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Abstract

We propose a normalized-cut model for the
problem of aligning a known hierarchical
browsing structure, e.g., electronic slides of
lecture recordings, with the sequential tran-
scripts of the corresponding spoken docu-
ments, with the aim to help index and access
the latter. This model optimizes a normalized-
cut graph-partitioning criterion and considers
local tree constraints at the same time. The ex-
perimental results show the advantage of this
model over Viterbi-like, sequential alignment,
under typical speech recognition errors.

1 Introduction

Learning semantic structures of written text has been
studied in a number of specific tasks, which include,
but not limited to, those finding semantic represen-
tations for individual sentences (Ge and Mooney,
2005; Zettlemoyer and Collins, 2005; Lu et al.,
2008), and those constructing hierarchical structures
among sentences or larger text blocks (Marcu, 2000;
Branavan et al., 2007). The inverse problem of the
latter kind, e.g., aligning certain form of already-
existing semantic hierarchies with the corresponding
text sequence, is not so much a prominent problem
for written text as it is for spoken documents. In this
paper, we study a specific type of such a problem, in
which a hierarchical browsing structure, i.e., elec-
tronic slides of oral presentations, have already ex-
isted, the goal being to impose such a structure onto
the transcripts of the corresponding speech, with the
aim to help index and access spoken documents as
such.

Navigating audio documents is often inherently
much more difficult than browsing text; an obvi-
ous solution, in relying on human beings’ ability to
read text, is to conduct a speech-to-text conversion
through automatic speech recognition (ASR). Im-
plicitly, solutions as such change the conventional
speaking-for-hearing construals: now speech can be
read through its transcripts, though, in most cases,
it was not intended for this purpose, which in turn
raises a new set of problems.

The convenience and efficiency of reading tran-
scripts (Stark et al., 2000; Munteanu et al., 2006)
are first affected by errors produced in transcrip-
tion channels for various reasons, though if the goal
is only to browse salient excerpts, recognition er-
rors on the extracts can be reduced by consider-
ing ASR confidence scores (Xie and Liu, 2010;
Hori and Furui, 2003; Zechner and Waibel, 2000):
trading off the expected salience of excerpts with
their recognition-error rate could actually result in
the improvement of excerpt quality in terms of the
amount of important content being correctly pre-
sented (Zechner and Waibel, 2000).

Even if transcription quality were not a problem,
browsing transcripts is not straightforward. When
intended to be read, written documents are almost
always presented as more than uninterrupted strings
of text. Consider that for many written docu-
ments, e.g., books, indicative structures such as sec-
tion/subsection headings and tables-of-contents are
standard constituents created manually to help read-
ers. Structures of this kind, even when existing, are
rarely aligned with spoken documents completely.

This paper studies the problem of imposing a
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known hierarchical browsing structure, e.g., the
electronic slides of lecture recordings, onto the se-
quential transcripts of the corresponding spoken
document, with the aim to help index and hence ac-
cess the latter more effectively. Specifically, we pro-
pose a graph-partitioning approach that optimizes a
normalized-cut criterion globally, in traversing the
given hierarchical semantic structures. The exper-
imental results show the advantage of this model
over Viterbi-like, sequential alignment, under typi-
cal speech recognition errors.

2 Related work

Flat structures of spoken documents Much pre-
vious work, similar to its written-text counterpart,
has attempted to find certainflat structures of spoken
documents, such as topic and slide boundaries. For
example, the work of (Chen and Heng, 2003; Rud-
darraju, 2006; Zhu et al., 2008) aims to find slide
boundaries in the corresponding lecture transcripts.
Malioutov et al. (2007) developed an approach to
detecting topic boundaries of lecture recordings by
finding repeated acoustic patterns. None of this
work, however, has involved hierarchical structures
of a spoken document. Research has also resorted
to other multimedia channels, e.g., video (Liu et al.,
2002; Wang et al., 2003; Fan et al., 2006), to detect
slide transitions. This type of research, however, is
unlikely to recover semantic structures in more de-
tails than slide boundaries.

Hierarchical structures of spoken documents
Recently, research has started to align hierarchical
browsing structures with spoken documents, given
that inferring such structures directly from spoken
documents is still too challenging. Zhu et al. (2010)
investigates bullet-slide alignment by first sequen-
tializing bullet trees with a pre-order walk before
conducting alignment, through which the problem
is reduced to a string-to-string alignment problem
and an efficient Viterbi-like method can be naturally
applied. In this paper, we use such a sequential
alignment as our baseline, which takes a standard
dynamic-programming process to find the optimal
path on an M-by-N similarity matrix, whereM and
N denote the number of bullets and utterances in a
lecture, respectively. Specifically, we chose the path
that maps each bullet to an utterance to achieve the

highest total bullet-utterance similarity score; this
path can be found within a standardO(MN2) time
complexity.

A pre-order walk of the hierarchical tree is a natu-
ral choice, since speakers of presentations often fol-
low such a order in developing their talk; i.e., they
often talk about a bullet first and then each of its chil-
dren in sequence. A pre-order walk is also assumed
by Branavan et al. (2007) in their table-of-content
generation task, a problem in which a hierarchical
structure has already been assumed (aligned) with a
span of written text, but the title of each node needs
to be generated.

In principle, such a sequential-alignment ap-
proach allows a bullet to be only aligned to one ut-
terance in the end, which does not model the basic
properties of the problem well, where the content in
a bullet is often repeated not only when the speaker
talks about it but also, very likely, when he discusses
the descendant bullets. Second, we suspect that
speech recognition errors, when happening on the
critical anchoring words that bridging the alignment,
would make a sequential-alignment algorithm much
less robust, compared with methods based on many-
to-many alignment. This is very likely to happen,
considering that domain-specific words are likely to
be the critical words in deciding the alignment, but
they are also very likely to be mis-recognized by an
ASR system at the same time, e.g., due to out-of-
vocabulary issue or language-model sparseness. We
will further discuss this in more details later in our
result section. Third, the hierarchical structures are
lost in the sequentialization of bullets, though some
remedy could be applied, e.g., by propagating a par-
ent bullet’s information onto its children (Zhu et al.,
2010).

On the other hand, we should also note that the
benefit of formulating the problem as a sequential
alignment problem is its computational efficiency:
the solution can be calculated with conventional
Viterbi-like algorithms. This property is also impor-
tant for the task, since the length of a spoken docu-
ment, such as a lecture, is often long enough to make
inefficientalgorithms practically intractable.

An important question is therefore how to, in prin-
ciple, model the problem better. The second is how
time efficient the model is. Malioutov and Barzi-
lay (2006) describe a dynamic-programming version
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of a normalized-cut-based model in solving a topic
segmentation problem for spoken documents. In-
spired by their work, we will propose a model based
on graph partitioning in finding the correspondence
between bullets and the regions of transcripts that
discuss them; the proposed model runs in polyno-
mial time. We will empirically show its benefit on
both improving the alignment performance over a
sequential alignment and its robustness to speech
recognition errors.

3 Problem

We are given a speech sequenceU = u1, u2, ..., uN ,
whereui is an utterance, and the corresponding hi-
erarchical structure, which, in our work here, is a
sequence of lecture slides containing a set of slide ti-
tles and bullets,B = {b1, b2, ..., bM}, organized in a
tree structureT (ℜ,ℵ,Ψ), whereℜ is the root of the
tree that concatenates all slides of a lecture; i.e., each
slide is a child of the rootℜ and each slide’s bullets
form a subtree. In the rest of this paper, the word
bullet means both the title of a slide (if any) and any
bullet in it, if not otherwise noted.ℵ is the set of
nodes of the tree (both terminal and non-terminals,
excluding the rootℜ), each corresponding to a bullet
bm in the slides.Ψ is the edge set. With the defini-
tions, our task is herein to find the triple(bi, uj , uk),
denoting that a bulletbi is mapped to a region of lec-
ture transcripts that starts from thejth utteranceuj

and ends at thekth, inclusively. Constrained by the
tree structure, the transcript region corresponding to
an ancestor bullet contains those corresponding to
its descendants; i.e., if a bulletbi is the ancestor of
another bulletbn in the tree, the acquired boundary
triples(bi, uj1 , uk1) and(bi, uj2 , uk2) should satisfy
j1 ≤ j2 andk1 ≥ k2. Figure 1 shows a slide, its
structure, and the correspondence between one of
its bullets and a region of transcribed utterances (the
root that concatenates all such slides of a lecture to-
gether is not shown here).

4 A graph-partitioning approach

The generative process of lecture speech, with re-
gard to a hierarchical structure (here, bullet trees),
is characterized in general by a speaker’s producing
detailed content for each bullet when discussing it,
during which sub-bullets, if any, are talked about re-

Figure 1: A slide, its tree structure, and the correspon-
dence between one of its bullets and a region of tran-
scribed utterances (uj, uj+1..., uk).

cursively. By its nature of the problem, words in a
bullet could be repeated multiple times, even when
the speaker traverses to talk about the descendant
bullets in the depth of the sub-trees. In principle,
a model would be desirable to consider such proper-
ties between a slide bullet, including all its descen-
dants, and utterance transcripts, as well as the con-
straints of bullet trees. We formulate the problem
of finding the correspondence between bullets and
transcripts as a graph-partitioning problem, as de-
tailed below.

The correspondence between bullets and tran-
scribed utterances is evidenced by the similarities
between them. In a graph that contains a set of bul-
lets and utterances as its vertices and similarities be-
tween them as its edges, our aim is to place bound-
aries to partition the graph into smaller ones in order
to obtain triples, e.g.,(bi, uj , uk), that optimize cer-
tain criterion. Inspired by the work of (Malioutov
and Barzilay, 2006; Shi and Malik, 2000), we op-
timize a normalized-cut score, in which the total
weight of edges being cut by the boundaries is mini-
mized, normalized by the similarity between the bul-
let bi and the entire vertices, as well as between the
transcript regionuj , ..., uk and the entire vertices,
respectively.

Consider a simple two-set case first, in which a
boundary is placed on a graphG = (V,E) to sepa-
rate its verticesV into two sets,A andB, with all the
edges between these two sets being removed. The
objective, as we have mentioned above, is to mini-
mize the following normalized-cut score:
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Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )
(1)

where,

cut(A,B) =
∑

a∈A,b∈B

w(a, b)

assoc(A,V ) =
∑

a∈A,v∈V

w(a, v)

assoc(B,V ) =
∑

b∈B,v∈V

w(b, v)

In equation (1),cut(A,B) is the total weight of
the edges being cut, i.e., those connectingA with
B, whileassoc(A,V ) andassoc(B,V ) are the total
weights of the edges that connectA with all vertices
V , andB with V , respectively;w(a, b) is an edge
weight between a vertexa andb.

In general, minimizing such a normalized-cut
score has been shown to be NP-complete. In our
problem, however, the solution is constrained by
the linearity of segmentation on transcripts, simi-
lar to that in (Malioutov and Barzilay, 2006). In
such a situation, a polynomial-time algorithm exists.
Malioutov and Barzilay (2006) describe a dynamic-
programming algorithm to conduct topic segmenta-
tion for spoken documents. We modify the method
to solve our alignment problem here, which, how-
ever, needs to cope with the bipartite graphs between
bullets and transcribed sentences rather than sym-
metric similarity matrices among utterances them-
selves. We also need to integrate this in considering
the hierarchical structures of bullet trees.

We first consider a set of sibling bullets,b1, ..., bm,
that appear on the same level of a bullet tree and
share the same parentbp. For the time being, we
assume the corresponding region of transcripts has
already been identified forbp, sayu1, ..., un. We
connect each bullet inb1, ..., bm with utterances in
u1, ..., un by their similarity, which results in a bi-
partite graph. Our task here is to placem − 1
boundaries onto the bipartite graph to partition the
graph intom bipartite graphs and obtain triples, e.g.,
(bi, uj , uk), to align bi to uj, ..., uk , where bi ∈
{b1, ..., bm} anduj, uk ∈ {u1, ..., bn} andj <= k.
Since we have all descendant bullets to help the par-
titioning, when constructing the bipartite graph, we

actually include also all descendant bullets of each
bullet bi, but ignoring their orders within eachbi.
We will revisit this in more details later. We find
optimal normalized cuts in a dynamic-programming
process with the following recurrence relation:

C[i, k] = min
j≤k

{C[i− 1, j] + D[i, j + 1, k]} (2)

B[i, k] = arg min
j≤k

{C[i−1, j]+D[i, j +1, k]} (3)

In equation (2) and (3),C[i, k] is the opti-
mal/minimal normalized-cut value of aligning the
first i sibling bullets,b1, ..., bi, with the firstk ut-
terances,u1, ..., bk, while B[i, k] records the back-
tracking indices corresponding to the optimal path
yielding the currentC[i, k]. As shown in equation
(2), C[i, k] is computed by updatingC[i− 1, j] with
D[i, j + 1, k], for all possiblej s.t. j ≤ k, where
D[i, j + 1, k] is a normalized-cut score for the triple
(bi, uj+1, uk) and is defined as follows:

D[i, j + 1, k] =
cut(Ai,j+1,k, V \Ai,j+1,k)

assoc(Ai,j+1,k, V )
(4)

where Ai,j+1,k is the vertex set that contains the
bullet bi (including its descendant bullets, if any,
as discussed above) and the utterancesuj+1, ..., uk ;
V \ Ai,j+1,k is its complement set.

Different from the topic segmentation problem
(Malioutov et al., 2007), we need to remember the
normalized-cut values between any regionuj , ..., uk

and any bulletbi in our task, so we need to use
the additional subscripti in Ai,j+1,k, while in topic
segmentation, the computation of bothcut(.) and
assoc(.) is only dependant on the left boundaryj

and right boundaryk. Note that the similarity matrix
here is not symmetric as it is in topic segmentation,
butm by n, wherem is the number of bullets, while
n is the number of utterances.

For any triple(bi, uj+1, uk), there are two differ-

ent types of edges being cut: those betweenBin
def
=

{bi} (again, includingbi and all its descendant bul-

lets) andUout
def
= {u1, ..., uj , uk+1, ..., um}, as well

as those betweenBout
def
= {b1, ..., bi−1, bi+1, ..., bm}

and Uin
def
= {uj+1, ..., uk}. We discriminate

these two types of edges. Accordingly,cut(.) and
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assoc(.) in equation (4) are calculated with equation
(5) and (6) below by linearly combining the weights
of these two types of edges withλ, whose value is
decided with a small held-out data.

cut(Ai,j+1,k, V \ Ai,j+1,k) =

λ
∑

b∈Bin,u∈Uout

w(b, u)

+(1− λ)
∑

b′∈Bout,u′∈Uin

w(b′, u′) (5)

assoc(Ai,j+1,k, V ) = λ
∑

b∈Bin,u∈V

w(b, u)

+(1− λ)
∑

b′∈Uin,u′∈V

w(b′, u′) (6)

In addition, different form that in topic segmen-
tation, where a segment must not be empty, we
shall allow a bulletbi to be aligned to an empty
region, to model the situation that a bullet is not
discussed by the speaker. To do so, we madej in
equation (2) and (3) above to be able to equal to
k in the subscript, i.e.,j ≤ k. Specifically, when
j = k, the setAi,j+1,k has no internal edges, and
D[i, j + 1, k] is either equal to1, or often not de-
fined if assoc(Ai,j+1,k, V ) = 0. For the latter, we
resetD[i, j + 1, k] to be1.

A visual example of partitioning sibling bullets
b1, b2, and b3 is shown in Figure 2, in which the
descendant bullets of them (here,b4, b5, andb6) are
also considered. Note that we only show direct chil-
dren of b1 here, while, as discussed above, all de-
scendant bullets, if any, will be considered.

Figure 2: A visual example of partitioning sibling bullets
b1, b2, and b3.

Up to now, we have only considered partition-
ing sibling bullets by assuming the boundaries of

their parent on lecture transcripts have already been
given, where the sibling bullets and the correspond-
ing transcripts form a bipartite graph. When parti-
tioning the entire bullet trees and all utterances for a
lecture, the graph contains not only a bipartite graph
but also the hierarchical trees themselves. We de-
couple this two parts of graph by a top-down traver-
sal of the bullet trees: starting from the root, for each
node on the bullet tree, we apply the normalized-cut
algorithm discussed above to find the corresponding
regions of transcripts for all its direct children, and
repeat this process recursively. In each visit to parti-
tion a group of sibling bullets, to allow the first child
to have a different starting point from its parent bul-
let (the speaker may spend some time on the parent
bullet itself before talking about each child bullet),
we inserted an extra child in front of the first child
and copy the text of the parent bullet to it. Note that
in each visit to partition a group of sibling bullets,
the solution found is optimal on that level, which,
again, results in a powerful model since all descen-
dant bullets, if any, are all considered. For exam-
ple, processing high-level bullets first is expected
to benefit from the richer information of using all
their descendants in helping find the boundaries on
transcripts accurately. Recall that we have discussed
above how to incorporate the descendant bullets into
this process. It would also dramatically reduce the
searching space of partitioning lower-level bullets.

As far as computational complexity is concerned,
the graph-partitioning method discussed above is
polynomial, O(MN2), with M and N denoting
the number of bullets and utterances in a lecture,
respectively. Note thatM is often much smaller
than N , M ≪ N . In more details, the loop ker-
nel of the algorithm is computingD[i, j, k]. This
in total needs to compute1

2
(MN2) values, which

can be pre-calculated and stored before dynamic-
programming decoding runs; the later, as normal, is
O(MN2), too.

5 Experiment set-up

5.1 Corpus

Our experiment uses a corpus of four 50-minute
third-year university lectures taught by the same in-
structor on the topics of human-computer interac-
tion (HCI), which contain 119 slides composed of
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921 bullets prepared by the lecturer himself. The
automatic transcripts of the speech contain approxi-
mately 30,000 word tokens, roughly equal to a 120-
page double-spaced essay in length. The lecturer’s
voice was recorded with a head-mounted micro-
phone with a 16kHz sampling rate and 16-bit sam-
ples, while students’ comments and questions were
not recorded. The speech is split into utterances by
pauses longer than 200ms, resulting in around 4000
utterances. The slides and automatic transcripts of
one lecture were held out to decide the value ofλ in
differentiating the two different types of edges be-
ing cut, as discussed in Section 4. The boundaries
between adjacent slides were marked manually dur-
ing the lectures were recorded, by the person who
oversaw the recording process, while the boundaries
between bullets within a slide were annotated after-
wards by another human annotator.

5.2 Building the graphs

The lecture speech was first transcribed into text au-
tomatically with ASR models. The first ASR model
is a baseline with its acoustic model trained on the
WSJ0 and WSJ1 subsets of the 1992 development
set of the Wall Street Journal (WSJ) dictation cor-
pus, which contains 30 hours of data spoken by
283 speakers. The language model was trained on
the Switchboard corpus, which contains 2500 tele-
phone conversations involving about 500 English-
native speakers, which was suggested to be suit-
able for the conversational style of lectures, e.g.,
by (Munteanu et al., 2007; Park et al., 2005). The
whole model yielded a word error rate (WER) at
0.48. In the remainder of this paper, we call the
model as ASR Model 1.

The second model is an advanced one using the
same acoustic model. However, its language model
was trained on domain-related documents obtained
from the Web through searching the words appear-
ing on slides, as suggested by Munteanu et al.
(2007). This yielded a WER of 0.43, which is a
typical WER for lectures and conference presenta-
tions (Leeuwis et al., 2003; Hsu and Glass, 2006;
Munteanu et al., 2007), though a lower WER is
possible in a more ideal condition (Glass et al.,
2007), e.g., when the same course from the previous
semester by the same instructor is available. The 3-
gram language models were trained using the CMU-

CAM Language Modelling Toolkit (Clarkson and
Rosenfeld, 1997), and the transcripts were generated
with the SONIC toolkit (Pellom, 2001). The out-
of-vocabulary rates are 0.3% in the output of ASR
Model 1 and 0.1% in that of Model 2, respectively.

Both bullets and automatic transcripts were
stemmed and stop words in them were removed. We
then calculated the similarity between a bullet and
an utterance with the number of overlapping words
shared, normalized by their lengths. Note that using
several other typical metrics, e.g., cosine, resulted
in a similar trend of performance change—our con-
clusions below are consistent under these situations,
though the specific performance scores (i.e., word
offsets) are different. Finally, the similarities be-
tween bullets and utterances yielded a single M-by-
N similarity matrix for each lecture to be aligned,
with M and N denoting the number of bullets in
slides and utterances in transcripts, respectively.

5.3 Evaluation metric

The metric used in our evaluation is
straightforward—automatically acquired bound-
aries on transcripts for each slide bullet are
compared against the corresponding gold-standard
boundaries to calculate offsets measured in number
of words. The offset scores are averaged over all
boundaries to evaluate model performance. Though
one may consider that different bullets may be of
different importance, in this paper we do not use
any heuristics to judge this and we treat all bullets
equally in our evaluation.

Note that topic segmentation research often uses
metrics such asPk and WindowDiff (Malioutov
et al., 2007; Beeferman et al., 1999; Pevsner and
Hearst, 2002). Our problem here, as an alignment
problem, has an exact 1-to-1 correspondence be-
tween a gold and automatic boundary, in which we
can directly measure the exact offset of each bound-
ary.

6 Experimental results

Table 1 presents the experimental results obtained
on the automatic transcripts generated by the ASR
models discussed above, with WERs at 0.43 and
0.48, respectively, which are typical WERs for lec-
tures and conference presentations in realistic and
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less controlled situations. SEQ-ALN in the table
stands for the Viterbi-like, sequential alignment dis-
cussed above in section 2, while G-CUT is the
graph-partitioning approach proposed in this paper.
The values in the table are the average word-offset
scores counted after stop-words having been re-
moved.

WER=0.43 WER=0.48
SEQ-ALN 15.22 20.38
G-CUT 13.41 16.77
Offs. Reduction 12% 18%

Table 1: The average word offsets of automatic bound-
aries from the gold-standard.

Table 1 shows that comparing these two
polynomial-time models, G-CUT reduces the aver-
age offsets of SEG-ALN under both WERs. On the
transcripts with 0.48 WER, the average word-offset
score is reduced by approximately 18% from 20.38
to 16.77, while for the transcripts with WER at 0.43,
the offset reduction is 12%, from 15.22 to 13.41.
Since both models use exactly the same input simi-
larity matrices, the differences between their results
confirm the advantage of the modeling principle be-
hind the proposed approach. Although the graph-
partitioning model could be extended further, e.g.,
with the approach in (Zhu et al., 2010), our primary
interest here is the principle modeling advantage of
this normalized-cut framework.

The results in Table 1 also suggest that the graph-
partitioning model is more robust to speech recog-
nition errors: when WERs increase from 0.43 to
0.48, the error of G-CUT increases by 25%, from
13.41 to 16.77, while that of SEQ-ALN increases by
44%, from 15.22 to 20.38. We due this to the fact
that the graph-partitioning model considers multiple
alignments between bullets, including their descen-
dants, and the transcribed utterances, where mis-
matching between bullet and transcript words, e.g.,
that caused by recognition errors, is less likely to
impact the graph-partitioning method, which bases
its optimization criterion on multiple alignments,
e.g., when calculatingcut(.) andassoc(.) in equa-
tion (5) and (6). Recall that the ASR Model 2 in-
cludes domain-specific Web data to train the lan-
guage models, which were acquired by using bul-

let words to search the Web. It is expected to in-
crease the recognition accuracy on domain words,
particularly those appearing on the slides. There-
fore, Model 2 is likely to particularly increase the
correct matching between bullets and transcript.

The results in Table 1 also show the usefulness
of better ASR modeling on the structure-imposing
task here. As discussed in the introduction sec-
tion earlier, browsing automatic transcripts of long
spoken documents, such as lectures, is affected by
both speech recognition errors and lack of browsing
structures. Table 1 shows that the improvement in
solving the first problem also helps the second.

Last, from a pragmatic viewpoint of system de-
velopment, the graph-partitioning algorithm is sim-
ple to implement: the essence of equation (2)-(6) is
to find the optimal normalized-cut score character-
ized by computingD[i, j + 1, k] and updating the
formulae with it, which is not much more compli-
cate to build than the baseline. Also, the practical
speed difference between these two types of models
is not obvious on our dataset.

7 Conclusion

This paper proposes a graph-partitioning approach
for aligning a known hierarchical structure with the
transcripts of the corresponding spoken document
through optimizing a normalized-cut criterion. This
approach models the basic properties of the prob-
lem and is quadratic-time. Experimental results
show both its advantage on improving the alignment
performance over a standard sequential-alignment
baseline and its robustness to speech recognition er-
rors, while both take as input exactly the same simi-
larity matrices. From a pragmatic viewpoint of sys-
tem development, this graph-partitioning-based al-
gorithm is simple to implement. We believe immedi-
ate further work such as combining the normalized-
cut model with CYK-like dynamic programing to
traverse the semantic trees in alignment could help
us further understand the problem, though such
models need much more memory in practice if not
properly optimized and have a higher time complex-
ity. Also, topic-segmentation (cohesion) models can
be naturally combined with the alignment model dis-
cussed here. We will study such problems as our
immediate future work.
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