentences and the accuracy of
the annotations are not considerably higher. It
might be not surprising if, after the addition of
more sentences in the CSSC, the F1 score drops
further rather than increasing. The assumption
that having a huge SSC would be beneficiary
might not be completely correct. There might
be some optimal limit of the SSC (depending
on the task) that can provide maximum bene-
fits.

4.3 Training with the GSC and the SSC
together

Our final experiments were focused on whether it is
possible to improve performance by simply merg-
ing the GSC training data with the PSSC and the
CSSC. The PSSC has almost 24 times the num-
ber of sentences and almost 8 times the number of
gene annotations than the GSC. There is a possibility
that, when we do a simple merge, the weight of the
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Total tokens in the corpus No of annotated genes TP FP FN P R F1

PSSC 6,955,662 144,375 2,606 631 3,725 80.51 41.16 54.47

100% of CSSC 1,983,113 144,375 3,401 1,161 2,930 74.55 53.72 62.44

75% of CSSC 1,487,823 108,213 3,421 1,070 2,910 76.17 54.04 63.22

50% of CSSC 992,392 72,316 3,265 1,095 3,066 74.89 51.57 61.08

25% of CSSC 494,249 35,984 3,179 1,048 3,152 75.21 50.21 60.22

10% of CSSC 196,522 14,189 2,988 1,097 3,343 73.15 47.20 57.37

Table 2: The results of SSC experiments with varying size of the CSSC = condensed SSC (i.e. sentences containing
at least one annotation). SSC size = 316,869 sentences. CSSC size = 77,117.

TP FP FN P R F1

GSC 5,373 759 958 87.62 84.87 86.22

PSSC +

GSC 3,745 634 2,586 85.52 59.15 69.93

PSSC +

GSC * 8 4,163 606 2,168 87.29 65.76 75.01

CSSC +

GSC * 8 4,507 814 1,824 84.70 71.19 77.36

Table 3: The results of experiments by training on the
GSC training data merged with the PSSC and the CSSC.

gold annotations would be underestimated. So, apart
from doing a simple merge, we also try to balance
the annotations of the two corpora. There are two
options to do this – (i) by duplicating the GSC train-
ing corpus 8 times to make its total number of anno-
tations equal to that of the PSSC, or (ii) by choos-
ing randomly a portion of the PSSC that would have
almost similar amount of annotations as that of the
GSC. We choose the 1st option.

Unfortunately, when an SSC (i.e. the PSSC or the
CSSC) is combined with the GSC, the result is far
below than that of using the GSC only (see Table 3).
Again, low recall is the main issue partly due to the
lower number of annotations (i.e. TP+FP) done by
the system trained on an SSC and the GSC instead of
the GSC only. As we know, a GSC is manually an-
notated following precise guidelines, while an SSC
is annotated with automatic systems that do not nec-
essarily follow the same guidelines as a GSC. So,
it would not have been surprising if the number of
annotations were high (since we have much bigger
training corpus due to SSC) but precision were low.
But in practice, precision obtained by combining an
SSC and the GSC is almost as high as the precision

achieved using the GSC.
One reason for the lower number of annotations

might be the errors that have been propagated in-
side the SSC. Some of the systems that have been
used for the annotation of the SSC might have low
recall. As a result, during harmonization of their an-
notations several valid gene mentions might not have
been included13.

One other possible reason could be the difference
in the entity name boundaries in the GSC and an
SSC. We have checked some of the SSC annotations
randomly. It appears that in those annotated entity
names some relevant (neighbouring) words (in the
corresponding sentences) are not included. It is most
likely that the SSC annotation systems had disagree-
ments on those words.

When the annotations of the GSC were given
higher preference (by duplicating), there is a sub-
stantial improvement in the F1 score, although still
lower than the result with the GSC only.

5 Conclusions

The idea of SSC development is simple and yet at-
tractive. Obtaining better results on a test dataset
by combining output of multiple (accurate and di-
verse14) systems is not new (Torii et al., 2009; Smith
et al., 2008). But adopting this strategy for cor-

13There can be two reasons for this – (i) when a certain valid
gene name is not annotated by any of the annotation systems,
and (ii) when only a few of those systems have annotated the
valid name but the total number of such systems is below than
the minimum required number of agreements, and hence the
gene name is not considered as an SSC annotation.

14A system is said to be accurate if its classification perfor-
mance is better than a random classification. Two systems are
considered diverse if they do not make the same classification
mistakes. (Torii et al., 2009)
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pus development is a novel and unconventional ap-
proach. Some natural language processing tasks (es-
pecially the new ones) lack adequate GSCs to be
used for the training of ML based systems. For such
tasks, domain experts can provide patterns or rules
to build systems that can be used to annotate an ini-
tial version of SSC. Such systems might lack high
recall but are expected to have high precision. Al-
ready available task specific lexicons or dictionaries
can also be utilized for SSC annotation. Such an
initial version of SSC can be later enriched using
automatic process which would utilize existing an-
notations in the SSC.

With this vision in mind, we pose ourselves sev-
eral questions (see Section 1) regarding the practi-
cal usability and exploitation of an SSC. Our experi-
ments are conducted on a publicly available biomed-
ical SSC developed for the training of biomedical
NER systems. For the evaluation of a state-of-the-
art ML system trained on such an SSC, we use a
widely used benchmark biomedical GSC.

In the search of answers for our questions, we ac-
cumulate several important empirical observations.
We have been able to automatically reduce the num-
ber of erroneous annotations from the SSC and in-
clude unannotated potential entity mentions simply
using the annotations that the SSC already provides.
Our techniques have been effective for improving
the annotation quality as there is a considerable in-
crement of F1 score (almost 11% higher when we
use CSSC instead of using ISSC; see Table 1 and 2).

We also observe that it is possible to obtain more
than 80% of precision using the SSC. But recall re-
mains quite low, partly due to the low number of
annotations provided by the system trained with the
SSC. Perhaps, the entity names in the SSC that are
missed by the annotation systems is one of the rea-
sons for that.

Perhaps, the most interesting outcome of this
study is that, if only annotated sentences (which
we call condensed corpus) are considered, then the
number of annotations as well as the performance
increases significantly. This indicates that many
unannotated sentences contain annotations missed
by the automatic annotation systems. However, it
appears that correctly unannotated sentences influ-
ence the achievement of high precision. Maybe a
more sophisticated approach should be adopted in-

stead of completely discarding the unannotated sen-
tences, e.g. devising a filter able to distinguish
between relevant unannotated sentences (i.e., those
that should contain annotations) from non-relevant
ones (i.e., those that correctly do not contain any an-
notation). Measuring lexical similarity between an-
notated and unannotated sentences might help in this
case.

We notice the size of an SSC affects performance,
but increasing it above a certain limit does not
always guarantee an improvement of performance
(see Figure 1). This rejects the hypothesis that hav-
ing a much larger SSC should allow an ML based
system to ameliorate the effect of having erroneous
annotations inside the SSC.

Our empirical results show that combining GSC
and SSC do not improve results for the particular
task of NER, even if GSC annotations are given
higher weights (through duplication). We assume
that this is partly due to the variations in the guide-
lines of entity name boundaries15. These impact the
learning of the ML algorithm. For other NLP tasks
where the possible outcome is boolean (e.g. relation
extraction, i.e. whether a particular relation holds
between two entities or not), we speculate the results
of such combination might be better.

We use a CRF based ML system for our exper-
iments. It would be interesting to see whether the
observations are similar if a system with a different
ML algorithm is used.

To conclude, this study suggests that an automat-
ically pre-processed SSC might already contain an-
notations with reasonable quality and quantity, since
using it we are able to reach more than 62% of F1

score. This is encouraging since in the absence of
a GSC, an ML system would be able to exploit an
SSC to annotate unseen text with a moderate (if not
high) accuracy. Hence, SSC development might be
a good option to semi-automate the annotation of a
GSC.

Acknowledgments
This work was carried out in the context of the project
“eOnco - Pervasive knowledge and data management in
cancer care”. The authors would like to thank Pierre
Zweigenbaum for useful discussion, and the anonymous
reviewers for valuable feedback.

15For example, “human IL-7 protein” vs “IL-7”.

108



References

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proceed-
ings of the 11th Annual Conference on Computational
learning theory (COLT’98), pages 92–100.

Md. Faisal Mahbub Chowdhury and Alberto Lavelli.
2010. Disease mention recognition with specific fea-
tures. In Proceedings of the Workshop on Biomedical
Natural Language Processing (BioNLP 2010), 48th
Annual Meeting of the Association for Computational
Linguistics, pages 83–90, Uppsala, Sweden, July.

Stephen Clark, James R. Curran, and Miles Osborne.
2003. Bootstrapping POS taggers using unlabelled
data. In Proceedings of the 7th Conference on Natural
Language Learning (CoNLL-2003), pages 49–55.

Udo Hahn, Katrin Tomanek, Elena Beisswanger, and Erik
Faessler. 2010. A proposal for a configurable silver
standard. In Proceedings of the 4th Linguistic Anno-
tation Workshop, 48th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 235–242,
Uppsala, Sweden, July.

Shan He and Daniel Gildea. 2006. Self-training and
co-training for semantic role labeling: Primary report.
Technical report, University of Rochester.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus - semantically annotated
corpus for bio-textmining. Bioinformatics, 19(Suppl
1):i180–182.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics, pages 337–344,
Sydney, Australia.

Vincent Ng and Claire Cardie. 2003. Weakly supervised
natural language learning without redundant views.
In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL-2003), pages 173–180.

David Pierce and Claire Cardie. 2001. Limitations of
co-training for natural language learning from large
datasets. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing
(EMNLP-2001), pages 1–9.

David Pierce and Claire Cardie. 2004. Co-training and
self-training for word sense disambiguation. In Pro-
ceedings of the 8th Conference on Computational Nat-
ural Language Learning (CoNLL-2004), pages 33–40.

Dietrich Rebholz-Schuhmann and Udo Hahn. 2010c.
Silver standard corpus vs. gold standard corpus. In
Proceedings of the 1st CALBC Workshop, Cambridge,
U.K., June.

Dietrich Rebholz-Schuhmann, Antonio Jimeno, Chen Li,
Senay Kafkas, Ian Lewin, Ning Kang, Peter Corbett,
David Milward, Ekaterina Buyko, Elena Beisswanger,
Kerstin Hornbostel, Alexandre Kouznetsov, Rene
Witte, Jonas B Laurila, Christopher JO Baker, Chen-Ju
Kuo, Simon Clematide, Fabio Rinaldi, Richrd Farkas,
Gyrgy Mra, Kazuo Hara, Laura Furlong, Michael
Rautschka, Mariana Lara Neves, Alberto Pascual-
Montano, Qi Wei, Nigel Collier, Md. Faisal Mah-
bub Chowdhury, Alberto Lavelli, Rafael Berlanga,
Roser Morante, Vincent Van Asch, Walter Daele-
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