A Collaborative Annotation between Human Annotators and a Statistical
Parser

Shun’ya Iwasawa

Hiroki Hanaoka

Takuya Matsuzaki

University of Tokyo
Tokyo, Japan
{iwasawa, hkhana,matuzaki}@is.s.u-tokyo.ac.jp

Yusuke Miyao
National Institute of Informatics
Tokyo, Japan
yusuke@nii.ac.jp

Abstract

We describe a new interactive annotation
scheme between a human annotator who
carries out simplified annotations on CFG
trees, and a statistical parser that converts
the human annotations automatically into a
richly annotated HPSG treebank. In order
to check the proposed scheme’s effectiveness,
we performed automatic pseudo-annotations
that emulate the system’s idealized behavior
and measured the performance of the parser
trained on those annotations. In addition,
we implemented a prototype system and con-
ducted manual annotation experiments on a
small test set.

1 Introduction

On the basis of the success of the research on the
corpus-based development in NLP, the demand for
a variety of corpora has increased, for use as both a
training resource and an evaluation data-set. How-
ever, the development of a richly annotated cor-
pus such as an HPSG treebank is not an easy task,
since the traditional two-step annotation, in which
a parser first generates the candidates and then an
annotator checks each candidate, needs intensive ef-
forts even for well-trained annotators (Marcus et al.,
1994; Kurohashi and Nagao, 1998). Among many
NLP problems, adapting a parser for out-domain
texts, which is usually referred to as domain adap-
tation problem, is one of the most remarkable prob-
lems. The main cause of this problem is the lack
of corpora in that domain. Because it is difficult to
prepare a sufficient corpus for each domain without

56

Jun’ichi Tsujii
Microsoft Research Asia
Beijing, PR.China
Jjtsujii@microsoft.com

reducing the annotation cost, research on annotation
methodologies has been intensively studied.

There has been a number of research projects
to efficiently develop richly annotated corpora with
the help of parsers, one of which is called a
discriminant-based treebanking (Carter, 1997). In
discriminant-based treebanking, the annotation pro-
cess consists of two steps: a parser first generates
the parse trees, which are annotation candidates,
and then a human annotator selects the most plau-
sible one. One of the most important characteristics
of this methodology is to use easily-understandable
questions called discriminants for picking up the fi-
nal annotation results. Human annotators can per-
form annotations simply by answering those ques-
tions without closely examining the whole tree. Al-
though this approach has been successful in break-
ing down the difficult annotations into a set of easy
questions, specific knowledge about the grammar,
especially in the case of a deep grammar, is still re-
quired for an annotator. This would be the bottle-
neck to reduce the cost of annotator training and can
restrict the size of annotations.

Interactive predictive parsing (Sanchez-Sdez et
al., 2009; Sanchez-Séez et al., 2010) is another ap-
proach of annotations, which focuses on CFG trees.
In this system, an annotator revises the currently
proposed CFG tree until he or she gets the correct
tree by using a simple graphical user interface. Al-
though our target product is a more richly anno-
tated treebanks, the interface of CFG can be useful
to develop deep annotations such as HPSG features
by cooperating with a statistical deep parser. Since
CFG is easier to understand than HPSG, it can re-

Proceedings of the Fifth Law Workshop (LAW V), pages 56—64,
Portland, Oregon, 23-24 June 2011. ©2011 Association for Computational Linguistics

duce the cost of annotator training; non-experts can
perform annotations without decent training. As a
result, crowd-sourcing or similar approach can be
adopted and the annotation process would be accel-
erated.

Before conducting manual annotation, we sim-
ulated the annotation procedure for validating our
system. In order to check whether the CFG-based
annotations can lead to sufficiently accurate HPSG
annotations, several HPSG treebanks were created
with various qualities of CFG and evaluated by their
HPSG qualities.

We further conducted manual annotation experi-
ments by two human annotators to evaluate the ef-
ficiency of the annotation system and the accuracy
of the resulting annotations. The causes of annota-
tion errors were analyzed and future direction of the
further development is discussed.

2 Statistical Deep Parser

2.1 HPSG

Head-Driven Phrase Structure Grammar (HPSG)
is one of the lexicalized grammatical formalisms,
which consists of lexical entries and a collection of
schemata. The lexical entries represent the syntac-
tic and semantic characteristics of words, and the
schemata are the rules that construct larger phrases
from smaller phrases. Figure 1 shows the mecha-
nism of the bottom-up HPSG parsing for the sen-
tence “Dogs run.” First, a lexical entry is as-
signed to each word, and then, the lexical signs
for “Dogs” and “run” are combined by Subject-
Head schema. In this way, lexical signs and phrasal
signs are combined until the whole sentence be-
comes one sign. Compared to Context Free Gram-
mar (CFG), since each sign of HPSG has rich infor-
mation about the phrase, such as subcategorization
frame or predicate-argument structure, a corpus an-
notated in an HPSG manner is more difficult to build
than CFG corpus. In our system, we aim at building
HPSG treebanks with low-cost in which even non-
experts can perform annotations.

2.2 HPSG Deep Parser

The Enju parser (Ninomiya et al., 2007) is a statis-
tical deep parser based on the HPSG formalism. It
produces an analysis of a sentence that includes the

57

HEAD noun HEAD verb
SUBIJ <> SUBIJ < noun >
COMPS <> COMPS <>
[[
Dogs run
4
HEAD verb
SUBJ <>
COMPS <>
Subject — —_Head
HEAD noun HEAD verb
[1]|suBr <> suBl <[1]>
COMPS <> COMPS <>

Figure 1: Example of HPSG parsing for “Dogs run.”

syntactic structure (i.e., parse tree) and the semantic
structure represented as a set of predicate-argument
dependencies. The grammar design is based on
the standard HPSG analysis of English (Pollard and
Sag, 1994). The parser finds a best parse tree
scored by a maxent disambiguation model using a
CKY-style algorithm and beam search. We used
a toolkit distributed with the Enju parser for ex-
tracting a HPSG lexicon from a PTB-style treebank.
The toolkit initially converts the PTB-style treebank
into an HPSG treebank and then extracts the lexi-
con from it. The HPSG treebank converted from the
test section is also used as the gold standard in the
evaluation.

2.3 Evaluation Metrics

In the experiments shown below, we evaluate the ac-
curacy of an annotation result (i.e., an HPSG deriva-
tion on a sentence) by evaluating the accuracy of
the semantic description produced by the deriva-
tion, as well as a more traditional metrics such
as labeled bracketing accuracy of the tree struc-
ture. Specifically, we used labeled and unlabeled
precision/recall/F-score of the predicate-argument
dependencies and the labeled brackets compared
against a gold-standard annotation obtained by using
the Enju’s treebank conversion tool. A predicate-
argument dependency is represented as a tuple of
(wp,wq,r), where wy, is the predicate word, w,
is the argument word, and r is the label of the
predicate-argument relation, such as verb—-ARG1
(semantic subject of a verb) and prep-MOD (modi-

fiee of a prepositional phrase). As for the bracketing
accuracies, the label of a bracket is obtained by pro-
jecting the sign corresponding to the phrase into a
simple phrasal labels such as S, NP, and VP.

3 Proposed Annotation System

In our system, a human annotator and a statistical
deep parser cooperate to build a treebank. Our sys-
tem uses CFG as user interface and bridges a gap be-
tween CFG and HPSG with a statistical CKY parser.
Following the idea of the discriminant-based tree-
banking model, the parser first generates candidate
trees and then an annotator selects the correct tree in
the form of a packed forest. For selecting the correct
tree, the annotator only edits a CFG tree projected
from an HPSG tree through pre-defined set of oper-
ations, to eventually give the constraints onto HPSG
trees. This is why annotators can annotate HPSG
trees without HPSG knowledge. The current system
is implemented based on the following client-server
model.

3.1 Client: Annotator Interface

The client-side is an annotator’s interface imple-
mented with Ajax technique, on which annotator’s
revision is carried out through Web-Browser. When
the client-side receives the data of the current best
tree from the server-side, it shows an annotator the
CFG representation of the tree. Then, an annotator
adds revisions to the CFG tree using the same GUI,
until the current best tree has the CFG structure that
exactly matches the annotators’ interpretation of the
sentence. Finally, the client-side sends the annota-
tor’s revision as a CGI query to the server. Based
on interactive predicative parsing system, two kinds
of operations are implemented in our system: ‘“span
modification” and “label substitution”, here abbrevi-
ated as “S” and “L” operations:

“S” operation modify_span(left,right)
An annotator can specify that a constituent in
the tree after user’s revision must match a spec-
ified span, by sequentially clicking the leaf
nodes at the left and right boundaries.

“L>” operation modify_label(pos, label)
An annotator can specify that a constituent in
the tree after user’s revision must match a spec-
ified label, by inputting a label and clicking the

58

node position.

In addition to “S” and “L” operations, one more
operation, “tree fixation”, abbreviated “F”, is imple-
mented for making annotation more efficient. Our
system computes the best tree under the current con-
straints, which are specified by the “S” and “L” op-
erations that the annotator has given so far. It means
other parts of the tree that are not constrained may
change after a new operation by the annotator. This
change may lead to a structure that the annotator
does not want. To avoid such unexpected changes,
an annotator can specify a subtree which he or she
does not want to change by “tree fixation” operation:

“F” operation fix_tree(pos = i)
An annotator can specify a subtree as correct
and not to be changed. The specified subtree
does not change and always appears in the best
tree.

3.2 Server: Parsing Constraints

In our annotation system, the server-side carries out
the conversion of annotator’s constraints into HPSG
grammatical constraints on CKY chart and the re-
computation of the current best tree under the con-
straints added so far. The server-side works in the
following two steps. The first step is the conversion
of the annotator’s revision into a collection of dead
edges or dead cells; a dead edge means the edge
must not be a part of the correct tree, and a dead cell
means all edges in the cell are dead. As mentioned
in the background section, Enju creates a CKY chart
during the parsing where all the terminal and non-
terminal nodes are stored with the information of its
sign and links to daughter edges. In our annotation
system, to change the best tree according to the an-
notator’s revision, we determine whether each edge
in the chart is either alive or dead. The server-side
re-constructs the best tree under the constraints that
all the edges used in the tree are alive. The sec-
ond step is the computation of the best tree by re-
constructing the tree from the chart, under the con-
straint that the best tree contains only the alive edges
as its subconstituents. Re-construction includes the
following recursive process:

1. Start from the root edge.

2. Choose the link which has the highest probabil-
ity among the links and whose daughter edges
are all alive.

3. If there is such a link, recursively carry out the
process for the daughter edge.

4. If all the links from the edge are dead, go back
to the previous edge.

Note that our system parses a sentence only once,
the first time, instead of re-parsing the sentence after
each revision. Now, we are going to list the revision
operations again and explain how the operations are
interpreted as the constraints in the CKY chart. In
the description below, 1abel (x) means the CFG-
symbol that corresponds to edge x. Note that there
is in principle an infinite variety of possible HPSG
signs. The label function maps this multitude of
signs onto a small set of simple CFG nonterminal
symbols.

“S” operation span(left = i,right = j)
When the revision type is “S” and the left and
right boundary of the specified span is ¢ and j
in the CGI query, we add the cells which satisfy
the following formula to the list of dead edges.
Suppose the sentence length is L, then the set
of new dead cells is defined as:

0<a<t,
i<b<j
1+ 1<c<y,

j+1§d§n}’

{cell (a,b) |

}

U {cell(c,d) |

where the first set means the inhibition of the
edges that span across the left boundary of the
specified span. The second set means a similar
conditions for the right span.

“L>” operation fix_label(position = i,label =)
When the revision type is “L”, the node posi-
tion is ¢ and the label is [in the CGI query, we
determine the set of new dead edges and dead
cells as follows:

1. let cell (a,b) =the cell including ¢

2. mark those cells that are generated by
span (a,b) as defined above to be dead,
and

3. for each edge ¢’ in cell (a,b), mark €
to be dead if 1abel (¢/) #1

“F” operation fix_tree(position = 1)

59

(a) prob = 0.4 (b) prob=10.3 (c) prob=0.2
NP S
/\ /\
NX PP NP VP NP VP
PN LN
NP NX PX NP NX VP PP NX VX NP
I AN I AN AN VAN
Time flies like DP NX Time flies PX NP NP NX like DP NX
| VAN N
an arrow like DP NX Time flies an arrow

an arrow

Figure 2: Three parse tree candidates of “Time flies like
an arrow.”

When the revision type is “F” and the target
node position is ¢ in the CGI query, we carry
out the following process to determine the new
dead edges and cells:

1. for each edge e in the subtree rooted at
node 1,

2. let cell (a, b) =the cell including e

3. mark those cells that are generated by
span (a,b) as defined above to be dead

4. for each edge €’ in cell (a,b), mark €
to be dead if 1abel (¢/) # label (e)

The above procedure adds the constraints so
that the correct tree includes a subtree that has
the same CFG-tree representation as the sub-
tree rooted at ¢ in the current tree.

Finally we show how the best tree for the sentence
“Time flies like an arrow.” changes with the anno-
tator’s operations. Let us assume that the chart in-
cludes the three trees shown (in the CFG representa-
tion) in (Figure 2), and that there are no dead edges.
Let us further assume that the probability of each
tree is as shown in the figure and hence the current
best tree is (a). If the annotator wants to select (b)
as the best tree, s/he can apply “L” operation on the
root node. The operation makes some of the edges
dead, which include the root edge of tree (a) (see
Figure 3). Accordingly, the best tree is now selected
from (b), (¢), etc., and tree (b) will be selected as the
next best tree.

4 Validation of CFG-based Annotation

Because our system does not present HPSG anno-
tations to the annotators, there is a risk that HPSG
annotations are wrong even when their projections
to CFG trees are completely correct. Our expecta-

S\ o

L fiz_label

/ PP y
Z VP (root,S) /
A = .
N
N

)
lav)

N
NP NX NP
NX

VP

NX
VP

PX
VX

PX

NP VX

DP | NX NP DP | NX

Time flies like an arrow Time flies like an arrow

Figure 3: Chart constraints by “L” operation. Solid lines
represent the link of the current best tree and dashed lines
represent the second best one. Dotted lines stand for an
unavailable link due to the death of the source edge.

tion is that the stochastic model of the HPSG parser
properly resolves the remaining ambiguities in the
HPSG annotation within the constraints given by a
part of the CFG trees. In order to check the validity
of this expectation and to measure to what extent the
CFG-based annotations can achieve correct HPSG
annotations, we performed a pseudo-annotation ex-
periment.

In this experiment, we used bracketed sentences
in the Brown Corpus (Kucera and Francis, 1967),
and a court transcript portion of the Manually An-
notated Sub-Corpus (MASC) (Ide et al., 2010). We
automatically created HPSG annotations that mimic
the annotation results by an ideal annotator in the
following four steps. First, HPSG treebanks for
these sentences are created by the treebank conver-
sion program distributed with the Enju parser. This
program converts a syntactic tree annotated by Penn
Treebank style into an HPSG tree. Since this pro-
gram cannot convert the sentences that are not cov-
ered by the basic design of the grammar, we used
only those that are successfully converted by the
program throughout the experiments and considered
this converted treebank as the gold-standard tree-
bank for evaluation. Second, the same sentences are
parsed by the Enju parser and the results are com-
pared with the gold-standard treebank. Then, CFG-
level differences between the Enju parser’s outputs
and the gold-standard trees are translated into oper-
ation sequences of the annotation system. For ex-
ample, “L” operation of NX — VP at the root node
is obtained in the case of Figure 4. Finally, those
operation sequences are executed on the annotation
system and HPSG annotations are produced.

60

convertible
22,214
1,353

ave. s. L.
18.94
14.81

total size
24,243
1,656

Brown
MASC

Table 1: Corpus and experimental data information (s. 1.
means “sentence length.”)

(@) (b)

NX VP
YN YN
NX PP VP PP
VN VN
PX NP PX NP

Figure 4: CFG representation of parser output (a) and
gold-standard tree (b)

4.1 Relationship between CFG and HPSG
Correctness

We evaluated the automatically produced annota-
tions in terms of three measures: the labeled brack-
eting accuracies of their projections to CFG trees,
the accuracy of the HPSG lexical entry assignments
to the words, and the accuracy of the semantic de-
pendencies extracted from the annotations. The
CFG-labeled bracketing accuracies are defined in
the same way as the traditional PARSEVAL mea-
sures. The HPSG lexical assignment accuracy is
the ratio of words to which the correct HPSG lex-
ical entry is assigned, and the semantic dependency
accuracy is defined as explained in Section 2.3. In
this experiment, we cut off sentences longer than 40
words for time reasons. We split the Brown Cor-
pus into three parts: training, development test and
evaluation, and evaluated the automatic annotation
results only for the training portion.

We created three sets of automatic annotations as
follows:

Baseline No operation; default parsing results are
considered as the annotation results.

S-full Only “S” operations are used; the tree struc-
tures of the resulting annotations should thus be
identical to the gold-standard annotations.

SL-full “S” and “L” operations are used; the la-
beled tree structures of the resulting anno-
tations should thus be identical to the gold-
standard annotations.

Before showing the evaluation results, splitting of
the data should be described here. Our system as-
sumes that the correct tree is included in the parser’s

CKY chart; however, because of the beam-search
limitation and the incomplete grammar coverage, it
does not always hold true. In this paper, such sit-
uations are called “out-chart”. Conversely, the sit-
uations in which the parser does include the cor-
rect tree in the CKY chart are “in-chart”. The re-
sults of “in-chart” are here considered to be the re-
sults in the ideal situation of the perfect parser. In
our experimental setting, the training portion of the
Brown Corpus has 10,576 “in-chart” and 7,208 “out-
chart” sentences, while the MASC portion has 864
“in-chart” and 489 “out-chart” sentences (Table 2).
Under “out-chart” situations, we applied the opera-
tions greedily for calculating S-full and SL-full; that
is, all operations are sequentially applied and an op-
eration is skipped when there are no HPSG trees in
the CKY chart after applying that operation.

Table 3 shows the results of our three measures:
the CFG tree bracketing accuracy, the accuracy of
HPSG lexical entry assignment and that of the se-
mantic dependency. In both of S-full and SL-full,
the improvement from the baseline is significant.
Especially, SL-full for “in-chart” data has almost
complete agreement with the gold-standard HPSG
annotations. The detailed figures are shown in Ta-
ble 4. Therefore, we can therefore conclude that
high quality CFG annotations lead to high quality
HPSG annotations when the are combined with a
good statistical HPSG parser.

4.2 Domain Adaptation

We evaluated the parser accuracy adapted with the
automatically created treebank on the Brown Cor-
pus. In this experiment, we used the adaptation al-
gorithm by (Hara et al., 2007), with the same hyper-
parameters used there. Table 5 shows the result of
the adapted parser. Each line of this table stands for
the parser adapted with different data. “Gold” is the
result adapted on the gold-standard annotations, and
“Gold (only covered)” is that adapted on the gold
data which is covered by the original Enju HPSG
grammar that was extracted from the WSJ portion
of the Penn Treebank. “SL-full” is the result adapted
on our automatically created data. “Baseline” is the
result by the original Enju parser, which is trained
only on the WSJ-PTB and whose grammar was ex-
tracted from the WSJ-PTB. The table shows SL-full
slightly improves the baseline results, which indi-

61

#operations
S L F | Avg. | Time
Brown Al | 122 1 0 1.19 | 43.32
© A2 | 91 4 1] 0944177
A1 | 275 2 5 2.76 | 33.33
MASC A2 52 2 0] 051 | 3513

Table 6: The number of operations and annotation time
by human annotators. “Annotator” is abbreviated as A.
Avg. is the average number of operations per sentence
and Time is annotation time per sentence [sec.].

cates our annotation system can be useful for do-
main adaptation. Because we used mixed data of
“in-chart” and “out-chart” in this experiment, there
still is much room for improvement by increasing
the ratio of the “in-chart” sentences using a larger
beam-width.

5 Interactive Annotation on a
Prototype-system

We developed an initial version of the annotation
system described in Section 3, and annotated 200
sentences in total on the system. Half of the sen-
tences were taken from the Brown corpus and the
other half were taken from a court-debate section of
the MASC corpus. All of the sentences were an-
notated twice by two annotators. Both of the anno-
tators has background in computer science and lin-
guistics.

Table 6 shows the statistics of the annotation pro-
cedures. This table indicates that human annotators
strongly prefer “S” operation to others, and that the
manual annotation on the prototype system is at least
comparable to the recent discriminant-based annota-
tion system by (Zhang and Kordoni, 2010), although
the comparison is not strict because of the difference
of the text.

Table 7 shows the automatic evaluation results.
We can see that the interactive annotation gave slight
improvements in all accuracy metrics. The improve-
ments were however not as much as we desired.

By classifying the remaining errors in the anno-
tation results, we identified several classes of major
eITors:

1. Truly ambiguous structures, which require the
context or world-knowledge to correctly re-
solve them.

in

out

in+out

10,576 /10,394
864/ 857

Brown (train.)
MASC

7,190/ 6,464
489/ 449

17,766 / 16,858
1,353/ 1,306

Table 2: The number of “in-chart” and “out-chart” sentences (total / 1-40 length)

in out in+out
SL-full | 100.00/99.31/99.60 | 88.67/83.95/82.00 | 94.91/92.21/92.24
Brown S-full 98.46/96.64 /96.83 | 89.60/82.02/81.20 | 94.48/89.88/90.29
Baseline 92.39/92.69/90.54 | 82.10/78.38/73.80 | 87.78/86.07/83.54
SL-full | 100.00/99.13/99.30 | 85.91/80.75/78.80 | 93.38/90.55/91.02
MASC S-full 98.71/96.88/96.73 | 86.95/79.14/77.43 | 93.18/88.60/88.93
Baseline 93.98/93.51/91.56 | 80.00/75.89/72.22 | 87.43/85.30/83.75

Table 3: Evaluation of the automatic annotation sets. Each cell has the score of CFG F1 / Lex

. Acc. / Dep. FI.

CFG tree accuracy

Brown MASC
A.1 | 90.55/90.83/90.69 | 90.62/90.80/90.71
A.2 | 91.01/91.09/91.05 | 91.01/91.09/91.05
Enju | 89.70/89.74/89.72 | 90.02/90.20/90.11

PAS dependency accuracy

Brown MASC
A.1 | 87.48/87.55/87.52 | 86.02/86.02/86.02
A.2 | 88.42/88.27/88.34 | 85.28/91.01/85.32
Enju | 87.12/86.91/87.01 | 84.81/84.26/84.53

Table 7: Automatic evaluation of the annotation results

(LP/LR/F1)
CFG tree accuracy

in-chart out-chart
A1 | 94.52/94.65/94.58 | 83.95/84.44/84.19
A.2 | 95.07/95.14/95.10 | 84.22/84.32/84.27
Enju | 94.44/94.37/94.40 | 81.81/82.00/81.90

PAS dependency accuracy

in-chart out-chart
A.1 | 92.85/92.85/92.85 | 77.47/77.65/717.56
A.2 | 93.34/93.34/93.34 | 79.17/78.80/78.98
Enju | 92.73/92.73/92.73 | 76.57/76.04/76.30

Table 8: Automatic evaluation of the annotation results
(LP/LR/F1); in-chart sentences (left-column) and out-
chart sentences (right column) both from Brown

2. Purely grammar-dependent analyses, which re-
quire in-depth knowledge of the specific HPSG
grammar behind the simplified CFG-tree repre-
sentation given to the annotators.

3. Discrepancy between human intuition and the
convention in the HPSG grammar introduced
by the automatic conversion.

4. Apparently wrong analysis left untouched due
to the limitation of the annotation system.

We suspect some of the errors of type 1 have been
caused by the experimental setting of the annotation;

62

we gave the test sentences randomly drawn from
the corpus in a randomized order. This would have
made it difficult for the annotators to interpret the
sentences correctly. We thus expect this kind of er-
rors would be reduced by doing the annotation on a
larger chunk of text.

The second type of the errors are due to the fact
that the annotators are not familiar with the details
of the Enju English HPSG grammar. For example,
one of the annotators systematically chose a struc-
ture like (NP (NP a cat) (PP on the mat)). This struc-
ture is however always analysed as (NP a (NP’ cat
(PP on the mat))) by the Enju grammar. The style of
the analysis implemented in the grammar thus some-
times conflicts with the annotators’ intuition and it
introduces errors in the annotation results.

Our intention behind the design of the annotation
system was to make the annotation system more ac-
cessible to non-experts and reduce the cost of the
annotation. To reduce the type 2 errors, rather than
the training of the annotators for a specific gram-
mar, we plan to introduce another representation
system in which the grammar-specific conventions
become invisible to the annotators. For example, the
above-shown difference in the bracketing structures
of a determiner-noun-PP sequence can be hidden by
showing the noun phrase as a ternary branch on the
three children: (NP a cat (PP on the mat)).

The third type of the errors are mainly due to the
rather arbitrary choice of the HPSG analysis intro-
duced through the semi-automatic treebank conver-
sion used to extract the HPSG grammar. For in-
stance, the Penn Treebank annotates a structure in-
cluding an adverb that intervenes an auxiliary verb

Lex-Acc | Dep-LP Dep-LR Dep-UP Dep-UR Dep-F1 | Dep-EM
Brown 99.26 99.61 99.59 99.69 99.67 99.60 95.80
MASC 99.13 99.26 99.33 99.42 99.49 99.30 95.68

Table 4: HPSG agreement of SL-full for “in-chart” data (EM means “Exact Match.”)

LP LR UP UR F1 EM

Gold | 85.62 8541 89.70 69.47 8551 45.07

Gold (only covered) | 84.32 84.01 8872 88.40 84.17 4252
SL-full | 8327 82.88 8793 8752 83.08 40.19

Baseline | 82.64 8220 87.50 87.03 8242 37.63

Table 5: Domain Adaptation Results

and a following verb as in (VP is (ADVP already)
installed). The attachment direction of the adverb is
thus left unspecified. Such structures are however
indistinguishably transformed to a binary structure
like (VP (VP’ is already) installed) in the course of
the conversion to HPSG analysis since there is no
way to choose the proper direction only with the
information given in the source corpus. This de-
sign could be considered as a best-effort, systematic
choice under the insufficient information, but it con-
flicts with the annotators’ intuition in some cases.

We found in the annotation results that the anno-
tators have left apparently wrong analyses on some
sentences, either those remaining from the initial
output proposed by the parser or a wrong structure
appeared after some operations by the annotators
(error type 4). Such errors are mainly due to the
fact that for some sentences a correct analysis cannot
be found in the parser’s CKY chart. This can hap-
pen either when the correct analysis is not covered
by the HPSG grammar, or the correct analysis has
been pruned by the beam-search mechanism in the
parser. To correct a wrong analysis from the insuffi-
cient grammar coverage, an expansion of the gram-
mar is necessary, either in the form of the expan-
sion of the lexicon, or an introduction of a new lex-
ical type. For the other errors from the beam-search
limitation, there is a chance to get a correct analysis
from the parser by enlarging the beam size as nec-
essary. The introduction of a new lexical type def-
initely requires a deep knowledge on the grammar
and thus out of the scope of our annotation frame-
work. The other cases can in principle be handled in
the current framework, e.g., by a dynamic expansion
of the lexicon (i.e., an introduction of a new associ-
ation between a word and known lexical type), and

63

by a dynamic tuning of the beam size.

To see the significance of the last type of the er-
ror, we re-evaluated the annotation results on the
Brown sentences after classifying them into: (1)
those for which the correct analyses were included
in the parser’s chart (in-chart, 65 sentences) and (2)
those for which the correct analyses were not in the
chart (out-chart, 35 sentences), either because of the
pruning effect or the insufficient grammar coverage.
The results shown in Table 8 clearly show that there
is a large difference in the accuracy of the annota-
tion results between these two cases. Actually, on
the in-chart sentences, the parser has returned the
correct analysis as the initial solution for over 50%
of the sentences, and the annotators saved it without
any operations. Thus, we believe it is quite effective
to add the above-mentioned functionalities to reduce
this type of errors.

6 Conclusion and Future Work

We proposed a new annotation framework for deep
grammars by using statistical parsers. From the the-
oretical point of view, we can achieve significantly
high quality HPSG annotations only by CFG annota-
tions, and the products can be useful for the domain
adaptation task. On the other hand, preliminary ex-
periments of a manual annotation show some diffi-
culties about CFG annotations for non-experts, es-
pecially grammar-specific ones. We hence need to
develop some bridging functions reducing such dif-
ficulties. One possible strategy is to introduce an-
other representation such as flat CFG than binary
CFG. While we adopted CFG interface in our first
prototype system, our scheme can be applied to an-
other interface such as dependency as long as there
exist some relatedness over syntax or semantics.

References

David Carter. 1997. The treebanker: a tool for super-
vised training of parsed corpora. In Workshop On
Computational Environments For Grammar Develop-
ment And Linguistic Engineering, pages 9—15.

Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Evaluating impact of re-training a lexical dis-
ambiguation model on domain adaptation of an hpsg
parser. In Proceedings of the 10th International Con-
ference on Parsing Technologies, pages 11-22, Prague,
Czech Republic.

Nancy Ide, Collin Baker, Christiane Fellbaum, and Re-
becca Passonneau. 2010. The manually annotated
sub-corpus: A community resource for and by the peo-
ple. In Proceedings of the ACL 2010 Conference Short
Papers, pages 68-73, Uppsala, Sweden, July.

Sadao Kurohashi and Makoto Nagao. 1998. Building
a japanese parsed corpus while improving the parsing
system. In Proceedings of the NLPRS, pages 719-724.

Henry Kucera and W. Nelson Francis. 1967. Compu-
tational Analysis of Present Day American English.
Brown University Press, June.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert Maclntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn tree-
bank: Annotating predicate argument structure. In
Proceedings of the Workshop on Human Language
Technology, pages 114-119.

Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao,
and Jun’ichi Tsujii. 2007. A log-linear model with an
n-gram reference distribution for accurate hpsg pars-
ing. In Proceedings of the 10th International Confer-
ence on Parsing Technologies, pages 60—68.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Ricardo Sanchez-Sdez, Joan-Andreu Sanchez, and José-
Miguel Benedi. 2009. Interactive predictive parsing.
In Proceedings of the 11th International Conference
on Parsing Technologies, pages 222-225.

Ricardo Sanchez-Saez, Luis A. Leiva, Joan-Andreu
Sénchez, and José-Miguel Benedi. 2010. Interactive
predictive parsing using a web-based architecture. In
Proceedings of the NAACL HLT 2010 Demonstration
Session, pages 37-40.

Yi Zhang and Valia Kordoni. 2010. Discriminant rank-
ing for efficient treebanking. In Coling 2010: Posters,
pages 1453-1461, Beijing, China, August. Coling
2010 Organizing Committee.

64

