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Abstract 
We use an automatic pipeline of word 
tokenization, stemming, POS tagging, and 
vocalization to perform real-world Arabic 
dependency parsing. In spite of the high 
accuracy on the modules, the very few errors in 
tokenization, which reaches an accuracy of 
99.34%, lead to a drop of more than 10% in 
parsing, indicating that no high quality 
dependency parsing of Arabic, and possibly 
other morphologically rich languages, can be 
reached without (semi-)perfect tokenization. The 
other module components, stemming, 
vocalization, and part of speech tagging, do not 
have the same profound effect on the 
dependency parsing process. 

 
1. Introduction 

Arabic is a morphologically rich language in which 
words may be composed of several tokens and 
hold several syntactic relations. We define word to 
be a whitespace delimited unit and token to be 
(part of) a word that has a syntactic function. For 
example, the word wsytzwjhA  (وسيتزوجها)(English: 
And he will marry her)  consists of 4 tokens: a 
conjunction w, a future marker s, a verb inflected 
for the singular masculine in the perfective form 
ytzwj, and a feminine singular 3rd person object 
pronoun.  Parsing such a word requires 
tokenization, and performing dependency parsing 
in the tradition of the CoNLL-X (Buchholz and 
Marsi, 2006) and CoNLL 2007 shared task (Nivre 
et al, 2007) also requires part of speech tagging, 
lemmatization, linguistic features, and 
vocalization, all of which were in the human 
annotated gold standard form in the shared task. 

The current study aims at measuring the 
effect of a pipeline of non gold standard 
tokenization, lemmatization, vocalization, 
linguistic features and POS tagging on the quality 
of Arabic dependency parsing. We only assume 

that we have gold standard sentence boundaries 
since we do not agree with the sentence boundaries 
in the data, and introducing our own will have a 
complicating effect on evaluation. The CoNLL 
shared tasks of 2006 and 2007 used gold standard 
components in all fields, which is not realistic for 
Arabic, or for any other language. For Arabic and 
other morphologically rich languages, it may be 
more unrealistic than it is for English, for example, 
since the CoNLL 2007 Arabic dataset has tokens, 
rather than white space delimited words, as entries. 
A single word may have more than one 
syntactically functional token. Dependency parsing 
has been selected in belief that it is more suitable 
for Arabic than constituent-based parsing. All 
grammatical relations in Arabic are binary 
asymmetrical relations that exist between the 
tokens of a sentence. According to Jonathan 
Owens (1997: 52): “In general the Arabic notion of 
dependency and that defined in certain modern 
versions e.g. Tesniere (1959) rest on common 
principles”. 

With a tokenization accuracy of 99.34%, a 
POS tagging accuracy of 96.39%, and with the 
absence of linguistic features and the use of word 
stems instead of lemmas, the Labeled Attachment 
Score drops from 74.75% in the gold standard 
experiment to 63.10% in the completely automatic 
experiment. Most errors are a direct result of 
tokenization errors, which indicates that despite the 
high accuracy on tokenization, it is still not enough 
to produce satisfactory parsing numbers. 

2. Related Studies 

The bulk of literature on Arabic Dependency 
Parsing stems from the two CoNLL shared tasks of 
2006 and 2007. In CoNLL-X (Buchholz and 
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Marsi, 2006), the average Labeled Attachment 
Score on Arabic across all results presented by the 
19 participating teams was 59.9% with a standard 
deviation of 6.5. The best results were obtained by 
McDonald et al (2006) with a score of 66.9% 
followed by Nivre et al (2006) with 66.7%. 

The best results on Arabic in the CoNLL 2007 
shared task were obtained by Hall et al (2007) as 
they obtained a Labeled Attachment Score of 
76.52%, 9.6 percentage points above the highest 
score of the 2006 shared task. Hall et al used an 
ensemble system, based on the MaltParser 
dependency parser that extrapolates from a single 
MaltParser system. The settings with the Single 
MaltParser led to a Labeled Accuracy Score of 
74.75% on Arabic. The Single MaltParser is the 
one used in the current paper. All the papers in 
both shared tasks used gold standard tokenization, 
vocalization, lemmatization, POS tags, and 
linguistic features. 

A more recent study is that by Marton et al 
(2010). Although Marton et al varied the POS 
distribution and linguistic features, they still used 
gold standard tokenization. They also used the 
Columbia Arabic Treebank, which makes both the 
methods and data different from those presented 
here.  

3. Data, Methods, and Evaluation 
3.1.Data 

The data used for the current study is the same data 
set used for the CoNLL (2007) shared task, with 
the same division into training set, and test set. 
This design helps in comparing results in a way 
that enables us to measure the effect of automatic 
pre-processing on parsing accuracy. The data is in 
the CoNLL column format. In this format, each 
token is represented through columns each of 
which has some specific information. The first 
column is the ID, the second the token, the third 
the lemma, the fourth the coarse-grained POS tag, 
the fifth the POS tag, and the sixth column is a list 
of linguistic features. The last two columns of the 
vector include the head of the token and the 
dependency relation between the token and its 

head. Linguistic features are an unordered set of 
syntactic and/or morphological features, separated 
by a vertical bar (|), or an underscore if not 
available. The features in the CoNLL 2007 Arabic 
dataset represent case, mood, definiteness, voice, 
number, gender and person. 

The data used for training the 
stemmer/tokenizer is taken from the Arabic 
Treebank (Maamouri and Bies, 2004). Care has 
been taken not to use the parts of the ATB that are 
also used in the Prague Arabic Dependency 
Treebank (Haijc et al 2004) since the PADT and 
the ATB share material. 
 

3.2. Methods 
We implement a pipeline as follows 
 

(1) We build a memory-based word segmenter 
using TIMBL (Daelemans et al, 2007) 
which treats segmentation as a per letter 
classification in which each word segment 
is delimited by a + sign whether it is 
syntactic or inflectional. A set of hand-
written rules then produces tokens and 
stems based on this. Tokens are 
syntactically functional units, and stems 
are the tokens without the inflectional 
segments, For example, the word 
wsytzwjhA above is segmented as 
w+s+y+tzwj+hA. The tokenizer splits this 
into four tokens w, s, ytzwj, and hA, and 
the stemmer strips the inflectional prefix 
from ytzwj to produce tzwj. In the 
segmentation experiments, the best results 
were obtained with the IB1 algorithm with 
similarity computed as weighted overlap, 
relevance weights computed with gain 
ratio, and the number of k nearest distances 
equal to 1. 

(2)  The tokens are passed to the part of 
speech tagger. We use the Memory-based 
Tagger, MBT, (Daelemans et al: 2007). 
The MBT features for known words 
include the two context words to the left 
along with their disambiguated POS tags, 
the focus word itself, and one word to the 
right along with its ambitag (the set of all 
possible tags it can take). For unknown 
words, the features include the first five 
letters and the last three letters of the word, 
the, the left context tag, the right context 
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ambitag, one word to the left, the focus 
word itself, one ambitag to the right, and 
one word to the right. 

(3) The column containing the linguistic 
features in the real world dependency 
experiment will have to remain vacant due 
to the fact that it is hard to produce these 
features automatically given only naturally 
occurring text. 

(4)  The dependency parser (MaltParser 1.3.1) 
takes all the information above and 
produces the data with head and 
dependency annotations. 

 
Although the purpose of this experiment is to 
perform dependency parsing of Arabic without any 
assumptions, one assumption we cannot avoid is 
that the input text should be divided into sentences. 
For this purpose, we use the gold standard division 
of text into sentences without trying to detect the 
sentence boundaries, although this would be 
necessary in actual real-world use of dependency 
parsing. The reason for this is that it is not clear 
how sentence boundaries are marked in the data as 
there are sentences whose length exceeds 300 
tokens. If we detected the boundaries 
automatically, then we would face the problem of 
aligning our sentences with those of the test set for 
evaluation, and many of the dependencies would 
not still hold. 

In the parsing experiments below, we will 
use the dependency parser MaltParser (Nivre et al., 
2006). We will use Single MaltParser, as used by 
Hall et al (2007), with the same settings for Arabic 
that were used in the CoNLL 2007 shared task on 
the same data to be as close as possible to the 
original results in order to be able to compare the 
effect of non gold standard elements in the parsing 
process. 
 

3.3.Evaluation 
The official evaluation metric in the CoNLL 2007 
shared task on dependency parsing was the labeled 
attachment score (LAS), i.e., the percentage of 
tokens for which a system has predicted the correct 
HEAD and DEPREL, but results reported also 
included unlabeled attachment score (UAS), i.e., 
the percentage of tokens with correct HEAD, and 
the label accuracy (LA), i.e., the percentage of 
tokens with correct DEPREL. We will use the 
same metrics here. 

One major difference between the parsing 
experiments which were performed in the 2007 
shared task and the ones performed here is 
vocalization. The data set which was used in the 
shared task was completely vocalized with both 
word-internal short vowels and case markings. 
Since vocalization in such a perfect form is almost 
impossible to produce automatically, we have 
decided to primarily use unvocalized data instead. 
We have removed the word internal short vowels 
as well as the case markings from both the training 
set and the test set. This has the advantage of 
representing naturally occurring Arabic more 
closely, and the disadvantage of losing information 
that is only available through vocalization. We 
will, however, report on the effect of vocalization 
on dependency parsing in the discussion. 

To give an estimate of the effects 
vocalization has on dependency parsing, we have 
replicated the original task with the vocalized data, 
and then re-run the experiment with the 
unvocalized version. Table 1 presents the results: 
 
 Vocalized Unvocalized 
LAS 74.77% 74.16% 
UAS 84.09% 83.53% 
LA 85.68% 85.44% 

 
Table 1: Vocalized versus unvocalized dependency 

parsing 
 
The results of the experiment indicate that 
vocalization has a positive effect on the quality of 
the parsing output, which may be due to the fact 
that ambiguity decreases with vocalization. 
Labeled attachment score drops from 74.77% on 
the vocalized data to 74.16% on unvocalized data. 
Unlabeled attachment score drops from 84.09% to 
83.53% and labeled accuracy score from 85.68% 
to 85.44%. The difference is minimal, and is 
expected to be even smaller with automatic 
vocalization 
 

4. Results and discussion 
4.1.Tokenization 

We obtain an accuracy of 99.34%. Out of the 4550 
words which the test set comprises, there are only 
30 errors affecting 21 out of the 132 sentences in 
the test set. 17 of the errors can be characterized as 
over-tokenization while the other 13 are under- 
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tokenization. 13 of the over- tokenization cases are 
different tokens of the word blywn (Eng. billion) as 
the initial b in the words was treated as a 
preposition while it is an original part of the word. 

A closer examination of the errors in the 
tokenization process reveals that most of the words 
which are incorrectly tokenized do not occur in the 
training set, or occur there only in the form 
produced by the tokenizer. For example, the word 
blywn does not occur in the training set, but the 
form b+lywn+p occurs in the training set, and this 
is the reason the word is tokenized erroneously. 
Another example is the word bAsm, which is 
ambiguous between a one-token word bAsm (Eng. 
smiling), and a two-token word, b+Asm (Eng. in 
the name of). Although the word should be 
tokenized as b+Asm, the word occurs in the 
training set as bAsm, which is a personal name. 

In fact, only five words in the 30 mis-
tokenized words are available in the training set, 
which means that the tokenizer has a very high 
accuracy on known words. There are yet two 
examples that are worthy of discussion. The first 
one involves suboptimal orthography. The word 
r>smAl (Eng. capital in the financial sense) is in 
the training set but is nonetheless incorrectly 
tokenized in our experiments because it is written 
as brAsmAl (with the preposition b) but with an alif 
instead of the hamza. The word was thus not 
tokenized correctly. The other example involves an 
error in the tokenization in the Prague Arabic 
Dependency Treebank. The word >wjh (Eng. I 
give/address) has been tokenized in the Prague 
Arabic dependency treebank as >wj+h (Eng. its 
utmost/prime), which is not the correct 
tokenization in this context as the h is part of the 
word and is not a different token. The classifier did 
nonetheless tokenize it correctly but it was counted 
as wrong in the evaluation since it does not agree 
with the PADT gold standard.  
 

4.2.Stemming 
Since stemming involves removing all the 
inflectional prefixes and suffixes from the words, 
and since inflectional affixes are not demarcated in 
the PADT data set used in the CoNLL shared 
tasks, there is no way to know the exact accuracy 
of the stemming process in that specific 
experiment, but since stemming is a by-product of 
segmentation, and since segmentation in general 

reaches an accuracy in excess of 98%, stemming 
should be trusted as an accurate process. 
 

4.3.Part of speech tagging 
The performance of the tagger on gold standard 
data with gold standard tokenization is shown in 
table 2. The experiment yields an accuracy of 
96.39% on all tokens. Known tokens reach an 
accuracy of 97.49% while unknown tokens reach 
an accuracy of 81.48%. These numbers constitute 
the ceiling for accuracy since the real-world 
experiment makes use of automatic tokenization, 
which definitely leads to lower numbers. 
 

Unknown Known Total 
81.48% 97.49% 96.39% 

 
Table 2: Part of speech tagging on gold standard 

tokenization 
 

When we run the experiment using 
automatic tokenization we obtain an accuracy of 
95.70% which is less than 1% lower than the gold 
standard accuracy. This indicates that part of 
speech tagging has been affected by tokenization 
quality. The drop in quality in part of speech 
tagging is almost identical to the drop in quality in 
tokenization. 

While some of the errors made by the part 
of speech tagger are due to the fact that nouns, 
adjectives, and proper nouns cannot be 
distinguished by any formal features, a large 
number of the nominal class annotation in the gold 
standard data can hardly be justified. For example, 
the expression  الاتحاد الأوروبي (Eng. the European 
Union) is annotated once in the training data as 
proper noun and adjective, and another time as a 
noun and adjective. A similar confusion holds for 
the names of the months and the weekdays, which 
are sometimes tagged as nouns and sometimes as 
proper nouns.  
 

4.4. Dependency parsing 
Now that we have stems, tokens, and part of 
speech tags, we can proceed with the parsing 
experiment, the final step and the ultimate goal of 
the preprocessing modules we have introduced so 
far. In order to prepare the training data, we have 
replaced the lemmas in the training and testing sets 
with the stems since we do not have access to 
lemmas in real-world experiments. While this 
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introduces an automatic element in the training set, 
it guarantees the similarity between the features in 
the training set and those in the test set. 

In order to discover whether the fine-
grained POS tagset is necessary, we have run two 
parsing experiments using gold standard parts of 
speech with stems instead of lemmas, but without 
any of the linguistic features included in the gold 
standard: the first experiment has the two distinct 
part of speech tags and the other one has only the 
coarse-grained part of speech tags. Table 3 outlines 
the results. 
 

 LAS UAS LA 
CPOS+POS 72.54% 82.92% 84.04% 
CPOS 73.11% 83.31% 84.39% 
CoNLL2007 74.75% 84.21% 84.21% 

 
Table 3: effect of fine-grained POS 

 
As can be seen from table 3, using two part 

of speech tagsets harms the performance of the 
dependency parser. While the one-tag dependency 
parser obtains a Labeled Accuracy Score of 
73.11%, the number goes down to 72.54% when 
we used the fine-grained part of speech set. In 
Unlabeled Attachment Score, the one tag parser 
achieves an accuracy of 83.31% compared to 
82.92% on two tag parser. The same is also true for 
Label Accuracy Score as the numbers go down 
from 84.39% when using only one tagset compared 
to 84.04% when using two tagsets. This means that 
the fine-grained tagset is not needed to perform 
real world parsing. We have thus decided to use 
the coarse-grained tagset in the two positions of the 
part of speech tags. We can also see that this 
setting produces results that are 1.64% lower than 
those of the Single MaltParser results reported in 
the CoNLL 2007 shared task in terms of Labeled 
Accuracy Score. The difference can be attributed 
to the lack of linguistic features, vocalization, and 
the use of stems instead of lemmas. The LAS of 
73.11% now constitutes the upper bound for real 
world experiments where also parts of speech and 
tokens have to be obtained automatically (since 
vocalization has been removed, linguistic features 
have been removed, and lemmas have been 
replaced with automatic stems). It should be noted 
that our experiments, with the complete set of gold 
standard features, achieve higher results than those 
reported in the CoNLL 2007 shared task: a LAS of 

74.77 (here) versus a LAS of 74.75 (CoNLL, 
2007). This may be attributed to the change of the 
parser since we use the 1.3.1 version whereas the 
parser used in the 2007 shared task was the 0.4 
version. 

Using the settings above, we have run an 
experiment to parse the test set, which is now 
automatic in terms of tokenization, lemmatization, 
and part of speech tags, and in the absence of the 
linguistic features that enrich the gold standard 
training and test sets. Table 4 presents the results 
of this experiment. 
 

 Automatic Gold Standard 
LAS 63.10% 73.11% 
UAS 72.19% 83.31% 
LA 82.61% 84.39% 

 
Table 4: Automatic dependency parsing experiment 

 
The LAS drops more than 10 percentage 

points from 73.11 to 63.10. This considerable drop 
in accuracy is expected since there is a mismatch 
in the tokenization which leads to mismatch in the 
sentences. The 30 errors in tokenization affect 21 
sentences out of a total of 129 in the test set. When 
we evaluate the dependency parsing output on the 
correctly tokenized sentences only, we obtain 
much better results (shown in Table 5). Labeled 
Attachment Score on correctly tokenized sentences 
is 71.56%, Unlabeled Attachment Score 81.91%, 
and Label Accuracy Score is 83.22%. This 
indicates that no good quality parsing can be 
obtained if there are problems in the tokenization. 
A drop of a half percent in the quality of 
tokenization causes a drop of ten percentage points 
in the quality of parsing, whereas automatic POS 
tags and stemming, and the lack of linguistic 
features do not cause the same negative effect. 
 
 Correctly-

tokenized 
Sentences 

Incorrectly-
Tokenized 
Sentences 

LAS 71.56% 33.60% 
UAS 81.91% 38.32% 
LA 83.22% 80.49% 

 
Table 5: Dependency parsing Evaluation on Correctly 

vs. Incorrectly Tokenized Sentences 
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While correctly tokenized sentences yield 
results that are not extremely different from those 
using gold standard information, and the drop in 
accuracy in them can be attributed to the 
differences introduced through stemming and 
automatic parts of speech as well as the absence of 
the linguistic features, incorrectly tokenized 
sentences show a completely different picture as 
the Labeled Attachment Score now plummets to 
33.6%, which is 37.96 percentage points below 
that on correctly tokenized sentences. The 
Unlabeled Attachment Score also drops from 
81.91% in correctly tokenized sentences to 38.32% 
on incorrectly tokenized sentences with a 
difference of 43.59 percentage points. 
 
Error Analysis 
Considering the total number of errors, out of the 
5124 tokens in the test set, there are 1425 head 
errors (28%), and 891 dependency errors (17%). In 
addition, there are 8% of the tokens in which both 
the dependency and the head are incorrectly 
assigned by the parser. The POS tag with the 
largest percentage of head errors is the Adverb (D) 
with an error rate of 57%, followed by Preposition 

(P) at 34%, and Conjunctions at 34%. The 
preposition and conjunction errors are common 
among all experiments: those with gold standard 
and those with automatic information. These 
results also show that assigning the correct head is 
more difficult than assigning the correct 
dependency. This is reasonable since some tokens 
will have specific dependency types. Also, while 
there are a limited number of dependency relations, 
the number of potential heads is much larger. 

If we look at the lexicon and examine the 
tokens in which most errors occur, we can see one 
conjunction and five prepositions. The conjunction 
w (Eng. and) tops the list, followed by the 
preposition l (Eng. for, to), followed by the 
preposition fy (Eng. in), then the preposition b 
(Eng. with), then the preposition ElY (Eng. on), 
and finally the preposition mn (Eng. from, of). We 
conclude this section by examining a very short 
sentence in which we can see the effect of 
tokenization on dependency parsing. Table 6 is a 
sentence that has an instance of incorrect 
tokenization. 
 

Arabic  المساعدات الأمريكية الاستثنائية لمصر بليون دولار حتى مارس
English The American exceptional aid to Egypt is a billion  dollars 

until March. 
Buckwalter (Gold Standard 
Tokenization) 

AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr blywn dwlAr 
HtY |*Ar 

Buckwalter (Automatic Tokenization) AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr b lywn dwlAr 
HtY |*Ar 

 
Table 6: A sentence showing the effect of tokenization 

 
The sentence has 8 words one of which 

comprises two tokens. The word lmSr comprises a 
preposition l, and the proper noun mSr (Eng. 
Egypt). The tokenizer succeeds in splitting the 
word into two tokens, but it fails on the one-token 
word blywn (Eng. billion) and splits it into two 
tokens b and lywn. The word is ambiguous 
between blywn (Eng. one billion) and b+lywn 
(Eng. in the city of Lyon), and since the second 
solution is much more frequent in the training set, 
it is the one incorrectly selected by the tokenizer. 

This tokenization decision leads to an ill-
alignment between the gold standard sentence and 
the automatic one as the gold standard has 8 tokens 
while the automatically produced one has 9. This 
thus affects the POS tagging decisions as blywn, 

which in the gold standard is a NOUN, has been 
now tagged as b/PREPOSITION and 
lywn/PROPER_NOUN. This has also affected the 
assignment of heads and dependency relations. 
While blywn is a predicate dependent on the root 
of the sentence, it has been annotated as two 
tokens: b is a preposition dependent on the subject, 
and lywn is an attribute dependent on b. 
 
Using the Penn Tags 
So far, we have used only the POS tags of the 
PADT, and have not discussed the possibility of 
using the Penn Arabic Treebank. The difference is 
that the PADT tags are basic while the ATB ones 
have detailed representations of inflections. While 
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the word AlmtHdp is given the tag ADJ in the 
PADT, it is tagged as 
DET+ADJ+FEMININE_SINGULAR_MARKER 
in the ATB. Table 7 shows the effect of using the 
Penn tagset with the gold standard full-featured 
dataset in three different experiments as compared 
with the PADT tagset: 
 

(1) The original Unvocalized Experiment 
with the full set of features and gold 
standard components. The Penn tagset is 
not used in this experiment, and it is 
provided for reference purposes only. 

(2) Unvocalized experiment with Penn tags as 
CPOS tags. In this experiment, the Penn 
tagset is used instead of the coarse grained 
POS tagset, while the fine-grained pos 
tagset remains unchanged. 

(3) Using Penn tags as fine grained POS tags, 
while the CPOS tags remain unchanged. 

(4) Using the Penn POS tags in both 
positions. 

 
In the four experiments, the only features 

that change are the POS and CPOS features. 
 

Experiment LAS UAS 
Unvocalized Original 74.16% 83.53

% 
Using Penn Tags as CPOS 
tags 

74.12% 83.43
% 

Using Penn tags as POS 72.40% 81.79
% 

Using Penn tags in both 
positions 

69.63% 79.33
% 

 
Table 7: Using the ATB tagset with the PADT dataset 

 
As can be seen from Table 7, in all three 

cases the Penn tagset produces lower results than 
the PADT tagset. The reason for this may be that 
the tagset is automatic in both cases, and the 
perfect accuracy of the PADT tags helps the 
classifier embedded in the MaltParser parser to 
choose the correct label and head. The results also 
show that when we use the Penn tagset as the 
CPOS tagset, the results are almost no different 
from the gold standard PADT tagset (74.12% vs. 
74.16%). The fact that the Penn tagset does not  
harm the results encourages the inclusion of the 
Penn tags as CPOS tags in the automatic 

experiments that have been used throughout this 
chapter. The worst results are those obtained by 
using the Penn tags in both positions (POS and 
CPOS). 

Using the Penn tagset with the reduced 
experiments, those without the linguistic features, 
gives a different picture from that in the full 
standard experiments, as detailed in table 8. 

 
 

 
Experiment LAS UAS 
Reduced with both PADT 
tags 

72.54% 82.92
% 

Reduced with Penn tags as 
CPOS 

73.09% 83.16
% 

Reduced with Penn tags as 
CPOS and automatic 
tokenization 

63.11% 72.38
% 

 
Table 8: Including the Penn full tagset in the reduced 

experiments 
 

While the Penn tagset does not help 
improve parsing accuracy with the full-featured 
parsing experiments, it helps with the reduced 
experiments. While the experiment without the 
Penn tags score an LAS of 72.54%, replacing the 
CPOS tags in this experiment with the Penn tagset 
raises the accuracy to 73.09%, with an increase of 
0.55%. This may be due to the fact that the full 
tagset gives more information that helps the parser. 
The increase is not as noticeable in the automatic 
tokenization experiment where the accuracy 
minimally changes from 63.10% to 63.11%. 
 
Effect of Vocalization 
We have stated in the methodology section that we 
use unvocalized data since naturally occurring 
Arabic is hardly vocalized. While this is a 
reasonable approach, it is worth checking the effect 
of vocalization on dependency parsing. Table 9 
presents the results of vocalization effect in three 
experiments: (a) All the gold standard features 
with vocalization. This is the experiment reported 
in the literature on Arabic dependency parsing in 
CoNLL (2007), (b) All the gold standard features 
without the vocalization, (c) All gold standard 
features except for vocalization which is 
automatic, and (d) the automatic experiment with 
automatic vocalization. The vocalizer in the latter 2 
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experiments is trained on the PADT. The TIMBL 
memory-based learner is used in the experiment. 
The best results are obtained with the IB1 
algorithm with similarity computed as weighted 
overlap,. Relevance weights are computed with 
gain ratio, and the number of k nearest neighbors is 
set to 1. The vocalizer has an accuracy of 93.8% on 
the PADT test set. 
 

Experiment LAS UAS 
Fully Gold Standard 
Vocalized 

74.77% 84.09
% 

Fully Gold Standard 
Unvocalized 

74.16% 83.53
% 

Full-featured with automatic 
vocalization 

74.43% 83.88
% 

Completely automatic (with 
automatic vocalization) 

63.11% 72.19
% 

Completely automatic 
without vocalization 

63.11% 72.38
% 

 
Table 9: Vocalization Effect on Dependency 

Parsing 
 

As can be seen from Table 9, gold 
standard vocalization with gold standard features 
produces the best results (LAS: 74.77%) followed 
by the same settings, but with automatic 
vocalization with a LAS of 74.43%, then 
unvocalized gold standard with a LAS of 74.16%. 
The fact that even automatic vocalization produces 
better results than unvocalized text given the same 
conditions, in spite of a token error rate of 6.2%, 
may be attributed to the ability of vocalization to 
disambiguate text even when it is not perfect. We 
can also notice that the LAS for the Automatic 
experiment is the same whether or not vocalization 
is used. This indicates that vocalization, in spite of 
its imperfections, does  not harm performance, 
although it also does not help the parser. 
Tokenization sets a ceiling for parsing accuracy. 
 

5. Conclusion 
We have presented an experiment in real world 
dependency parsing of Arabic using the same data, 
algorithm and settings used in the CoNLL (2007) 
shared task on dependency parsing. The real world 
experiment included performing tokenization, 
stemming, and part of speech tagging of the data 
before it was passed to MaltParser. 

Tokenization was performed using the 
memory-based segmenter/tokenizer/stemmer and it 
reached an accuracy of 99.34% on the CoNLL 
2007 test set. We performed stemming rather than 
lemmatization due to the many problems and 
difficulties involved in obtaining the lemmas. 

Part of speech tagging scored 96.39% on 
all tokens on gold standard tokenization, but the 
accuracy dropped to 95.70% on automatic tokens. 
We also found that using the coarse grained POS 
tagset alone yielded better results than using it in 
combination with the fine-grained POS tagset. 

The tokens, stems, and CPOS tags were 
then fed into the dependency parser, but the 
linguistic features were not since it was not 
feasible to obtain these automatically. The parser 
yielded a Labeled Accuracy Score of 63.10%, 
more than 10% below the accuracy obtained on 
when all the components are gold standard. The 
main reason behind the accuracy drop is the 
tokenization module, since tokenization is 
responsible for creating the nodes that carry 
syntactic functions. Since this process was not 
perfect, many nodes were wrong, and the right 
heads were missing. When we evaluated the parser 
on correctly tokenized sentences, we obtained a 
Labeled Accuracy Score of 71.56%. On incorrectly 
tokenized sentences, however, the LAS score drops 
to 33.60%. 

We have also found that the full tagset of 
the Penn Arabic Treebank improves parsing results 
minimally in the automatic experiments, but not in 
the gold standard experiments. 

Vocalization does not help in the real 
world experiment unlike in the gold standard one. 

These results show that tokenization is the 
major hindrance to obtaining high quality parsing 
in Arabic. Arabic computational linguistics should 
thus focus on ways to perfect tokenization, or try to 
find ways to parsing without having to perform 
tokenization. 
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