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Abstract Navigating audio documents is often inherently
_ much more difficult than browsing text; an obvi-
We propose a normalized-cut model for the  gys solution, in relying on human beings’ ability to
problem of aligning a known hierarchical read text, is to conduct a speech-to-text conversion
browsing structure, e.g., electronic slides of h h aut i h it ASR). Im-
lecture recordings, with the sequential tran- .rqug au Qma ic speech recognition ( )'_ m
scripts of the corresponding spoken docu- plicitly, solutions as such change the conventional
ments, with the aim to help index and access ~ SPeaking-for-hearing construals: now speech can be
the latter. This model optimizes a normalized- read through its transcripts, though, in most cases,

cut graph-partitioning criterion and considers it was not intended for this purpose, which in turn
local tree constraints at the same time. Theex-  raises a new set of problems.

perimental results show the advantage of this The convenience and efficiency of reading tran-
model over Viterbi-like, sequential alignment,

under typical speech recognition errors. scrip?s (Stark et al., 2000; Munteanu _et al., 2096)
are first affected by errors produced in transcrip-
tion channels for various reasons, though if the goal
is only to browse salient excerpts, recognition er-

Learning semantic structures of written text has bedi@S On the extracts can be reduced by consider-
studied in a number of specific tasks, which includdNd ASR confidence scores (Xie and Liu, 2010;
but not limited to, those finding semantic represen=0ri @nd Furui, 2003; Zechner and Waibel, 2000):
tations for individual sentences (Ge and Mooneyading off the expected salience of excerpts with
2005; Zettlemoyer and Collins, 2005: Lu et a|”their recognition-error rate could actually result in
2008), and those constructing hierarchical structurd8® improvement of excerpt quality in terms of the
among sentences or larger text blocks (Marcu, 200@Mount of important content being correctly pre-
Branavan et al., 2007). The inverse problem of th&ented (Zechner and Waibel, 2000).

latter kind, e.g., aligning certain form of already- Even if transcription quality were not a problem,
existing semantic hierarchies with the correspondingrowsing transcripts is not straightforward. When
text sequence, is not so much a prominent prob|emtended to be read, written documents are almost
for written text as it is for spoken documents. In thigalways presented as more than uninterrupted strings
paper, we study a specific type of such a problem, ipf text. Consider that for many written docu-
which a hierarchical browsing structure, i.e., elecments, e.g., books, indicative structures such as sec-
tronic slides of oral presentations, have already efion/subsection headings and tables-of-contents are
isted, the goal being to impose such a structure on&andard constituents created manually to help read-
the transcripts of the corresponding speech, with tH¥s. Structures of this kind, even when existing, are
aim to help index and access spoken documents &fely aligned with spoken documents completely.
such. This paper studies the problem of imposing a

1 Introduction
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known hierarchical browsing structure, e.g., thédaighest total bullet-utterance similarity score; this
electronic slides of lecture recordings, onto the sgath can be found within a standaft{ A/ N?) time
guential transcripts of the corresponding spokenomplexity.
document, with the aim to help index and hence ac- A pre-order walk of the hierarchical tree is a natu-
cess the latter more effectively. Specifically, we proral choice, since speakers of presentations often fol-
pose a graph-partitioning approach that optimizeslaw such a order in developing their talk; i.e., they
normalized-cut criterion globally, in traversing theoften talk about a bullet first and then each of its chil-
given hierarchical semantic structures. The expedren in sequence. A pre-order walk is also assumed
imental results show the advantage of this modddy Branavan et al. (2007) in their table-of-content
over Viterbi-like, sequential alignment, under typi-generation task, a problem in which a hierarchical
cal speech recognition errors. structure has already been assumed (aligned) with a
span of written text, but the title of each node needs
to be generated.

In principle, such a sequential-alignment ap-
proach allows a bullet to be only aligned to one ut-
i "terance in the end, which does not model the basic
has attempted to find cer.tailat struptures of SpF)keanroperties of the problem well, where the content in
documents, such as topic and slide boundaries. Obullet is often repeated not only when the speaker

zxam.ple,ztohoe GYV;rhk of (Clhegogr;d H_eng, 2?.0‘3; R;.Lédthlks about it but also, very likely, when he discusses
arraju,_ s uetal, X ) aims to fin S! &he descendant bullets. Second, we suspect that
bou_ndarles in the corresponding lecture transcrlptgpeech recognition errors, when happening on the
Mallou_tov et _aI. (2007) _developed an apprqach Qritical anchoring words that bridging the alignment,
detecting topic boundaries of lecture recordings b%ould make a sequential-alignment algorithm much

finding repeated acoustic patterns. None of thilsess robust, compared with methods based on many-
work, however, has involved hierarchical structuretc,o_m(,iny alignment This is very likely to happen

of aspoker: _doc;meﬂt. Relsearch h_z;s aISLQ reso?&%sidering that domain-specific words are likely to
to other multimedia channels, e.g., video (Liu eta ‘be the critical words in deciding the alignment, but

2(.)02; Wang_ etal, 2.003; Fan etal., 2006), to dete.‘fﬁey are also very likely to be mis-recognized by an
slld_e transitions. This type_ of research,_however, IRSR system at the same time, e.g., due to out-of-
un_Ilker 10 recover sem.annc structures in more Ole\'/ocabulary issue or language-model sparseness. We
tails than slide boundaries. will further discuss this in more details later in our
Hierarchical structures of spoken documents result section. Third, the hierarchical structures are
Recently, research has started to align hierarchichist in the sequentialization of bullets, though some
browsing structures with spoken documents, giveremedy could be applied, e.g., by propagating a par-
that inferring such structures directly from spokerent bullet’s information onto its children (Zhu et al.,
documents is still too challenging. Zhu et al. (20102010).

investigates bullet-slide alignment by first sequen- On the other hand, we should also note that the
tializing bullet trees with a pre-order walk beforebenefit of formulating the problem as a sequential
conducting alignment, through which the problemalignment problem is its computational efficiency:
is reduced to a string-to-string alignment problenthe solution can be calculated with conventional
and an efficient Viterbi-like method can be naturallyViterbi-like algorithms. This property is also impor-
applied. In this paper, we use such a sequentitdnt for the task, since the length of a spoken docu-
alignment as our baseline, which takes a standardent, such as a lecture, is often long enough to make
dynamic-programming process to find the optimainefficientalgorithms practically intractable.

path on an M-by-N similarity matrix, wher&/ and Animportant question is therefore how to, in prin-
N denote the number of bullets and utterances in@ple, model the problem better. The second is how
lecture, respectively. Specifically, we chose the pattime efficient the model is. Malioutov and Barzi-
that maps each bullet to an utterance to achieve they (2006) describe a dynamic-programming version

2 Redated work

Flat structures of spoken documents Much pre-
vious work, similar to its written-text counterpart
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of a normalized-cut-based model in solving a topifudgmentstudies ...

segmentation problem for spoken documents. Iy Mefhodof..
spired by their work, we will propose a model base /:A"avn;"gvgrfn";:todV"---
on graph partitioning in finding the correspondenci Potential, ...

Potential business ...

between bullets and the regions of transcripts thi  Take detailed notes
discuss them; the proposed model runs in polynd Re'

. . . .. i ] Elicit reactions to ... k
mial time. We will empirically show its benefit on | Advantages/disadvantages| ./~
: : . Get feedbackearly ... e AR R A ’
both improving the alignment performance over §  You'regoingto have ...
sequential alignment and its robustness to spee i et e

recognition errors.

Figure 1: A slide, its tree structure, and the correspon-
3 Problem der_1ce between one of its bullets and a region of tran-
scribed utterances(, uj41..., uk).
We are given a speech sequeite- ui, us, ..., un,
wherew; is an utterance, and the corresponding hi-

erarchical structure, which, in our work here, is a

sequence of lecture slides containing a set of slide ffUrSiVely. By its nature of the problem, words in a
tles and bulletsB = {b1, by, ..., bar }, organized in a bullet could be repeated multiple times, even when

tree structurd’(®, X, ¥), whereR is the root of the the speaker traverses to talk about the descendant
tree that concatenates all slides of a lecture; i.e., eaE’H”etS in the depth O_f the sub—tregs. In principle,
slide is a child of the rook and each slide’s bullets & Mdel would be desirable to consider such proper-
form a subtree. In the rest of this paper, the worlles between a slide bullet, including all its descen-

bullet means both the title of a slide (if any) and any?@Nts: and utterance transcripts, as well as the con-
bullet in it. if not otherwise notedxX is the set of Straints of bullet trees. We formulate the problem

nodes of the tree (both terminal and non-terminal@,f flnd|_ng the corresponder_lc_:e petween bullets and
excluding the rooft), each corresponding to abuIIettr"J_‘nSC”ptS as a graph-partitioning problem, as de-
b, in the slides. ¥ is the edge set. With the defini- tailed below.
tions, our task is herein to find the triplé;, u;, uy), The correspondence between bullets and tran-
denoting that a bullel; is mapped to a region of lec- scribed utterances is evidenced by the similarities
ture transcripts that starts from th&h utteranceu;  between them. In a graph that contains a set of bul-
and ends at théth, inclusively. Constrained by the lets and utterances as its vertices and similarities be-
tree structure, the transcript region corresponding toveen them as its edges, our aim is to place bound-
an ancestor bullet contains those corresponding twies to partition the graph into smaller ones in order
its descendants; i.e., if a bullet is the ancestor of to obtain triples, e.g.(b;, u;, ux), that optimize cer-
another bulleb,, in the tree, the acquired boundarytain criterion. Inspired by the work of (Malioutov
triples (b;, uj,, ug, ) and(b;, uj,, uk, ) should satisfy and Barzilay, 2006; Shi and Malik, 2000), we op-
j1 < jo andk; > ko. Figure 1 shows a slide, its timize a normalized-cut score, in which the total
structure, and the correspondence between one wéight of edges being cut by the boundaries is mini-
its bullets and a region of transcribed utterances (thmized, normalized by the similarity between the bul-
root that concatenates all such slides of a lecture ttet b, and the entire vertices, as well as between the
gether is not shown here). transcript regionu;, ..., u;, and the entire vertices,
respectively.

4 A graph-partitionin roach
grapn-p gapp Consider a simple two-set case first, in which a

The generative process of lecture speech, with réoundary is placed on a gragh= (V, E) to sepa-
gard to a hierarchical structure (here, bullet treesjate its verticed” into two sets A and B, with all the

is characterized in general by a speaker’s producirggdges between these two sets being removed. The
detailed content for each bullet when discussing ipbjective, as we have mentioned above, is to mini-
during which sub-bullets, if any, are talked about remize the following normalized-cut score:
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actually include also all descendant bullets of each
cut(A, B) cut(A, B) bullet b;, but ignoring their orders within eadh.

Ncut(A,B) = (1) We will revisit this in more details later. We find
assoc(A,V)  assoc(B,V) , . . : .
optimal normalized cuts in a dynamic-programming
where, process with the following recurrence relation:
cut(A,B) = Z w(a,b)
aEAbEB Cli, k] = min{Cli — 1,5] + Di,j + LK} (2)
S
assoc(A, V) = Z w(a,v)
acAweV Bh» k] = arg II1<1£1{C[Z - 17]] +D[Zvj + 17 k]} (3)
1=
assoc(B, V) = . BZ Vw(b’”) In equation (2) and (3),C[i,k] is the opti-
cb,ve

mal/minimal normalized-cut value of aligning the

In equation (1),cut(A, B) is the total weight of first ¢ sibling bullets,bq, ..., b;, with the firstk ut-
the edges being cut, i.e., those connectibguith t€rancesuu, ..., by, while B[i, k] records the back-
B, while assoc(A, V) andassoc(B, V) are the total tracking indices corresponding to the optimal path
weights of the edges that connetwith all vertices  Yielding the currenC'[i, k]. As shown in equation
V, and B with V, respectively;w(a, b) is an edge (2), C[i, k] is computed by updating[i — 1, j] with
weight between a vertaxandb. Dli,j + 1,k], for all possiblej s.t. j < k, where

In general, minimizing such a normalized-cutD[, j + 1, k] is a normalized-cut score for the triple
score has been shown to be NP-complete. In o, uj+1,ux) and is defined as follows:
problem, however, the solution is constrained by
the linearity of segmentation on transcripts, simi- o o
lar to that )i/n (Mali?)utov and Barzilay, 2(;)06). In Dl[i,j+1,k] = cubldigotin VA A )
such a situation, a polynomial-time algorithm exists.

Malioutov and Barzilay (2006) describe a dynamicwhere A4; ;.1 is the vertex set that contains the
programming algorithm to conduct topic segmentabullet b; (including its descendant bullets, if any,
tion for spoken documents. We modify the methods discussed above) and the utterances, ..., ug;

to solve our alignment problem here, which, howy/ \ 4; ;.1 is its complement set.

ever, needs to cope with the bipartite graphs betweenDifferent from the topic segmentation problem
bullets and transcribed sentences rather than syifMalioutov et al., 2007), we need to remember the
metric similarity matrices among utterances themnormalized-cut values between any regign..., uy
selves. We also need to integrate this in considerirgnd any bulleth; in our task, so we need to use
the hierarchical structures of bullet trees. the additional subscriptin A; ; 1, while in topic

We first consider a set of sibling bullets, ...,b,,, segmentation, the computation of batht(.) and
that appear on the same level of a bullet tree antgksoc(.) is only dependant on the left boundasy
share the same pareby. For the time being, we and right boundary. Note that the similarity matrix
assume the corresponding region of transcripts h&gre is not symmetric as it is in topic segmentation,
already been identified fd¥,, sayui,...,u,. We butm by n, wherem is the number of bullets, while
connect each bullet ihy, ..., b, with utterances in n is the number of utterances.
uy, ..., up Dy their similarity, which results in a bi-  For any triple(b;, uj11, ug), there are two differ-
partite graph. Our task here is to place — 1 ent types of edges being cut: those betwaen '
boundaries onto the bipartite graph to partition th?bi} (again, includingy; and all its descendant bul-

raph intom bipartite graphs and obtain triples, e.g.

grap partte grap pies, g1ets) andU,,; def {ut, .oy uj, U1, oo, U }, @S well
(bi, uj,ur), to align b; to u;,...,ux, Whereb;, € dof

{b1, ..., by} anduj, uy € {uy,...,b,} andj <= k. as those betweeB,,; = {b1,...,0i—1,bi11, ..., b }
Since we have all descendant bullets to help the paand U;, def {uj41,...,u}.  We discriminate

titioning, when constructing the bipartite graph, wehese two types of edges. Accordingyt(.) and

(4)

assoc(Asy 10, V)
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assoc(.) in equation (4) are calculated with equatiortheir parent on lecture transcripts have already been
(5) and (6) below by linearly combining the weightsgiven, where the sibling bullets and the correspond-
of these two types of edges with) whose value is ing transcripts form a bipartite graph. When parti-
decided with a small held-out data. tioning the entire bullet trees and all utterances for a
lecture, the graph contains not only a bipartite graph
but also the hierarchical trees themselves. We de-

cut(Aijr1k, V \ Aijrie) = couple this two parts of graph by a top-down traver-
A Z w(b,u) sal of the bullet trees: starting from the root, for each

b€ Bin u€Uout node on the bullet tree, we apply the normalized-cut

F(1 -2 Z wt, ') (5) algorithm discussed above to find the corresponding

regions of transcripts for all its direct children, and
repeat this process recursively. In each visit to parti-
tion a group of sibling bullets, to allow the first child
assoc(Ai i1k, V) = A Z w(b, u) to have a different starting point from its parent bul-
b€ Bin,ucV let (the speaker may spend some time on the parent
+(1—=X) Z w(®',u')  (6) bullet itself before talking about each child bullet),
Y €Uin,uw/'€V we inserted an extra child in front of the first child
and copy the text of the parent bullet to it. Note that

tation, where a segment must not be empty, each YISIt to part_ltlon a group of sibling bullgts,
shall allow a bulleth; to be aligned to an empty the solution found is optimal on that level, which,

region, to model the situation that a bullet is nof92iN: results in a powerful model since all descen-
discussed by the speaker. To do so, we maite dant bullets, if any, are all considered. For exam-

equation (2) and (3) above to be able to equal tBle' processing high-level bullets first is expected
k in the subscript, i.ej < k. Specifically, when to benefit from the richer information of using all

j = k, the setd; ;.1 has no internal edges, andtheir dgscendants in helping find the bound_aries on
D[i,j + 1,k is either equal td, or often not de- transcripts acgurately. Recall that we have dlscus_sed
fined if assoc(A; j41.6, V) = 0. For the latter, we at_)ove how to incorporate the desce_ndant bullets into
resetD[i, j + 1, ki] to bel. this process. It would also dramatically reduce the

A visual example of partitioning sibling bullets searching space of partitioning lower-level bullets.
b1, by, andbs is shown in Figure 2, in which the As far as computational complexity is concerned,
descendant bullets of them (hebg, bs, andbg) are the graph-partitioning method discussed above is

) oy :
also considered. Note that we only show direct chilPolynomial, O(MN?), with M and N denoting
dren of b, here, while, as discussed above, all det_he number of bullets and utterances in a lecture,

scendant bullets, if any, will be considered. respectively. Note thall/ is often much smaller
than N, M < N. In more details, the loop ker-
nel of the algorithm is computind|i, j, k]. This

in total needs to computg(M N?) values, which

4 eBout 7u,€Uin

In addition, different form that in topic segmen-

o e can be pre-calculated and stored before dynamic-
—— Bullettree edge programming decoding runs; the later, as normal, is
------ Bullet-utterance similarity 2

— Partitioning boundary O(MN ), tOO

5 Experiment set-up

Figure 2: A visual example of partitioning sibling buIIetsS'l Corpus

b1, b2, and b3. Our experiment uses a corpus of four 50-minute
third-year university lectures taught by the same in-

Up to now, we have only considered partition-structor on the topics of human-computer interac-
ing sibling bullets by assuming the boundaries ofion (HCI), which contain 119 slides composed of
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921 hullets prepared by the lecturer himself. Th€AM Language Modelling Toolkit (Clarkson and
automatic transcripts of the speech contain approxRosenfeld, 1997), and the transcripts were generated
mately 30,000 word tokens, roughly equal to a 120with the SONIC toolkit (Pellom, 2001). The out-
page double-spaced essay in length. The lecturedé-vocabulary rates are 0.3% in the output of ASR
voice was recorded with a head-mounted microModel 1 and 0.1% in that of Model 2, respectively.
phone with a 16kHz sampling rate and 16-bit sam- Both bullets and automatic transcripts were
ples, while students’ comments and questions wetgtemmed and stop words in them were removed. We
not recorded. The speech is split into utterances hiien calculated the similarity between a bullet and
pauses longer than 200ms, resulting in around 40Gh utterance with the number of overlapping words
utterances. The slides and automatic transcripts ehared, normalized by their lengths. Note that using
one lecture were held out to decide the value.@f  several other typical metrics, e.g., cosine, resulted
differentiating the two different types of edges bein a similar trend of performance change—our con-
ing cut, as discussed in Section 4. The boundariedusions below are consistent under these situations,
between adjacent slides were marked manually duhkough the specific performance scores (i.e., word
ing the lectures were recorded, by the person wheffsets) are different. Finally, the similarities be-
oversaw the recording process, while the boundarieseen bullets and utterances yielded a single M-by-
between bullets within a slide were annotated afteiN similarity matrix for each lecture to be aligned,
wards by another human annotator. with M and N denoting the number of bullets in
o slides and utterances in transcripts, respectively.
5.2 Buildingthegraphs
The lecture speech was first transcribed into text a&3 Evaluation metric
tomatically with ASR models. The first ASR modelthe  metric  used in  our evaluation is
is a baseline with its acoustic model trained on th's’traightforward—automaticalIy acquired bound-
WSJO and WSJ1 subsets of the 1992 developmeqfies on transcripts for each slide bullet are

set of the Wall Street Journal (WSJ) dictation COltompared against the corresponding gold-standard

pus, which contains 30 hours of data spoken by, ndaries to calculate offsets measured in number
283 speakers. The language model was trained @ \ords, The offset scores are averaged over all
the Switchboard corpus, which contains 2500 telgs,ndaries to evaluate model performance. Though
phone conversations involving about 500 Englishg,q may consider that different bullets may be of
native speakers, which was suggested to be SUffifterent importance, in this paper we do not use

able for the conversational style of lectures, €.g5ny heyristics to judge this and we treat all bullets
by (Munteanu et al., 2007; Park et al., 2005). Th%qually in our evaluation.

whole model yielded a word error rate (WER) at Note that topic segmentation research often uses

0.48. In the remainder of this paper, we call tthnetrics such asP, and WindowDiff (Malioutov
model as ASR Model 1 ) et al., 2007; Beeferman et al., 1999; Pevsner and
The second model is an advanced one using the., ot 2002). Our problem here, as an alignment
same acoustic model. However, its language mOdﬁlobIem, has an exact 1-to-1 correspondence be-
was trained on domain-related documents obtainqg/een a gold and automatic boundary, in which we

from the Web through searching the words appeag,, irectly measure the exact offset of each bound-
ing on slides, as suggested by Munteanu et aé'ry.

(2007). This yielded a WER of 0.43, which is a

typical WER for lectures and conference presentg; Experimental results

tions (Leeuwis et al., 2003; Hsu and Glass, 2006;

Munteanu et al.,, 2007), though a lower WER isTable 1 presents the experimental results obtained
possible in a more ideal condition (Glass et al.on the automatic transcripts generated by the ASR
2007), e.g., when the same course from the previousodels discussed above, with WERs at 0.43 and
semester by the same instructor is available. The 8-48, respectively, which are typical WERs for lec-
gram language models were trained using the CMUures and conference presentations in realistic and
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less controlled situations. SEQ-ALN in the tablelet words to search the Web. It is expected to in-
stands for the Viterbi-like, sequential alignment diserease the recognition accuracy on domain words,
cussed above in section 2, while G-CUT is theparticularly those appearing on the slides. There-
graph-partitioning approach proposed in this papefore, Model 2 is likely to particularly increase the
The values in the table are the average word-offsebrrect matching between bullets and transcript.
scores counted after stop-words having been re- The results in Table 1 also show the usefulness
moved. of better ASR modeling on the structure-imposing
task here. As discussed in the introduction sec-

WER=0.43| WER=0.48 tion earlier, browsing automatic transcripts of long
SEQ-ALN 15.22 20.38 spoken documents, such as lectures, is affected by
G-CUT 13.41 16.77 both speech recognition errors and lack of browsing
Offs. Reduction|  12% 18% structures. Table 1 shows that the improvement in

solving the first problem also helps the second.
Ta_ble 1: The average word offsets of automatic bound- Last, from a pragmatic viewpoint of system de-
aries from the gold-standard. velopment, the graph-partitioning algorithm is sim-
ple to implement: the essence of equation (2)-(6) is
Table 1 shows that comparing these tWqg find the optimal normalized-cut score character-
polynomial-time models, G-CUT reduces the averi,gq by computingD[i, j + 1, % and updating the
age offsets of SEG-ALN under both WERs. On thggrmylae with it, which is not much more compli-
transcripts with 0.48 WER, the average word-offsetate to build than the baseline. Also, the practical

score is reduced by approximately 18% from 20.38peeq difference between these two types of models
to 16.77, while for the transcripts with WER at 0.43,is not obvious on our dataset.

the offset reduction is 12%, from 15.22 to 13.41.
Since both models use exactly the same input simir  ~onclusion
larity matrices, the differences between their results
confirm the advantage of the modeling principle beThis paper proposes a graph-partitioning approach
hind the proposed approach. Although the grapffer aligning a known hierarchical structure with the
partitioning model could be extended further, e.gtranscripts of the corresponding spoken document
with the approach in (Zhu et al., 2010), our primarythrough optimizing a normalized-cut criterion. This
interest here is the principle modeling advantage efpproach models the basic properties of the prob-
this normalized-cut framework. lem and is quadratic-time. Experimental results
The results in Table 1 also suggest that the grapBhow both its advantage on improving the alignment
partitioning model is more robust to speech recogperformance over a standard sequential-alignment
nition errors: when WERSs increase from 0.43 tdaseline and its robustness to speech recognition er-
0.48, the error of G-CUT increases by 25%, fronrors, while both take as input exactly the same simi-
13.41 t0 16.77, while that of SEQ-ALN increases byarity matrices. From a pragmatic viewpoint of sys-
44%, from 15.22 to 20.38. We due this to the factem development, this graph-partitioning-based al-
that the graph-partitioning model considers multiplgyorithm is simple to implement. We believe immedi-
alignments between bullets, including their descerate further work such as combining the normalized-
dants, and the transcribed utterances, where misdt model with CYK-like dynamic programing to
matching between bullet and transcript words, e.gtraverse the semantic trees in alignment could help
that caused by recognition errors, is less likely tais further understand the problem, though such
impact the graph-partitioning method, which basemodels need much more memory in practice if not
its optimization criterion on multiple alignments, properly optimized and have a higher time complex-
e.g., when calculatingut(.) andassoc(.) in equa- ity. Also, topic-segmentation (cohesion) models can
tion (5) and (6). Recall that the ASR Model 2 in-be naturally combined with the alignment model dis-
cludes domain-specific Web data to train the lancussed here. We will study such problems as our
guage models, which were acquired by using buimmediate future work.
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