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Abstract

We show how punctuation can be used to im-
prove unsupervised dependency parsing. Our
linguistic analysis confirms the strong connec-
tion between English punctuation and phrase
boundaries in the Penn Treebank. However,
approaches that naively include punctuation
marks in the grammar (as if they were words)
do not perform well with Klein and Manning’s
Dependency Model with Valence (DMV). In-
stead, we split a sentence at punctuation and
impose parsing restrictions over its fragments.
Our grammar inducer is trained on the Wall
Street Journal (WSJ) and achieves 59.5% ac-
curacy out-of-domain (Brown sentences with
100 or fewer words), more than 6% higher
than the previous best results. Further evalu-
ation, using the 2006/7 CoNLL sets, reveals
that punctuation aids grammar induction in
17 of 18 languages, for an overall average
net gain of 1.3%. Some of this improvement
is from training, but more than half is from
parsing with induced constraints, in inference.
Punctuation-aware decoding works with exist-
ing (even already-trained) parsing models and
always increased accuracy in our experiments.

Introduction

as utterances transcribed by speech recognizers, are
often difficult even for humans (Kim and Woodland,
2002). Therefore, one would expect grammar induc-
ers to exploit any available linguistic meta-data. And
yet in unsupervised dependency parsing, sentence-
internal punctuation has long been ignored (Carroll
and Charniak, 1992; Paskin, 2001; Klein and Man-
ning, 2004; Blunsom and Cohn, 2016ter alia).

HTML is another kind of meta-data that is ordi-
narily stripped out in pre-processing. However, re-
cently Spitkovsky et al. (2010b) demonstrated that
web markup can successfully guide hierarchical
syntactic structure discovery, observing, for exam-
ple, that anchors often match linguistic constituents:

..., Whereas McCain is secure on the topic, Obama
<a>|yp worries about winning the pro-Israel v{</a>.

We propose exploring punctuation’s potential to
aid grammar induction. Consider a motivating ex-
ample (all of our examples are from WSJ), in which
all (six) marks align with constituent boundaries:

[sear Although it probably has reduced the level of
expenditures for some purchasefgp utilization man-
agement— like most other cost containment strate-
gies — |yp doesn’t appear to have altered the long-term
rate of increase in health-care cdsigp the Institute of
Medicing, [\p an affiliate of the National Academy of
Sciences [yp concluded after a two-year study

Unsupervised dependency parsing is a type Ofgram_ThiS link between punctuation and constituent
mar induction — a central problem in computationaPoundaries suggests that we could approximate
linguistics. It aims to uncover hidden relations beParsing by treating inter-punctuation fragments in-
tween head words and their dependents in free-forgePendently. In training, our algorithm first parses
text. Despite decades of significant research effort§ach fragment separately, then parses the sequence
the task still poses a challenge, as sentence struct&@fethe resulting head words. In inference, we use a
is underdetermined by only raw, unannotated word§etter approximation that allows heads of fragments

Structure can be clearer formattedtext, which

to be attached by arbitrary external words, e.g.:

typically includes proper capitalization and punctua- The Soviets complicated the issue by offering to

tion (Gravano et al., 2009). Raw word streams, suc[NF’
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Count POS Sequence Fraco Cum  Common part-of-speech (POS) sequences compris-
; 2’?’22 CgNzD 2 S‘M) 50 ing fragments are diverse (note also their flat distri-
3 2,519 NNP NP o0 71  bution — see Table 1). The plurality of fragments
4 2,512 RB 20 91 are dominated by a clause, but most are dominated
S 1,495 o 12 103 by one of several kinds of phrases (see Table 2).
6 1,025 N 08 111 As expected, punctuation does not occur at all con-
7 1,023 NNP NNP NNP 0.8 119 ) e )
8 916 NN 07 127  Stituent boundarlgs. Of the top 15 productions that
9 795 VBZ NNP NNP 06 133 yield fragments, five dmot match the exact brack-
10 748 ccC 06 139 eting of their lowest dominating non-terminal (see
E ;gg leRPDTVBILN 8'2 1‘;? ranks 6, 11, 12, 14 and 15 in Table 3, left). Four of
13 652 33 NN 05 156 them miss a left-adjacent clause, eSg-> S NP_VP:
14 648 DT NN 0.5 16.1 [s [s It's an overwhelming joh [np shé [vp saysl]
15 627 DT NN 05 16.6

This production is flagged because the fragment
NP VP s nota constituent — it is two; still49.4%
Table 1: Top 15 fragments of POS tag sequences in WS 5| fragments do align with whole constituents.

wSJ +103,148 more with CounkK 621  83.4%

Count Non-Terminal Frac Cum Inter-punctuation fragments correspond more
1 40,223 S 32.5% strongly to dependencies (see Table 3, right). Only
2 33,607 NP 27.2. 59.7  one production (rank 14) shows a daughter outside
i gzjﬁ r 12:? ;g:g her rnoth_er’; fra_lgment. Some numbe_r of such pro-
5 8,350 SBAR 6.7 897 ductions isinevitable and expected, since fragments
6 4,085 ADVP 3.3 93.0 mustcoalesce (i.e., the root of at least one fragment
7 3,080 e 25 955  __in every sentence with sentence-internal punc-
g i’ggg igg ig g;:g tuation — must be attached by some word from a
10 '369 PRN 03 o9gg different, external fragment). We find it noteworthy
WSJ  +1,446 more with Counk 356  1.2% that in 14 of the 15 most common cases, a word in

Table 2: Top 99% of the lowest dominating non-terminal&" Inter-punctuation fragmen.t derives precisely the
deriving complete inter-punctuation fragments in WsJ, fest of that fragmerjt,.attachlng none of the other,
external words. This is true f@9.246 of all frag-

2 Definitions, Analyses and Constraints ments, and if we include fragments whose heads at-
tach other fragments’ heads, agreement increases to

Punctuation and syntax are related (Nunberg, 19994 o (seestrict andlooseconstraints ir§2.2, next).
Briscoe, 1994; Jones, 1994; Doran, 198&r alia).

But are there simple enough connections betweén2 Five Parsing Constraints

the two to aid in grammar induction? This sectiorSpitkovsky et al. (2010b55.3) showed how to ex-
explores the regularities. Our study of punctuatiopress similar correspondences with markup as pars-
in WSJ (Marcus et al., 1993) parallels Spitkovskying constraints. They proposed four constraints but
et al’s (2010b§5) analysis of markup from a web- employed only the strictest three, omitting imple-
log, since their proposed constraints turn out to bmentation details. We revisit their constraints, speci-
useful. Throughout, we define an inter-punctuatiofiying precise logical formulations that we use in our
fragment as a maximal (non-empty) consecutive seeode, and introduce a fifth (most relaxed) constraint.
guence of words that does not cross punctuation

boundaries and is shorter than its source sentence. . _Let [y be a fra_gmenF (or markup) Spa””'”g po-
sitionsz throughy (inclusive, withl < z < y <1), in

2.1 ALinguistic Analysis a sentence of length And let[i, ], be a sealed span
Out of 51,558 sentences, most — 37,076 (71.9%) -headed by (1 <i < h < j <1), i.e., the word at po-
contain sentence-internal punctuation. These pungition » dominates precisely... j (but none other):
tuated sentences contain 123,751 fragments, nearly T

all — 111,774 (90.3%) — of them multi-token. i h
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Count Constituent Production Frac Cum Count  Head-Outward Spawn ~ Frac Cum
1 7,115 — IN NP 5.7% 1 11,928 IN 9.6%
2 5,950 S — NP_VP 48 10.6 2 8,852 NN 7.2 16.8
3 3,450 NP — NP PP 28 133 3 7,802 NNP 6.3 231
4 2,799 SBAR — WHNP S 23 156 4 4,750 ¢ 3.8 269
5 2,695 NP — NNP 22 178 5 3,914 VBD 3.2 301
6 2,615 S — S NP VP 21 199 6 3,672 VBZ 3.0 331
7 2,480 SBAR — IN S 20 219 7 3,436 RB 28 3538
8 2,392 NP — NNP_NNP 19 238 8 2,691 VBG 22 380
9 2,354 ADVP — RB 1.9 257 9 2,304 VBP 1.9 399
10 2,334 QP — CD CD 19 276 10 2,251 NNS 1.8 417
11 2,213 S — PP NP_VP 18 294 11 1,955 WDT 1.6 433
12 1,441 S—ScCs 1.2 30.6 12 1,409 MD 11 444
13 1,317 NP — NP_NP 11 316 13 1,377 VBN 11 455
14 1,314 S — SBAR NP VP 11 327 14 1,204 \@ 1.0 465
15 1,172  SINV — S VP NP NP 09 336 15 927 1] 0.7 473
wSJ +82,110 more with CounK 976 66.4% WSJ +65,279 more with CounkK 846 52.8%

Table 3: Top 15 productions yielding punctuation-indugegments in WSJ, viewed as constituents (left) and as de-
pendencies (right). For constituents, we recursively egpd any internal nodes that did not align with the assatiate
fragmentation (underlined). For dependencies we droppethaghters that fell entirely in the same region as their
mother (i.e., both inside a fragment, both to its left or botits right), keeping only crossing attachments (just one)

Define inside(h, z,y) as true iffz < h < y; and let whencross(i, j,z,y) A —inside(h, z,y).
cross(i,j,z,y) betrue iffi <oz A 7>z A j<y Vv

(i>x Ai<y A j>y). The three tightest constraints Maryland Cmis/tribu/—te\s el which ...
impose conditions which, when satisfied, disallow |, = h y j

sealing]i, j]» in the presence of an annotatipny:
These three strictest constraints lend themselves to a

strict — requiresz,y] itself to be sealed in the straight-forward implementation as &Y/°) chart-
parse tree, voiding all seals that straddle exactly one

of {z,y} or protrude beyond:, y] if their head is in- rbased decoder. Ordma_nly, the proba.bllllty[qu]h
) ) . is computed by multiplying the probability of the as-
side. This constraint holds f@9.26 of fragments. iated led b . babilit
By contrast, only 35.6% of HTML annotations suchsomate nsealed span by two stopplng proba lities
y ’ ' ' — that of the word at on the left (adjacent if = h;

as anchor texts and italics, agree with it (Spitkovs e e . . .
et al., 2010b). This necessarily fails in every seﬁﬁon adjacent it < 1) and on the right (adjacent if

o : . h = j; non-adjacent if» < j). To impose a con-
tence with internal punctuation (since thesmme . .
straint, we ran through all of the annotatiops y|
fragment must take charge and attach another), when . . .
o o ) _ associated with a sentence and zeroed out this prob-
cross(i, g, x,y) V (inside(h,z,y) AN(i <z V j > y)).

ability if any of them satisfied disallowed conditions.

the British dai , Tﬁ?ﬁﬁnes There are faster — e.g2(1*), and everO(13) —
- (e British aatly newspap,.rm :ei manc;la:j — | recognizers for split head automaton grammars (Eis-

ner and Satta, 1999). Perhaps a more practical, but
still clear, approach would be to generatéest lists
using a more efficient unconstrained algorithm, then
apply the constraints as a post-filtering step.

loose — if h € [z,y], requires that everything in
z...y fall undern, with only » allowed external at-
tachments. This holds for4.0% of fragments —
87.5% of markup, failing whesross(i, j, z, y).
/\ Relaxed constraints disallow joining adjacent
... arrests followed “ ;?w; Bay " at Utrecht ... §ubtrees, e.g., preventing the seaj], from merg-_
i e hej—y ing below theunsealed spafy + 1, J]z, on the left:

sprawl — still requires thatn derive ...y but -
lifts restrictions on external attachments. Holding

for 92.9% of fragments (95.1% of markup), it fails i R § j+1 H J

21



tear — preventsz...y from being torn apart by phrases. Further, inter-punctuation fragments are
external heads fronoppositesides. It holds for spread more evenly under noun, verb, prepositional,
94. ™0 of fragments (97.9% of markup), and is vi-adverbial and adjectival phrases (approximately
olated whenz < j A y >34 A h<az),inthis case. 27:13:10:3:1 versus75:13:2:1:1) than markup:

... they “wére not consulted about the [Ridley deci]ion

3 The Model, Methods and Metrics

v N

In advance and were surprised at the action takn - \ya model grammar via Klein and Manning’s (2004)

Dependency Model with Valence (DMV), which
thread — requires only that no path from the rootordinarily strips out punctuation. Since this step
to a leaf entefz, ] twice. This holds forR5.0% of already requires identification of marks, our tech-
all fragments (98.5% of markup); it is violated whenniques are just as “unsupervised.” We would have
(x<j Ay>j A h<z) A (H<y), again, in this preferred to test punctuation in their original set-up,
case. Example that satisfidtgeadbut violatestear.  but this approach wasn't optimal, for several rea-
The ... change“all make a lot of sense to r,ihe added. SOns. First, Klein and Manning (2004) trained with
e short sentences (up to only ten words, on WSJ10),
The case whef, j], is to the right is entirely Sym- \hareas most punctuation appears in longer sen-
metric, and these constraints could be incorporated,-as  And second, although we could augment

in a more s_ophisticated decoder (sin’cgndJ do  the training data (say, to WSJ45), Spitkovsky et
notappear in the formulae, above). We implementegy - (2010a) showed that classic EM struggles with

them by zeroing out the probability of the wordit  |5nger sentences. For this reason, we use Viterbi
attaching that ak (to its left), in case of a violation. £pand the scaffolding suggested by Spitkovsky et

Note that all five constraints are nested. In partical- (2010a) —also the setting in which Spitkovsky et
ular, this means that it does not make sense to corl (2010b) tested their markup-induced constraints.
bine them, for a given annotatidn, y|, since the re- 3.1 A Basic System

sult would just match the strictest one. Our markup , o
number fortear is lower (97.9 versus 98.9%) than OUr System is based on Laplace-smoothed Viterbi

Spitkovsky et al’s (2010b), because theirs allowefM: following Spitkovsky et al's (2010a) two-stage

cases where markup wasithertorn nor threaded. scaffolding: the first stage trains with just the sen-
Common structures that violateread (and, con- tences up to length 15; the second stage then retrains

sequently, all five of the constraints) include, e.g 0N nearly all sentences — those with up to 45 words.

“seamless” quotations and even ordinary lists: Initialization

Klein and Manning’s (2004) “ad-hoc harmonic” ini-
tializer does not work very well for longer sentences,
particularly with Viterbi training (Spitkovsky et al.,
2010a, Figure 3). Instead, we use an improved ini-
2.3 Comparison with Markup tializer that approximates the attachment probability
between two words as an average, over all sentences,
Gf their normalized aggregatereighteddistances.

—_— T " Vo
Her recent report classifies the stock ¢bald.”
~

—_
The company said its directgmmanagement and
subsidiaries will remain long-term investors and ...
N— A

Most punctuation-induced constraints are less a

curate than the corresponding markup-induced cops L e 5
. ur weighting function isv(d) = 1+1/1g(1+d).

straints (e.g.sprawt 92.9 vs. 95.1%joose 74.0 ghting (d) +1/1g(1+d)

vs. 87.5%; but nastrict: 39.2 vs. 35.6%). However, 1ermination

served that only 10% of the sentences in their bloghanges in overall (best parse) per-token cross-
were annotated; in contrast, over 70% of the ser@tropy dropped below™*’ bits. Since smoothing
tences in WSJ are fragmented by punctuation. ~ ¢an (and does, at times) increase the objective, we

Fragments are more than 40% likely to be domfound it more efficient to terminate early, after ten
inated by a clause; for markup, this number is be- 1yarkup and fragments are as likely to be in verb phrases.
low 10% — nearly 75% of it covered by noun Zintegerd > 1is a distance between two tokefg;s log,,.
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steps of suboptimal models. We used the lowestorporates punctuation into the grammar as if it were

perplexity (not necessarily the last) model found, awords, as insuperviseddependency parsing (Nivre

measured by the cross-entropy of the training dataet al., 2007b; Lin, 1998; Sleator and Temperley,
Constrained Training 1993, inter alia). It is worse, scoring only 41.0%>

Training with punctuat_lon rgplaces ordln_ary V|terb|4 Experiment #1: Default Constraints
parse trees, at every iteration of EM, with the out-

put of a constrained decoder. In all experiment®ur first experiment compares “punctuation as con-
other than #245) we train with thdooseconstraint. straints” to the baseline systems. We use default set-
Spitkovsky et al. (2010b) found this setting to betings, as recommended by Spitkovsky et al. (2010b):
best for markup-induced constraints. We apply it tdoosein training; andsprawlin inference. Evalua-
constraints induced by inter-punctuation fragmentstion is on Section 23 of WSJ (all sentence lengths).
Constrained | nference To facilitate comparison with prior work, we also re-

Spitkovsky et al. (2010b) recommended using thBOrt accuracies against shorter sentences, with up to
sprawl constraint in inference. Once again, we fol-8n Non-punctuation tokens (WSJ10 — see Table 4).

low their advice in all experiments except #5). We find that both c'onstrained_regimes ?mprove
_ performance. Constrained decoding alone increases
3.2 Data Sets and Scoring the accuracy of a standardly-trained system from

We trained on the Penn English Treebank’s Wa/b2.0% to 54.0%. And constrained training yields
Street Journal portion (Marcus et al., 1993). To evab5.6% — 57.4% in combination with inference.
uate, we automatically converted its labeled con- 4we were careful to use exactly the same data sets in both
stituents into unlabeled dependencies, using detesases, not counting punctuation towards sentence lengtits.
ministic “head-percolation” rules (Collins, 1999),we used forgiving scoringgB8.2) when evaluating these trees.
discarding punctuation, any empty nodes, etc., as js 5To get this particular number we forced punctuation to be
. . . . . tacked on, as a layer below the tree of words, to fairly compar
standard practice (Paskin, 2001; Klein and Mannmg&ystems (using the same initializer). Since improvedaliita-
2004). We also evaluated against the parsed porti@dn strategies — both ours and Klein and Manning's (2004)
of the Brown corpus (Francis and Kucera, 1979)‘,ad-h0c harmonic” initializer — rely on distances between t
used as a blind, out-of-domain evaluation %etr,n- kens, they could be unfairly biased towards one approadfeor t
. . . other, if punctuation counted towards length. We also &@in
llarly derived f_rom labeled Cor:'Stltuent pa_rse trees. similar baselines without restrictions, allowing pundioa to
We report directed accuracies — fractions of corappear anywhere in the tree (still with forgiving scoring ees
rectly guessed arcs, including the root, in unlabelegB.2), using the uninformed uniform initializer (Spitkoyskt
reference dependency parse trees, as is also stand®r010a). Disallowing punctuation as a parent of a reatiwo

. . . . . made things worse, suggesting that not all marks belong near
practice (Paskin, 2001; Klein and Manning, 2004)fhe leaves (sentence stops, semicolons, colons, etc. male m

One of our baseline systemi3(3) produces depen- sense as roots and heads). We tried the weighted initialiger
dency trees containing punctuation. In this case waithout restrictions and repeated all experiments withsmat-

do not score the heads assigned to punctuation af@ling. on WSJ15 and WSJ45 alone, but treating punctuation

i i . i as words never came within even 5% of (comparable) standard
useforgiving scoringfor regular words: crediting training. Punctuation, as words, reliably disrupted leagn

correct heads separated from their children by punc-

tuation alone (from the point of view of the child, WSJF® | WSJ10
looking up to the nearest non-punctuation ancestor). Supervised DMV 69.8 | 83.6
w/Constrained Inference 73.0 84.3
3.3 Baseline Systems Punctuation as Wordg  41.7 54.8
. . : : : Standard Training| 52.0 63.2
Our primary baseline is '_[he bas_lc system without wiConstrained Inference  54.0 636
constraints gtandard tralnling. It ignores punctu- "~ TConstrained Training] 55.6 | ~67.0 |
ation, as is standard, scoring 52.0% against WSJ45. w/Constrained Inference 57.4 67.5

A secondary gunctuation as worgsbaseline in- Table 4: Directed accuracies on Section 23 of W&uhd

WSJ10 for the supervised DMV, our baseline systems and

TN . . .
Note that WSJ15, 45} overlap with Section 23 —training {he punctuation runs (all using the weighted initializer).
on the test set is standard practice in unsupervised l&arnin
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These are multi-point increases, but they could dig9ur next two experiments employ a slightly more
appear in a more accurate state-of-the-art system.complicated set-up, compared with the one used up
To test this hypothesis, we applied constrained demtil now (§3.1). The key difference is that this sys-
coding to asupervisedsystem. We found that this tem is lexicalized, as is standard among the more ac-
(ideal) instantiation of the DMV benefits as much orcurate grammar inducers (Blunsom and Cohn, 2010;
more than the unsupervised systems: accuracy iGillenwater et al., 2010; Headden et al., 2009).

creases from 69.8% to 73.0%. Punctuation seems|_exjcalization

to capture the kinds of, perhaps long-distance, regye |exicalize only in the second (full data) stage, us-
larities that are not accessible to the model, possmmg the method of Headden et al. (2009). For words
because of its unrealistic independence assumptioRgen at least 100 times in the training corpus, we

augment their gold POS tag with the lexical item.
The first (data poor) stage remains entirely unlexi-

Spitkovsky et al. (2010b) recommended trainingalized, with gold POS tags for word classes, as in
with looseand decoding witlsprawlbased on their the earlier systems (Klein and Manning, 2004).
experiments with markup. But are these the right Smocthing

settings for punctuation? Inter-punctuation fragwe do not use smoothing in the second stage except
ments are quite different from markup — they arext the end, for the final lexicalized model. Stage one

more prevalent but less accurate. Furthermore, vgill applies “add-one” smoothing at every iteration.
introduced a new constrairthread that Spitkovsky _
et al. (2010b) had not considered (along wighr). 7 Experiment #3: State-of-the-Art

We next re-examined the choices of constraintsrhe hymose of these experiments is to compare the
Our full factorial analysis was similar, but signifi- punctuation-enhanced DMV with other, recent state-
cantly smaller, than Spitkovsky et al’s (2010b): W&y the_art systems. We find that, lexicaliz&6), our
excluded their larger-scale news and web data sef§,qach performs better, by a wide margin: without
that are not publicly available. Nevertheless, Wegyicajization §3.1), it was already better for longer,

still tried every meaningful combination of settings,,, i+ nhot for shorter, sentences (see Tables 5 and 4).
testing boththreadandtear (instead ofstrict, since We trained a variant of our systewithout gold

it can’t work with sentences containing sentencepsart of.speech tags, using the unsupervised word
internal punctuation), in both training and inference

: , : _ clusters (Clark, 2000) computed by Finkel and Man-
We did not find better settings thamosefor train- ning (2009)° Accuracy decreased slightly, to 58.2%

ing, andsprawlfor decoding, among our options. 5, Section 23 of WSJ (down only 0.2%). This result
Afull analysis is omitted due to space constraintSynroves over substantial performance degradations
Our first observation is that constrained 'nferenc%reviously observed for unsupervised dependency

using punctuation, is helpful and robust. It bOOSteﬁarsing with induced word categories (Klein and
accuracy (on WSJ45) by approximately 1.5%, Ofanning, 2004: Headden et al., 2008er alia).

average, with all settings. Indeeshrawlwas con- —
sistently (but onIy slightly, at 1.6%, on average) bet- Available fromhttp://nlp.stanford.edu/software/
tanford-postagger-2008-09-28.tar.gz:

ter than the rest. Second, constrained training hl’ﬁ%dels/egw.bnc.zm

5 Experiment #2: Optimal Settings

more often than it helped. It degraded accuracy in all Brown | WSJ® | WSJ10

but one caselpose where it gained approximately (Headden etal., 2009) ~ — —| 688

0.4% Both i T ,. (Spitkovsky et al., 2010b 53.3 50.4 69.3

4%, on average. ot |mprov_er_nent§ are statisti- Gjjenwater et al., 2010 - 533 643

cally significant:p ~ 0.036 for training withloose (Blunsom and Cohn, 2010 — 55.7 67.1
andp ~ 5.6 x 10~!2 for decoding withsprawl Constrained Training| 58.4 58.0 69.3
w/Constrained Inference 59.5 58.4 69.5

6 More Advanced Methods Table 5: Accuracies on the out-of-domain Brown100 set

So far, punctuation has improved grammar inductiof"d Section 23 of WSJ and WSJIO, for the lexicalized
in a toy setting. But would it help a modern System,punctuatlon run and other recent state-of-the-art systems
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Unlexicalized, Unpunctuated

Lexicalized

and Punctuated

CoNLL Year Initialization @15 Training @15 Retraining @45 etRining @45 Net
& Language 1. wl/Inference 2. wl/Inference 3. w/Iinference  ’. 3wiInference Gain
Arabic 2006 23.3| 23.6(+0.3) 328 33.1(+0.4) 31.5| 31.6(+0.1) 32.1 32.6 (+0.5) +1.1
7 25.6 | 26.4 (+0.8) 33.7 34.2(+0.5) 32.7 | 33.6(+0.9) 34.9 35.3 (+0.4) +2.6

Basque 7 19.3] 20.8 (+1.5) 29.0 30.9(+1.0) 29.3 | 30.1(+0.8) 29.3 29.9 (+0.6) +0.6
Bulgarian '6 23.7| 24.7 (+1.0) 39.3 40.7(+1.4) 38.8 | 39.9(+1.1) 39.9 40.5 (+0.6) +1.6
Catalan 7 33.2| 34.1(+0.8) 548 55.5(+0.7) 54.3 | 55.1(+0.8) 54.3 55.2 (+0.9) +0.9
Czech '6 18.6| 19.6 (+1.0) 34.6 35.8(+1.2) 34.8| 35.7(+0.9) 37.0 37.8 (+0.8) +3.0
7 17.6 | 18.4(+0.8) 33.5 354 (+1.9) 334 | 34.4(+1.0) 35.2 36.2 (+1.0) +2.7

Danish '6 22.9| 24.0(+1.1) 35.6 36.7(+1.2) 36.9| 37.8(+0.9) 36.5 37.1 (+0.6) +0.2
Dutch '6 15.8| 16.5(+0.7) 11.2 | 12.5(+1.3) 11.0 | 11.9(+1.0) 13.7 14.0 (+0.3) +3.0
English 7 25.0| 25.4(+0.5) 472 495(+2.3) 475 | 48.8(+1.3) 49.3 50.3 (+0.9) +2.8
German 6 19.2| 19.6 (+0.4) 27.4 28.0(+0.7) 27.0| 27.8(+0.8) 28.2 28.6 (+0.4) +1.6
Greek 7 18.5| 18.8 (+0.3) 20.7 21.4(+0.7) 20.5| 21.0(+0.5) 20.9 21.2 (+0.3) +0.7
Hungarian 7 17.4) 17.7 (+0.3) 6.7 | 7.2(+0.5) 6.6 7.0 (+0.4) 7.8| 8.0 (+0.2) +1.4
Italian 7 25.0| 26.3(+1.2) 29.6 29.9(+0.3) 29.7 | 29.7 (+0.1) 28.3 28.8 (+0.5) -0.8
Japanese '6 30.0 30.0(+0.0) 27.3| 27.3(+0.0) 27.4 | 27.4(+0.0) 27.5 27.5 (+0.0) +0.1
Portuguese '6 27.3 27.5(+0.2) 32{8 33.7(+0.9) 32.7 | 33.4(+0.7) 33.3 33.5(+0.3) +0.8
Slovenian '6 21.8| 21.9(+0.2) 28.83 30.4(+2.1) 28.4 | 30.4(+2.0) 29.4 31.2 (+1.4) +2.8
Spanish  '6 25.3| 26.2(+0.9) 31 32.4(+0.7) 31.6 | 32.3(+0.8) 31.9 32.3 (+0.5) +0.8
Swedish 6 31.0| 31.5(+0.6) 44.1 452 (+1.1) 456 | 46.1(+0.5) 46.1 46.4 (+0.3) +0.8
Turkish 6 22.3| 22.9(+0.6) 39.1 39.5(+0.4) 39.9 | 39.9(+0.1) 40.9 40.9 (+0.3) +1.0
7 22.7 | 23.3(+0.6) 417 42.3(+0.6) 419 | 42.1(+0.2) 41.6 42.0 (+0.4) +0.1

Average: 234 240€0.7 319 329¢1.0 319 326+0.7 326 332¢0H +1.3

Table 6: Multi-lingual evaluation for CoNLL sets, measuetall three stages of training, with and without constaint

8 Experiment #4: Multi-Lingual Testing

This final batch of experiments probes the generar-
ization of our approachi6) across languages. The
data are from 2006/7 CoNLL shared tasks (Buc
holz and Marsi, 2006; Nivre et al., 2007a), whe
punctuation was identified by the organizers, wh

also furnished disjoint train/test splits. We teste

We did not detect synergy between the two im-
rovements. However, note that without constrained
raining, “full” data sets do not help, on average, de-
spite having more data and lexicalization. Further-
hFnore,afterconstrained training, we detected no ev-
"Sdence of benefits to additional retraining: not with
e relaxedsprawl constraint, nor unconstrained.

against all sentences in their evaluation géts.

The gains arenot English-specific (see Table 6).
Every language improves with constrained decod?unctuation has been used to improve parsing since
ing (more so without constrained training); and alfule-based systems (Jones, 1994). Statistical parsers
but Italian benefit in combination. Averaged acros§eap dramatic gains from punctuation (Engel et al.,
all eighteen languages, the net change in accuracy4802; Roark, 2001; Charniak, 2000; Johnson, 1998;
1.3%. After standard training, constrained decodin§ollins, 1997 inter alia). And it is even known to
alone delivers a 0.7% gain, on average, never caud€lp in unsupervisectonstituent parsing (Seginer,
ing harm in any of our experiments. These gains art007). But fordependencgrammar induction, until
statistically significant:;p ~ 1.59 x 105 for con- NOW, punctuation remained unexploited.
strained training; and ~ 4.27 x 10~ 7 for inference. Parsing Techniques Most-Similar to Constraints

"With the exception of Arabic ’07, from which we discardedA divide-and-rule” strategy that relies on punctua-

one sentence with 145 tokens. We down-weighed languagé®n has been used in supervised constituent parsing
appearing in both years by 50% in our analyses, and excludaf long Chinese sentences (Li et al., 2005). For En-
Chinese entirely, since it had already been cut up at putictua glish, there has been interest balancedpunctua-

8 . . . ’

Note that punctuation was treated differently in the thtion (Briscoe, 1994), more recently using rule-based
ﬁ(lters (White and Rajkumar, 2008) in a combinatory

categorial grammar (CCG). Our focus is specifically

9 Related Work

years: in '06, it was always at the leaves of the dependen
trees; in '07, it matched original annotations of the souree-
banks. For both, we used punctuation-insensitive sco§®@}).

25



on unsupervisedearning ofdependencgrammars tection in Wikipedia (Wang and McKeown, 2010).
and is similar, in spirit, to Eisner and Smith’s (2005) )
“vine grammar” formalism. Animportant difference 10 Conclusions and Future Work
is that instead of imposing static limits on allowedpnctuation improves dependency grammar induc-
dependency lengths, our restrictions are dynamic +ipn, Many unsupervised (and supervised) parsers
they disallow some long (and some short) arcs thgbuld be easily modified to ussprawkconstrained
would have otherwise crossed nearby punctuation.decoding in inference. It applies to pre-trained mod-
Incorporating partial bracketings into grammalels and, so far, helped every data set and language.
induction is an idea tracing back to Pereira and Sch- Tightly interwoven into the fabric of writing sys-
abes (1992). It inspired Spitkovsky et al. (2010b) tgems, punctuation frames most unannotated plain-
mine parsing constraints from the web. In that samg:xt. We showed that rules for converting markup
vein, we prospected a more abundant and naturigko accurate parsing constraints are still optimal for
language-resource — punctuation, using constrainiter-punctuation fragments. Punctuation marks are
based techniques they developed for web markup.more ubiquitous and natural than web markup: what
Modern Unsupervised Dependency Parsing little punctuation-induced constraints lack in preci-

State-of-the-art in unsupervised dependency parglon. they more than make up in recall — perhaps
ing (Blunsom and Cohn, 2010) uses tree substit2Oth types of constraints would work better yet in
tion grammars. These are powerful models, cap4&ndem. For language acquisition, a natural ques-
ble of learning large dependency fragments. To heff°" i whether prosody could similarly aid grammar
prevent overfitting, a non-parametric Bayesian priofnduction from speech (Kahn et al., 2005).
defined by a hierarchical Pitman-Yor process (Pit- OUr results underscore the power of simple mod-
man and Yor, 1997), is trusted to nudge training to€!S @nd algorithms, combined with common-sense
wards fewer and smaller grammatical productions.constraints. They reinforce insights frgoint mod-

We pursued a complementary strategy: usingi'ng in superwsedea'rnlng, Wherg simplified, in-
Klein and Manning’s (2004) much simpler Depen- ependent models, Viterbi decoding and expressive

dency Model with Valence (DMV), but persistentlyconStr_aints excel at sequence Igbeling tasks (Roth
steering training away from certain constructions, a&1d Yih, 2005). Such evidence is particularly wel-
guided by punctuation, to help prevamiderfitting ~ cOMe I unsuperwseds.ettlngs (Punyakanok et al.,
. . 2005), where it is crucial that systems scale grace-
Various Other Uses of Punctuation in NLP fully to volumes of data, on top of the usual desider-
Punctuation is hard to predittpartly because it gt3 — ease of implementation, extension, under-
can signal long-range dependences (Lu and Ngianding and debugging. Future work could explore
2010). It often provides valuable cues to NLP taskgoftening constraints (Hayes and Mouradian, 1980;
such as part-of-speech tagging and named-entifyhang et al., 2007), perhaps using features (Eisner
recognition (Hillard et al., 2006), information ex- gng Smith, 2005; Berg-Kirkpatrick et al., 2010) or
traction (Favre et al., 2008) and machine translgsy |eaming to associate different settings with var-
tion (Lee et al., 2006; Matusov et al., 2006). Othe[oys marks: Simply adding a hidden tag for “ordi-

applications have included Japanese sentence ar}szé-ryn versus “divide” types of punctuation (Li et al.,

ysis (Ohyama et al., 1986), genre detection (St&po5) may already usefully extend our model.
matatos et al., 2000), bilingual sentence align-

ment (Yeh, 2003), semantic role labeling (Pradhan é&icknowledgments

al., 2005), Chinese creation-title recognition (Cherﬁ’artially funded by the Air Force Research Laboratory (AFRL
and Chen, 2005) and word segmentation (Li andnder prime contract no. FA8750-09-C-0181, and by NSF, via
Sun, 2009), plus, recently, automatic vandalism deward #11S-0811974. We thank Omri Abend, Slav Petrov and
anonymous reviewers for many helpful suggestions, and we ar
®Punctuation has high semantic entropy (Melamed, 1997gspecially grateful to Jenny R. Finkel for shaming us iniagis
for an ana|ysis of the many roles p|ayed in the WSJ by th@unctuation, to Christopher D. Manning for reminding usxe e
comma — the most frequent and unpredictable punctuatioplore “punctuation as words” baselines, and to Noah A. Smith
mark in that data set — see Beeferman et al. (1998, Table 2). for encouraging us to test against languages other thanshng|
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