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Abstract

This paper presents an evaluation of an auto-
mated quality assurance technique for a type
of semantic representation known as a pred-
icate argument structure. These representa-
tions are crucial to the development of an im-
portant class of corpus known as a proposi-
tion bank. Previous work (Cohen and Hunter,
2006) proposed and tested an analytical tech-
nique based on a simple discovery proce-
dure inspired by classic structural linguistic
methodology. Cohen and Hunter applied the
technique manually to a small set of repre-
sentations. Here we test the feasibility of au-
tomating the technique, as well as the ability
of the technique to scale to a set of seman-
tic representations and to a corpus many times
larger than that used by Cohen and Hunter.
We conclude that the technique is completely
automatable, uncovers missing sense distinc-
tions and other bad semantic representations,
and does scale well, performing at an accu-
racy of 69% for identifying bad representa-
tions. We also report on the implications of
our findings for the correctness of the seman-
tic representations in PropBank.

1 Introduction

It has recently been suggested that in addition to
more, bigger, and better resources, we need a sci-
ence of creating them (Palmer et al., Download date
December 17 2010).

The corpus linguistics community has arguably
been developing at least a nascent science of anno-
tation for years, represented by publications such as

(Leech, 1993; Ide and Brew, 2000; Wynne, 2005;
Cohen et al., 2005a; Cohen et al., 2005b) that ad-
dress architectural, sampling, and procedural issues,
as well as publications such as (Hripcsak and Roth-
schild, 2005; Artstein and Poesio, 2008) that address
issues in inter-annotator agreement. However, there
is not yet a significant body of work on the subject
of quality assurance for corpora, or for that matter,
for many other types of linguistic resources. (Mey-
ers et al., 2004) describe three error-checking mea-
sures used in the construction of NomBank, and the
use of inter-annotator agreement as a quality control
measure for corpus construction is discussed at some
length in (Marcus et al., 1993; Palmer et al., 2005).
However, discussion of quality control for corpora is
otherwise limited or nonexistent.

With the exception of the inter-annotator-
agreement-oriented work mentioned above, none of
this work is quantitative. This is a problem if our
goal is the development of a true science of annota-
tion.

Work on quality assurance for computational lex-
ical resources other than ontologies is especially
lacking. However, the body of work on quality as-
surance for ontologies (Kohler et al., 2006; Ceusters
et al., 2004; Cimino et al., 2003; Cimino, 1998;
Cimino, 2001; Ogren et al., 2004) is worth consider-
ing in the context of this paper. One common theme
in that work is that even manually curated lexical re-
sources contain some percentage of errors.

The small size of the numbers of errors uncovered
in some of these studies should not be taken as a
significance-reducing factor for the development of
quality assurance measures for lexical resources—
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rather, the opposite: as lexical resources become
larger, it becomes correspondingly more difficult to
locate errors in them. Finding problems in a very
errorful resource is easy; finding them in a mostly
correct resource is an entirely different challenge.

We present here an evaluation of a methodol-
ogy for quality assurance for a particular type of
lexical resource: the class of semantic representa-
tion known as a predicate argument structure (PAS).
Predicate argument structures are important in the
context of resource development in part because
they are the fundamental annotation target of the
class of corpus known as a proposition bank. Much
of the significance claim for this work comes from
the significance of proposition banks themselves in
recent research on natural language processing and
computational lexical semantics. The impact of
proposition banks on work in these fields is sug-
gested by the large number of citations of just the
three publications (Kingsbury and Palmer, 2002;
Kingsbury et al., 2002; Palmer et al., 2005)—at the
time of writing, 290, 220, and 567, respectively. Ad-
ditional indications of the impact of PropBank on
the field of natural language processing include its
use as the data source for two shared tasks ((Car-
reras and Màrquez, 2005)).

The methodology consists of looking for argu-
ments that never coöccur with each other. In struc-
tural linguistics, this property of non-coöccurrence
is known as complementary distribution. Comple-
mentary distribution occurs when two linguistic el-
ements never occur in the same environment. In
this case, the environment is defined as any sen-
tence containing a given predicate. Earlier work
showed a proof-of-concept application to a small set
of rolesets (defined below) representing the potential
PAS of 34 biomedical predicates (Cohen and Hunter
2006). The only inputs to the method are a set of
rolesets and a corpus annotated with respect to those
rolesets. Here, we evaluate the ability of the tech-
nique to scale to a set of semantic representations
137 times larger (4,654 in PropBank versus 34 in
Cohen and Hunter’s pilot project) and to a corpus
about 1500 times larger (1M words in PropBank ver-
sus about 680 in Cohen and Hunter’s pilot project)
than that considered in previous work. We also use
a set of independent judges to assess the technique,
where in the earlier work, the results were only as-

sessed by one of the authors.
Novel aspects of the current study include:

• Investigating the feasibility of automating the
previously manual process
• Scaling up the size of the set of semantic repre-

sentations evaluated
• Scaling up the size of the corpus against which

the representations are evaluated
• Using independent judges to assess the predic-

tions of the method

1.1 Definitions
For clarity, we define the terms roleset, frame file,
and predicate here. A roleset is a 2-tuple of a sense
for a predicate, identified by a combination of a
lemma and a number—e.g., love.01—and a set of in-
dividual thematic roles for that predicate—e.g., Arg0
lover and Arg1 loved. A frame file is the set of all
rolesets for a single lemma—e.g., for love, the role-
sets are love.01 (the sense whose antonym is hate)
and love.02, the “semi-modal” sense in whether it
be melancholy or gay, I love to recall it (Austen,
1811). Finally, we refer to sense-labelled predicates
(e.g. love.01) as predicates in the remainder of the
paper.

PropBank rolesets contain two sorts of thematic
roles: (core) arguments and (non-core) adjuncts. Ar-
guments are considered central to the semantics of
the predicate, e.g. the Arg0 lover of love.01. Ad-
juncts are not central to the semantics and can occur
with many predicates; examples of adjuncts include
negation, temporal expressions, and locations.

In this paper, the arity of a roleset is determined
by its count of arguments, disregarding adjuncts.

1.2 The relationship between observed
argument distributions and various
characteristics of the corpus

This work is predicated on the hypothesis that argu-
ment distributions are affected by goodness of the fit
between the argument set and the actual semantics
of the predicate. However, the argument distribu-
tions that are observed in a specific data set can be
affected by other factors, as well. These include at
least:

• Inflectional and derivational forms attested in
the corpus
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• Sublanguage characteristics
• Incidence of the predicate in the corpus

A likely cause of derivational effects on observed
distributions is nominalization processes. Nomi-
nalization is well known for being associated with
the omission of agentive arguments (Koptjevskaja-
Tamm, 1993). A genre in which nominalization is
frequent might therefore show fewer coöccurrences
of Arg0s with other arguments. Since PropBank
does not include annotations of nominalizations, this
phenomenon had no effect on this particular study.

Sublanguage characteristics might also affect ob-
served distributions. The sublanguage of recipes
has been noted to exhibit rampant deletions of def-
inite object noun phrases both in French and in En-
glish, as has the sublanguage of technical manuals
in English. (Neither of these sublanguages have
been noted to occur in the PropBank corpus. The
sublanguage of stock reports, however, presumably
does occur in the corpus; this sublanguage has been
noted to exhibit distributional subtleties of predi-
cates and their arguments that might be relevant to
the accuracy of the semantic representations in Prop-
Bank, but the distributional facts do not seem to in-
clude variability in argument coöccurrence so much
as patterns of argument/predicate coöccurrence (Kit-
tredge, 1982).)

Finally, incidence of the predicate in the corpus
could affect the observed distribution, and in partic-
ular, the range of argument coöccurrences that are
attested: the lower the number of observations of a
predicate, the lower the chance of observing any two
arguments together, and as the number of arguments
in a roleset increases, the higher the chance of failing
to see any pair together. That is, for a roleset with
an arity of three and an incidence of n occurrences
in a corpus, the likelihood of never seeing any two
of the three arguments together is much lower than
for a roleset with an arity of six and an incidence of
n occurrences in the corpus. The number of obser-
vations required in order to be able to draw conclu-
sions about the observed argument distributions with
some degree of confidence is an empirical question;
prior work (Cohen and Hunter 2006) suggests that
as few as ten tokens can be sufficient to uncover er-
roneous representations for rolesets with an arity of
four or less, although that number of observations

of one roleset with an arity of four showed multiple
non-coöccurring arguments that were not obviously
indicative of problems with the representation (i.e.,
a false positive finding).

Besides the effects of these aspects of the corpus
contents on the observed distributions, there are also
a number of theoretical and practical issues in the
design and construction of the corpus (as distinct
from the rolesets, or the distributional characteris-
tics of the contents) which have nontrivial implica-
tions for the methodology being evaluated here. In
particular, the implications of the argument/adjunct
distinction, of the choice of syntactic representation,
and of annotation errors are all discussed in Sec-
tion 4. Note that we are aware that corpus-based
studies generally yield new lexical items and us-
ages any time a new corpus is introduced, so we
do not make the naive assumption that PropBank
will give complete coverage of all coöccurring argu-
ments, and in fact our evaluation procedure took this
into account explicitly, as described in Section 2.3.

2 Materials and Methods

2.1 Materials

We used Rev. 1.0 of the PropBank I corpus, and the
associated framesets in the frames directory.

2.2 Methods

2.2.1 Determining the distribution of
arguments for a roleset

In determining the possible coöccurring argument
pairs for a roleset, we considered only arguments,
not adjuncts. As we discuss in Section 4.1, this
is a non-trivial decision with potential implications
for the ability of the algorithm to detect problem-
atic representations in general, and with implications
for PropBank in particular. The rationale behind the
choice to consider only arguments is that our goal
is to evaluate the representation of the semantics of
the predicates, and that by definition, the PropBank
arguments are essential to defining that semantics,
while by definition, the adjuncts are not.

In the first processing step, for each roleset, we
used the corresponding framefile as input and gen-
erated a look-up table of the possible argument
pairs for that predicate. For example, the predi-
cate post.01 has the three arguments Arg0, Arg1, and
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Arg2; we generated the set {<Arg0, Arg1>, <Arg0,
Arg2>, <Arg1, Arg2>} for it.

In the second processing step, we iterated over all
annotations in the PropBank corpus, and for each to-
ken of each predicate, we extracted the complete set
of arguments that occurred in association with that
token. We then constructed the set of coöccurring ar-
guments for that annotation, and used it to increment
the counts of each potential argument pair for the
predicate in question. For example, the PropBank
annotation for Oils and fats also did well, posting
a 5.3% sales increase (wsj/06/wsj 0663.mrg)
contains an Arg0 and an Arg1, so we incremented
the count for that argument pair by 1; it contains no
other argument pairs, so we did not increment the
counts for <Arg0, Arg2> or <Arg1, Arg2>.

The output of this step was a table with the count
of occurrence of every potential pair of arguments
for every roleset; members of pairs whose count was
zero were then output as arguments in complemen-
tary distribution. For example, for post.01, the pairs
<Arg0, Arg2> and <Arg1, Arg2> never occurred,
even as traces, so the arguments Arg0 and Arg2 are
in complementary distribution for this predicate, as
are the arguments Arg1 and Arg2.

To manipulate the data, we used Scott Cotton’s
Java API, with some extensions, which we docu-
mented in the API’s Javadoc.

2.3 Determining the goodness of rolesets
exhibiting complementary distribution

In (Cohen and Hunter, 2006), determinations of the
goodness of rolesets were made by pointing out the
distributional data to the corpus creators, showing
them the corresponding data, and reaching consen-
sus with them about the appropriate fixes to the rep-
resentations. For this larger-scale project, one of the
goals was to obtain goodness judgements from com-
pletely independent third parties.

Towards that end, two judges with experience in
working with PropBank were assigned to judge the
predictions of the algorithm. Judge 1 had two years
of experience, and Judge 2 had four years of expe-
rience. The judges were then given a typology of
classification to assign to the predicates: good, bad,
and conditionally bad. The definitions of these cate-
gories, with the topology of the typology, were:

• Good: This label is assigned to predicates that
the algorithm predicted to have bad representa-
tions, but that are actually good. They are false
positives for the method.
• Not good: (This label was not actually as-

signed, but rather was used to group the fol-
lowing two categories.)

– Bad: This label is assigned to predicates
that the algorithm predicted to have bad
representations and that the judges agreed
were bad. They are true positives for the
method.

– Conditionally bad: This label is assigned
to predicates that the algorithm predicted
to have bad representations and that the
judges agreed were bad based on the ev-
idence available in PropBank, but that the
judges thought might be good based on
native speaker intiution or other evidence.
In all of these cases, the judges did suggest
changes to the representations, and they
were counted as not good, per the typol-
ogy, and are also true positives.

Judges were also asked to indicate whether bad
representations should be fixed by splitting predi-
cates into more word senses, or by eliminating or
merging one or more arguments.

We then took the lists of all predicted bad predi-
cates that appeared at least 50, 100, or 200 times in
the PropBank corpus. These were combined into a
single list of 107 predicates and randomized. The
judges then split the list into halves, and each judge
examined half of the list. Additionally, 31 predi-
cates, or 29% of the data set, were randomly selected
for double annotation by both judges to assess inter-
judge agreement. Judges were shown both the predi-
cates themselves and the sets of non-coöccurring ar-
guments for each predicate.

3 Results

3.1 Accuracy

The overall results were that out of 107 predicates,
33 were judged GOOD, i.e. were false positives.
44 were judged BAD and 30 were judged CONDI-
TIONAL, i.e. were true positives. This yields a ratio
of 2.24 of true positives to false positives: the pro-
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Table 1: Ratios of BAD plus CONDITIONAL to GOOD
for the pooled judgements as broken down by arity

Arity Ratio

3 1.29
4 1.47
5 4.0
6 8.0
7 None found

cedure returns about two true positives for every one
false positive. Expressed in terms of accuracy, this
corresponds to 69% for correctly labelling true pos-
itives.

We broke down the data by (1) arity of the role-
set, and (2) minimum number of observations of a
role set. This allowed us to test whether predictive
power decreased as arity increased, and to test the
dependency of the algorithm on the minimum num-
ber of observations; we suspected that it might be
less accurate the fewer the number of observations.

Table 1 shows the ratios of true positives to false
positives, broken down by arity. The data confirms
that the algorithm is effective at finding bad repre-
sentations, with the number of true positives out-
numbering the number of false positives at every
arity. This data is also important because it allows
us to test a hypothesis: is it the case that predictive
power becomes worse as arity increases? As the ta-
ble shows, the ratio of true positives to false posi-
tives actually increases as the arity of the predicate
increases. Therefore, the data is consistent with the
hypothesis that not only does the predictive power of
the algorithm not lessen as arity increases, but rather
it actually becomes greater.

Table 2 shows the ratios of true positives to false
positives again, this time broken down by minimum
number of occurrences of the predicates. Again, the
data confirms that the algorithm is effective at find-
ing bad representations—it returns more bad repre-
sentations than good representations at every level of
minimum number of observations. This data is also
important because it allows us to test the hypothe-
sis of whether or not predictive power of the algo-
rithm decreases with the minimum number of obser-
vations. As we hypothesized, it does show that the
predictive power decreases as the minimum number

Table 2: Ratios of BAD plus CONDITIONAL to GOOD
for the pooled judgements as broken down by minimum
number of observations

ratio

Minimum 50 1.88
Minimum 100 2.63
Minimum 200 2.63

of observations decreases, with the ratio of true pos-
itives to false positives dropping from 2.63 with a
minimum of 200 or 100 observations to 1.88 with a
minimum of 50 observations. However, the ratio of
true positives to false positives remains close to 2:1
at every level.

3.2 Suggested fixes to the representations
Of the 74 true positives, the judges felt that 17 of
the bad representations should be fixed by splitting
the predicate into multiple senses. For the 57 re-
maining true positives, the judges felt that an argu-
ment should be removed from the representation or
converted to an adjunct. This demonstrates that the
method is applicable both to the problem of reveal-
ing missing sense distinctions and to the problem of
identifying bad arguments.

3.3 Scalability
The running time was less than one and a half min-
utes for all 4,654 rolesets on the 1-million-word cor-
pus.

3.4 Inter-judge agreement
A subset of 31 predicates was double-annotated by
the two judges to examine inter-judge agreement.
The judges then examined the cases on which they
initially disagreed, and came to a consensus where
possible. Initially, the judges agreed in 63.3% of the
cases, which is above chance but not the 80% agree-
ment that we would like to see. The judges then went
through a reconciliation process. They were able to
come to a consensus in all cases.

3.5 Putting the results in context
To help put these results in context, we give here the
distribution of arities in the PropBank rolesets and
the minimum number of observations of each in the
PropBank corpus.
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Table 3: Distribution of arities by percentage and by
count in the 4,654 PropBank rolesets.

Arity percentage (count)

0 0.28% (13)
1 (Arg0) 155
1 (Arg1) 146
1 (all) 6.5% (301)
2 45.14% (2,101)
3 37.02% (1,723)
4 7.05% (328)
5 3.5% (163)
6 0.5% (24)
7 0.0002% (1)

Total 100% (4,654)

Table 3 shows the distribution of arities in the
PropBank rolesets. It distinguishes between non-
ergatives and ergatives (although for the purpose
of calculating percentages, they are combined into
one single-arity group). The mode is an arity of 2:
45.14% of all rolesets (2,101/4,654) have an arity of
2. 3 is a close second, with 37.02% (1,723/4,654).
(The single roleset with an arity of seven is notch.02,
with a gloss of “move incrementally.”)

Table 4 gives summary statistics for the occur-
rence of complementary distribution, showing the
distribution of rolesets in which there were at least
one argument pair in complementary distribution
and of the total number of argument pairs in comple-
mentary distribution. Since (as noted in Section 1.2)
the incidence of a predicate has a potential effect
on the incidence of argument pairs in apparent com-
plementary distribution, we display the counts sepa-
rately for four cut-offs for the minimum number of
observations of the predicate: 200, 100, 50, and 10.

To further explicate the operation of the discovery
procedure, we give here some examples of rolesets
that were found to have arguments in complemen-
tary distribution.

3.5.1 accept.01
Accept.01 is the only roleset for the lemma ac-

cept. Its sense is take willingly. It has four argu-
ments:

• Arg0 acceptor

Table 4: Summary statistics: counts of predicates with
at least one argument pair in complementary distribution
and of total argument pairs in complementary distribution
for four different minimum numbers of observations of
the predicates.

Minimum observations Predicates Argument pairs

200 29 69
100 58 125
50 107 268
10 328 882

• Arg1 thing accepted
• Arg2 accepted-from
• Arg3 attribute

The predicate occurs 149 times in the corpus. The
algorithm found Arg2 and Arg3 to be in complemen-
tary distribution.

Manual investigation showed the following distri-
butional characteristics for the predicate and its ar-
guments:

• (Arg0 or Arg1) and Arg2: 5 tokens
• (Arg0 or Arg1) and Arg3: 8 tokens
• Arg2 with neither Arg0 nor Arg1: 0 tokens
• Arg3 with neither Arg0 nor Arg1: 0 tokens
• Arg0 or Arg1 with neither Arg2 nor Arg 3: 136

tokens

Examination of the 5 tokens in which Arg2
coöccurred with Arg0 or Arg1 and the 8 tokens
in which Arg3 coöccurred with Arg0 or Arg1 sug-
gested an explanation for the complementary distri-
bution of arguments Arg2 and Arg3. When Arg2
appeared, the sense of the verb seemed to be one
of physical transfer: Arg2 coöccurred with Arg1s
like substantial gifts (wsj 0051.mrg) and a $3
million payment (wsj 2071.mrg). In contrast,
when Arg3 appeared, the sense was not one of
physical transfer, but of some more metaphorical
sense—Arg3 coöccurred with Arg1s like the war
(wsj 0946.mrg) and Friday’s dizzying 190-point
plunge (wsj 2276.mrg). There is no accept.02;
creating one with a 3-argument roleset including the
current Arg3 seems warranted. Keeping the Arg3
for accept.01 might be warranted, as well, but prob-
ably as an adjunct (to account for usages like John
accepted it as a gift.)
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3.5.2 affect.01

Affect.01 is one of two senses for the lemma af-
fect. Its sense is have an effect on. It has three argu-
ments:

• Arg0 thing affecting
• Arg1 thing affected
• Arg2 instrument

The predicate occurs 149 times in the corpus. The
algorithm found Arg0 and Arg2, as well as Arg1 and
Arg2, to be in complementary distribution.

Manual investigation revealed that in fact, Arg2
never appears in the corpus at all. Presumably, ei-
ther Arg0 and Arg2 should be merged, or—more
likely—Arg2 should not be an argument, but rather
an adjunct.

3.6 Incidental findings

3.6.1 Mistakes uncovered in frame files

In the process of calculating the set of possible
argument pairs for each predicate in the PropBank
frame files, we found a roleset that erroneously had
two Arg1s. The predicate in question was pro-
scribe.01. The roles in the frame file were:

• Arg0 causer
• Arg1 thing proscribed
• Arg1 proscribed from

It was clear from the annotations in the exam-
ple sentence that the “second” Arg1 was intended to
be an Arg2: [The First AmendmentArg0] proscribes
[the governmentArg1] from [passing laws abridging
the right to free speechArg2].

3.6.2 Unlicensed arguments used in the corpus

We found eighteen tokens in the corpus that were
annotated with argument structures that were not li-
censed by the roleset for the corresponding predi-
cate. For example, the predicate zip.01 has only
a single argument in its semantic representation—
Arg0, described as entity in motion. However, the
corpus contains a token of zip.01 that is annotated
with an Arg0 and an Arg1.

4 Discussion/Conclusions

4.1 The effect of the argument/adjunct
distinction

The validity and usefulness of the distinction be-
tween arguments and adjuncts is an ongoing con-
troversy in biomedical computational lexical se-
mantics. The BioProp project (Chou et al., 2006;
Tsai et al., 2006) makes considerable use of ad-
juncts, essentially identically to PropBank; however,
most biomedical PAS-oriented projects have rela-
tively larger numbers of arguments and lesser use
of adjuncts (Wattarujeekrit et al., 2004; Kogan et al.,
2005; Shah et al., 2005) than PropBank. Overall,
one would predict fewer non-coöccurring arguments
with a set of representations that made a stronger
distinction between arguments and adjuncts; over-
all arity of rolesets would be smaller (see above for
the effect of arity on the number of observations re-
quired for a predicate), and the arguments for such a
representation might be more “core” to the seman-
tics of the predicate, and might therefore be less
likely to not occur overall, and therefore less likely
to not coöccur.

4.2 The effect of syntactic representation on
observed argument distributions

The original work by Cohen and Hunter assumed a
very simple, and very surface, syntactic representa-
tion. In particular, there was no representation of
traces. In contrast, PropBank is built on Treebank
II, which does include representation of traces, and
arguments can, in fact, be filled by traces. This could
be expected to reduce the number of tokens of appar-
ently absent arguments, and thereby the number of
non-coöoccurring arguments. This doesn’t seem to
have had a strong enough effect to interfere with the
ability of the method to uncover errors.

4.3 The effect of arity

The mode for distribution of arities in the Prop-
Bank framefiles was 2 (see Table 3). In contrast, the
modes for distribution of rolesets with at least one
argument pair in complementary distribution across
arities and for distribution of argument pairs in com-
plementary distribution across arities was 4 or 5
for the full range of minimum observations of the
predicates from 200 to 10 (data omitted for space).
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This supports the initial assumption that higher-arity
predicates are more likely to have argument pairs in
complementary distribution—see Section 1.2 above.

One aspect of a granular analysis of the data is
worth pointing out with respect to the effects of ar-
ity: as a validation check, note that for all arities,
the number of predicates and the number of argu-
ment pairs rises as the minimum required number of
tokens of the predicate in the corpus goes down.

4.4 Conclusions
The goals of this study were to investigate the au-
tomatability and scalability of a technique for PAS
quality assurance that had previously only been
shown to work for a small lexical resource and
a small corpus, and to use it to characterize the
quality of the shallow semantic representations in
the PropBank framefiles. The evaluation procedure
was found to be automatable: the process of find-
ing argument pairs in complementary distribution is
achievable by running a single Java application. In
addition, the use of a common representation for ar-
gument sets in a framefile and argument sets in a
PropBank annotation enabled the fortuitous discov-
ery of a number of problems in the framefiles and in
the corpus (see Section 3.6) as a side-effect of appli-
cation of the technique.

The process was also found to scale well, with
a running time of less than one and a half minutes
for a set of 4,654 rolesets and a 1-million-word cor-
pus on a moderately priced laptop; additionally, the
resource maintainer’s efforts can easily be focussed
towards the most likely and the most prevalent error
sources by adjusting the minimum number of obser-
vations required before reporting a case of comple-
mentary distribution. The process was also found to
be able to identify missing sense distinctions and to
identify bad arguments.

In addition to our findings regarding the quality
assurance technique, a granular breakdown of the
errors found by the algorithm by arity and mini-
mum number of observations (data not shown due to
space) allows us to estimate the number of errors in
the PropBank framefiles. A reasonable upper-bound
estimate for the number of errorful rolesets is the
number of predicates that were observed at least 10
times and were found to have at least one pair of ar-
guments in complementary distribution (the bottom

row of Table 4), adjusted by the accuracy of the tech-
nique that we reported in Section 3.1, i.e. 0.69. This
yields a worst-case scenario of (0.69*328)/4,654
rolesets, or 4.9% of the rolesets in PropBank, be-
ing in need of revision. The best-case scenario
would assume that we can only draw conclusions
about the predicates with high numbers of observa-
tions and high arity, again adjusted downward for
the accuracy of the technique; taking 5 or more argu-
ments as high arity, this yields a best-case scenario
of (0.69*17)/4,654 rolesets, or 0.3% of the rolesets
in PropBank, being in need of revision. A different
sort of worst-case scenario assumes that the major
problem in maintaining a proposition bank is not fix-
ing inadequate representations, but finding them. On
this assumption, the problematic representations are
the ones with small numbers of tokens and low ar-
ity. Taking 3 or fewer arguments as low arity yields a
worst-case scenario of 99/4,654 rolesets (no adjust-
ment for accuracy required), or 2.13% of the rolesets
in PropBank, being essentially uncharacterizable as
to the goodness of their semantic representation1.

Besides its obvious role in quality assurance for
proposition banks, there may be other uses for this
technique, as well. The output of the technique may
also be useful in sense grouping and splitting and in
detecting metaphorical uses of verbs (e.g. the accept
example). As the PropBank model is extended to an
increasingly large set of languages (currently Ara-
bic, Basque, Catalan, Chinese, Hindi, Korean, and
Russian), the need for a quality assurance mecha-
nism for proposition banks—both to ensure the qual-
ity of their contents, and to assure funding agencies
that they are evaluatable—will only grow larger.
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