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Abstract

The first step in graph-based semi-supervised
classification is to construct a graph from in-
put data. While the k-nearest neighbor graphs
have been the de facto standard method of
graph construction, this paper advocates using
the less well-known mutual k-nearest neigh-
bor graphs for high-dimensional natural lan-
guage data. To compare the performance
of these two graph construction methods, we
run semi-supervised classification methods on
both graphs in word sense disambiguation and
document classification tasks. The experi-
mental results show that the mutual k-nearest
neighbor graphs, if combined with maximum
spanning trees, consistently outperform the k-
nearest neighbor graphs. We attribute better
performance of the mutual k-nearest neigh-
bor graph to its being more resistive to mak-
ing hub vertices. The mutual k-nearest neigh-
bor graphs also perform equally well or even
better in comparison to the state-of-the-art
b-matching graph construction, despite their
lower computational complexity.

1 Introduction

Semi-supervised classification try to take advan-
tage of a large amount of unlabeled data in addi-
tion to a small amount of labeled data, in order to
achieve good classification accuracy while reducing
the cost of manually annotating data. In particular,
graph-based techniques for semi-supervised classi-
fication (Zhou et al., 2004; Zhu et al., 2003; Cal-
lut et al., 2008; Wang et al., 2008) are recognized
as a promising approach. Some of these techniques

have been successfully applied for NLP tasks: word
sense disambiguation (Alexandrescu and Kirchhoff,
2007; Niu et al., 2005), sentiment analysis (Gold-
berg and Zhu, 2006), and statistical machine trans-
lation (Alexandrescu and Kirchhoff, 2009), to name
but a few.

However, the focus of these studies is how to as-
sign accurate labels to vertices in a given graph. By
contrast, there has not been much work on how such
a graph should be built, and graph construction re-
mains “more of an art than a science” (Zhu, 2005).
Yet, it is an essential step for graph-based semi-
supervised classification and (unsupervised) cluster-
ing, and the input graph affects the quality of final
classification/clustering results.

Both for semi-supervised classification and for
clustering, the k-nearest neighbor (k-NN) graph
construction has been used almost exclusively in the
literature. However, k-NN graphs often produce
hubs, or vertices with extremely high degree (i.e.,
the number of edges incident to a vertex). This ten-
dency is obvious especially if the original data is
high-dimensional—a characteristic typical of natu-
ral language data. In a later section, we demonstrate
that such hub vertices indeed deteriorate the accu-
racy of semi-supervised classification.

While not in the context of graph construction,
Radovanović et al. (2010) made an insightful obser-
vation into the nature of hubs in high-dimensional
space; in their context, a hub is a sample close to
many other samples in the (high-dimensional) sam-
ple space. They state that such hubs inherently
emerge in high-dimensional data as a side effect of
the “curse of dimensionality,” and argue that this is a
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reason nearest neighbor classification does not work
well in high-dimensional space.

Their observation is insightful for graph con-
struction as well. Most of the graph-based semi-
supervised classification methods work by gradu-
ally propagating label information of a vertex to-
wards neighboring vertices in a graph, but the neigh-
borhood structure in the graph is basically deter-
mined by the proximity of data in the original high-
dimensional sample space. Hence, it is very likely
that a hub in the sample space also makes a hub
in the k-NN graph, since k-NN graph construction
greedily connects a pair of vertices if the sample cor-
responding to one vertex is among the k closest sam-
ples of the other sample in the original space. It is
therefore desirable to have an efficient graph con-
struction method for high-dimensional data that can
produce a graph with reduced hub effects.

To this end, we propose to use the mutual k-
nearest neighbor graphs (mutual k-NN graphs),
a less well-known variant of the standard k-NN
graphs. All vertices in a mutual k-NN graph have
a degree upper-bounded by k, which is not usually
the case with standard k-NN graphs. This property
helps not to produce vertices with extremely high
degree (hub vertices) in the graph. A mutual k-NN
graph is easy to build, at a time complexity identical
to that of the k-NN graph construction.

We first evaluated the quality of the graphs apart
from specific classification algorithms using the φ-
edge ratio of graphs. Our experimental results show
that the mutual k-NN graphs have a smaller num-
ber of edges connecting vertices with different la-
bels than the k-NN graphs, thus reducing the possi-
bility of wrong label information to be propagated.
We also compare the classification accuracy of two
standard semi-supervised classification algorithms
on the mutual k-NN graphs and the k-NN graphs.
The results show that the mutual k-NN graphs con-
sistently outperorm the k-NN graphs. Moreover, the
mutual k-NN graphs achieve equally well or bet-
ter classification accuracy than the state-of-the-art
graph construction method called b-matching (Je-
bara et al., 2009), while taking much less time to
construct.

2 Problem Statement

2.1 Semi-supervised Classification

The problem of semi-supervised classification can
be stated as follows. We are given a set of n ex-
amples, X = {x1, . . . ,xn}, but only the labels
of the first l examples are at hand; the remaining
u = n − l examples are unlabeled examples. Let
S = {1, . . . , c} be the set of possible labels, and
yi ∈ S the label of xi, for i = 1, . . . , n. Since
we only know the labels of the first l examples, we
do not have access to yl+1, . . . , yn. For later conve-
nience, further let y = (y1, . . . , yn).

The goal of a semi-supervised classification al-
gorithm is to predict the hidden labels yl+1, . . . , yn

of u unlabeled examples xl+1, . . . ,xn, given
these unlabeled examples and l labeled data
(x1, y1), . . . , (xl, yl). A measure of similarity be-
tween examples is also provided to the algorithm.
Stated differently, the classifier has access to an all-
pair similarity matrix W ′ of size n × n, with its
(i, j)-element W ′ij holding the similarity of exam-
ples xi and xj . It is assumed that W ′ is a symmetric
matrix, and the more similar two examples are (with
respect to the similarity measure), more likely they
are to have the same label. This last assumption is
the premise of many semi-supervised classification
algorithms and is often called the cluster assumption
(Zhou et al., 2004).

2.2 Graph-based Semi-supervised
Classification

Graph-based approaches to semi-supervised classi-
fication are applicable if examples X are graph ver-
tices. Otherwise, X must first be converted into a
graph. This latter case is the focus of this paper.
That is, we are interested in how to construct a graph
from the examples, so that the subsequent classifica-
tion works well.

Let G denote the graph constructed from the ex-
amples. Naturally, G has n vertices, since vertices
are identified with examples. Instead of graph G it-
self, let us consider its real-valued (weighted) adja-
cency matrix W , of size n × n. The task of graph
construction then reduces to computing W from all-
pairs similarity matrix W ′.

The simplest way to compute W from W ′ is to
let W = W ′, which boils down to using a dense,
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complete graph G with the unmodified all-pairs sim-
ilarity as its edge weights. However, it has been ob-
served that a sparseW not only save time needed for
classification, but also results in better classification
accuracy1 than the full similarity matrix W ′ (Zhu,
2008). Thus, we are concerned with how to sparsify
W ′ to obtain a sparseW ; i.e., the strategy of zeroing
out some elements of W ′.

Let the set of binary values be B = {0, 1}. A spar-
sification strategy can be represented by a binary-
valued matrix P ∈ Bn×n, where Pij = 1 if W ′ij
must be retained as Wij , and Pij = 0 if Wij = 0.
Then, the weighted adjacency matrix W of G is
given by Wij = PijW

′
ij . The n × n matrices W

and P are symmetric, reflecting the fact that most
graph-based algorithms require the input graph to be
undirected.

3 k-Nearest Neighbor Graphs and the
Effect of Hubs

The standard approach to making a sparse graph G
(or equivalently, matrix W ) is to construct a k-NN
graph from the data (Szummer and Jaakkola, 2002;
Niu et al., 2005; Goldberg and Zhu, 2006).

3.1 The k-Nearest Neighbor Graphs

The k-NN graph is a weighted undirected graph con-
necting each vertex to its k-nearest neighbors in the
original sample space. Building a k-NN graph is a
two step process. First we solve the following opti-
mization problem.

max
P̂∈Bn×n

∑
i,j

P̂ijW
′
ij (1)

s.t.
∑

j

P̂ij = k, P̂ii = 0, ∀i, j ∈ {1, . . . , n}

Note that we are trying to find P̂ , and not P . This
is an easy problem and we can solve it by greedily
assigning P̂ij = 1 only if W ′ij is among the top k
elements in the ith row of W ′ (in terms of the mag-
nitude of the elements). After P̂ is determined, we
let Pij = max(P̂ij , P̂ji). Thus P is a symmetric
matrix, i.e., Pij = Pji for all i and j, while P̂ may

1See also the experimental results of Section 6.3.2 in which
the full similarity matrix W ′ is used as the baseline.

d 1 2 ≥ 3 total

# of vertices 1610 1947 164 3721

original 65.9 65.7 69.8 66.0
hub-removed 66.6 66.0 69.8 66.4

Table 1: Classification accuracy of vertices around hubs
in a k-NN graph, before (“original”) and after (“hub-
removed”) hubs are removed. The value d represents the
shortest distance (number of hops) from a vertex to its
nearest hub vertex in the graph.

not. Finally, weighted adjacency matrix W is deter-
mined byWij = PijW

′
ij . MatrixW is also symmet-

ric since P and W ′ are symmetric.
This process is equivalent to retaining all edges

from each vertex to its k-nearest neighbor vertices,
and then making all edges undirected.

Note the above symmetrization step is necessary
because the k-nearest neighbor relation is not sym-
metric; even if a vertex vi is a k-nearest neighbor of
another vertex vj , vj may or may not be a k-nearest
neighbor of vi. Thus, symmetrizing P and W as
above makes the graph irregular; i.e., the degree of
some vertices may be larger than k, which opens the
possibility of hubs to emerge.

3.2 Effect of Hubs on Classification

In this section, we demonstrate that hubs in k-NN
graphs are indeed harmful to semi-supervised clas-
sification as we claimed earlier. To this end, we
eliminate such high degree vertices from the graph,
and compare the classification accuracy of other ver-
tices before and after the elimination. For this pre-
liminary experiment, we used the “line” dataset of
a word sense disambiguation task (Leacock et al.,
1993). For details of the dataset and the task, see
Section 6.

In this experiment, we randomly selected 10 per-
cent of examples as labeled examples. The remain-
ing 90 percent makes the set of unlabeled examples,
and the goal is to predict the label (word sense) of
these unlabeled examples.

We first built a k-NN graph (with k = 3)
from the dataset, and ran Gaussian Random Fields
(GRF) (Zhu et al., 2003), one of the most widely-
used graph-based semi-supervised classification al-
gorithms. Then we removed vertices with degree
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greater than or equal to 30 from the k-NN graph,
and ran GRF again on this “hub-removed” graph.

Table 1 shows the classification accuracy of GRF
on the two graphs. The table shows both the over-
all classification accuracy, and the classification ac-
curacy on the subsets of vertices, stratified by their
distance d from the nearest hub vertices (which were
eliminated in the “hub-removed” graph). Obvi-
ously, overall classification accuracy has improved
after hub removal. Also notice that the increase in
the classification accuracy on the vertices nearest to
hubs (d = 1, 2). These results suggest that the pres-
ence of hubs in the graph is deteriorating classifica-
tion accuracy.

4 Mutual k-Nearest Neighbor Graphs for
Semi-supervised Classification

As demonstrated in Section 3.2, removing hub ver-
tices in k-NN graphs is an easy way of improv-
ing the accuracy of semi-supervised classification.
However, this method adds another parameter to the
graph construction method, namely, the threshold on
the degree of vertices to be removed. The method
also does not tell us how to assign labels to the re-
moved (hub) vertices. Hence, it is more desirable
to have a graph construction method which has only
one parameter just like the k-NN graphs, but is at the
same time less prone to produce hub vertices.

In this section, we propose to use mutual k-NN
graphs for this purpose.

4.1 Mutual k-Nearest Neighbor Graphs

The mutual k-NN graph is not a new concept and
it has been used sometimes in clustering. Even in
clustering, however, they are not at all as popular as
the ordinary k-NN graphs. A mutual k-NN graph
is defined as a graph in which there is an edge be-
tween vertices vi and vj if each of them belongs to
the k-nearest neighbors (in terms of the original sim-
ilarity metric W ) of the other vertex. By contrast, a
k-NN graph has an edge between vertices vi and vj

if one of them belongs to the k-nearest neighbors of
the other. Hence, the mutual k-NN graph is a sub-
graph of the k-NN graph computed from the same
data with the same value of k. The mutual k-NN
graph first optimizes the same formula as (1), but in
mutual k-NN graphs, the binary-valued symmetric

matrix P is defined as Pij = min(P̂ij , P̂ji). Since
mutual k-NN graph construction guarantees that all
vertices in the resulting graph have degree at most
k, it is less likely to produce extremely high degree
vertices in comparison with k-NN graphs, provided
that the value of k is kept adequately small.

4.2 Fixing Weak Connectivity

Because the mutual k-NN graph construction is
more selective of edges than the standard k-NN
graphs, the resulting graphs often contain many
small disconnected components. Disconnected
components are not much of a problem for clus-
tering (since its objective is to divide a graph into
discrete components eventually), but can be a prob-
lem for semi-supervised classification algorithms; if
a connected component does not contain a labeled
node, the algorithms cannot reliably predict the la-
bels of the vertices in the component; recall that
these algorithms infer labels by propagating label in-
formation along edges in the graph.

As a simple method for overcoming this problem,
we combine the mutual k-NN graph and the max-
imum spanning tree. To be precise, the minimum
number of edges from the maximum spanning tree
are added to the mutual k-NN graph to ensure that
only one connected component exists in a graph.

4.3 Computational Efficiency

Using a Fibonacci heap-based implementation
(Fredman and Tarjan, 1987), one can construct
the standard k-NN graph in (amortized) O(n2 +
kn log n) time. A mutual k-NN graph can also be
constructed in the same time complexity as the k-
NN graphs. The procedure below transforms a stan-
dard k-NN graph into a mutual k-NN graph. It uses
Fibonacci heaps once again and assumes that the in-
put k-NN graph is represented as an adjacency ma-
trix in sparse matrix representation.

1. Each vertex is associated with its own heap.
For each edge e connecting vertices u and v,
insert e to the heaps associated with u and v.

2. Fetch maximum weighted edges from each
heap k times, keeping globally the record of
the number of times each edge is fetched. No-
tice that an edge can be fetched at most twice,
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once at an end vertex of the edge and once at
the other end.

3. A mutual k-NN graph can be constructed by
only keeping edges fetched twice in the previ-
ous step.

The complexity of this procedure is O(kn). Hence
the overall complexity of building a mutual k-NN
graph is dominated by the time needed to build
the standard k-NN graph input to the system; i.e.,
O(n2 + kn log n).

If we call the above procedure on an approximate
k-NN graph which can be computed more efficiently
(Beygelzimer et al., 2006; Chen et al., 2009; Ram
et al., 2010; Tabei et al., 2010), it yields an ap-
proximate mutual k-NN graphs. In this case, the
overall complexity is identical to that of the ap-
proximate k-NN graph construction algorithm, since
these approximate algorithms have a complexity at
least O(kn).

5 Related Work

5.1 b-Matching Graphs

Recently, Jebara et al. (2009) proposed a new
graph construction method called b-matching. A b-
matching graph is a b-regular graph, meaning that
every vertex has the degree b uniformly. It can be ob-
tained by solving the following optimization prob-
lem.

max
P∈Bn×n

∑
ij

PijW
′
ij

s.t.
∑

j

Pij = b, ∀i ∈ {1, . . . , n} (2)

Pii = 0, ∀i ∈ {1, . . . , n} (3)

Pij = Pji, ∀i, j ∈ {1, . . . , n} (4)

After P is computed, the weighted adjacency matrix
W is determined by Wij = PijW

′
ij The constraint

(4) makes the binary matrix P symmetric, and (3) is
to ignore self-similarity (loops). Also, the constraint
(2) ensures that the graph is regular. Note that k-NN
graphs are in general not regular. The regularity re-
quirement of the b-matching graphs can be regarded
as an effort to avoid the hubness phenomenon dis-
cussed by Radovanović et al. (2010).

Figure 1: Two extreme cases of φ-edge ratio. Vertex
shapes (and colors) denote the class labels. The φ-edge
ratio of the graph on the left is 1, meaning that all edges
connect vertices with different labels. The φ-edge ratio
of the one on the right is 0, because all edges connect
vertices of the same class.

Jebara et al. (2009) reported that b-matching
graphs achieve semi-supervised classification accu-
racy higher than k-NN graphs. However, with-
out approximation, building a b-matching graph
is prohibitive in terms of computational complex-
ity. Huang and Jebara (2007) developed a fast im-
plementation based on belief propagation, but the
guaranteed running time of the implementation is
O(bn3), which is still not practical for large scale
graphs. Notice that the k-NN graphs and mutual k-
NN graphs can be constructed with much smaller
time complexity, as we mentioned in Section 4.3.
In Section exp, we empirically compare the per-
formance of mutual k-NN graphs with that of b-
matching graphs.

5.2 Mutual Nearest Neighbor in Clustering

In the clustering context, mutual k-NN graphs have
been theoretically analyzed by Maier et al. (2009)
with Random Geometric Graph Theory. Their study
suggests that if one is interested in identifying the
most significant clusters only, the mutual k-NN
graphs give a better clustering result. However, it is
not clear what their results imply in semi-supervised
classification settings.

6 Experiments

We compare the k-NN, mutual k-NN, and b-
matching graphs in word sense disambiguation and
document classification tasks. All of these tasks are
multi-class classification problems.

6.1 Datasets

We used two word sense disambiguation datasets in
our experiment: “interest” and “line.” The “inter-
est” data is originally taken from the POS-tagged
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Figure 2: φ-edge ratios of the k-NN graph, mutual k-NN graph, and b-matching graphs. The φ-edge ratio of a graph
is a measure of how much the cluster assumption is violated; hence, smaller the φ-edge ratio, the better. The plot for
b-matching graph is missing for the 20 newsgroups dataset, because its construction did not finish after one week for
this dataset.

dataset examples features labels

interest 2,368 3,689 6
line 4,146 8,009 6

Reuters 4,028 17,143 4
20 newsgroups 19,928 62,061 20

Table 2: Datasets used in experiments.

portion of the Wall Street Journal Corpus. Each in-
stance of the polysemous word “interest” has been
tagged with one of the six senses in Longman Dic-
tionary of Contemporary English. The details of the
dataset are described in Bruce and Wiebe (1994).
The “line” data is originally used in numerous com-
parative studies of word sense disambiguation. Each
instance of the word “line” has been tagged with one
of the six senses on the WordNet thesaurus. Further
details can be found in the Leacock et al. (1993).
Following Niu et al. (2005), we used the following
context features in the word sense disambiguation
tasks: part-of-speech of neighboring words, single
words in the surrounding context, and local colloca-
tion. Details of these context features can be found
in Lee and Ng (2002).

The Reuters dataset is extracted from RCV1-
v2/LYRL2004, a text categorization test collection
(Lewis et al., 2004). In the same manner as Cram-
mer et al. (2009), we produced the classification
dataset by selecting approximately 4,000 documents
from 4 general topics (corporate, economic, gov-
ernment and markets) at random. The features de-
scribed in Lewis et al. (2004) are used with this
dataset.

The 20 newsgroups dataset is a popular dataset
frequently used for document classification and
clustering. The dataset consists of approximately
20,000 messages on newsgroups and is originally
distributed by Lang (1995). Each message is as-
signed one of the 20 possible labels indicating which
newsgroup it has been posted to, and represented as
binary bag-of-words features as described in Rennie
(2001).

Table 2 summarizes the characteristics of the
datasets used in our experiments.

6.2 Experimental Setup

Our focus in this paper is a semi-supervised classi-
fication setting in which the dataset contains a small
amount of labeled examples and a large amount of
unlabeled examples. To simulate such settings, we
create 10 sets of labeled examples, with each set
consisting of randomly selected l examples from the
original dataset, where l is 10 percent of the total
number of examples. For each set, the remaining
90 percent constitute the unlabeled examples whose
labels must be inferred.

After we build a graph from the data using one
of the graph construction methods discussed earlier,
a graph-based semi-supervised classification algo-
rithm must be run on the resulting graph to infer la-
bels to the unlabeled examples (vertices). We use
two most frequently used classification algorithms:
Gaussian Random Fields (GRF) (Zhu et al., 2003)
and the Local/Global Consistency algorithm (LGC)
(Zhou et al., 2004). Averaged classification accuracy
is used as the evaluation metric. For all datasets, co-
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interest dataset (LGC)
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Figure 3: Averaged classification accuracies for k-NN graphs, b-matching graphs and mutual k-NN graphs (+ maxi-
mum spanning trees) in the interest and line datasets.

sine similarity is used as the similarity measure be-
tween examples.

In “interest” and “line” datasets, we compare the
performance of the graph construction methods over
the broad range of their parameters; i.e., b in b-
matching graphs and k in (mutual) k-NN graphs.

In Reuters and the 20 newsgroups datasets, 2-fold
cross validation is used to determine the hyperpa-
rameters (k and b) of the graph construction meth-
ods; i.e., we split the labeled data into two folds, and
used one fold for training and the other for develop-
ment, and then switch the folds in order to find the
optimal hyperparameter among k, b ∈ {2, . . . , 50}.
The smoothing parameter µ of LGC is fixed at µ =
0.9.

6.3 Results

6.3.1 Comparison of φ-Edge Ratio
We first compared the φ-edge ratios of k-NN

graphs, mutual k-NN graphs, and b-matching graphs
to evaluate the quality of the graphs apart from spe-
cific classification algorithms.

For this purpose, we define the φ-edge ratio as the
yardstick to measure the quality of a graph. Here, a
φ-edge of a labeled graph (G,y) is any edge (vi, vj)
for which yi 6= yj (Cesa-Bianchi et al., 2010), and
we define the φ-edge ratio of a graph as the number
of φ-edges divided by the total number of edges in
the graph. Since most graph-based semi-supervised
classification methods propagate label information
along edges, edges connecting vertices with differ-
ent labels may lead to misclassification. Hence, a
graph with a smaller φ-edge ratio is more desirable.
Figure 1 illustrates two toy graphs with extreme val-

ues of φ-edge ratio.
Figure 2 shows the plots of φ-edge ratios of the

compared graph construction methods when the val-
ues of parameters k (for k-NN and mutual k-NN
graphs) and b (for b-matching graphs) are varied. In
these plots, the y-axes denote the φ-edge ratio of the
constructed graphs. The x-axes denote the number
of edges in the constructed graphs, and not the val-
ues of parameters k or b, because setting parameters
b and k to an equal value does not achieve the same
level of sparsity (number of edges) in the resulting
graphs.

As mentioned earlier, the smaller the φ-edge ra-
tio, the more desirable. As the figure shows, mu-
tual k-NN graphs achieve smaller φ-edge ratio than
other graphs if they are compared at the same level
of graph sparsity.

The plot for b-matching graph is missing for the
20 newsgroups data, because we were unable to
complete its construction in one week2. Meanwhile,
a k-NN graph and a mutual k-NN graph for the same
dataset can be constructed in less than 15 minutes on
the same computer.

6.3.2 Classification Results
Figure 3 shows the classification accuracy of GRF

and LGC on the different types of graphs con-
structed for the interest and line datasets. As in Fig-
ure 2, the x-axes represent the sparsity of the con-
structed graphs measured by the number of edges in
the graph, which can change as the hyperparameter
(b or k) of the compared graph construction methods

2All experiments were run on a machine with 2.3 GHz AMD
Opteron 8356 processors and 256 GB RAM.
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kNN graph b-matching graph mutual kNN graph

dataset algorithm Dense MST original +MST original +MST original +MST

Reuters GRF 43.65 72.74 81.70 80.89 84.04 84.04 85.01 84.72
Reuters LGC 43.66 71.78 82.60 82.60 84.42 84.42 84.81 84.85

20 newsgroups GRF 10.18 66.96 75.47 75.47 —– —– 76.31 76.46
20 newsgroups LGC 14.51 65.82 75.19 75.19 —– —– 75.27 75.41

Table 3: Document classification accuracies for k-NN graphs, b-matching graphs, and mutual k-NN graphs. The col-
umn for ’Dense’ is the result for the graph with the original similarity matrix W ′ as the adjacency matrix; i.e., without
using any graph construction (sparsification) methods. The column for ’MST’ is the result the for the maximum span-
ning tree. b-matching graph construction did not complete after one week on the 20 newsgroups data, and hence no
results are shown.

vs. kNNG vs. bMG

dataset (algo) orig +MST orig +MST

Reuters (GRF) � � > ∼
Reuters (LGC) � � ∼ ∼

20 newsgroups (GRF) � � —– —–
20 newsgroups (LGC) ∼ > —– —–

Table 4: One-sided paired t-test results of averaged ac-
curacies between using mutual k-NN graphs and other
graphs. “�”, “>”, and “∼” correspond to p-value <
0.01, (0.01, 0.05], and > 0.05 respectively.

are varied.
As shown in the figure, the combination of mu-

tual k-NN graphs and the maximum spanning trees
achieves better accuracy than other graph construc-
tion methods in most cases, when they are com-
pared at the same levels of graph sparsity (number
of edges).

Table 3 summarizes the classification accuracy on
the document classification datasets. As a baseline,
the table also shows the results (‘Dense’) on the
dense complete graph with the original all-pairs sim-
ilarity matrix W ′ as the adjacency matrix (i.e., no
graph sparsification), as well as the results for us-
ing the maximum spanning tree alone as the graph
construction method.

In all cases, mutual k-NN graphs achieve better
classification accuracy than other graphs.

Table 4 reports the one-sided paired t-test results
of averaged accuracies with k-NN graphs and b-
matching graphs against our proposed approach, the
combination of mutual k-NN graphs and maximum
spanning trees. From Table 4, we see that mutual

k-NN graphs perform significantly better than k-
NN graphs. On the other hand, theere is no signifi-
cant difference in the accuracy of the mutual k-NN
graphs and b-matching graphs. However, mutual
k-NN graphs achieves the same level of accuracy
with b-matching graphs, at much less computation
time and are applicable to large datasets. As men-
tioned earlier, mutual k-NN graphs can be computed
with less than 15 minutes in the 20 newsgroups data,
while b-matching graphs cannot be computed in one
week.

7 Conclusion

In this paper, we have proposed to use mutual k-
NN graphs instead of the standard k-NN graphs for
graph-based semi-supervised learning. In mutual k-
NN graphs, all vertices have degree upper bounded
by k. We have demonstrated that this type of
graph construction alleviates the hub effects stated
in Radovanović et al. (2010), which also makes the
graph more consistent with the cluster assumption.
In addition, we have shown that the weak connectiv-
ity of mutual k-NN graphs is not a serious problem
if we augment the graph with maximum spanning
trees. Experimental results on various natural lan-
guage processing datasets show that mutual k-NN
graphs lead to higher classification accuracy than the
standard k-NN graphs, when two popular label in-
ference methods are run on these graphs.
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jana Ivanović. 2010. Hub in space: popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11.

Parikshit Ram, Dongryeol Lee, William March, and
Alexander Gray. 2010. Linear-time algorithms for
pairwise statistical problems. In Proc. of NIPS.

Jason D. M. Rennie. 2001. Improving multi-class text
classification with naive bayes. Master’s thesis, Mas-
sachusetts Institute of Technology. AITR-2001-004.

Martin Szummer and Tommi Jaakkola. 2002. Partially
labeled classification with markov random walks. In
Proc. of NIPS.

Yasuo Tabei, Takeaki Uno, Masashi Sugiyama, and Koji
Tsuda. 2010. Single versus multiple sorting in all
pairs similarity search. In Proc. of ACML.

Jun Wang, Tony Jebara, and Shih-Fu. Chang. 2008.
Graph transduction via alternating minimization. In
Proc. of ICML.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal,
Jason Weston, and Bernhard Schölkopf. 2004. Learn-
ing with local and global consistency. In Proc. of
NIPS.

Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty.
2003. Semi-supervised learning using gaussian fields
and harmonic functions. In Proc. of ICML.

Xiaojin Zhu. 2005. Semi-Supervised Learning with
Graphs. Ph.D. thesis, Carnegie Mellon University.
CMU-LTI-05-192.

Xiaojin Zhu. 2008. Semi-supervised learning literature
survey. Technical Report 1530, Computer Sciences,
University of Wisconsin-Madison.

162


