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Abstract

We describe the extension and objective eval-

uation of a network1 of semantically related

noun senses (or concepts) that has been au-

tomatically acquired by analyzing lexical co-

occurrence in Wikipedia. The acquisition pro-

cess makes no use of the metadata or links

that have been manually built into the ency-

clopedia, and nouns in the network are auto-

matically disambiguated to their correspond-

ing noun senses without supervision. For

this task, we use the noun sense inventory of

WordNet 3.0. Thus, this work can be con-

ceived of as augmenting the WordNet noun

ontology with unweighted, undirected related-

to edges between synsets. Our network con-

tains 208,832 such edges.

We evaluate our network’s performance on a

word sense disambiguation (WSD) task and

show: a) the network is competitive with

WordNet when used as a stand-alone knowl-

edge source for two WSD algorithms; b) com-

bining our network with WordNet achieves

disambiguation results that exceed the perfor-

mance of either resource individually; and c)

our network outperforms a similar resource

that has been automatically derived from se-

mantic annotations in the Wikipedia corpus.

1 Introduction

A growing interest in using semantic relatedness in

word sense disambiguation (WSD) tasks has spurred

investigations into the limitations of the WordNet

ontology (Fellbaum, 1998) for this purpose. Al-

though WordNet comprises a rich set of semantic

1
http://www.cs.ucf.edu/̃ seansz/sem

links between word senses (or concepts), indicat-

ing semantic similarity through subsumptive hyper-

nymic and hyponymic relations (among others), it

lacks a general indication of semantic relatedness.

We present a semantic network that is automat-

ically acquired from lexical co-occurrence in Wi-

kipedia, and indicates general semantic relatedness

between noun senses in WordNet 3.0. In this work,

the discovery of relatedness is a context-sparse affair

that takes place in absentia of the semantic annota-

tions of Wikipedia, such as inter-article links, entries

in disambiguation pages, the title of the article from

which a sentence is extracted, and so on.

We released an earlier version of such a network

that was limited by the fact that only relationships

involving at least one monosemous noun had been

included, and it was not evaluated on a WSD task

(Szumlanski and Gomez, 2010).

In contrast, the network we present here has relat-

edness data for over 4,500 polysemous noun targets

and 3,000 monosemous noun targets, each of which

are related to an average of 27.5 distinct noun senses.

It consists of 208,832 undirected edges – a 181% in-

crease in size over the previous network. The result

is a semantic network that has reached maturity and,

as we will show, can be successfully applied to a

WSD task.

This paper proceeds as follows. In the next sec-

tion (Section 2), we discuss related work. We then

give an overview of the method we use to con-

struct our network (Sections 3 and 4). The network

is evaluated through its application to a WSD task

(Sections 5–7), where we compare its performance

to WordNet and another automatically acquired se-

mantic network called WordNet++ (Ponzetto and

Navigli, 2010). A discussion follows (Section 8),
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and we present our conclusions in Section 9.

2 Related Work

Our work bears strong relation to WordNet++

(henceforth WN++), which is constructed automat-

ically from the semantic annotations in Wikipedia

(Ponzetto and Navigli, 2010).2 Links in WN++ are

established between words whose articles link to one

another. For example, the article on astronomy in

Wikipedia links to the article on celestial naviga-

tion, so we find an edge from astronomy#n#1 to

celestial navigation#n#1 in WN++.3 The nouns re-

lated in WN++ are disambiguated automatically us-

ing further semantic annotation data from Wikipe-

dia, including sense labels, the titles of other pages

linked to by any two related nouns, and the folk-

sonomic categories to which articles belong. These

serve as context words that are compared with con-

text words from various WordNet relations in or-

der to map the nouns to their appropriate WordNet

senses. The resulting resource contains 1,902,859

unique edges between noun senses.

Augmenting the structure of Wikipedia itself has

been the subject of research as well, and involves

the discovery of relations between articles. Mihal-

cea and Csomai (2007), for example, added links

between Wikipedia pages after automatically iden-

tifying keywords in each article and disambiguating

those words to their appropriate Wikipedia concepts

(article titles), while Ponzetto and Navigli (2009)

used graph theoretic approaches to augment the tax-

onomic organization of Wikipedia articles.

In terms of automatically discovering semantic re-

lations, many pattern-based approaches have been

used to extract specific types of relations from large

corpora, e.g., hyponymy, meronymy, and synonymy

(Hearst, 1992; Pantel and Pennacchiotti, 2006).

Approaches based on distributional similarity have

been applied toward the same end (Harris, 1985;

Gorman and Curran, 2006), and there are sev-

eral approaches that rely on the underlying struc-

ture of WordNet or Wikipedia to measure the re-

latedness between two concepts or nouns quantita-

tively (Hughes and Ramage, 2007; Gabrilovich and

2
http://lcl.uniroma1.it/wordnetplusplus

3The notation astronomy#n#1 refers to sense 1 (#1) of the

noun (#n) “astronomy” in WordNet. Other parts of speech are

denoted by #v (verbs), #a (adjectives), or #r (adverbs).

Markovitch, 2007; Zaragoza et al., 2007; Patward-

han and Pedersen, 2006; Strube and Ponzetto, 2006;

Budanitsky and Hirst, 2006; Resnik, 1995).

Other quantitative approaches have leveraged the

large amounts of data available on the Web to dis-

cover relatedness. Notably, Agirre and de Lacalle

(2004) employed web queries to associate WordNet

synsets with representative context words, known as

topic signatures. Cuadros and Rigau (2008) have

used these data to construct four KnowNets, seman-

tic knowledge bases derived by disambiguating the

top 5, 10, 15, and 20 nouns, respectively, from the

topic signatures of Agirre and de Lacalle.

3 Automatic Acquisition of the Semantic

Network

The semantic network is automatically acquired in

three distinct stages (Szumlanski and Gomez, 2010):

(1) quantitative measurement of relatedness between

nouns that co-occur in a large corpus; (2) categori-

cal determination of whether the quantitative mea-

sure indicates strong and mutual semantic related-

ness between a given pair of nouns; and (3) unsuper-

vised disambiguation of all the nouns that are found

to be semantically related. We provide an overview

of each of these steps below (Sections 3.1–3.3), and

then discuss how we have expanded this method-

ology to create a more complete semantic network

(Section 4).

3.1 Quantitatively measuring relatedness from

lexical co-occurrence

We first measure the semantic relatedness, or re-

lational strength, of a target, t, to one of its co-

occurring nouns, or co-targets, c, with the following

asymmetric function:

Srel(t, c) = P (t|c)P (c|t)log
P (c|t)

P (c)

where P (c|t) is the relative frequency of c among all

nouns co-occurring with t, and vice versa for P (t|c).
P (c) is the relative frequency of c among all nouns

occurring in the corpus. For these values, we rely on

lexical co-occurrence data extracted from Wikipe-

dia. Co-occurrence is considered intra-sententially

(as opposed to co-occurrence in entire articles or

paragraphs, or co-occurrence within variable-sized

windows of context).
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This function essentially measures the degree to

which an occurrence of t in a sentence predicts the

co-occurrence of c. It is an adaptation of Resnik’s

(1999) selectional association measure.

Table 1 shows the results of applying this function

to the co-targets of “yoga” and “meditation.”

Target (t): yoga Target (t): meditation

Co-target (c) Srel Co-target (c) Srel

hatha yoga .1801 yoga .0707

asana .0761 mindfulness .0415

meditation .0673 contemplation .0165

bhakti .0508 prayer .0139

raja .0410 practice .0068

tantra .0148 technique .0060

yogi .0132 mantra .0053

karma .0125 relaxation .0048

posture .0104 retreat .0047

aerobics .0093 enlightenment .0031

tai chi .0089 monk .0025

exercise .0036 posture .0024

practice .0032 breathing .0017

instructor .0031 - - - - - - - - - - - - -

- - - - - - - - - - - - - exercise .0015

guru .0027 teaching .0014

massage .0026 practitioner .0014

exercise .0019 ascetic .0014
...

...
...

...

Table 1: The most strongly related co-targets of “yoga”

and “meditation,” sorted by decreasing value of relational

strength (Srel). Nouns above dashed lines are the top 5%

of the target’s most strongly related co-targets.

3.2 Establishing categorical relatedness

We then use a mutual relatedness algorithm to as-

certain whether two nouns are semantically related

by determining whether the nouns under considera-

tion reciprocate a high degree of relatedness to one

another. It proceeds as follows:

For some target noun of interest, t, let Cx(t) be

the set of the top x% of t’s co-targets as sorted by

Srel(t, c). For each c ∈ Cx(t), if we have t ∈ Cx(c),
then we say that t and c are categorically related and

add the noun pair (t, c) to our semantic network. We

then increment x by one and repeat the process: for

every c ∈ Cx+1(t) such that (t, c) is not already in

our network, we look for t in Cx+1(c), and add (t, c)

to our network if we find it. This process continues

until we have incremented x some number of times

without adding any new relations to the semantic

network. We then take the symmetric closure of the

network, so that if (t, c) is in the network, (c, t) is, as

well. (That is, the relation is considered undirected.)

Consider, for example, the nouns in Table 1.

Given the target “yoga,” we might first examine the

top 5% of its most strongly related co-targets (an ar-

bitrary initial threshold chosen simply for illustra-

tive purposes). In this case, we have all the nouns

above the dashed line: C5(yoga) = {hatha yoga,

asana, meditation, bhakti, raja, tantra, yogi, karma,

posture, aerobics, tai chi, exercise, practice, instruc-

tor}. The algorithm then searches C5(hatha yoga),

C5(asana), and so on, for “yoga,” adding a new re-

lation to the network every time “yoga” is found.

Thus, we can see by the inclusion of “yoga” in

C5(meditation) (all nouns above the dashed line in

the second column of Table 1), that the pair (yoga,

meditation) will be included in the network.

This reliance on mutual relatedness ensures that

only noun pairs exhibiting strong semantic related-

ness are admitted to the network.

3.3 Disambiguation

Disambiguation of the resulting noun-noun pairs is

the product of majority-rules voting by the following

three algorithms.

Subsumption. The most frequently occurring

immediate hypernyms of all nouns related to our

target are permitted to disambiguate the polyse-

mous nouns. This is useful because of the semantic

clustering that tends to occur among related nouns.

(E.g., “astronomer” is related to several terms cat-

egorized as celestial bodies in WordNet, such as

“planet,” “star,” “minor planet,” and “quasar.”)

Glosses. Senses of polysemous co-targets with

occurrences of monosemous co-targets in their

glosses are preferentially taken as the intended

meanings of the polysemous nouns. Monosemous

co-targets are matched directly, or by suffix replace-

ment. (E.g., “biology” can be matched by the oc-

currence of “biologist” in a gloss, “engineering” by

“engineers,” and so on.)

Selectional Preferences. This method associates

a numerical score with all superordinate synsets

from the WordNet noun ontology that categorize
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the monosemous nouns related to a target. For

example, the noun “unicorn” strongly predicts re-

lated nouns categorized as monsters (monster#1)4

and mythical beings (mythical being#1) in Word-

Net. These selectional preferences are applied to

polysemous co-targets in decreasing order of their

relational strength to the target noun. A polysemous

noun is disambiguated to the first sense or senses

subsumed by one of these selectional preferences.

For example, “phoenix,” as it relates to “unicorn,” is

disambiguated to phoenix#3 in WordNet (the fiery

bird that is reborn from its own ashes) by virtue of

its subsumption by mythical being#1.

4 Creating a More Complete Network

A shortcoming of our previously released network is

that it lacked concept-level relations between pairs

of polysemous nouns.

When humans encounter a pair of ambiguous but

closely related words, like bus–horn, we automat-

ically disambiguate to the automobile and the car

horn, as opposed to a computer’s front-side bus or

a rhinoceros’s horn. The human ability to perform

this disambiguation stems from the fact that human

semantic memory relates not just individual words,

but specific concepts denoted by those words. But if

our goal is to establish such a link in our computa-

tional model of semantic relatedness, then we can-

not rely on the link to perform that disambiguation

for us; another approach is called for.

One reasonable approach (the one taken in our

previous work) is to go where the problem no

longer exists – to relationships that involve at

least one monosemous noun. Monosemous-to-

monosemous noun relationships require no disam-

biguation. Monosemous-to-polysemous noun rela-

tionships, on the other hand, require that only one

noun be disambiguated. This ameliorates our prob-

lem tremendously, because the monosemous noun

in the pair anchors the polysemous noun in an un-

ambiguous context where disambiguation can more

readily take place. That context includes all the

nouns related to our monosemous noun, which,

through their transitive relatedness to the polyse-

mous noun in question, can assist in the act of disam-

4We sometimes drop the part of speech from our word sense

notation for brevity, but only in the case of noun senses.

biguation vis-à-vis the algorithms described in Sec-

tion 3.3.

Consider, in contrast, the polysemous “batter,”

which can refer to the baseball player or the cake

batter. The algorithm for discovering semantic relat-

edness yields several nouns related to each of these

senses of “batter” (see Table 2). If we wish to dis-

ambiguate the pair (batter, cake), we are left with the

question: which of the nouns in Table 2 should we

take as contextual anchors for the disambiguation?

baking fastball inning strike

ball flour outfielder strikeout

base glove pancake swing

baseball hitter pitch tempura

bat home plate pudding umpire

cake home run runner waffle

dugout infielder shortstop

Table 2: An excerpt of some of the nouns related to “bat-

ter” by the algorithm for automatic acquisition.

In considering this question, it is important to note

that although the ontological categories that sub-

sume the nouns related to “batter” exhibit greater

entropy than we usually observe among the terms

related to a monosemous noun, clear delineations

still exist. For example, Figure 1 shows the clusters

that form as we consider shared hypernymic rela-

tionships between all senses of the nouns related to

“batter” (gray nodes in the graph). We see that many

of the nouns related to “batter” have senses catego-

rized by food#1, cake#3, pitch#2, ballplayer#1, or

equipment#1 – the heads of five distinct clusters by

semantic similarity.

It is worth noting that some nouns related to “bat-

ter” (such as “baking,” “swing,” and “umpire”) do

not fall into any of these semantic clusters. In these

cases, the WordNet glosses serve as our primary

tool for disambiguation. (For example, the glosses

of both swing#8 and umpire#1 include mention of

“baseball,” which is also related to “batter.”)

Conversely, some of the polysemous nouns in our

example have senses that join semantic clusters un-

intendedly. For instance, cake#2 (“[a] small flat

mass of chopped food,” according to WordNet) falls

under the cluster headed by food#1. Although this is

potentially problematic, cake#2 is discarded in this

particular case in favor of cake#3 (the baked good),
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which has a greater mass because of its subsump-

tion of waffle#1 and pancake#1, and is indeed the

intended meaning of “cake” as it relates to “batter.”

Another example of unintended cluster member-

ship comes from bat#4 (the cricket bat), which is

categorized by sports equipment#1. In contrast, the

baseball bat does not have its own entry in WordNet,

and the most reasonable sense choice, bat#5 (“a club

used for hitting a ball in various games”), is cate-

gorized as a stick (stick#1), and not as equipment,

sports equipment, or game equipment.

These unintended cluster memberships are bound

to cause minor errors in our disambiguation efforts.

However, our analysis reveals that we do not find

such high entropy among the relatives of a polyse-

mous noun that the semantic clustering effect (which

is necessary for the success of the disambiguation

algorithms described above in Section 3.3) is dimin-

ished. Thus, to construct our network, we apply the

disambiguation algorithms described above, with

the following modification: when confronted with

a pair of semantically related polysemous nouns,

we apply the disambiguation mechanism described

above in both directions, and then fuse the results to-

gether. So, in one direction, the various baked goods

related to “batter” help us to properly disambiguate

“cake” to cake#3 in WordNet, yielding the pair (bat-

ter, cake#3). A similar scenario yields the pair (cake,

batter#2) when disambiguating in the other direc-

tion, and we fuse the results together into the prop-

erly disambiguated pair (batter#2, cake#3).

Using this method, we have automatically created

a semantic network that has 208,832 pairs of related

noun senses – the most extensive semantic network

between WordNet noun senses to be derived auto-

matically from a simple lexical co-occurrence mea-

sure. For the remainder of this paper, we will refer

to our network as the Szumlanski-Gomez network

(SGN).

5 Coarse-Grained WSD Experiments

To evaluate our semantic network, and to provide

fair comparison to related work, we take our cue

from Ponzetto and Navigli (2010), who evaluated

the performance of WN++ on the SemEval-2007

(Navigli et al., 2007) coarse-grained all-words WSD

task using extended gloss overlaps (Banerjee and

entity#1

food#1

cake#2

equipment#1

ballplayer#1
pitch#2

cake#3

dessert#1

tempura#1
game_equipment#1

sports_equipment#1

runner#4

fielder#1

hitter#1

fastball#1

strike#5

waffle#1

pancake#1

pudding#2

pudding#3

ball#1

infielder#1

outfielder#1

baseball#2

bat#4

base#3

glove#1

glove#3

shortstop#1

centerfielder#1

Figure 1: A partial view of the WordNet graph, showing

senses of nouns related to “batter” (gray nodes) and inter-

mediary concepts (white nodes) that connect them to the

root of the taxonomy through hypernymic relationships.

Pedersen, 2003) and the graph-based degree central-

ity algorithm (Navigli and Lapata, 2010).

In this particular SemEval task, we are presented

with 237 sentences in which lemmatized target

words have been flagged for disambiguation. In our

experiments, we disambiguate nouns only (as did

Ponzetto and Navigli), since both SGN (our net-

work) and WN++ relate only concepts denoted by

nouns, and no other parts of speech. In our exper-

imental setup, each sentence is considered in isola-

tion from the rest, and all lemmatized content words

in a sentence are provided to the disambiguation

algorithms; the verbs, adjectives, and adverbs, al-

though we do not resolve their senses, lend addi-

tional context to the disambiguation algorithms.

The coarse-grained nature of the SemEval-2007

task provides that there may be more than one ac-

ceptable sense assignment for many of the targets. In

the coarse-grained setting, an algorithm’s sense as-

signment is considered correct when it appears in the

list of acceptable senses for the given target word.

The algorithms below both allow for multiple dis-

ambiguation results to be returned in the event of a

tie. In these cases (although they are rare), we adopt

the approach of Banerjee and Pedersen (2003), who

award partial credit and discredit proportionally for

all the senses returned by the algorithm.
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6 Extended Gloss Overlaps (ExtLesk)

The first disambiguation algorithm we employ is

the extended gloss overlaps measure (henceforth

ExtLesk) of Banerjee and Pedersen (2003), which

is an extension of the Lesk (1986) gloss overlap

measure. Loosely speaking, the algorithm disam-

biguates a target noun by maximizing the overlap

(number of words in common) between the glosses

of word senses related5 to the target’s noun senses

and those related to all context words (all lemma-

tized targets in the sentence under consideration

other than the target itself). The sense with the great-

est overlap is selected as the intended meaning of a

target noun.

In the event of a tie, multiple senses may be se-

lected. ExtLesk does not attempt to perform sense

assignment if the score for every sense of a target

noun is zero, except when dealing with a monose-

mous noun, in which case we default to the only

sense possible.

6.1 Results

We have run ExtLesk on the SemEval-2007 task us-

ing five combinations of semantic resources: Word-

Net only, SGN (our semantic network) only, SGN

and WordNet combined (that is, the union of all

links contained in both networks), WN++ only, and

WN++ combined with WordNet. We include the tra-

ditional baselines of most frequent sense (MFS) as-

signment and random sense assignment for compari-

son, and measure precision (number of correct sense

assignments divided by the number of attempted

sense assignments), recall (number of correct sense

assignments divided by the number of target nouns

to be disambiguated), and the harmonic mean of the

two, F1, defined as:

F1 =
2 ∗ precision ∗ recall

precision + recall

We present our results in Table 3, and offer the

following observations. Firstly, SGN as a stand-

alone network rivals the performance of WordNet.

This is particularly impressive given the fact that

5We use all relations available in WordNet, as well as a

related-to relation derived from the links in our semantic net-

work.

Resource P R F1

WordNet 78.80 74.82 76.76

SGN 78.64 72.82 75.62

SGN and WordNet 82.35 78.11 80.18

WN++ 74.67 61.87 67.67

WN++ and WordNet 77.35 73.38 75.31

MFS Baseline 77.40 77.40 77.40

Random Baseline 63.50 63.50 63.50

Table 3: ExtLesk disambiguation results on the SemEval-

2007 all-words coarse-grained WSD task (nouns only).

the edges in SGN were derived automatically from

a simple lexical co-occurrence measure.

Equally impressive is the ability of SGN and

WordNet, when used in combination, to achieve re-

sults that exceed what either network is able to ac-

complish as a stand-alone knowledge source. When

combined, we see improvements of 3.42% and

4.56% over WordNet and SGN as stand-alone re-

sources, respectively. It is also only with these re-

sources combined that we are able to outperform the

MFS baseline, and we do so by 2.78%.6

In contrast, WN++ fails to perform as a stand-

alone resource, falling behind the MFS baseline by

9.73%.7 Of all the resources tested, WN++ yields

the lowest results. When combined with WordNet,

WN++ actually diminishes the ability of WordNet to

perform on this WSD task by 1.45%. We defer our

discussion of factors impacting the performance of

WN++ to Section 8 (Discussion).

7 WSD with Degree Centrality

Degree centrality is a graph-based measure of se-

mantic relatedness (Navigli and Lapata, 2010) in

which we search through a semantic network for

paths of length l ≤ maxLength between all sense

nodes for all lemmas in our context. The edges along

all such paths are added to a new graph, G′, and for

each target noun to be disambiguated, the sense node

with the greatest number of incident edges (highest

vertex degree) in G′ is taken as its intended sense.

6Other systems have obtained better results on the same

dataset, but we focus only on SGN and WN++ because our aim

is to compare the resources themselves.
7Ponzetto and Navigli (2010) report results of F1 = 68.3 and

72.0 for WN and WN++ as stand-alone resources. Space con-

siderations prevent us from discussing this disparity in detail.
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In these graphs, nodes represent synsets, as op-

posed to instantiating separate nodes for different

members of the same synset and allowing edges to

be constructed between them. We include all lem-

mas from a sentence in our context, but only return

disambiguation results for the nouns.

With SGN and WN++, the implementation of this

algorithm is straightforward. We initiate a breadth-

first search (BFS)8 at each target sense node in the

network, and proceed through ⌊maxLength+1

2
⌋ itera-

tions of spreading activation. Whenever the tendrils

of this spreading activation from one target sense

node in the graph connect to those of another,9 we

add the path between the nodes to our new graph, G′,

potentially incrementing the degree of the involved

target sense nodes in G′ as we do so.

Because BFS is an admissible algorithm (guaran-

teed to find the shortest path from an initial state to

a goal), it provides a computationally efficient ap-

proach to finding all paths between all target nodes.

Also, because any node on a path of length l ≤
maxLength between two target nodes is at most

⌊ l
2
⌋ nodes removed from at least one of those tar-

get sense nodes, we only need to perform a BFS of

depth ⌊maxLength+1

2
⌋ from every target sense node

in order to guarantee that every such path between

them will be discovered. Since the time complexity

of BFS is exponential with respect to the depth of

the search, cutting this depth in half (in comparison

to performing a BFS of depth maxLength) greatly

reduces the running time of our algorithm.

We take the same approach in traversing the

WordNet noun graph, using all possible sense re-

lations as edges. In keeping with the approach of

Navigli and Lapata (2010), an edge is also induced

between synsets if the gloss of one synset contains a

monosemous content word. For example, the gloss

for leprechaun#n#1, “a mischievous elf in Irish folk-

lore,” contains the monosemous noun “folklore;”

thus, we have an edge between leprechaun#n#1 and

8This is in contrast to the DFS implementation of Navigli

and Lapata (2010), so for the sake of posterity, we expound

upon our approach in this section.
9When maxLength is odd, this requires an additional

check to ensure that the intersection is not taking place at a node

that is exactly ⌊maxLength+1

2
⌋ degrees removed from each of

the two target nodes it is connecting, as this would result in a

path with overall length maxLength + 1 between the target

nodes.

folklore#n#1 in the WordNet graph.

Once we have our new graph, G′, constructed in

this manner, the vertex degree is considered an in-

dication of the semantic relatedness of a particular

synset to all other lemmas in our context. For each

target noun, we use its sense node with the highest

degree in G′ for sense assignment.

7.1 Results

We have tested the degree centrality algorithm with

the following combinations of semantic resources:

WordNet, SGN, WN++, Refined WN++, SGN and

WordNet combined, and Refined WN++ and Word-

Net combined. (Refined WN++ consists of 79,422

of WN++’s strongest relations, and was created in an

unsupervised setting by Ponzetto and Navigli specif-

ically for use with degree centrality when they dis-

covered that WN++ had too many weak relations to

perform well with the algorithm.)

We have observed that the performance of de-

gree centrality rapidly levels off as maxLength

increases. Ponzetto and Lapata (2010) also re-

port this so-called “plateau” effect, and employ a

maxLength of 6 in their experiments, despite find-

ing that results level off around maxLength = 4.

We, too, find that performance levels off around

maxLength = 4 in almost all cases, and so only

continue up to maxLength = 5.

We find that, in all cases tested, degree centrality

is unable to outperform the MFS baseline (with re-

spect to F1) (see Table 4). SGN and WN++ exhibit

comparable performance with this algorithm, with

maximum F1 values of 68.4% (maxLength = 2)

and 67.3% (maxLength = 3–5), respectively. Nei-

ther achieves the performance of WordNet with de-

gree centrality (F1 = 74.0%), which underperforms

the MFS baseline (F1 = 77.4%) by 3.4%.10 Ponzetto

and Navigli (2010) reported that only performing

sense assignment when the max degree exceeded an

empirically derived but non-disclosed threshold im-

proved performance, but we have found that imple-

menting such a threshold universally lowers results

for all resources we tested with degree centrality.

10Although Ponzetto and Navigli (2010) reported similar re-

sults with WordNet (F1 = 74.5), we have been unable to repro-

duce their results using Refined WN++, either combined with

WordNet (F1 = 79.4) or as a stand-alone resource (F1 = 57.4).
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The lowest performance using degree central-

ity comes from Refined WN++ as a stand-alone

resource. We attribute this to the fact that Re-

fined WN++ is so semantically sparse. On average,

noun senses in Refined WN++ are related to only

3.42 other noun senses, while those in WN++ and

SGN relate to an average of 44.59 and 10.92 noun

senses, respectively. Accordingly, the success of Re-

fined WN++ and WordNet combined is attributable

mostly to the success of WordNet as a stand-alone

resource; as maxLength increases, the contribu-

tions made by the sparse Refined WN++ network

rapidly become negligible in comparison to those

provided by the WordNet ontology.

l P R F1 P R F1

WordNet SGN

1 96.9 16.8 28.6 79.7 32.9 46.6

2 77.6 45.1 57.0 72.0 64.6 68.4

3 76.7 65.6 70.7 68.7 63.5 66.0

4 76.9 71.0 73.9 68.0 63.9 65.9

5 76.6 71.6 74.0 68.0 64.2 66.1

SGN & WN WN++

1 77.4 52.4 62.5 87.2 23.5 37.1

2 74.7 70.7 72.7 71.6 60.2 65.4

3 70.3 67.1 68.7 70.7 64.3 67.3

4 70.5 67.4 68.9 70.4 64.5 67.3

5 70.1 67.0 68.5 70.4 64.5 67.3

WN
++

refined
WN

++

refined
& WN

1 98.3 15.3 26.5 83.3 31.2 45.4

2 91.4 23.4 37.3 77.5 66.6 71.6

3 88.7 29.9 44.7 77.6 73.6 75.5

4 83.7 32.3 46.7 74.7 71.4 73.0

5 80.2 35.3 49.0 74.7 71.4 73.0

MFS Baseline Random Baseline

77.4 77.4 77.4 63.5 63.5 63.5

Table 4: Degree centrality disambiguation results on

the SemEval-2007 all-words coarse-grained WSD task

(nouns only). l is maximum path length.

8 Discussion

The fact that the performance of degree centrality

quickly plateaus hints at the root cause of its weak

performance compared to ExtLesk and the MFS

baseline. As the maximum path length is increased

in a dense semantic network, all possible edges from

our target sense nodes rapidly find themselves in-

volved with paths to other target sense nodes. This is

particularly true of WN++ (notice its rapid and sta-

ble convergence), where certain “sticky” nodes form

bridges between seemingly unrelated concepts. For

example, the frequent appearance of “United States”

in Wikipedia articles, and its tendency to be linked

to the United States Wikipage when it occurs, causes

the term to serve as a bridge between such diverse

concepts as automaton#2 and burrito#1, which one

would typically expect to be far removed from one

another in a model of semantic relatedness.

Nonetheless, the degree centrality algorithm has

no difficulty finding short paths between target sense

nodes when traversing any of the semantic networks

we tested. In fact, we have discovered that as the

results of degree centrality converge, they approach

the performance obtained by foregoing the algo-

rithm altogether and simply disambiguating each

noun to the sense with the most edges in the net-

work (regardless of whether those edges ultimately

connect two word senses from the disambiguation

context). The expected values of convergence at-

tained by defaulting to the most semantically well-

connected sense of each target noun in each network

are F1 = 66.3%, 67.5%, and 74.6% for SGN, WN++,

and WordNet, respectively – remarkably close to the

experimentally derived degree centrality results of

F1 = 66.1%, 67.3%, and 74.0%.

9 Conclusion

We have constructed a semantic network of related

noun senses automatically from intra-sentential lex-

ical co-occurrence data, and shown that on a WSD

task, it outperforms a similar resource, WN++,

which is derived from the rich set of semantic anno-

tations available in the Wikipedia corpus. Our net-

work has also shown competitive performance with

the WordNet ontology on WSD, and when combined

with WordNet, improves disambiguation results in

a coarse-grained setting using the ExtLesk disam-

biguation algorithm.
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