
Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 229–237,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Adapting Text instead of the Model: An Open Domain Approach

Gourab Kundu, Dan Roth
University of Illinois at Urbana Champaign

Urbana, IL 61801
{kundu2,danr}@illinois.edu

Abstract

Natural language systems trained on labeled
data from one domain do not perform well
on other domains. Most adaptation algorithms
proposed in the literature train a new model for
the new domain using unlabeled data. How-
ever, it is time consuming to retrain big mod-
els or pipeline systems. Moreover, the domain
of a new target sentence may not be known,
and one may not have significant amount of
unlabeled data for every new domain.

To pursue the goal of an Open Domain NLP
(train once, test anywhere), we propose ADUT
(ADaptation Using label-preserving Transfor-
mation), an approach that avoids the need for
retraining and does not require knowledge of
the new domain, or any data from it. Our ap-
proach applies simple label-preserving trans-
formations to the target text so that the trans-
formed text is more similar to the training do-
main; it then applies the existing model on
the transformed sentences and combines the
predictions to produce the desired prediction
on the target text. We instantiate ADUT for
the case of Semantic Role Labeling (SRL)
and show that it compares favorably with ap-
proaches that retrain their model on the target
domain. Specifically, this “on the fly” adapta-
tion approach yields 13% error reduction for
a single parse system when adapting from the
news wire text to fiction.

1 Introduction

In several NLP tasks, systems trained on annotated
data from one domain perform well when tested

on the same domain but adapt poorly to other do-
mains. For example, all systems of CoNLL 2005
shared task (Carreras and Màrquez, 2005) on Se-
mantic Role Labeling showed a performance degra-
dation of almost 10% or more when tested on a dif-
ferent domain.

Most works in domain adaptation have focused
on learning a common representation across train-
ing and test domains (Blitzer et al., 2006; DauméIII,
2007; Huang and Yates, 2009). Using this represen-
tation, they retrain the model for every new domain.
But these are not Open Domain Systems since the
model needs to be retrained for every new domain.
This is very difficult for pipeline systems like SRL
where syntactic parser, shallow parser, POS tagger
and then SRL need to be retrained. Moreover, these
methods need to have a lot of unlabeled data that is
taken from the same domain, in order to learn mean-
ingful feature correspondences across training and
test domain. These approaches cannot work when
they do not have a lot of unlabeled data from the test
domain or when the test domain in itself is very di-
verse, e.g., the web.

The contribution of this paper is a new frame-
work for adaptation. We propose ADUT (ADap-
tation Using label-preserving Transformation) as a
framework in which a previously learned model can
be used on an out-of-domain example without re-
training and without looking at any labeled or unla-
beled data for the domain of the new example. The
framework transforms the test sentence to generate
sentences that have, in principle, identical labeling
but that are more like instances from the training do-
main. Consequently, it is expected that the exist-

229

ing model will make better predictions on them. All
these predictions are then combined to choose the
most probable and consistent prediction for the test
sentence.

ADUT is a general technique which can be ap-
plied to any natural language task. In this paper, we
demonstrate its usefulness on the task of semantic
role labeling (Carreras and Màrquez, 2005). Start-
ing with a system that was trained on the news text
and does not perform well on fiction, we show that
ADUT provides significant improvement on fiction,
and is competitive with the performance of algo-
rithms that were re-trained on the test domain.

The paper is organized as follows. Section 2 dis-
cusses two motivating examples. Section 3 gives a
formal definition of our adaptation framework. Sec-
tion 4 describes the transformation operators that we
applied for this task. Section 5 presents our joint in-
ference approach. Section 6 describes our semantic
role labeling system and our experimental results are
in Section 7. Section 8 describes the related works
for domain adaptation. Finally in Section 9 we con-
clude the paper with a discussion.

2 Motivating Examples

One of the key reasons for performance degradation
of an NLP tool is unseen features such as words in
the new domain that were not seen in the training
domain. But if an unknown word is replaced by a
known word without changing the labeling of the
sentence, tools perform better. For example, in the
task of syntactic parsing, the unknown word checkup
causes the Charniak parser to make a wrong co-
ordination decision on the sentence

He was discharged from the hospital af-
ter a two-day checkup and he and his par-
ents had what Mr. Mckinley described as
a “celebration lunch” at the cafeteria on
the campus.

If we replace the word checkup with its hyper-
nym examination which appears in training data, the
parse gets corrected. Figure 1 shows both original
and corrected parse trees.

For the task of semantic role labeling, systems do
not perform well on the predicates that are infre-
quent in training domain. But if an infrequent predi-

cate is replaced with a frequent predicate from train-
ing domain such that both predicates have similar
semantic argument structure, the system performs
better. Consider the following sentence

Scotty gazed out at ugly gray slums.

The semantic role for the phrase at ugly gray slums
with respect to predicate gaze is A1. But the pred-
icate gaze appears only once in training data and
our model predicts at ugly gray slums as AM-LOC
instead of A1. But if gaze is replaced with look
which occurs 328 times in training data and has sim-
ilar argument structure (in the same VerbNet class as
gaze), the system makes the correct prediction.

3 Problem Formulation

Let the in-domain distribution be Di and out-of-
domain distribution be Do. We have a model f
trained over a set of labeled examples drawn from
Di. If Di and Do are very dissimilar, f will not per-
form well on examples drawn from Do. The prob-
lem is to get good performance from f on Do with-
out retraining f .

We define a Transformation g to be a function that
maps an example e into a set of examples E. So g :
X → 2X where X is the entire space of examples.
In this paper, we only consider the Label-preserving
Transformations which satisfy the property that all
transformed examples in E have the same label as
input example e, i.e., ∀x x ∈ Sk ⇒ g(x) ⊂ Sk
where Sk is the set of examples with label k . Let
G be a set of label-preserving transformation func-
tions. G = {g1, g2, . . ., gp}.

At evaluation time, for test example d, we will
apply G to get a set of examples T1. Let T2 = {d′ ∈
T1 : Di(d

′) > Di(d)}. So all examples in T2 have
same label as d but have a higher probability than
d to be drawn from the in-domain distribution. So
f should perform better on examples in T2 than on
d. For each d′ ∈ T2, f will produce scores for the
output labels. The scores will be combined subject
to constraints to produce the final output.

4 Transformation Functions

After applying a transformation function to get a
new sentence from an input sentence, we remem-
ber the mapping of segments across the original

230

a. S1

S

NP

He

VP

was VP

discharged PP

from the hospital

PP

after NP

NP

a two-day
checkup

SBAR

NP

and he and his parents

VP

had . . . campus

.

b. S1

S

S

NP

He

VP

was VP

discharged PP

from the hospital

PP

after NP

a two-day
examination

and S

NP

he and his parents

VP

had . . . campus

.

Figure 1: a. Original Parse tree b. Corrected Parse tree after replacement of unknown word checkup by examination

and transformed sentence. Thus, after annotating
the transformed sentence with SRL, we can transfer
the roles to the original sentence through this map-
ping. Transformation functions can be divided into
two categories. The first category is Transforma-
tions From List which uses external resources like
WordNet, VerbNet and Word Clusters. The second
is Learned Transformations that uses transformation
rules that have been learned from training data.

4.1 Transformation From List
I. Replacement of Predicate:

As noted in (Huang and Yates, 2010), 6.1% of the
predicates in the Brown test set do not appear in WSJ
training set and 11.8% appear at most twice. Since
the semantic roles of a sentence depend on the pred-
icate, these infrequent predicates hurt SRL perfor-
mance on new domains. Note that since all predi-
cates in PropBank are verbs, we will use the words
predicate and verb interchangeably.

We count the frequency of each predicate and its
accuracy in terms of F1 score over the training data.
If the frequency or the F1 score of the predicate in
the test sentence is below a threshold, we perturb
that predicate. We take all the verbs in the same class
of VerbNet1 as the original verb (in case the verb is
present in multiple classes, we take all the classes).
In case the verb is not present in VerbNet, we take
its synonyms from WordNet. If there is no synonym
in WordNet, we take the hypernyms.

From this collection of new verbs, we select verbs
that have a high accuracy and a high frequency in

1
http://verbs.colorado.edu/ mpalmer/projects/verbnet.html

training. We replace the original verb with each of
these new verbs and generate one new sentence for
each new verb; the sentence is retained if the parse
score for the new sentence is higher than the parse
score for the original sentence.2 VerbNet has de-
fined a set of verb-independent thematic roles and
grouped the verbs according to their usage in frames
with identical thematic roles. But PropBank anno-
tation was with respect to each verb. So the same
thematic role is labeled as different roles for dif-
ferent verbs in PropBank. For example, both warn
and advise belong to the same VerbNet class (37.9)
and take thematic roles of Recipient (person being
warned or advised) and Topic (topic of warning or
advising). But Recipient was marked as A2 for warn
and A1 for advise and Topic was marked as A1 for
warn and A2 for advise in PropBank annotation.
Semlink3 provides a mapping from the thematic role
to PropBank role for each verb. After the SRL anno-
tates the new sentence with PropBank roles for the
new verb, we map the PropBank roles of the new
verb to their corresponding thematic roles and then
map the thematic roles to the corresponding Prop-
Bank roles for the original verb.
II. Replacement and Removal of Quoted Strings:

Quoted sentences can vary a lot from one domain
to another. For example, in WSJ, quoted sentences
are like formal statements but in Brown, these are
like informal conversations. We generate the trans-
formations in the following ways:

1) We use the content of the quoted string as one
2

Parse score is the parse probability returned by Charniak or Stanford parser.
3

http://verbs.colorado.edu/semlink/

231

sentence. 2) We replace each quoted string in turn
with a simple sentence (This is good) to generate a
new sentence. 3) If a sentence has a quoted string in
the beginning, we move that quoted string after the
first NP and VP that immediately follow the quoted
string. For example, from the input sentence, “We
just sit quiet”, he said. we generate the sentences 1)
We just sit quiet 2) “This is good”, he said. 3) He
said, “We just sit quiet”.
III. Replacement of Unseen Words:

A major difficulty for domain adaptation is that
some words in the new domain do not appear in the
training domain. In the Brown test set, 5% of total
words were never seen in the WSJ training set.

Given an unseen word which is not a verb, we
replace it with WordNet synonyms and hypernyms
that were seen in the training data. We used the
clusters obtained in (Liang, 2005) from running the
Brown algorithm (Brown et al., 1992) on Reuters
1996 dataset. But since this cluster was generated
automatically, it is noisy. So we chose replacements
from the Brown clusters selectively. We only replace
those words for which the POS tagger and the syn-
tactic parser predicted different tags. For each such
word, we find its cluster and select the set of words
from the cluster. We delete from this set all words
that do not take at least one part-of-speech tag that
the original word can take (from WordNet). For each
candidate synonym or hypernym or cluster member,
we get a new sentence. Finally we only keep those
sentences that have higher parse scores than the orig-
inal sentence.
IV. Sentence Split based on Stop Symbols:

We split each sentence based on stop symbols like
; and . . Each of the splitted sentences becomes one
transformation of the original sentence.
V. Sentence Simplification:

We have a set of heuristics for simplifying the
constituents of the parse tree; for example, replac-
ing an NP with its first and last word, removal of
PRN phrases etc. We apply these heuristics and gen-
erate simpler sentences until no more simplification
is possible. Examples of our heuristics are given in
Table 1.

Note that we can use composition of multiple
transformation functions as one function. A compo-
sition p1 � p2(s) = ∪a∈p1(s)p2(a). We apply II�I,
III�I, IV�I and V�I.

Node Input Example Simplified Example Operation

NP He and she ran. He ran. replace

NP The big man ran. The man ran. replace

ADVP He ran fast. He ran. delete

PP He ran in the field. He ran. delete

PRN He – though sick – ran. He ran. delete

VP He walked and ran. He ran. delete

TO I want him to run. I want that he can ran. rewrite

Table 1: Examples of Simplifications (Predicate is run)

4.2 Learned Transformations

The learned model is inaccurate over verbs and roles
that are infrequent in the training data. The purpose
of the learned transformation is to transfer such a
phrase in the test sentence in place of a phrase of a
simpler sentence; this is done such that there exists
a mapping from the role of the phrase in the new
sentence to the role of the phrase in the original sen-
tence.

Phrase Representation: A phrase tuple is a 3-
tuple (t, i, h) where, t is the phrase type, i is the in-
dex, and h is the headword of the phrase. We denote
by PR the Phrase Representation of a sentence – an
ordered list of phrase tuples. A phrase tuple corre-
sponds to a node in the tree. We only consider phrase
tuples that correspond to nodes that are (1) a sibling
of the predicate node or (2) a sibling of an ancestor
of the predicate node. Phrase tuples inPR are sorted
based on their position in the sentence. The index i
of the phrase tuple containing the predicate is taken
to be zero with the indices of the phrase tuples on
the left (right) sequentially decreasing (increasing).

Transformation Rule: We denote by Label(n, s)
the semantic role of nth phrase in the PR of the
sentence s. Let Replace(ns, nt, ss, st) be a new
sentence that results from inserting the phrase ns in
sentence ss instead of phrase nt in sentence st. We
will refer to st as target sentence and to nt as the
target phrase. Let sp be a sequence of phrase tuples
named as source pattern. If Label(ns, ss) = r1 and
Label(nt, Replace(ns, nt, ss, st)) = r2, then denote
f(r2) = r1. In this case we call the 6-tuple (st, nt,
p, sp, ns, f) a transformation rule. We call f the

232

label correspondence function.
Example: Consider the sentence st = “But it did
not sing." and the rule τ : (st, nt, p, sp, ns, f). Let:
nt = −3, p = entitle,
sp = [−2, NP, φ][−1, AUX, φ][0, V, entitle][1, φ, to]
ns = −2, f = {<A0, A2>} ∪ {<Ai,Ai>|i 6= 0}.

The PR of τ.st is {[−4, CC, But] [−3, NP, it]
[−2, AUX, did] [−1, RB, not] [0, VB, sing] [1, ., .]}.
Consider the input sentence ss: Mr. X was entitled
to a discount . with PR of {[−2, NP, X] [−1, AUX,
was] [0, V, entitle] [1, PP, to][2, ., .]}. Since τ.sp is
a subsequence of the PR of ss, τ will apply to the
predicate entitle of ss. The transformed sentence is:
str = Replace(τ.ns, τ.nt, ss, τ.st) = But Mr. X

did not sing. with PR of {[−4, CC, But] [−3, NP,
X] [−2, AUX, did] [−1, RB, not] [0, VB, sing] [1,
., .]}. If the SRL system assigns the semantic role
of A0 to the phrase Mr. X of str, the semantic role
of Mr. X in ss can be recovered through τ.f since
τ.f(A0) = A2 = Label(−2, ss).

While checking if τ.sp is a subsequence of the
PR of the input sentence, φ in each tuple of τ.sp
has to be considered a trivial match. So τ will
match the sentence He is entitled to a reward. with
PR = {[−2, NP, He] [−1, AUX, is] [0, V, entitle]
[1, PP, to][2, ., .]} but will not match the sentence
The conference was entitled a big success. with
PR = {[−2, NP, conference] [−1, AUX, was] [0,
V, entitle] [1, S, success][2, ., .]} (mismatch position
is bolded). The index of a phrase tuple cannot be φ,
only the head word or type can be φ and the rules
with more φ strings in the source pattern are more
general since they can match more sentences.

Algorithm 1 GenerateRules
1: Input: predicate v, semantic role r, Training sentences D, SRL

Model M
2: Output: set of rules R
3: R⇐ GetInitialRules(v, r,D,M)
4: repeat
5: J ⇐ ExpandRules(R)
6: K ⇐ R ∪ J
7: sort K based on accuracy, support, size of source pattern
8: select some rules R ⊂ K based on database coverage
9: until all rules in R have been expanded before

10: return R

The algorithm for finding rules for a semantic role
r of a predicate v is given in Algorithm 1. It is a
specific to general beam search procedure that starts
with a set of initial rules (Line 3, detail in Algorithm

2) and finds new rules from these rules (Line 5, de-
tail in Algorithm 3). In Line 7, the rules are sorted
by decreasing order of accuracy, support and number
of φ strings in the source pattern. In Line 8, a set of
rules are selected to cover all occurrences of the se-
mantic role r with the predicate v a specific number
of times. This process continues until no new rules
are found. Note that these rules need to be learned
only once and can be used for every new domain.

Algorithm 2 GetInitialRules
1: Input: predicate v, semantic role r, Training sentences D, SRL-

Model M
2: Output: Set of initial rules I
3: I ⇐ φ
4: T ⇐ {s ∈ D : length(s) <= e}
5: S ⇐ {s ∈ D : s has role r for predicate v}
6: M ⇐ Set of all semantic roles
7: for each phrase p1 in s1 ∈ S with gold label r for predicate v do
8: for each phrase p2 in s2 ∈ T labeled as a core argument do
9: if s1 6= s2 and p1 and p2 have same phrase types then

10: τ ⇐ empty rule
11: τ.st ⇐ s2, τ.p⇐ v
12: τ.nt ⇐ index of p2 in PR of s2
13: τ.ns ⇐ index of p1 in PR of s1
14: τ.sp ⇐ phrase tuples for phrases from p1 to v and two

phrases after v in PR of s1
15: L⇐ φ
16: for each sentence s3 ∈D with predicate v do
17: if τ.sp is a subsequence of PR of s3 then
18: x⇐ replace(τ.ns, τ.nt, s3, τ.st)
19: annotate x with SRL using M
20: r1 ⇐ the gold standard semantic role of the

phrase with index τ.ns in PR of s3
21: r2 ⇐ Label(τ.nt, x)
22: if r2 /∈ L then
23: insert(r2, r1) in τ.f
24: L = L ∪ {r2}
25: end if
26: end if
27: end for
28: for each role j ∈M − L do
29: insert(j, j) in τ.f
30: end for
31: I ⇐ I∪ {τ}
32: end if
33: end for
34: end for
35: return I

The algorithm for generating initial rules for the
semantic role r of predicate v is given in Algorithm
2. Shorter sentences are preferred to be target sen-
tences(Line 4). A rule τ is created for every (p1,p2)
pair where p1, p2 are phrases, p1 has the semantic
role r in some sentence s1, p2 is labeled as a core
argument(A0 − A5) in some sentence in T and the
phrase types of p1 and p2 in their respective parse
trees are same(Lines 7 − 9). Every sentence s3 in

233

training corpus with predicate τ.p is a potential can-
didate for applying τ (Line 16) if τ.sp is a subse-
quence ofPR of s3(Line 17). After applying τ to s3,
a transformed sentence x is created(Line 18). Lines
20 − 26 find the semantic role r2 of the transferred
phrase from SRL annotation of x using model M
and create a mapping from r2 to the gold standard
role r1 of the phrase in s3. L maintains the set of se-
mantic roles for which mappings have been created.
In lines 28 − 30, all unmapped roles are mapped to
themselves.

The algorithm for creating new rules from a set
of existing rules is given in Algorithm 3. Lines 4 −
13 generate all immediate more general neighbors of
the current rule by nullifying the headword or phrase
type element in any of the phrase tuples in its source
pattern.

Algorithm 3 ExpandRules
1: Input: a set of rules R
2: Output: a set of expanded rules E
3: E ⇐ φ
4: for each phrase tuple c in the source pattern of r ∈ R do
5: if c is not the tuple for predicate then
6: create a new rule r′ with all components of r
7: mark the head word of c in the source pattern of r′ to φ
8: add r′ to E
9: create a new rule r′′ with all components of r

10: mark the phrase type of c in the source pattern of r′′ to φ
11: add r′′ to E
12: end if
13: end for
14: return E

5 Combination by Joint Inference

The transformation functions transform an input
sentence into a set of sentences T . From each trans-
formed sentence ti, we get a set of argument can-
didates Si. Let S =

⋃|T |
i=1 Si be the set of all ar-

guments. Argument classifier assigns scores for
each argument over the output labels(roles) in S
that is then converted into a probability distribu-
tion over the possible labels using the softmax func-
tion (Bishop, 1995). Note that multiple arguments
with the same span can be generated from multiple
transformed sentences.

First, we take all arguments from S with distinct
span and put them in S′. For each argument arg in
S′, we calculate scores over possible labels as the
sum over the probability distribution (over output la-
bels) of all arguments in S that have the same span

as arg divided by the number of sentences in T that
contained arg. This results in a set of arguments with
distinct spans and for each argument, a set of scores
over possible labels. Following the joint inference
procedure in (Punyakanok et al., 2008), we want to
select a label for each argument such that the total
score is maximized subject to some constraints. Let
us index the set S′ as S′1:M where M = |S′|. Also
assume that each argument can take a label from a
set P . The set of arguments in S′1:M can take a set
of labels c1:M ∈ P 1:M . Given some constraints, the
resulting solution space is limited to a feasible set F;
the inference task is: c1:M = arg maxc1:M∈F (P 1:M)∑M

i=1 score(S
′i = ci).

The constraints used are: 1) No overlapping or
embedding argument. 2) No duplicate argument for
core arguments A0-A5 and AA. 3) For C-arg, there
has to be an arg argument.

6 Experimental Setup

In this section, we discuss our experimental setup
for the semantic role labeling system. Similar to the
CoNLL 2005 shared tasks, we train our system using
sections 02-21 of the Wall Street Journal portion of
Penn TreeBank labeled with PropBank. We test our
system on an annotated Brown corpus consisting of
three sections (ck01 - ck03).

Since we need to annotate new sentences with
syntactic parse, POS tags and shallow parses, we do
not use annotations in the CoNLL distribution; in-
stead, we re-annotate the data using publicly avail-
able part of speech tagger and shallow parser1, Char-
niak 2005 parser (Charniak and Johnson, 2005) and
Stanford parser (Klein and Manning, 2003).

Our baseline SRL model is an implementation of
(Punyakanok et al., 2008) which was the top per-
forming system in CoNLL 2005 shared task. Due to
space constraints, we omit the details of the system
and refer readers to (Punyakanok et al., 2008).

7 Results

Results for ADUT using only the top parse of Char-
niak and Stanford are shown in Table 2. The Base-
line model using top Charniak parse (BaseLine-
Charniak) and top Stanford parse (BaseLine-
Stanford) score respectively 76.4 and 73.3 on the

1
http://cogcomp.cs.illinois.edu/page/software

234

WSJ test set. Since we are interested in adaptation,
we report and compare results for Brown test set
only. On this set, both ADUT-Charniak and ADUT-
Stanford significantly outperform their respective
baselines. We compare with the state-of-the-art sys-
tem of (Surdeanu et al., 2007). In (Surdeanu et
al., 2007), the authors use three models: Model
1 and 2 do sequential tagging of chunks obtained
from shallow parse and full parse. Model 3 assumes
each predicate argument maps to one syntactic con-
stituent and classifies it individually. So Model 3
matches our baseline model. ADUT-Charniak out-
performs the best individual model (Model 2) of
(Surdeanu et al., 2007) by 1.6% and Model 3 by
3.9%. We also tested another system that used clus-
ter features and word embedding features computed
following (Collobert and Weston, 2008). But we
did not see any performance improvement on Brown
over baseline.

System P R F1

BaseLine-Charniak 69.6 61.8 65.5

ADUT-Charniak 72.75 66.1 69.3
BaseLine-Stanford 70.8 56.5 62.9

ADUT-Stanford 72.5 60.0 65.7

(Surdeanu et al., 2007)(Model 2) 71.8 64.0 67.7

(Surdeanu et al., 2007)(Model 3) 72.4 59.7 65.4

Table 2: Comparing single parse system on Brown.

All state-of-the-art systems for SRL are a com-
bination of multiple systems. So we combined
ADUT-Stanford, ADUT-Charniak and another sys-
tem ADUT-Charniak-2 based on 2nd best Charniak
parse using joint inference. In Table 3, We com-
pare with (Punyakanok et al., 2008) which was the
top performing system in CoNLL 2005 shared task.
We also compare with the multi parse system of
(Toutanova et al., 2008) which uses a global joint
model using multiple parse trees. In (Surdeanu et al.,
2007), the authors experimented with several com-
bination strategies. Their first combination strategy
was similar to ours where they directly combined the
outputs of different systems using constraints (de-
noted as Cons in Table 3). But their best result on
Brown set was obtained by treating the combina-
tion of multiple systems as a meta-learning problem.

They trained a new model to score candidate argu-
ments produced by individual systems before com-
bining them through constraints (denoted as LBI in
Table 3). We also compare with (Huang and Yates,
2010) where the authors retrained a SRL model us-
ing HMM features learned over unlabeled data of
WSJ and Brown.

System P R F1 Retrain

(Punyakanok et al., 2008) 73.4 62.9 67.8 ×
(Toutanova et al., 2008) NR NR 68.8 ×

(Surdeanu et al., 2007) (Cons) 78.2 62.1 69.2 ×
(Surdeanu et al., 2007) (LBI) 81.8 61.3 70.1 ×

ADUT-combined 74.3 67.0 70.5 ×
(Huang and Yates, 2010) 77.0 70.9 73.8 X

Table 3: Comparison of the multi parse system on Brown.

Table 3 shows that ADUT-Combined performs
better than (Surdeanu et al., 2007) (Cons) when in-
dividual systems have been combined similarly. We
believe that the techniques in (Surdeanu et al., 2007)
of using multiple models of different kinds (two
based on sequential tagging of chunks to capture ar-
guments whose boundaries do not match a syntac-
tic constituent) and training an additional model to
combine the outputs of individual systems are or-
thogonal to the performance improvement that we
have and applying these methods will further in-
crease the performance of our final system which is
a research direction we want to pursue in future.

We did an ablation study to determine which
transformations help and by how much. Table 4
presents results when only one transformation is ac-
tive at a time. We see that each transformation im-
proves over the baseline.

The effect of the transformation of Replacement
of Predicate on infrequent verbs is shown in Table
5. This transformation improves F1 as much as 6%
on infrequent verbs.

The running time for ADUT-Charniak on Brown
set is 8 hours compared to SRL training time of 20
hours. Average number of transformed sentences
generated by ADUT-Charniak for every sentence
from Brown is 36. The times are calculated based
on a machine with 2x 6-Core Xeon X5650 Proces-
sor with 48G memory.

235

Transformation P R F1

Baseline 69.6 61.8 65.5

Replacement of Unknown Words 70.6 62.1 66.1
Replacement of Predicate 71.2 62.8 66.8
Replacement of Quotes 71.0 63.4 67.0

Simplification 70.3 62.9 66.4
RuleTransformation 70.9 62.2 66.2

Sentence Split 70.8 62.1 66.2
Together 72.75 66.1 69.3

Table 4: Ablation Study for ADUT-Charniak

Frequency Baseline Replacement of Predicate

0 64.2 67.8
less than 3 59.7 65.1
less than 7 58.9 64.8

all predicates 65.5 66.78

Table 5: Performance on Infrequent Verbs for the Trans-
formation of Replacement of Predicate

8 Related Work

Traditional adaptation techniques like (DauméIII,
2007; Chelba and Acero, 2004; Finkel and Man-
ning, 2009; Jiang and Zhai, 2007; Blitzer et al.,
2006; Huang and Yates, 2009; Ando and Zhang,
2005; Ming-wei Chang and Roth, 2010) need to re-
train the model for every new domain. In (Umansky-
Pesin et al., 2010), there was no retraining; instead,
a POS tag was predicted for every unknown word
in the new domain by considering contexts of that
word collected by web search queries. We differ
from them in that our transformations are label-
preserving; moreover, our transformations aim at
making the target text resemble the training text.
We also present an algorithm to learn transformation
rules from training data. Our application domain,
SRL, is also more complex and structured than POS
tagging.

In (McClosky et al., 2010), the task of multiple
source parser adaptation was introduced. The au-
thors trained parsing models on corpora from dif-
ferent domains and given a new text, used a linear
combination of trained models. Their approach re-
quires annotated data from multiple domains as well
as unlabeled data for the new domain, which is not

needed in our framework. In (Huang and Yates,
2010), the authors trained a HMM over the Brown
test set and the WSJ unlabeled data. They derived
features from Viterbi optimal states of single words
and spans of words and retrained their models us-
ing these features. In (Vickrey and Koller, 2008),
a large number of hand-written rules were used to
simplify the parse trees and reduce syntactic vari-
ation to overcome feature sparsity. We have sev-
eral types of transformations, and use less than 10
simplification heuristics, based on replacing larger
phrases with smaller phrases and deleting unneces-
sary parse tree nodes. There are also some methods
for unsupervised semantic role labeling (Swier and
Stevenson, 2004), (Abend et al., 2009) that easily
adapt across domains but their performances are not
comparable to supervised systems.

9 Conclusion

We presented a framework for adaptating natural
language text so that models can be used across do-
mains without modification. Our framework sup-
ports adapting to new domains without any data or
knowledge of the target domain. We showed that our
approach significantly improves SRL performance
over the state-of-the-art single parse based system
on Brown set. In the future, we would like to extend
this approach to other NLP problems and study how
combining multiple systems can further improve its
performance and robustness.

Acknowledgements This research is sponsored
by the Army Research Laboratory (ARL) under
agreement W911NF-09-2-0053 and by the Defense
Advanced Research Projects Agency (DARPA) Ma-
chine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-
C-0181. Any opinions, findings, conclusions or rec-
ommendations are those of the authors and do not
necessarily reflect the view of the ARL, the DARPA,
AFRL, or the US government.

References
Omri Abend, Roi Reichart, and Ari Rappoport. 2009.

Unsupervised argument identification for semantic
role labeling . In Proceedings of the ACL.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple labeled

236

and unlabeled data . Journal of Machine Learning Re-
search.

Christopher Bishop. 1995. Neural Networks for Pattern
recognition, chapter 6.4: Modelling conditional distri-
butions. Oxford University Press.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. D. Pietra, and Jenifer C. Lai. 1992. Class-based
n-gram models of natural language. Computational
Linguistics, 18(4):467–479.

Xavier Carreras and Lluís Màrquez. 2005. Introduction
to the conll-2005 shared task: Semantic role labeling .
In Proceedings of CoNLL.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of ACL.

Ciprian Chelba and Alex Acero. 2004. Little data
can help a lot. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML.

Hal DauméIII. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the the Annual Meeting of the
Association of Computational Linguistics (ACL).

Jenny R. Finkel and Christopher D. Manning. 2009. Hi-
erarchical bayesian domain adaptation . In Proceed-
ings of NAACL.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised
sequence-labeling . In Proceedings of ACL.

Fei Huang and Alexander Yates. 2010. Open-domain
semantic role labeling by modeling word spans. In
Proceedings of ACL.

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in nlp. In Proceedings of
ACL.

Dan Klein and Christopher D. Manning. 2003. Fast exact
inference with a factored model for natural language
parsing. In Proceedings of NIPS.

Percy Liang. 2005. Semi-supervised learning for natural
language. Masters thesis, Massachusetts Institute of
Technology.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic domain adaptation for parsing. In
Proceedings of NAACL.

Michael Connor Ming-wei Chang and Dan Roth. 2010.
The necessity of combining adaptation methods. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Mas-
sachusetts, USA.

Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2).

Mihai Surdeanu, Lluís Màrquez, Xavier Carreras, and
Pere R. Comas. 2007. Combination strategies for se-
mantic role labeling. Journal of Artificial Intelligence
Research, 29:105–151.

Robert S. Swier and Suzanne Stevenson. 2004. Unsuper-
vised semantic role labelling. In Proceedings of Em-
pirical Methods in Natural Language Processing.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics, 34:161–191.

Shulamit Umansky-Pesin, Roi Reichart, and Ari Rap-
poport. 2010. A multi-domain web-based algorithm
for pos tagging of unknown words . In Proceedings of
Coling.

David Vickrey and Daphne Koller. 2008. Sentence sim-
plification for semantic role labeling. In Proceedings
of the ACL-HLT.

237

