
Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 10–18,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

The Effect of Automatic Tokenization, Vocalization, Stemming, and POS
Tagging on Arabic Dependency Parsing

Emad Mohamed

Suez Canal University
Suez, Egypt

emohamed@umail.iu.edu

Abstract
We use an automatic pipeline of word
tokenization, stemming, POS tagging, and
vocalization to perform real-world Arabic
dependency parsing. In spite of the high
accuracy on the modules, the very few errors in
tokenization, which reaches an accuracy of
99.34%, lead to a drop of more than 10% in
parsing, indicating that no high quality
dependency parsing of Arabic, and possibly
other morphologically rich languages, can be
reached without (semi-)perfect tokenization. The
other module components, stemming,
vocalization, and part of speech tagging, do not
have the same profound effect on the
dependency parsing process.

1. Introduction

Arabic is a morphologically rich language in which
words may be composed of several tokens and
hold several syntactic relations. We define word to
be a whitespace delimited unit and token to be
(part of) a word that has a syntactic function. For
example, the word wsytzwjhA (وسيتزوجها)(English:
And he will marry her) consists of 4 tokens: a
conjunction w, a future marker s, a verb inflected
for the singular masculine in the perfective form
ytzwj, and a feminine singular 3rd person object
pronoun. Parsing such a word requires
tokenization, and performing dependency parsing
in the tradition of the CoNLL-X (Buchholz and
Marsi, 2006) and CoNLL 2007 shared task (Nivre
et al, 2007) also requires part of speech tagging,
lemmatization, linguistic features, and
vocalization, all of which were in the human
annotated gold standard form in the shared task.

The current study aims at measuring the
effect of a pipeline of non gold standard
tokenization, lemmatization, vocalization,
linguistic features and POS tagging on the quality
of Arabic dependency parsing. We only assume

that we have gold standard sentence boundaries
since we do not agree with the sentence boundaries
in the data, and introducing our own will have a
complicating effect on evaluation. The CoNLL
shared tasks of 2006 and 2007 used gold standard
components in all fields, which is not realistic for
Arabic, or for any other language. For Arabic and
other morphologically rich languages, it may be
more unrealistic than it is for English, for example,
since the CoNLL 2007 Arabic dataset has tokens,
rather than white space delimited words, as entries.
A single word may have more than one
syntactically functional token. Dependency parsing
has been selected in belief that it is more suitable
for Arabic than constituent-based parsing. All
grammatical relations in Arabic are binary
asymmetrical relations that exist between the
tokens of a sentence. According to Jonathan
Owens (1997: 52): “In general the Arabic notion of
dependency and that defined in certain modern
versions e.g. Tesniere (1959) rest on common
principles”.

With a tokenization accuracy of 99.34%, a
POS tagging accuracy of 96.39%, and with the
absence of linguistic features and the use of word
stems instead of lemmas, the Labeled Attachment
Score drops from 74.75% in the gold standard
experiment to 63.10% in the completely automatic
experiment. Most errors are a direct result of
tokenization errors, which indicates that despite the
high accuracy on tokenization, it is still not enough
to produce satisfactory parsing numbers.

2. Related Studies

The bulk of literature on Arabic Dependency
Parsing stems from the two CoNLL shared tasks of
2006 and 2007. In CoNLL-X (Buchholz and

10

Marsi, 2006), the average Labeled Attachment
Score on Arabic across all results presented by the
19 participating teams was 59.9% with a standard
deviation of 6.5. The best results were obtained by
McDonald et al (2006) with a score of 66.9%
followed by Nivre et al (2006) with 66.7%.

The best results on Arabic in the CoNLL 2007
shared task were obtained by Hall et al (2007) as
they obtained a Labeled Attachment Score of
76.52%, 9.6 percentage points above the highest
score of the 2006 shared task. Hall et al used an
ensemble system, based on the MaltParser
dependency parser that extrapolates from a single
MaltParser system. The settings with the Single
MaltParser led to a Labeled Accuracy Score of
74.75% on Arabic. The Single MaltParser is the
one used in the current paper. All the papers in
both shared tasks used gold standard tokenization,
vocalization, lemmatization, POS tags, and
linguistic features.

A more recent study is that by Marton et al
(2010). Although Marton et al varied the POS
distribution and linguistic features, they still used
gold standard tokenization. They also used the
Columbia Arabic Treebank, which makes both the
methods and data different from those presented
here.

3. Data, Methods, and Evaluation
3.1.Data

The data used for the current study is the same data
set used for the CoNLL (2007) shared task, with
the same division into training set, and test set.
This design helps in comparing results in a way
that enables us to measure the effect of automatic
pre-processing on parsing accuracy. The data is in
the CoNLL column format. In this format, each
token is represented through columns each of
which has some specific information. The first
column is the ID, the second the token, the third
the lemma, the fourth the coarse-grained POS tag,
the fifth the POS tag, and the sixth column is a list
of linguistic features. The last two columns of the
vector include the head of the token and the
dependency relation between the token and its

head. Linguistic features are an unordered set of
syntactic and/or morphological features, separated
by a vertical bar (|), or an underscore if not
available. The features in the CoNLL 2007 Arabic
dataset represent case, mood, definiteness, voice,
number, gender and person.

The data used for training the
stemmer/tokenizer is taken from the Arabic
Treebank (Maamouri and Bies, 2004). Care has
been taken not to use the parts of the ATB that are
also used in the Prague Arabic Dependency
Treebank (Haijc et al 2004) since the PADT and
the ATB share material.

3.2. Methods
We implement a pipeline as follows

(1) We build a memory-based word segmenter
using TIMBL (Daelemans et al, 2007)
which treats segmentation as a per letter
classification in which each word segment
is delimited by a + sign whether it is
syntactic or inflectional. A set of hand-
written rules then produces tokens and
stems based on this. Tokens are
syntactically functional units, and stems
are the tokens without the inflectional
segments, For example, the word
wsytzwjhA above is segmented as
w+s+y+tzwj+hA. The tokenizer splits this
into four tokens w, s, ytzwj, and hA, and
the stemmer strips the inflectional prefix
from ytzwj to produce tzwj. In the
segmentation experiments, the best results
were obtained with the IB1 algorithm with
similarity computed as weighted overlap,
relevance weights computed with gain
ratio, and the number of k nearest distances
equal to 1.

(2) The tokens are passed to the part of
speech tagger. We use the Memory-based
Tagger, MBT, (Daelemans et al: 2007).
The MBT features for known words
include the two context words to the left
along with their disambiguated POS tags,
the focus word itself, and one word to the
right along with its ambitag (the set of all
possible tags it can take). For unknown
words, the features include the first five
letters and the last three letters of the word,
the, the left context tag, the right context

11

ambitag, one word to the left, the focus
word itself, one ambitag to the right, and
one word to the right.

(3) The column containing the linguistic
features in the real world dependency
experiment will have to remain vacant due
to the fact that it is hard to produce these
features automatically given only naturally
occurring text.

(4) The dependency parser (MaltParser 1.3.1)
takes all the information above and
produces the data with head and
dependency annotations.

Although the purpose of this experiment is to
perform dependency parsing of Arabic without any
assumptions, one assumption we cannot avoid is
that the input text should be divided into sentences.
For this purpose, we use the gold standard division
of text into sentences without trying to detect the
sentence boundaries, although this would be
necessary in actual real-world use of dependency
parsing. The reason for this is that it is not clear
how sentence boundaries are marked in the data as
there are sentences whose length exceeds 300
tokens. If we detected the boundaries
automatically, then we would face the problem of
aligning our sentences with those of the test set for
evaluation, and many of the dependencies would
not still hold.

In the parsing experiments below, we will
use the dependency parser MaltParser (Nivre et al.,
2006). We will use Single MaltParser, as used by
Hall et al (2007), with the same settings for Arabic
that were used in the CoNLL 2007 shared task on
the same data to be as close as possible to the
original results in order to be able to compare the
effect of non gold standard elements in the parsing
process.

3.3.Evaluation
The official evaluation metric in the CoNLL 2007
shared task on dependency parsing was the labeled
attachment score (LAS), i.e., the percentage of
tokens for which a system has predicted the correct
HEAD and DEPREL, but results reported also
included unlabeled attachment score (UAS), i.e.,
the percentage of tokens with correct HEAD, and
the label accuracy (LA), i.e., the percentage of
tokens with correct DEPREL. We will use the
same metrics here.

One major difference between the parsing
experiments which were performed in the 2007
shared task and the ones performed here is
vocalization. The data set which was used in the
shared task was completely vocalized with both
word-internal short vowels and case markings.
Since vocalization in such a perfect form is almost
impossible to produce automatically, we have
decided to primarily use unvocalized data instead.
We have removed the word internal short vowels
as well as the case markings from both the training
set and the test set. This has the advantage of
representing naturally occurring Arabic more
closely, and the disadvantage of losing information
that is only available through vocalization. We
will, however, report on the effect of vocalization
on dependency parsing in the discussion.

To give an estimate of the effects
vocalization has on dependency parsing, we have
replicated the original task with the vocalized data,
and then re-run the experiment with the
unvocalized version. Table 1 presents the results:

 Vocalized Unvocalized
LAS 74.77% 74.16%
UAS 84.09% 83.53%
LA 85.68% 85.44%

Table 1: Vocalized versus unvocalized dependency

parsing

The results of the experiment indicate that
vocalization has a positive effect on the quality of
the parsing output, which may be due to the fact
that ambiguity decreases with vocalization.
Labeled attachment score drops from 74.77% on
the vocalized data to 74.16% on unvocalized data.
Unlabeled attachment score drops from 84.09% to
83.53% and labeled accuracy score from 85.68%
to 85.44%. The difference is minimal, and is
expected to be even smaller with automatic
vocalization

4. Results and discussion
4.1.Tokenization

We obtain an accuracy of 99.34%. Out of the 4550
words which the test set comprises, there are only
30 errors affecting 21 out of the 132 sentences in
the test set. 17 of the errors can be characterized as
over-tokenization while the other 13 are under-

12

tokenization. 13 of the over- tokenization cases are
different tokens of the word blywn (Eng. billion) as
the initial b in the words was treated as a
preposition while it is an original part of the word.

A closer examination of the errors in the
tokenization process reveals that most of the words
which are incorrectly tokenized do not occur in the
training set, or occur there only in the form
produced by the tokenizer. For example, the word
blywn does not occur in the training set, but the
form b+lywn+p occurs in the training set, and this
is the reason the word is tokenized erroneously.
Another example is the word bAsm, which is
ambiguous between a one-token word bAsm (Eng.
smiling), and a two-token word, b+Asm (Eng. in
the name of). Although the word should be
tokenized as b+Asm, the word occurs in the
training set as bAsm, which is a personal name.

In fact, only five words in the 30 mis-
tokenized words are available in the training set,
which means that the tokenizer has a very high
accuracy on known words. There are yet two
examples that are worthy of discussion. The first
one involves suboptimal orthography. The word
r>smAl (Eng. capital in the financial sense) is in
the training set but is nonetheless incorrectly
tokenized in our experiments because it is written
as brAsmAl (with the preposition b) but with an alif
instead of the hamza. The word was thus not
tokenized correctly. The other example involves an
error in the tokenization in the Prague Arabic
Dependency Treebank. The word >wjh (Eng. I
give/address) has been tokenized in the Prague
Arabic dependency treebank as >wj+h (Eng. its
utmost/prime), which is not the correct
tokenization in this context as the h is part of the
word and is not a different token. The classifier did
nonetheless tokenize it correctly but it was counted
as wrong in the evaluation since it does not agree
with the PADT gold standard.

4.2.Stemming
Since stemming involves removing all the
inflectional prefixes and suffixes from the words,
and since inflectional affixes are not demarcated in
the PADT data set used in the CoNLL shared
tasks, there is no way to know the exact accuracy
of the stemming process in that specific
experiment, but since stemming is a by-product of
segmentation, and since segmentation in general

reaches an accuracy in excess of 98%, stemming
should be trusted as an accurate process.

4.3.Part of speech tagging
The performance of the tagger on gold standard
data with gold standard tokenization is shown in
table 2. The experiment yields an accuracy of
96.39% on all tokens. Known tokens reach an
accuracy of 97.49% while unknown tokens reach
an accuracy of 81.48%. These numbers constitute
the ceiling for accuracy since the real-world
experiment makes use of automatic tokenization,
which definitely leads to lower numbers.

Unknown Known Total
81.48% 97.49% 96.39%

Table 2: Part of speech tagging on gold standard

tokenization

When we run the experiment using
automatic tokenization we obtain an accuracy of
95.70% which is less than 1% lower than the gold
standard accuracy. This indicates that part of
speech tagging has been affected by tokenization
quality. The drop in quality in part of speech
tagging is almost identical to the drop in quality in
tokenization.

While some of the errors made by the part
of speech tagger are due to the fact that nouns,
adjectives, and proper nouns cannot be
distinguished by any formal features, a large
number of the nominal class annotation in the gold
standard data can hardly be justified. For example,
the expression الاتحاد الأوروبي (Eng. the European
Union) is annotated once in the training data as
proper noun and adjective, and another time as a
noun and adjective. A similar confusion holds for
the names of the months and the weekdays, which
are sometimes tagged as nouns and sometimes as
proper nouns.

4.4. Dependency parsing
Now that we have stems, tokens, and part of
speech tags, we can proceed with the parsing
experiment, the final step and the ultimate goal of
the preprocessing modules we have introduced so
far. In order to prepare the training data, we have
replaced the lemmas in the training and testing sets
with the stems since we do not have access to
lemmas in real-world experiments. While this

13

introduces an automatic element in the training set,
it guarantees the similarity between the features in
the training set and those in the test set.

In order to discover whether the fine-
grained POS tagset is necessary, we have run two
parsing experiments using gold standard parts of
speech with stems instead of lemmas, but without
any of the linguistic features included in the gold
standard: the first experiment has the two distinct
part of speech tags and the other one has only the
coarse-grained part of speech tags. Table 3 outlines
the results.

 LAS UAS LA
CPOS+POS 72.54% 82.92% 84.04%
CPOS 73.11% 83.31% 84.39%
CoNLL2007 74.75% 84.21% 84.21%

Table 3: effect of fine-grained POS

As can be seen from table 3, using two part

of speech tagsets harms the performance of the
dependency parser. While the one-tag dependency
parser obtains a Labeled Accuracy Score of
73.11%, the number goes down to 72.54% when
we used the fine-grained part of speech set. In
Unlabeled Attachment Score, the one tag parser
achieves an accuracy of 83.31% compared to
82.92% on two tag parser. The same is also true for
Label Accuracy Score as the numbers go down
from 84.39% when using only one tagset compared
to 84.04% when using two tagsets. This means that
the fine-grained tagset is not needed to perform
real world parsing. We have thus decided to use
the coarse-grained tagset in the two positions of the
part of speech tags. We can also see that this
setting produces results that are 1.64% lower than
those of the Single MaltParser results reported in
the CoNLL 2007 shared task in terms of Labeled
Accuracy Score. The difference can be attributed
to the lack of linguistic features, vocalization, and
the use of stems instead of lemmas. The LAS of
73.11% now constitutes the upper bound for real
world experiments where also parts of speech and
tokens have to be obtained automatically (since
vocalization has been removed, linguistic features
have been removed, and lemmas have been
replaced with automatic stems). It should be noted
that our experiments, with the complete set of gold
standard features, achieve higher results than those
reported in the CoNLL 2007 shared task: a LAS of

74.77 (here) versus a LAS of 74.75 (CoNLL,
2007). This may be attributed to the change of the
parser since we use the 1.3.1 version whereas the
parser used in the 2007 shared task was the 0.4
version.

Using the settings above, we have run an
experiment to parse the test set, which is now
automatic in terms of tokenization, lemmatization,
and part of speech tags, and in the absence of the
linguistic features that enrich the gold standard
training and test sets. Table 4 presents the results
of this experiment.

 Automatic Gold Standard
LAS 63.10% 73.11%
UAS 72.19% 83.31%
LA 82.61% 84.39%

Table 4: Automatic dependency parsing experiment

The LAS drops more than 10 percentage

points from 73.11 to 63.10. This considerable drop
in accuracy is expected since there is a mismatch
in the tokenization which leads to mismatch in the
sentences. The 30 errors in tokenization affect 21
sentences out of a total of 129 in the test set. When
we evaluate the dependency parsing output on the
correctly tokenized sentences only, we obtain
much better results (shown in Table 5). Labeled
Attachment Score on correctly tokenized sentences
is 71.56%, Unlabeled Attachment Score 81.91%,
and Label Accuracy Score is 83.22%. This
indicates that no good quality parsing can be
obtained if there are problems in the tokenization.
A drop of a half percent in the quality of
tokenization causes a drop of ten percentage points
in the quality of parsing, whereas automatic POS
tags and stemming, and the lack of linguistic
features do not cause the same negative effect.

 Correctly-

tokenized
Sentences

Incorrectly-
Tokenized
Sentences

LAS 71.56% 33.60%
UAS 81.91% 38.32%
LA 83.22% 80.49%

Table 5: Dependency parsing Evaluation on Correctly

vs. Incorrectly Tokenized Sentences

14

While correctly tokenized sentences yield
results that are not extremely different from those
using gold standard information, and the drop in
accuracy in them can be attributed to the
differences introduced through stemming and
automatic parts of speech as well as the absence of
the linguistic features, incorrectly tokenized
sentences show a completely different picture as
the Labeled Attachment Score now plummets to
33.6%, which is 37.96 percentage points below
that on correctly tokenized sentences. The
Unlabeled Attachment Score also drops from
81.91% in correctly tokenized sentences to 38.32%
on incorrectly tokenized sentences with a
difference of 43.59 percentage points.

Error Analysis
Considering the total number of errors, out of the
5124 tokens in the test set, there are 1425 head
errors (28%), and 891 dependency errors (17%). In
addition, there are 8% of the tokens in which both
the dependency and the head are incorrectly
assigned by the parser. The POS tag with the
largest percentage of head errors is the Adverb (D)
with an error rate of 57%, followed by Preposition

(P) at 34%, and Conjunctions at 34%. The
preposition and conjunction errors are common
among all experiments: those with gold standard
and those with automatic information. These
results also show that assigning the correct head is
more difficult than assigning the correct
dependency. This is reasonable since some tokens
will have specific dependency types. Also, while
there are a limited number of dependency relations,
the number of potential heads is much larger.

If we look at the lexicon and examine the
tokens in which most errors occur, we can see one
conjunction and five prepositions. The conjunction
w (Eng. and) tops the list, followed by the
preposition l (Eng. for, to), followed by the
preposition fy (Eng. in), then the preposition b
(Eng. with), then the preposition ElY (Eng. on),
and finally the preposition mn (Eng. from, of). We
conclude this section by examining a very short
sentence in which we can see the effect of
tokenization on dependency parsing. Table 6 is a
sentence that has an instance of incorrect
tokenization.

Arabic المساعدات الأمريكية الاستثنائية لمصر بليون دولار حتى مارس
English The American exceptional aid to Egypt is a billion dollars

until March.
Buckwalter (Gold Standard
Tokenization)

AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr blywn dwlAr
HtY |*Ar

Buckwalter (Automatic Tokenization) AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr b lywn dwlAr
HtY |*Ar

Table 6: A sentence showing the effect of tokenization

The sentence has 8 words one of which

comprises two tokens. The word lmSr comprises a
preposition l, and the proper noun mSr (Eng.
Egypt). The tokenizer succeeds in splitting the
word into two tokens, but it fails on the one-token
word blywn (Eng. billion) and splits it into two
tokens b and lywn. The word is ambiguous
between blywn (Eng. one billion) and b+lywn
(Eng. in the city of Lyon), and since the second
solution is much more frequent in the training set,
it is the one incorrectly selected by the tokenizer.

This tokenization decision leads to an ill-
alignment between the gold standard sentence and
the automatic one as the gold standard has 8 tokens
while the automatically produced one has 9. This
thus affects the POS tagging decisions as blywn,

which in the gold standard is a NOUN, has been
now tagged as b/PREPOSITION and
lywn/PROPER_NOUN. This has also affected the
assignment of heads and dependency relations.
While blywn is a predicate dependent on the root
of the sentence, it has been annotated as two
tokens: b is a preposition dependent on the subject,
and lywn is an attribute dependent on b.

Using the Penn Tags
So far, we have used only the POS tags of the
PADT, and have not discussed the possibility of
using the Penn Arabic Treebank. The difference is
that the PADT tags are basic while the ATB ones
have detailed representations of inflections. While

15

the word AlmtHdp is given the tag ADJ in the
PADT, it is tagged as
DET+ADJ+FEMININE_SINGULAR_MARKER
in the ATB. Table 7 shows the effect of using the
Penn tagset with the gold standard full-featured
dataset in three different experiments as compared
with the PADT tagset:

(1) The original Unvocalized Experiment
with the full set of features and gold
standard components. The Penn tagset is
not used in this experiment, and it is
provided for reference purposes only.

(2) Unvocalized experiment with Penn tags as
CPOS tags. In this experiment, the Penn
tagset is used instead of the coarse grained
POS tagset, while the fine-grained pos
tagset remains unchanged.

(3) Using Penn tags as fine grained POS tags,
while the CPOS tags remain unchanged.

(4) Using the Penn POS tags in both
positions.

In the four experiments, the only features

that change are the POS and CPOS features.

Experiment LAS UAS
Unvocalized Original 74.16% 83.53

%
Using Penn Tags as CPOS
tags

74.12% 83.43
%

Using Penn tags as POS 72.40% 81.79
%

Using Penn tags in both
positions

69.63% 79.33
%

Table 7: Using the ATB tagset with the PADT dataset

As can be seen from Table 7, in all three

cases the Penn tagset produces lower results than
the PADT tagset. The reason for this may be that
the tagset is automatic in both cases, and the
perfect accuracy of the PADT tags helps the
classifier embedded in the MaltParser parser to
choose the correct label and head. The results also
show that when we use the Penn tagset as the
CPOS tagset, the results are almost no different
from the gold standard PADT tagset (74.12% vs.
74.16%). The fact that the Penn tagset does not
harm the results encourages the inclusion of the
Penn tags as CPOS tags in the automatic

experiments that have been used throughout this
chapter. The worst results are those obtained by
using the Penn tags in both positions (POS and
CPOS).

Using the Penn tagset with the reduced
experiments, those without the linguistic features,
gives a different picture from that in the full
standard experiments, as detailed in table 8.

Experiment LAS UAS
Reduced with both PADT
tags

72.54% 82.92
%

Reduced with Penn tags as
CPOS

73.09% 83.16
%

Reduced with Penn tags as
CPOS and automatic
tokenization

63.11% 72.38
%

Table 8: Including the Penn full tagset in the reduced

experiments

While the Penn tagset does not help
improve parsing accuracy with the full-featured
parsing experiments, it helps with the reduced
experiments. While the experiment without the
Penn tags score an LAS of 72.54%, replacing the
CPOS tags in this experiment with the Penn tagset
raises the accuracy to 73.09%, with an increase of
0.55%. This may be due to the fact that the full
tagset gives more information that helps the parser.
The increase is not as noticeable in the automatic
tokenization experiment where the accuracy
minimally changes from 63.10% to 63.11%.

Effect of Vocalization
We have stated in the methodology section that we
use unvocalized data since naturally occurring
Arabic is hardly vocalized. While this is a
reasonable approach, it is worth checking the effect
of vocalization on dependency parsing. Table 9
presents the results of vocalization effect in three
experiments: (a) All the gold standard features
with vocalization. This is the experiment reported
in the literature on Arabic dependency parsing in
CoNLL (2007), (b) All the gold standard features
without the vocalization, (c) All gold standard
features except for vocalization which is
automatic, and (d) the automatic experiment with
automatic vocalization. The vocalizer in the latter 2

16

experiments is trained on the PADT. The TIMBL
memory-based learner is used in the experiment.
The best results are obtained with the IB1
algorithm with similarity computed as weighted
overlap,. Relevance weights are computed with
gain ratio, and the number of k nearest neighbors is
set to 1. The vocalizer has an accuracy of 93.8% on
the PADT test set.

Experiment LAS UAS
Fully Gold Standard
Vocalized

74.77% 84.09
%

Fully Gold Standard
Unvocalized

74.16% 83.53
%

Full-featured with automatic
vocalization

74.43% 83.88
%

Completely automatic (with
automatic vocalization)

63.11% 72.19
%

Completely automatic
without vocalization

63.11% 72.38
%

Table 9: Vocalization Effect on Dependency

Parsing

As can be seen from Table 9, gold
standard vocalization with gold standard features
produces the best results (LAS: 74.77%) followed
by the same settings, but with automatic
vocalization with a LAS of 74.43%, then
unvocalized gold standard with a LAS of 74.16%.
The fact that even automatic vocalization produces
better results than unvocalized text given the same
conditions, in spite of a token error rate of 6.2%,
may be attributed to the ability of vocalization to
disambiguate text even when it is not perfect. We
can also notice that the LAS for the Automatic
experiment is the same whether or not vocalization
is used. This indicates that vocalization, in spite of
its imperfections, does not harm performance,
although it also does not help the parser.
Tokenization sets a ceiling for parsing accuracy.

5. Conclusion
We have presented an experiment in real world
dependency parsing of Arabic using the same data,
algorithm and settings used in the CoNLL (2007)
shared task on dependency parsing. The real world
experiment included performing tokenization,
stemming, and part of speech tagging of the data
before it was passed to MaltParser.

Tokenization was performed using the
memory-based segmenter/tokenizer/stemmer and it
reached an accuracy of 99.34% on the CoNLL
2007 test set. We performed stemming rather than
lemmatization due to the many problems and
difficulties involved in obtaining the lemmas.

Part of speech tagging scored 96.39% on
all tokens on gold standard tokenization, but the
accuracy dropped to 95.70% on automatic tokens.
We also found that using the coarse grained POS
tagset alone yielded better results than using it in
combination with the fine-grained POS tagset.

The tokens, stems, and CPOS tags were
then fed into the dependency parser, but the
linguistic features were not since it was not
feasible to obtain these automatically. The parser
yielded a Labeled Accuracy Score of 63.10%,
more than 10% below the accuracy obtained on
when all the components are gold standard. The
main reason behind the accuracy drop is the
tokenization module, since tokenization is
responsible for creating the nodes that carry
syntactic functions. Since this process was not
perfect, many nodes were wrong, and the right
heads were missing. When we evaluated the parser
on correctly tokenized sentences, we obtained a
Labeled Accuracy Score of 71.56%. On incorrectly
tokenized sentences, however, the LAS score drops
to 33.60%.

We have also found that the full tagset of
the Penn Arabic Treebank improves parsing results
minimally in the automatic experiments, but not in
the gold standard experiments.

Vocalization does not help in the real
world experiment unlike in the gold standard one.

These results show that tokenization is the
major hindrance to obtaining high quality parsing
in Arabic. Arabic computational linguistics should
thus focus on ways to perfect tokenization, or try to
find ways to parsing without having to perform
tokenization.

Acknowledgment
We would like to thank Joakim Nivre for his
helpful answers to our questions concerning
MaltParser.

17

References
Buchholz, Sabine and Marsi, Erwin (2006). CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Daelemans, Walter; Zavrel, Jakub; van der Sloot, Ko
and van den Bosch, Antal (2007). TiMBL: Tilburg
memory based learner – version 6.1 – reference guide.
Technical Report ILK 07-09, Induction of Linguistic
Knowledge, Computational Linguistics, Tilburg
University.

Daelemans, Walter,; Zavrel, Jakub; an den Bosch,
Antal, and van der Sloot, Ko (2007). MBT: Memory-
Based Tagger- Version 3.1. Reference Guide. Technical
Report ILK 07-09, Induction of Linguistic Knowledge,
Computational Linguistics, Tilburg University.

Hajič, Jan; Smrž, Otakar; Zemánek, Petr; Šnaidauf, Jan,
and Beška, Emanuel (2004). Prague Arabic
Dependency Treebank: Development in Data and Tools.
In Proceedings of the EMLAR International Conference
on Arabic Language Resources and Tools, pages 110-
117, Cairo, Egypt, September 2004.

Hall, Johan; Nilsson, Jens; Nivre, Joakim; Eryigit,
Gülsen; Megyesi, Beáta; Nilsson, Mattias and Saers,
Markus (2007). Single Malt or Blended? A Study in
Multilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
933-939.

Maamouri, Mohamed and Bies, Ann (2004) Developing
an Arabic Treebank: Methods, Guidelines, Procedures,
and Tools. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based
Languages, COLING 2004, Geneva, August 28, 2004.

Marton, Yuval; Habash, Nizar; and Rambow, Owen
(2010). Improving Arabic Dependency Parsing with
Lexical and Inflectional Morphological Features. In
Proceddings of The FirstWorkshop on Statistical
Parsing of Morphologically Rich Languages (SPMRL
2010), LA, California.

McDonald, Ryan; Lerman, Kevin and Pereira, Fernando
(2006). Multilingual dependency analysis with a two-
stage discriminative parser. CoNLLX shared task on
multilingual dependency parsing. In Proceedings of the
10th Conference on Computational Natural Language
Learning

Nivre, Joakim; Hall, Jonathan; Nilsson, Jens; Eryigit,
Gülsen and Marinov, Svetsolav (2006). Labeled
Pseudo-Projective Dependency Parsing with Support

Vector Machines. In Proceedings of the Tenth
Conference on Computational Natural Language
Learning (CoNLL)

Nivre, Joakim; Hall, Johan; Kübler, Sandra; McDonald,
Ryan; Nilsson, Jens; Riedel, Sebastian, and Yuret,
Deniz. (2007). The CoNLL 2007 shared task on
dependency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 915–932

Owen, Jonathan. The Arabic Grammatical Tradition. In
Hetzron, Robert (ed.) (1997). The Semitic Languages.
Routledge, London.

18

