
CoNLL-2011

Fifteenth Conference on
Computational Natural Language Learning

Proceedings of the Conference

23-24 June, 2011
Portland, Oregon, USA

Production and Manufacturing by

CoNLL 2011 Best Paper sponsor:

c©2011 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-92-3

ii

Omnipress, Inc.
2600 Anderson Street
Madison, WI 53704 USA

Preface

The 2011 Conference on Computational Natural Language Learning is the fifteenth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CONLL-2011 will be held in Portland, Oregon, USA, June 23-24 2011, in conjunction with ACL-HLT.

For our special focus this year in the main session of CoNLL, we invited papers relating to massive,
linked text data. We received 82 submissions on these and other relevant topics, of which 4 were
eventually withdrawn. Of the remaining 78 papers, 13 were selected to appear in the conference
program as oral presentations, and 14 were chosen as posters. All accepted papers appear here in the
proceedings. Each accepted paper was allowed eight content pages plus any number of pages containing
only bibliographic references.

As in previous years, CoNLL-2011 has a shared task, Modeling unrestricted coreference in OntoNotes.
The Shared Task papers are collected in a companion volume of CoNLL-2011.

We begin by thanking all of the authors who submitted their work to CoNLL-2011, as well as the
program committee for helping us select from among the many strong submissions. We are also grateful
to our invited speakers, Bruce Hayes and Yee Whye Teh, who graciously agreed to give talks at CoNLL.
Special thanks to the SIGNLL board members, Lluı́s Màrquez and Joakim Nivre, for their valuable
advice and assistance in putting together this year’s program, and to the SIGNLL information officer,
Erik Tjong Kim Sang, for publicity and maintaining the CoNLL-2011 web page. We also appreciate
the additional help we received from the ACL program chairs, workshop chairs, and publication chairs.

Finally, many thanks to Google for sponsoring the best paper award at CoNLL-2011.

We hope you enjoy the conference!

Sharon Goldwater and Christopher Manning

CoNLL 2011 Conference Chairs

iii

Program Chairs:

Sharon Goldwater (University of Edinburgh, United Kingdom)
Christopher Manning (Stanford University, United States)

Program Committee:

Steven Abney (University of Michigan, United States)
Eneko Agirre (University of the Basque Country, Spain)
Afra Alishahi (Saarland University, Germany)
Lourdes Araujo (Universidad Nacional de Educación a Distancia, Spain)
Jason Baldridge (University of Texas at Austin, United States)
Steven Bethard (Katholieke Universiteit Leuven, Belgium)
Steven Bird (University of Melbourne, Australia)
Phil Blunsom (University of Oxford, United Kingdom)
Thorsten Brants (Google Inc., United States)
Chris Brew (Ohio State University, United States)
David Burkett (University of California at Berkeley, United States)
Yunbo Cao (Microsoft Research Asia, China)
Xavier Carreras (Technical University of Catalonia, Spain)
Nathanael Chambers (Stanford University, United States)
Ming-Wei Chang (University of Illinois at Urbana-Champaign, United States)
Colin Cherry (National Research Council, Canada)
Massimiliano Ciaramita (Google Research, Switzerland)
Alexander Clark (Royal Holloway, University of London, United Kingdom)
Stephen Clark (University of Cambridge, United Kingdom)
Shay Cohen (Carnegie Mellon University, United States)
Trevor Cohn (University of Sheffield, United Kingdom)
James Curran (University of Sydney, Australia)
Walter Daelemans (University of Antwerp, Belgium)
Mark Dras (Macquarie University, Australia)
Amit Dubey (University of Edinburgh, United Kingdom)
Chris Dyer (Carnegie Mellon University, United States)
Jacob Eisenstein (Carnegie Mellon University, United States)
Micha Elsner (University of Edinburgh, United Kingdom)
Jenny Finkel (Columbia University, United States)
Radu Florian (IBM Watson Research Center, United States)
Robert Frank (Yale University, United States)
Stella Frank (University of Edinburgh, United Kingdom)
Michel Galley (Microsoft Research, United States)
Kevin Gimpel (Carnegie Mellon University, United States)
Yoav Goldberg (Ben Gurion University of the Negev, Israel)
Cyril Goutte (National Research Council, Canada)

v

Spence Green (Stanford University, United States)
Gholamreza Haffari (BC Cancer Research Center, Canada)
Keith Hall (Google Research, Switzerland)
James Henderson (University of Geneva, Switzerland)
Julia Hockenmaier (University of Illinois at Urbana-Champaign, United States)
Fei Huang (IBM Research, United States)
Rebecca Hwa (University of Pittsburgh, United States)
Richard Johansson (University of Trento, Italy)
Mark Johnson (Macquarie University, Australia)
Rohit Kate (University of Wisconsin at Milwaukee, United States)
Philipp Koehn (University of Edinburgh, United Kingdom)
Mamoru Komachi (Nara Institute of Science and Technology, Japan)
Terry Koo (Google Inc., United States)
Shankar Kumar (Google Inc., United States)
Tom Kwiatkowski (University of Edinburgh, United Kingdom)
Mirella Lapata (University of Edinburgh, United Kingdom)
Shalom Lappin (Kings College London, United Kingdom)
Lillian Lee (Cornell Universiy, United States)
Percy Liang (University of California at Berkeley, United States)
Adam Lopez (Johns Hopkins University, United States)
Rob Malouf (San Diego State University, United States)
André Martins (Carnegie Mellon University, United States)
Yuji Matsumoto (Nara Institute of Science and Technology, Japan)
Takuya Matsuzaki (University of Tokyo, Japan)
David McClosky (Stanford University, United States)
Ryan McDonald (Google Inc., United States)
Paola Merlo (University of Geneva, Switzerland)
Haitao Mi (Institute of Computing Technology, Chinese Academy of Sciences, China)
Yusuke Miyao (University of Tokyo, Japan)
Alessandro Moschitti (University of Trento, Italy)
Lluı́s Màrquez (Technical University of Catalonia, Spain)
Tahira Naseem (Massachusetts Institute of Technology, United States)
Mark-Jan Nederhof (University of St. Andrews, United Kingdom)
Hwee Tou Ng (National University of Singapore, Singapore)
Vincent Ng (University of Texas at Dallas, United States)
Joakim Nivre (Uppsala University, Sweden)
Miles Osborne (University of Edinburgh, United Kingdom)
Christopher Parisien (University of Toronto, Canada)
Amy Perfors (University of Adelaide, Australia)
Slav Petrov (Google Research, United States)
Hoifung Poon (University of Washington, United States)
Vasin Punyakanok (BBN Technologies, United States)
Chris Quirk (Microsoft Research, United States)
Ari Rappoport (The Hebrew University, Israel)
Lev Ratinov (University of Illinois at Urbana-Champaign, United States)
Roi Reichart (Massachusetts Institute of Technology, United States)

vi

Joseph Reisinger (University of Texas at Austin, United States)
Sebastian Riedel (University of Massachusetts, United States)
Dan Roth (University of Illinois at Urbana-Champaign, United States)
William Sakas (Hunter College, United States)
Anoop Sarkar (Simon Fraser University, Canada)
William Schuler (The Ohio State University, United States)
Libin Shen (Akamai, United States)
Khalil Sima’an (University of Amsterdam, Netherlands)
Noah Smith (Carnegie Mellon University, United States)
Benjamin Snyder (University of Wisconsin-Madison, United States Richard Socher (Stanford
University, United States)
Valentin Spitkovsky (Stanford University, United States)
Mark Steedman (University of Edinburgh, United Kingdom)
Mihai Surdeanu (Stanford University, United States)
Jun Suzuki (NTT Communication Science Laboratories, Japan)
Hiroya Takamura (Tokyo Institute of Technology, Japan)
Ivan Titov (Saarland University, Germany)
Kristina Toutanova (Microsoft Research, United States)
Antal van den Bosch (Tilburg University, Netherlands)
Theresa Wilson (Johns Hopkins University, United States)
Peng Xu (Google Inc., United States)
Charles Yang (University of Pennsylvania, United States)
Chen Yu (Indiana University, United States)
Daniel Zeman (Charles University in Prague, Czech Republic)
Luke Zettlemoyer (University of Washington at Seattle, United States)

Invited Speakers:

Bruce Hayes (University of California, Los Angeles, United States)
Yee Whye Teh (Gatsby Unit, University College London, United Kingdom)

vii

Table of Contents

Modeling Syntactic Context Improves Morphological Segmentation
Yoong Keok Lee, Aria Haghighi and Regina Barzilay . 1

The Effect of Automatic Tokenization, Vocalization, Stemming, and POS Tagging on Arabic Dependency
Parsing

Emad Mohamed . 10

Punctuation: Making a Point in Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi and Daniel Jurafsky . 19

Modeling Infant Word Segmentation
Constantine Lignos . 29

Word Segmentation as General Chunking
Daniel Hewlett and Paul Cohen . 39

(Invited talk) Computational Linguistics for Studying Language in People: Principles, Applications and
Research Problems

Bruce Hayes . 48

Search-based Structured Prediction applied to Biomedical Event Extraction
Andreas Vlachos and Mark Craven . 49

Using Sequence Kernels to Identify Opinion Entities in Urdu
Smruthi Mukund, Debanjan Ghosh and Rohini Srihari .58

Subword and Spatiotemporal Models for Identifying Actionable Information in Haitian Kreyol
Robert Munro . 68

Gender Attribution: Tracing Stylometric Evidence Beyond Topic and Genre
Ruchita Sarawgi, Kailash Gajulapalli and Yejin Choi . 78

Improving the Impact of Subjectivity Word Sense Disambiguation on Contextual Opinion Analysis
Cem Akkaya, Janyce Wiebe, Alexander Conrad and Rada Mihalcea . 87

Effects of Meaning-Preserving Corrections on Language Learning
Dana Angluin and Leonor Becerra-Bonache . 97

Assessing Benefit from Feature Feedback in Active Learning for Text Classification
Shilpa Arora and Eric Nyberg . 106

ULISSE: an Unsupervised Algorithm for Detecting Reliable Dependency Parses
Felice Dell’Orletta, Giulia Venturi and Simonetta Montemagni . 115

Language Models as Representations for Weakly Supervised NLP Tasks
Fei Huang, Alexander Yates, Arun Ahuja and Doug Downey. .125

ix

Automatic Keyphrase Extraction by Bridging Vocabulary Gap
Zhiyuan Liu, Xinxiong Chen, Yabin Zheng and Maosong Sun . 135

Using Second-order Vectors in a Knowledge-based Method for Acronym Disambiguation
Bridget T. McInnes, Ted Pedersen, Ying Liu, Serguei V. Pakhomov and Genevieve B. Melton 145

Using the Mutual k-Nearest Neighbor Graphs for Semi-supervised Classification on Natural Language
Data

Kohei Ozaki, Masashi Shimbo, Mamoru Komachi and Yuji Matsumoto . 154

Automatically Building Training Examples for Entity Extraction
Marco Pennacchiotti and Patrick Pantel . 163

Probabilistic Word Alignment under the L0-norm
Thomas Schoenemann . 172

Authorship Attribution with Latent Dirichlet Allocation
Yanir Seroussi, Ingrid Zukerman and Fabian Bohnert . 181

Evaluating a Semantic Network Automatically Constructed from Lexical Co-occurrence on a Word
Sense Disambiguation Task

Sean Szumlanski and Fernando Gomez . 190

Filling the Gap: Semi-Supervised Learning for Opinion Detection Across Domains
Ning Yu and Sandra Kübler . 200

A Normalized-Cut Alignment Model for Mapping Hierarchical Semantic Structures onto Spoken Doc-
uments

Xiaodan Zhu . 210

(Invited talk) Bayesian Tools for Natural Language Learning
Yee Whye Teh . 219

Composing Simple Image Descriptions using Web-scale N-grams
Siming Li, Girish Kulkarni, Tamara L. Berg, Alexander C. Berg and Yejin Choi 220

Adapting Text instead of the Model: An Open Domain Approach
Gourab Kundu and Dan Roth . 229

Learning with Lookahead: Can History-Based Models Rival Globally Optimized Models?
Yoshimasa Tsuruoka, Yusuke Miyao and Jun’ichi Kazama . 238

Learning Discriminative Projections for Text Similarity Measures
Wen-tau Yih, Kristina Toutanova, John C. Platt and Christopher Meek . 247

x

Conference Program

Thursday, June 23, 2011

9:00–9:05 Opening Remarks

Session 1

9:05–9:30 Modeling Syntactic Context Improves Morphological Segmentation
Yoong Keok Lee, Aria Haghighi and Regina Barzilay

9:30–9:55 The Effect of Automatic Tokenization, Vocalization, Stemming, and POS Tagging on
Arabic Dependency Parsing
Emad Mohamed

9:55–10:20 Punctuation: Making a Point in Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi and Daniel Jurafsky

10:20–10:50 Coffee Break

Session 2

10:50–11:15 Modeling Infant Word Segmentation
Constantine Lignos

11:15–11:40 Word Segmentation as General Chunking
Daniel Hewlett and Paul Cohen

11:40–12:40 (Invited talk) Computational Linguistics for Studying Language in People: Princi-
ples, Applications and Research Problems
Bruce Hayes

12:40–14:00 Lunch Break

xi

Thursday, June 23, 2011 (continued)

Session 3

14:00–14:25 Search-based Structured Prediction applied to Biomedical Event Extraction
Andreas Vlachos and Mark Craven

14:25–14:50 Using Sequence Kernels to Identify Opinion Entities in Urdu
Smruthi Mukund, Debanjan Ghosh and Rohini Srihari

14:50–15:15 Subword and Spatiotemporal Models for Identifying Actionable Information in Haitian
Kreyol
Robert Munro

15:15–15:40 Gender Attribution: Tracing Stylometric Evidence Beyond Topic and Genre
Ruchita Sarawgi, Kailash Gajulapalli and Yejin Choi

15:40–16:10 Coffee Break

16:10–17:45 Main Session Posters

Improving the Impact of Subjectivity Word Sense Disambiguation on Contextual Opinion
Analysis
Cem Akkaya, Janyce Wiebe, Alexander Conrad and Rada Mihalcea

Effects of Meaning-Preserving Corrections on Language Learning
Dana Angluin and Leonor Becerra-Bonache

Assessing Benefit from Feature Feedback in Active Learning for Text Classification
Shilpa Arora and Eric Nyberg

ULISSE: an Unsupervised Algorithm for Detecting Reliable Dependency Parses
Felice Dell’Orletta, Giulia Venturi and Simonetta Montemagni

Language Models as Representations for Weakly Supervised NLP Tasks
Fei Huang, Alexander Yates, Arun Ahuja and Doug Downey

Automatic Keyphrase Extraction by Bridging Vocabulary Gap
Zhiyuan Liu, Xinxiong Chen, Yabin Zheng and Maosong Sun

xii

Thursday, June 23, 2011 (continued)

Using Second-order Vectors in a Knowledge-based Method for Acronym Disambiguation
Bridget T. McInnes, Ted Pedersen, Ying Liu, Serguei V. Pakhomov and Genevieve B.
Melton

Using the Mutual k-Nearest Neighbor Graphs for Semi-supervised Classification on Nat-
ural Language Data
Kohei Ozaki, Masashi Shimbo, Mamoru Komachi and Yuji Matsumoto

Automatically Building Training Examples for Entity Extraction
Marco Pennacchiotti and Patrick Pantel

Probabilistic Word Alignment under the L0-norm
Thomas Schoenemann

Authorship Attribution with Latent Dirichlet Allocation
Yanir Seroussi, Ingrid Zukerman and Fabian Bohnert

Evaluating a Semantic Network Automatically Constructed from Lexical Co-occurrence
on a Word Sense Disambiguation Task
Sean Szumlanski and Fernando Gomez

Filling the Gap: Semi-Supervised Learning for Opinion Detection Across Domains
Ning Yu and Sandra Kübler

A Normalized-Cut Alignment Model for Mapping Hierarchical Semantic Structures onto
Spoken Documents
Xiaodan Zhu

xiii

Friday, June 24, 2011

Shared Task on Modeling Unrestricted Coreference in OntoNotes

9:00–10:30 Shared Task Overview and Oral Presentations

10:30–11:00 Coffee Break

11:00–12:30 Shared Task Posters

12:30–14:00 Lunch Break

14:00–15:00 (Invited talk) Bayesian Tools for Natural Language Learning
Yee Whye Teh

15:00–15:30 SIGNLL Business Meeting

15:30–16:00 Coffee Break

Session 4

16:00–16:25 Composing Simple Image Descriptions using Web-scale N-grams
Siming Li, Girish Kulkarni, Tamara L. Berg, Alexander C. Berg and Yejin Choi

16:25–16:50 Adapting Text instead of the Model: An Open Domain Approach
Gourab Kundu and Dan Roth

16:50–17:15 Learning with Lookahead: Can History-Based Models Rival Globally Optimized Models?
Yoshimasa Tsuruoka, Yusuke Miyao and Jun’ichi Kazama

17:15–17:40 Learning Discriminative Projections for Text Similarity Measures
Wen-tau Yih, Kristina Toutanova, John C. Platt and Christopher Meek

17:40–17:45 Best Paper Award and Closing

xiv

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 1–9,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Modeling Syntactic Context Improves Morphological Segmentation

Yoong Keok Lee Aria Haghighi Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{yklee, aria42, regina}@csail.mit.edu

Abstract

The connection between part-of-speech (POS)
categories and morphological properties is
well-documented in linguistics but underuti-
lized in text processing systems. This pa-
per proposes a novel model for morphologi-
cal segmentation that is driven by this connec-
tion. Our model learns that words with com-
mon affixes are likely to be in the same syn-
tactic category and uses learned syntactic cat-
egories to refine the segmentation boundaries
of words. Our results demonstrate that incor-
porating POS categorization yields substantial
performance gains on morphological segmen-
tation of Arabic. 1

1 Introduction

A tight connection between morphology and syntax
is well-documented in linguistic literature. In many
languages, morphology plays a central role in mark-
ing syntactic structure, while syntactic relations
help to reduce morphological ambiguity (Harley and
Phillips, 1994). Therefore, in an unsupervised lin-
guistic setting which is rife with ambiguity, model-
ing this connection can be particularly beneficial.

However, existing unsupervised morphological
analyzers take little advantage of this linguistic
property. In fact, most of them operate at the vo-
cabulary level, completely ignoring sentence con-
text. This design is not surprising: a typical mor-
phological analyzer does not have access to syntac-

1The source code for the work presented in this paper is
available at http://groups.csail.mit.edu/rbg/code/morphsyn/.

tic information, because morphological segmenta-
tion precedes other forms of sentence analysis.

In this paper, we demonstrate that morphological
analysis can utilize this connection without assum-
ing access to full-fledged syntactic information. In
particular, we focus on two aspects of the morpho-
syntactic connection:

• Morphological consistency within POS cat-
egories. Words within the same syntactic cat-
egory tend to select similar affixes. This lin-
guistic property significantly reduces the space
of possible morphological analyses, ruling out
assignments that are incompatible with a syn-
tactic category.

• Morphological realization of grammatical
agreement. In many morphologically rich lan-
guages, agreement between syntactic depen-
dents is expressed via correlated morphological
markers. For instance, in Semitic languages,
gender and number agreement between nouns
and adjectives is expressed using matching suf-
fixes. Enforcing mutually consistent segmen-
tations can greatly reduce ambiguity of word-
level analysis.

In both cases, we do not assume that the relevant
syntactic information is provided, but instead jointly
induce it as part of morphological analysis.

We capture morpho-syntactic relations in a
Bayesian model that grounds intra-word decisions
in sentence-level context. Like traditional unsuper-
vised models, we generate morphological structure
from a latent lexicon of prefixes, stems, and suffixes.

1

In addition, morphological analysis is guided by a
latent variable that clusters together words with sim-
ilar affixes, acting as a proxy for POS tags. More-
over, a sequence-level component further refines the
analysis by correlating segmentation decisions be-
tween adjacent words that exhibit morphological
agreement. We encourage this behavior by encoding
a transition distribution over adjacent words, using
string match cues as a proxy for grammatical agree-
ment.

We evaluate our model on the standard Arabic
treebank. Our full model yields 86.2% accuracy,
outperforming the best published results (Poon et
al., 2009) by 8.5%. We also found that modeling
morphological agreement between adjacent words
yields greater improvement than modeling syntac-
tic categories. Overall, our results demonstrate that
incorporating syntactic information is a promising
direction for improving morphological analysis.

2 Related Work

Research in unsupervised morphological segmenta-
tion has gained momentum in recent years bring-
ing about significant developments to the area.
These advances include novel Bayesian formula-
tions (Goldwater et al., 2006; Creutz and Lagus,
2007; Johnson, 2008), methods for incorporat-
ing rich features in unsupervised log-linear models
(Poon et al., 2009) and the development of multilin-
gual morphological segmenters (Snyder and Barzi-
lay, 2008a).

Our work most closely relates to approaches that
aim to incorporate syntactic information into mor-
phological analysis. Surprisingly, the research in
this area is relatively sparse, despite multiple results
that demonstrate the connection between morphol-
ogy and syntax in the context of part-of-speech tag-
ging (Toutanova and Johnson, 2008; Habash and
Rambow, 2005; Dasgupta and Ng, 2007; Adler
and Elhadad, 2006). Toutanova and Cherry (2009)
were the first to systematically study how to in-
corporate part-of-speech information into lemmati-
zation and empirically demonstrate the benefits of
this combination. While our high-level goal is simi-
lar, our respective problem formulations are distinct.
Toutanova and Cherry (2009) have considered a
semi-supervised setting where an initial morpholog-

ical dictionary and tagging lexicon are provided but
the model also has access to unlabeled data. Since a
lemmatizer and tagger trained in isolation may pro-
duce mutually inconsistent assignments, and their
method employs a log-linear reranker to reconcile
these decisions. This reranking method is not suit-
able for the unsupervised scenario considered in our
paper.

Our work is most closely related to the approach
of Can and Manandhar (2009). Their method also
incorporates POS-based clustering into morpholog-
ical analysis. These clusters, however, are learned
as a separate preprocessing step using distributional
similarity. For each of the clusters, the model se-
lects a set of affixes, driven by the frequency of their
occurrences in the cluster. In contrast, we model
morpho-syntactic decisions jointly, thereby enabling
tighter integration between the two. This design
also enables us to capture additional linguistic phe-
nomena such as agreement. While this technique
yields performance improvement in the context of
their system, the final results does not exceed state-
of-the-art systems that do not exploit this informa-
tion (for e.g., (Creutz and Lagus, 2007)).

3 Model

Given a corpus of unannotated and unsegmented
sentences, our goal is to infer the segmentation
boundaries of all words. We represent segmen-
tations and syntactic categories as latent variables
with a directed graphical model, and we perform
Bayesian inference to recover the latent variables of
interest. Apart from learning a compact morpheme
lexicon that explains the corpus well, we also model
morpho-syntactic relations both within each word
and between adjacent words to improve segmenta-
tion performance. In the remaining section, we first
provide the key linguistic intuitions on which our
model is based before describing the complete gen-
erative process.

3.1 Linguistic Intuition

While morpho-syntactic interface spans a range of
linguistic phenomena, we focus on two facets of this
connection. Both of them provide powerful con-
straints on morphological analysis and can be mod-
eled without explicit access to syntactic annotations.

2

Morphological consistency within syntactic cate-
gory. Words that belong to the same syntactic cat-
egory tend to select similar affixes. In fact, the power
of affix-related features has been empirically shown
in the task of POS tag prediction (Habash and Ram-
bow, 2005). We hypothesize that this regularity can
also benefit morphological analyzers by eliminat-
ing assignments with incompatible prefixes and suf-
fixes. For instance, a state-of-the-art segmenter er-
roneously divides the word “Al{ntxAbAt” into four
morphemes “Al-{ntxAb-A-t” instead of three “Al-
{ntxAb-At” (translated as “the-election-s”.) The af-
fix assignment here is clearly incompatible — de-
terminer “Al” is commonly associated with nouns,
while suffix “A” mostly occurs with verbs.

Since POS information is not available to the
model, we introduce a latent variable that encodes
affix-based clustering. In addition, we consider a
variant of the model that captures dependencies be-
tween latent variables of adjacent words (analogous
to POS transitions).

Morphological realization of grammatical agree-
ment. In morphologically rich languages, agree-
ment is commonly realized using matching suffices.
In many cases, members of a dependent pair such
as adjective and noun have the exact same suf-
fix. A common example in the Arabic Treebank
is the bigram “Al-Df-p Al-grby-p” (which is trans-
lated word-for-word as “the-bank the-west”) where
the last morpheme “p” is a feminine singular noun
suffix.

Fully incorporating agreement constraints in the
model is difficult, since we do not have access to
syntactic dependencies. Therefore, we limit our at-
tention to adjacent words which end with similar
strings – for e.g., “p” in the example above. The
model encourages consistent segmentation of such
pairs. While our string-based cue is a simple proxy
for agreement relation, it turns to be highly effective
in practice. On the Penn Arabic treebank corpus, our
cue has a precision of around 94% at the token-level.

3.2 Generative Process
The high-level generative process proceeds in four
phases:

(a) Lexicon Model: We begin by generating mor-
pheme lexicons L using parameters γ. This set

of lexicons consists of separate lexicons for pre-
fixes, stems, and suffixes generated in a hierar-
chical fashion.

(b) Segmentation Model: Conditioned on L, we
draw word types, their segmentations, and also
their syntactic categories (W ,S,T).

(c) Token-POS Model: Next, we generate the un-
segmented tokens in the corpus and their syn-
tactic classes (w, t) from a standard first-order
HMM which has dependencies between adja-
cent syntactic categories.

(d) Token-Seg Model: Lastly, we generate token
segmentations s from a first-order Markov chain
that has dependencies between adjacent seg-
mentations.

The complete generative story can be summarized
by the following equation:

P (w,s, t,W ,S,T ,L,Θ,θ|γ,α,β) =
P (L|γ) (a)

P (W ,S,T ,Θ|L,γ,α) (b)

Ppos(w, t,θ|W ,S,T ,L,α) (c)

Pseg(s|W ,S,T ,L,β,α) (d)

where γ,α,Θ,θ,β are hyperparameters and pa-
rameters whose roles we shall detail shortly.

Our lexicon model captures the desirability of
compact lexicon representation proposed by prior
work by using parameters γ that favors small lexi-
cons. Furthermore, if we set the number of syntac-
tic categories in the segmentation model to one and
exclude the token-based models, we recover a seg-
menter that is very similar to the unigram Dirichlet
Process model (Goldwater et al., 2006; Snyder and
Barzilay, 2008a; Snyder and Barzilay, 2008b). We
shall elaborate on this point in Section 4.

The segmentation model captures morphological
consistency within syntactic categories (POS tag),
whereas the Token-POS model captures POS tag
dependencies between adjacent tokens. Lastly, the
Token-Seg model encourages consistent segmenta-
tions between adjacent tokens that exhibit morpho-
logical agreement.

3

Lexicon Model The design goal is to encourage
morpheme types to be short and the set of affixes
(i.e. prefixes and suffixes) to be much smaller than
the set of stems. To achieve this, we first draw each
morpheme σ in the master lexicon L∗ according to a
geometric distribution which assigns monotonically
smaller probability to longer morpheme lengths:

|σ| ∼ Geometric(γl)

The parameter γl for the geometric distribution is
fixed and specified beforehand. We then draw the
prefix, the stem, and suffix lexicons (denoted by
L−, L0, L+ respectively) from morphemes in L∗.
Generating the lexicons in such a hierarchical fash-
ion allows morphemes to be shared among the
lower-level lexicons. For instance, once determiner
“Al” is generated in the master lexicon, it can be
used to generate prefixes or stems later on. To fa-
vor compact lexicons, we again make use of a ge-
ometric distribution that assigns smaller probability
to lexicons that contain more morphemes:

prefix: |L−| ∼ Geometric(γ−)
stem: |L0| ∼ Geometric(γ0)

suffix: |L+| ∼ Geometric(γ+)

By separating morphemes into affixes and stems, we
can control the relative sizes of their lexicons with
different parameters.

Segmentation Model The model independently
generates each word type using only morphemes in
the affix and stem lexicons, such that each word
has exactly one stem and is encouraged to have few
morphemes. We fix the number of syntactic cate-
gories (tags) to K and begin the process by generat-
ing multinomial distribution parameters for the POS
tag prior from a Dirichlet prior:

ΘT ∼ Dirichlet(αT , {1, . . . ,K})

Next, for each possible value of the tag T ∈
{1, . . . ,K}, we generate parameters for a multino-
mial distribution (again from a Dirichlet prior) for
each of the prefix and the suffix lexicons:

Θ−|T ∼ Dirichlet(α−, L−)

Θ0 ∼ Dirichlet(α0, L0)
Θ+|T ∼ Dirichlet(α+, L+)

By generating parameters in this manner, we allow
the multinomial distributions to generate only mor-
phemes that are present in the lexicon. Also, at infer-
ence time, only morphemes in the lexicons receive
pseudo-counts. Note that the affixes are generated
conditioned on the tag; But the stem are not.2

Now, we are ready to generate each word type
W , its segmentation S, and its syntactic category T .
First, we draw the number of morpheme segments
|S| from a geometric distribution truncated to gener-
ate at most five morphemes:

|S| ∼ Truncated-Geometric(γ|S|)

Next, we pick one of the morphemes to be the stem
uniformly at random, and thus determine the number
of prefixes and suffixes. Then, we draw the syntactic
category T for the word. (Note that T is a latent
variable which we recover during inference.)

T ∼ Multinomial(ΘT)

After that, we generate each stem σ0, prefix σ−, and
suffix σ+ independently:

σ0 ∼ Multinomial(Θ0)
σ−|T ∼ Multinomial(Θ−|T)

σ+|T ∼ Multinomial(Θ+|T)

Token-POS Model This model captures the de-
pendencies between the syntactic categories of ad-
jacent tokens with a first-order HMM. Conditioned
on the type-level assignments, we generate (unseg-
mented) tokens w and their POS tags t:

Ppos(w, t|W ,T ,θ)

=
∏
wi,ti

P (ti−1|ti, θt|t)P (wi|ti, θw|t)

where the parameters of the multinomial distribu-
tions are generated by Dirichlet priors:

θt|t ∼ Dirichlet(αt|t, {1, . . . ,K})
θw|t ∼ Dirichlet(αw|t,W t)

2We design the model as such since the dependencies be-
tween affixes and the POS tag are much stronger than those be-
tween the stems and tags. In our preliminary experiments, when
stems are also generated conditioned on the tag, spurious stems
are easily created and associated with garbage-collecting tags.

4

Here, W t refers to the set of word types that are
generated by tag t. In other words, conditioned on
tag t, we can only generate word w from the set of
word types inW t which is generated earlier (Lee et
al., 2010).

Token-Seg Model The model captures the mor-
phological agreement between adjacent segmenta-
tions using a first-order Markov chain. The proba-
bility of drawing a sequence of segmentations s is
given by

Pseg(s|W ,S,T ,L,β,α) =
∏

(si−1,si)

p(si|si−1)

For each pair of segmentations si−1 and si, we de-
termine: (1) if they should exhibit morpho-syntactic
agreement, and (2) if their morphological segmenta-
tions are consistent. To answer the first question, we
first obtain the final suffix for each of them. Next,
we obtain n, the length of the longer suffix. For
each segmentation, we define the ending to be the
last n characters of the word. We then use matching
endings as a proxy for morpho-syntactic agreement
between the two words. To answer the second ques-
tion, we use matching final suffixes as a cue for con-
sistent morphological segmentations. To encode the
linguistic intuition that words that exhibit morpho-
syntactic agreement are likely to be morphological
consistent, we define the above probability distribu-
tion to be:

p(si|si−1)

=


β1 if same endings and same final suffix
β2 if same endings but different final suffixes
β3 otherwise (e.g. no suffix)

where β1 + β2 + β3 = 1, with β1 > β3 > β2. By
setting β1 to a high value, we encourage adjacent
tokens that are likely to exhibit morpho-syntactic
agreement to have the same final suffix. And by set-
ting β3 > β2, we also discourage adjacent tokens
with the same endings to be segmented differently. 3

4 Inference

Given a corpus of unsegmented and unannotated
word tokens w, the objective is to recover values of

3Although p sums to one, it makes the model deficient since,
conditioned everything already generated, it places some prob-
ability mass on invalid segmentation sequences.

all latent variables, including the segmentations s.

P (s, t,S,T ,L|w,W ,γ,α,β)

∝
∫
P (w, s, t,W ,S,T ,L,Θ,θ|γ,α,β)dΘdθ

We want to sample from the above distribution us-
ing collapsed Gibbs sampling (Θ and θ integrated
out.) In each iteration, we loop over each word type
Wi and sample the following latent variables: its tag
Ti, its segmentation Si, the segmentations and tags
for all of its token occurrences (si, ti), and also the
morpheme lexicons L:

P (L, Ti, Si, si, ti|
s−i, t−i,S−i,T−i,w−i,W−i,γ,α,β) (1)

such that the type and token-level assignments are
consistent, i.e. for all t ∈ ti we have t = Ti, and for
all s ∈ si we have s = Si.

4.1 Approximate Inference

Naively sampling the lexicons L is computationally
infeasible since their sizes are unbounded. There-
fore, we employ an approximation which turns is
similar to performing inference with a Dirichlet Pro-
cess segmentation model. In our approximation
scheme, for each possible segmentation and tag hy-
pothesis (Ti, Si, si, ti), we only consider one possi-
ble value for L, which we denote the minimal lexi-
cons. Hence, the total number of hypothesis that we
have to consider is only as large as the number of
possibilities for (Ti, Si, si, ti).

Specifically, we recover the minimal lexicons as
follows: for each segmentation and tag hypothesis,
we determine the set of distinct affix and stem types
in the whole corpus, including the morphemes intro-
duced by segmentation hypothesis under considera-
tion. This set of lexicons, which we call the minimal
lexicons, is the most compact ones that are needed
to generate all morphemes proposed by the current
hypothesis.

Furthermore, we set the number of possible POS
tags K = 5. 4 For each possible value of the tag,
we consider all possible segmentations with at most
five segments. We further restrict the stem to have no

4We find that increasing K to 10 does not yield improve-
ment.

5

more than two prefixes or suffixes and also that the
stem cannot be shorter than the affixes. This further
restricts the space of segmentation and tag hypothe-
ses, and hence makes the inference tractable.

4.2 Sampling equations
Suppose we are considering the hypothesis with seg-
mentation S and POS tag T for word type Wi. Let
L = (L∗, L−, L0, L+) be the minimal lexicons for
this hypothesis (S, T). We sample the hypothesis
(S, T, s = S, t = T,L) proportional to the product
of the following four equations.

Lexicon Model∏
σ∈L∗

γl(1− γl)|σ| ×

γ−(1− γ−)|L−| ×
γ0(1− γ0)|L0| ×
γ+(1− γ+)|L+| (2)

This is a product of geometric distributions involv-
ing the length of each morpheme σ and the size
of each of the prefix, the stem, and the suffix lexi-
cons (denoted as |L−|, |L0|, |L+| respectively.) Sup-
pose, a new morpheme type σ0 is introduced as a
stem. Relative to a hypothesis that introduces none,
this one incurs an additional cost of (1 − γ0) and
γl(1 − γl)|σ0|. In other words, the hypothesis is pe-
nalized for increasing the stem lexicon size and gen-
erating a new morpheme of length |σ0|. In this way,
the first and second terms play a role similar to the
concentration parameter and base distribution in a
DP-based model.

Segmentation Model

γ|S|(1− γ|S|)|S|∑5
j=0 γ|S|(1− γ|S|)j

×

n−iT + α

N−i + αK
×

n−iσ0
+ α0

N−i0 + α0|L0|
×

n−iσ−|T + α−

N−i−|T + α−|L−|
×

n−iσ+|T + α+

N−i+|T + α+|L+|
(3)

The first factor is the truncated geometric distribu-
tion of the number of segmentations |S|, and the
second factor is the probability of generate the tag
T . The rest are the probabilities of generating the
stem σ0, the prefix σ−, and the suffix σ+ (where the
parameters of the multinomial distribution collapsed
out). n−1

T is the number of word types with tag T
and N−i is the total number of word types. n−iσ−|T
refers to the number of times prefix σ− is seen in all
word types that are tagged with T , and N−i−|T is the
total number of prefixes in all word types that has tag
T . All counts exclude the word type Wi whose seg-
mentation we are sampling. If there is another pre-
fix, N−i−|T is incremented (and also n−iσ−|T if the sec-
ond prefix is the same as the first one.) Integrating
out the parameters introduces dependencies between
prefixes. The rest of the notations read analogously.

Token-POS Model

αw|t
(mi)

(M−it + αw|t|W t|)(mi)
×

K∏
t=1

K∏
t′=1

(m−it′|t + αt|t)
(mi

t′|t)

(M−it + αt|t)
(mi

t′|t)
(4)

The two terms are the token-level emission and tran-
sition probabilities with parameters integrated out.
The integration induces dependences between all
token occurrences of word type W which results
in ascending factorials defined as α(m) = α(α +
1) · · · (α + m − 1) (Liang et al., 2010). M−it is
the number of tokens that have POS tag t, mi is the
number of tokens wi, and m−it′|t is the number of to-
kens t-to-t′ transitions. (Both exclude counts con-
tributed by tokens belong to word type Wi.) |W t| is
the number of word types with tag t.

Token-Seg Model

β
miβ1
1 β

miβ2
2 β

miβ3
3 (5)

Here,mi
β1

refers to the number of transitions involv-
ing token occurrences of word type Wi that exhibit
morphological agreement. This does not result in
ascending factorials since the parameters of transi-
tion probabilities are fixed and not generated from
Dirichlet priors, and so are not integrated out.

6

4.3 Staged Training

Although the Gibbs sampler mixes regardless of the
initial state in theory, good initialization heuristics
often speed up convergence in practice. We there-
fore train a series of models of increasing complex-
ity (see section 6 for more details), each with 50 iter-
ations of Gibbs sampling, and use the output of the
preceding model to initialize the subsequent model.
The initial model is initialized such that all words are
not segmented. When POS tags are first introduced,
they are initialized uniformly at random.

5 Experimental Setup

Performance metrics To enable comparison with
previous approaches, we adopt the evaluation set-up
of Poon et al. (2009). They evaluate segmentation
accuracy on a per token basis, using recall, precision
and F1-score computed on segmentation points. We
also follow a transductive testing scenario where the
same (unlabeled) data is used for both training and
testing the model.

Data set We evaluate segmentation performance
on the Penn Arabic Treebank (ATB).5 It consists of
about 4,500 sentences of modern Arabic obtained
from newswire articles. Following the preprocessing
procedures of Poon et al. (2009) that exclude certain
word types (such as abbreviations and digits), we
obtain a corpus of 120,000 tokens and 20,000 word
types. Since our full model operates over sentences,
we train the model on the entire ATB, but evaluate
on the exact portion used by Poon et al. (2009).

Pre-defined tunable parameters and testing
regime In all our experiments, we set γl = 1

2 (for
length of morpheme types) and γ|S| = 1

2 (for num-
ber of morpheme segments of each word.) To en-
courage a small set of affix types relative to stem
types, we set γ− = γ+ = 1

1.1 (for sizes of the af-
fix lexicons) and γ0 = 1

10,000 (for size of the stem
lexicon.) We employ a sparse Dirichlet prior for the
type-level models (for morphemes and POS tag) by
setting α = 0.1. For the token-level models, we set
hyperparameters for Dirichlet priors αw|t = 10−5

5Our evaluation does not include the Hebrew and Arabic
Bible datasets (Snyder and Barzilay, 2008a; Poon et al., 2009)
since these corpora consists of short phrases that omit sentence
context.

Model R P F1 t-test
PCT 09 69.2 88.5 77.7 -
Morfessor 72.6 77.4 74.9 -
BASIC 71.4 86.7 78.3 (2.9) -
+POS 75.4 87.4 81.0 (1.5) +
+TOKEN-POS 75.7 88.5 81.6 (0.7) ∼
+TOKEN-SEG 82.1 90.8 86.2 (0.4) ++

Table 1: Results on the Arabic Treebank (ATB) data
set: We compare our models against Poon et al. (2009)
(PCT09) and the Morfessor system (Morfessor-CAT).
For our full model (+TOKEN-SEG) and its simplifica-
tions (BASIC, +POS, +TOKEN-POS), we perform five
random restarts and show the mean scores. The sample
standard deviations are shown in brackets. The last col-
umn shows results of a paired t-test against the preceding
model: ++ (significant at 1%), + (significant at 5%), ∼
(not significant), - (test not applicable).

(for unsegmented tokens) and αt|t = 1.0 (for POS
tags transition.) To encourage adjacent words that
exhibit morphological agreement to have the same
final suffix, we set β1 = 0.6, β2 = 0.1, β1 = 0.3.

In all the experiments, we perform five runs us-
ing different random seeds and report the mean score
and the standard deviation.

Baselines Our primary comparison is against the
morphological segmenter of Poon et al. (2009)
which yields the best published results on the ATB
corpus. In addition, we compare against the Mor-
fessor Categories-MAP system (Creutz and Lagus,
2007). Similar to our model, their system uses latent
variables to induce clustering over morphemes. The
difference is in the nature of the clustering: the Mor-
fessor algorithm associates a latent variable for each
morpheme, grouping morphemes into four broad
categories (prefix, stem, suffix, and non-morpheme)
but not introducing dependencies between affixes di-
rectly. For both systems, we quote their performance
reported by Poon et al. (2009).

6 Results

Comparison with the baselines Table 1 shows that
our full model (denoted +TOKEN-SEG) yields a
mean F1-score of 86.2, compared to 77.7 and 74.9
obtained by the baselines. This performance gap
corresponds to an error reduction of 38.1% over the
best published results.

7

Ablation Analysis To assess relative impact of
various components, we consider several simplified
variants of the model:

• BASIC is the type-based segmentation model
that is solely driven by the lexicon.6

• +POS adds latent variables but does not cap-
ture transitions and agreement constraints.

• +TOKEN-POS is equivalent to the full model,
without agreement constraints.

Our results in Table 1 clearly demonstrate that
modeling morpho-syntactic constraints greatly im-
proves the accuracy of morphological segmentation.

We further examine the performance gains arising
from improvements due to (1) encouraging morpho-
logical consistency within syntactic categories, and
(2) morphological realization of grammatical agree-
ment.

We evaluate our models on a subset of words that
exhibit morphological consistency. Table 2 shows
the accuracies for words that begin with the prefix
“Al” (determiner) and end with a suffix “At” (plural
noun suffix.) An example is the word “Al-{ntxAb-
At” which is translated as “the-election-s”. Such
words make up about 1% of tokens used for eval-
uation, and the two affix boundaries constitute about
3% of the all gold segmentation points. By intro-
ducing a latent variable to capture dependencies be-
tween affixes, +POS is able to improve segmenta-
tion performance over BASIC. When dependencies
between latent variables are introduced, +TOKEN-
POS yields additional improvements.

We also examine the performance gains due to
morphological realization of grammatical agree-
ment. We select the set of tokens that share the
same final suffix as the preceding token, such as
the bigram “Al-Df-p Al-grby-p” (which is translated
word-for-word as “the-bank the-west”) where the
last morpheme “p” is a feminine singular noun suf-
fix. This subset makes up about 4% of the evaluation
set, and the boundaries of the final suffixes take up
about 5% of the total gold segmentation boundaries.

6The resulting model is similar in spirit to the unigram DP-
based segmenter (Goldwater et al., 2006; Snyder and Barzilay,
2008a; Snyder and Barzilay, 2008b).

Model
Token Type

F1 Acc. F1 Acc.
BASIC 68.3 13.9 73.8 24.3
+POS 75.4 26.4 78.5 38.0
+TOKEN-POS 76.5 34.9 82.0 49.6
+TOKEN-SEG 84.0 49.5 85.4 57.7

Table 2: Segmentation performance on words that begin
with prefix “Al” (determiner) and end with suffix “At”
(plural noun suffix). The mean F1 scores are computed
using all boundaries of words in this set. For each word,
we also determine if both affixes are recovered while ig-
noring any other boundaries between them. The other
two columns report this accuracy at both the type-level
and the token-level.

Model
Token Type

F1 Acc. F1 Acc.
BASIC 85.6 70.6 79.5 58.6
+POS 87.6 76.4 82.3 66.3
+TOKEN-POS 87.5 75.2 82.2 65.3
+TOKEN-SEG 92.8 91.1 88.9 84.4

Table 3: Segmentation performance on words that have
the same final suffix as their preceding words. The F1
scores are computed based on all boundaries within the
words, but the accuracies are obtained using only the final
suffixes.

Table 3 reveals this category of errors persisted un-
til the final component (+TOKEN-SEG) was intro-
duced.

7 Conclusion

Although the connection between syntactic (POS)
categories and morphological structure is well-
known, this relation is rarely exploited to improve
morphological segmentation performance. The per-
formance gains motivate further investigation into
morpho-syntactic models for unsupervised language
analysis.

Acknowledgements

This material is based upon work supported by
the U.S. Army Research Laboratory and the
U.S. Army Research Office under contract/grant
number W911NF-10-1-0533. Thanks to the MIT
NLP group and the reviewers for their comments.

8

References
Meni Adler and Michael Elhadad. 2006. An un-

supervised morpheme-based hmm for hebrew mor-
phological disambiguation. In Proceedings of the
ACL/CONLL, pages 665–672.

Burcu. Can and Suresh Manandhar. 2009. Unsupervised
learning of morphology by using syntactic categories.
In Working Notes, CLEF 2009 Workshop.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Language
Processing, 4(1).

Sajib Dasgupta and Vincent Ng. 2007. Unsuper-
vised part-of-speech acquisition for resource-scarce
languages. In Proceedings of the EMNLP-CoNLL,
pages 218–227.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2006. Contextual dependencies in unsupervised
word segmentation. In Proceedings of the ACL, pages
673–680.

Nizar Habash and Owen Rambow. 2005. Arabic tok-
enization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 573–580, Ann
Arbor, Michigan, June. Association for Computational
Linguistics.

Heidi Harley and Colin Phillips, editors. 1994. The
Morphology-Syntax Connection. Number 22 in MIT
Working Papers in Linguistics. MIT Press.

Mark Johnson. 2008. Unsupervised word segmentation
for Sesotho using adaptor grammars. In Proceedings
of the Tenth Meeting of ACL Special Interest Group
on Computational Morphology and Phonology, pages
20–27, Columbus, Ohio, June. Association for Com-
putational Linguistics.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay.
2010. Simple type-level unsupervised POS tagging.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 853–
861, Cambridge, MA, October. Association for Com-
putational Linguistics.

Percy Liang, Michael I. Jordan, and Dan Klein. 2010.
Type-based mcmc. In Human Language Technolo-
gies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 573–581, Los Angeles, California,
June. Association for Computational Linguistics.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proceedings of HLT-NAACL
2009, pages 209–217, Boulder, Colorado, June. As-
sociation for Computational Linguistics.

Benjamin Snyder and Regina Barzilay. 2008a. Crosslin-
gual propagation for morphological analysis. In Pro-
ceedings of the AAAI, pages 848–854.

Benjamin Snyder and Regina Barzilay. 2008b. Unsuper-
vised multilingual learning for morphological segmen-
tation. In Proceedings of ACL-08: HLT, pages 737–
745, Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Kristina Toutanova and Colin Cherry. 2009. A global
model for joint lemmatization and part-of-speech pre-
diction. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP, pages 486–494, Suntec, Singapore,
August. Association for Computational Linguistics.

Kristina Toutanova and Mark Johnson. 2008. A bayesian
lda-based model for semi-supervised part-of-speech
tagging. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1521–1528. MIT Press,
Cambridge, MA.

9

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 10–18,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

The Effect of Automatic Tokenization, Vocalization, Stemming, and POS
Tagging on Arabic Dependency Parsing

Emad Mohamed

Suez Canal University
Suez, Egypt

emohamed@umail.iu.edu

Abstract
We use an automatic pipeline of word
tokenization, stemming, POS tagging, and
vocalization to perform real-world Arabic
dependency parsing. In spite of the high
accuracy on the modules, the very few errors in
tokenization, which reaches an accuracy of
99.34%, lead to a drop of more than 10% in
parsing, indicating that no high quality
dependency parsing of Arabic, and possibly
other morphologically rich languages, can be
reached without (semi-)perfect tokenization. The
other module components, stemming,
vocalization, and part of speech tagging, do not
have the same profound effect on the
dependency parsing process.

1. Introduction

Arabic is a morphologically rich language in which
words may be composed of several tokens and
hold several syntactic relations. We define word to
be a whitespace delimited unit and token to be
(part of) a word that has a syntactic function. For
example, the word wsytzwjhA (وسيتزوجها)(English:
And he will marry her) consists of 4 tokens: a
conjunction w, a future marker s, a verb inflected
for the singular masculine in the perfective form
ytzwj, and a feminine singular 3rd person object
pronoun. Parsing such a word requires
tokenization, and performing dependency parsing
in the tradition of the CoNLL-X (Buchholz and
Marsi, 2006) and CoNLL 2007 shared task (Nivre
et al, 2007) also requires part of speech tagging,
lemmatization, linguistic features, and
vocalization, all of which were in the human
annotated gold standard form in the shared task.

The current study aims at measuring the
effect of a pipeline of non gold standard
tokenization, lemmatization, vocalization,
linguistic features and POS tagging on the quality
of Arabic dependency parsing. We only assume

that we have gold standard sentence boundaries
since we do not agree with the sentence boundaries
in the data, and introducing our own will have a
complicating effect on evaluation. The CoNLL
shared tasks of 2006 and 2007 used gold standard
components in all fields, which is not realistic for
Arabic, or for any other language. For Arabic and
other morphologically rich languages, it may be
more unrealistic than it is for English, for example,
since the CoNLL 2007 Arabic dataset has tokens,
rather than white space delimited words, as entries.
A single word may have more than one
syntactically functional token. Dependency parsing
has been selected in belief that it is more suitable
for Arabic than constituent-based parsing. All
grammatical relations in Arabic are binary
asymmetrical relations that exist between the
tokens of a sentence. According to Jonathan
Owens (1997: 52): “In general the Arabic notion of
dependency and that defined in certain modern
versions e.g. Tesniere (1959) rest on common
principles”.

With a tokenization accuracy of 99.34%, a
POS tagging accuracy of 96.39%, and with the
absence of linguistic features and the use of word
stems instead of lemmas, the Labeled Attachment
Score drops from 74.75% in the gold standard
experiment to 63.10% in the completely automatic
experiment. Most errors are a direct result of
tokenization errors, which indicates that despite the
high accuracy on tokenization, it is still not enough
to produce satisfactory parsing numbers.

2. Related Studies

The bulk of literature on Arabic Dependency
Parsing stems from the two CoNLL shared tasks of
2006 and 2007. In CoNLL-X (Buchholz and

10

Marsi, 2006), the average Labeled Attachment
Score on Arabic across all results presented by the
19 participating teams was 59.9% with a standard
deviation of 6.5. The best results were obtained by
McDonald et al (2006) with a score of 66.9%
followed by Nivre et al (2006) with 66.7%.

The best results on Arabic in the CoNLL 2007
shared task were obtained by Hall et al (2007) as
they obtained a Labeled Attachment Score of
76.52%, 9.6 percentage points above the highest
score of the 2006 shared task. Hall et al used an
ensemble system, based on the MaltParser
dependency parser that extrapolates from a single
MaltParser system. The settings with the Single
MaltParser led to a Labeled Accuracy Score of
74.75% on Arabic. The Single MaltParser is the
one used in the current paper. All the papers in
both shared tasks used gold standard tokenization,
vocalization, lemmatization, POS tags, and
linguistic features.

A more recent study is that by Marton et al
(2010). Although Marton et al varied the POS
distribution and linguistic features, they still used
gold standard tokenization. They also used the
Columbia Arabic Treebank, which makes both the
methods and data different from those presented
here.

3. Data, Methods, and Evaluation
3.1.Data

The data used for the current study is the same data
set used for the CoNLL (2007) shared task, with
the same division into training set, and test set.
This design helps in comparing results in a way
that enables us to measure the effect of automatic
pre-processing on parsing accuracy. The data is in
the CoNLL column format. In this format, each
token is represented through columns each of
which has some specific information. The first
column is the ID, the second the token, the third
the lemma, the fourth the coarse-grained POS tag,
the fifth the POS tag, and the sixth column is a list
of linguistic features. The last two columns of the
vector include the head of the token and the
dependency relation between the token and its

head. Linguistic features are an unordered set of
syntactic and/or morphological features, separated
by a vertical bar (|), or an underscore if not
available. The features in the CoNLL 2007 Arabic
dataset represent case, mood, definiteness, voice,
number, gender and person.

The data used for training the
stemmer/tokenizer is taken from the Arabic
Treebank (Maamouri and Bies, 2004). Care has
been taken not to use the parts of the ATB that are
also used in the Prague Arabic Dependency
Treebank (Haijc et al 2004) since the PADT and
the ATB share material.

3.2. Methods
We implement a pipeline as follows

(1) We build a memory-based word segmenter
using TIMBL (Daelemans et al, 2007)
which treats segmentation as a per letter
classification in which each word segment
is delimited by a + sign whether it is
syntactic or inflectional. A set of hand-
written rules then produces tokens and
stems based on this. Tokens are
syntactically functional units, and stems
are the tokens without the inflectional
segments, For example, the word
wsytzwjhA above is segmented as
w+s+y+tzwj+hA. The tokenizer splits this
into four tokens w, s, ytzwj, and hA, and
the stemmer strips the inflectional prefix
from ytzwj to produce tzwj. In the
segmentation experiments, the best results
were obtained with the IB1 algorithm with
similarity computed as weighted overlap,
relevance weights computed with gain
ratio, and the number of k nearest distances
equal to 1.

(2) The tokens are passed to the part of
speech tagger. We use the Memory-based
Tagger, MBT, (Daelemans et al: 2007).
The MBT features for known words
include the two context words to the left
along with their disambiguated POS tags,
the focus word itself, and one word to the
right along with its ambitag (the set of all
possible tags it can take). For unknown
words, the features include the first five
letters and the last three letters of the word,
the, the left context tag, the right context

11

ambitag, one word to the left, the focus
word itself, one ambitag to the right, and
one word to the right.

(3) The column containing the linguistic
features in the real world dependency
experiment will have to remain vacant due
to the fact that it is hard to produce these
features automatically given only naturally
occurring text.

(4) The dependency parser (MaltParser 1.3.1)
takes all the information above and
produces the data with head and
dependency annotations.

Although the purpose of this experiment is to
perform dependency parsing of Arabic without any
assumptions, one assumption we cannot avoid is
that the input text should be divided into sentences.
For this purpose, we use the gold standard division
of text into sentences without trying to detect the
sentence boundaries, although this would be
necessary in actual real-world use of dependency
parsing. The reason for this is that it is not clear
how sentence boundaries are marked in the data as
there are sentences whose length exceeds 300
tokens. If we detected the boundaries
automatically, then we would face the problem of
aligning our sentences with those of the test set for
evaluation, and many of the dependencies would
not still hold.

In the parsing experiments below, we will
use the dependency parser MaltParser (Nivre et al.,
2006). We will use Single MaltParser, as used by
Hall et al (2007), with the same settings for Arabic
that were used in the CoNLL 2007 shared task on
the same data to be as close as possible to the
original results in order to be able to compare the
effect of non gold standard elements in the parsing
process.

3.3.Evaluation
The official evaluation metric in the CoNLL 2007
shared task on dependency parsing was the labeled
attachment score (LAS), i.e., the percentage of
tokens for which a system has predicted the correct
HEAD and DEPREL, but results reported also
included unlabeled attachment score (UAS), i.e.,
the percentage of tokens with correct HEAD, and
the label accuracy (LA), i.e., the percentage of
tokens with correct DEPREL. We will use the
same metrics here.

One major difference between the parsing
experiments which were performed in the 2007
shared task and the ones performed here is
vocalization. The data set which was used in the
shared task was completely vocalized with both
word-internal short vowels and case markings.
Since vocalization in such a perfect form is almost
impossible to produce automatically, we have
decided to primarily use unvocalized data instead.
We have removed the word internal short vowels
as well as the case markings from both the training
set and the test set. This has the advantage of
representing naturally occurring Arabic more
closely, and the disadvantage of losing information
that is only available through vocalization. We
will, however, report on the effect of vocalization
on dependency parsing in the discussion.

To give an estimate of the effects
vocalization has on dependency parsing, we have
replicated the original task with the vocalized data,
and then re-run the experiment with the
unvocalized version. Table 1 presents the results:

 Vocalized Unvocalized
LAS 74.77% 74.16%
UAS 84.09% 83.53%
LA 85.68% 85.44%

Table 1: Vocalized versus unvocalized dependency

parsing

The results of the experiment indicate that
vocalization has a positive effect on the quality of
the parsing output, which may be due to the fact
that ambiguity decreases with vocalization.
Labeled attachment score drops from 74.77% on
the vocalized data to 74.16% on unvocalized data.
Unlabeled attachment score drops from 84.09% to
83.53% and labeled accuracy score from 85.68%
to 85.44%. The difference is minimal, and is
expected to be even smaller with automatic
vocalization

4. Results and discussion
4.1.Tokenization

We obtain an accuracy of 99.34%. Out of the 4550
words which the test set comprises, there are only
30 errors affecting 21 out of the 132 sentences in
the test set. 17 of the errors can be characterized as
over-tokenization while the other 13 are under-

12

tokenization. 13 of the over- tokenization cases are
different tokens of the word blywn (Eng. billion) as
the initial b in the words was treated as a
preposition while it is an original part of the word.

A closer examination of the errors in the
tokenization process reveals that most of the words
which are incorrectly tokenized do not occur in the
training set, or occur there only in the form
produced by the tokenizer. For example, the word
blywn does not occur in the training set, but the
form b+lywn+p occurs in the training set, and this
is the reason the word is tokenized erroneously.
Another example is the word bAsm, which is
ambiguous between a one-token word bAsm (Eng.
smiling), and a two-token word, b+Asm (Eng. in
the name of). Although the word should be
tokenized as b+Asm, the word occurs in the
training set as bAsm, which is a personal name.

In fact, only five words in the 30 mis-
tokenized words are available in the training set,
which means that the tokenizer has a very high
accuracy on known words. There are yet two
examples that are worthy of discussion. The first
one involves suboptimal orthography. The word
r>smAl (Eng. capital in the financial sense) is in
the training set but is nonetheless incorrectly
tokenized in our experiments because it is written
as brAsmAl (with the preposition b) but with an alif
instead of the hamza. The word was thus not
tokenized correctly. The other example involves an
error in the tokenization in the Prague Arabic
Dependency Treebank. The word >wjh (Eng. I
give/address) has been tokenized in the Prague
Arabic dependency treebank as >wj+h (Eng. its
utmost/prime), which is not the correct
tokenization in this context as the h is part of the
word and is not a different token. The classifier did
nonetheless tokenize it correctly but it was counted
as wrong in the evaluation since it does not agree
with the PADT gold standard.

4.2.Stemming
Since stemming involves removing all the
inflectional prefixes and suffixes from the words,
and since inflectional affixes are not demarcated in
the PADT data set used in the CoNLL shared
tasks, there is no way to know the exact accuracy
of the stemming process in that specific
experiment, but since stemming is a by-product of
segmentation, and since segmentation in general

reaches an accuracy in excess of 98%, stemming
should be trusted as an accurate process.

4.3.Part of speech tagging
The performance of the tagger on gold standard
data with gold standard tokenization is shown in
table 2. The experiment yields an accuracy of
96.39% on all tokens. Known tokens reach an
accuracy of 97.49% while unknown tokens reach
an accuracy of 81.48%. These numbers constitute
the ceiling for accuracy since the real-world
experiment makes use of automatic tokenization,
which definitely leads to lower numbers.

Unknown Known Total
81.48% 97.49% 96.39%

Table 2: Part of speech tagging on gold standard

tokenization

When we run the experiment using
automatic tokenization we obtain an accuracy of
95.70% which is less than 1% lower than the gold
standard accuracy. This indicates that part of
speech tagging has been affected by tokenization
quality. The drop in quality in part of speech
tagging is almost identical to the drop in quality in
tokenization.

While some of the errors made by the part
of speech tagger are due to the fact that nouns,
adjectives, and proper nouns cannot be
distinguished by any formal features, a large
number of the nominal class annotation in the gold
standard data can hardly be justified. For example,
the expression الاتحاد الأوروبي (Eng. the European
Union) is annotated once in the training data as
proper noun and adjective, and another time as a
noun and adjective. A similar confusion holds for
the names of the months and the weekdays, which
are sometimes tagged as nouns and sometimes as
proper nouns.

4.4. Dependency parsing
Now that we have stems, tokens, and part of
speech tags, we can proceed with the parsing
experiment, the final step and the ultimate goal of
the preprocessing modules we have introduced so
far. In order to prepare the training data, we have
replaced the lemmas in the training and testing sets
with the stems since we do not have access to
lemmas in real-world experiments. While this

13

introduces an automatic element in the training set,
it guarantees the similarity between the features in
the training set and those in the test set.

In order to discover whether the fine-
grained POS tagset is necessary, we have run two
parsing experiments using gold standard parts of
speech with stems instead of lemmas, but without
any of the linguistic features included in the gold
standard: the first experiment has the two distinct
part of speech tags and the other one has only the
coarse-grained part of speech tags. Table 3 outlines
the results.

 LAS UAS LA
CPOS+POS 72.54% 82.92% 84.04%
CPOS 73.11% 83.31% 84.39%
CoNLL2007 74.75% 84.21% 84.21%

Table 3: effect of fine-grained POS

As can be seen from table 3, using two part

of speech tagsets harms the performance of the
dependency parser. While the one-tag dependency
parser obtains a Labeled Accuracy Score of
73.11%, the number goes down to 72.54% when
we used the fine-grained part of speech set. In
Unlabeled Attachment Score, the one tag parser
achieves an accuracy of 83.31% compared to
82.92% on two tag parser. The same is also true for
Label Accuracy Score as the numbers go down
from 84.39% when using only one tagset compared
to 84.04% when using two tagsets. This means that
the fine-grained tagset is not needed to perform
real world parsing. We have thus decided to use
the coarse-grained tagset in the two positions of the
part of speech tags. We can also see that this
setting produces results that are 1.64% lower than
those of the Single MaltParser results reported in
the CoNLL 2007 shared task in terms of Labeled
Accuracy Score. The difference can be attributed
to the lack of linguistic features, vocalization, and
the use of stems instead of lemmas. The LAS of
73.11% now constitutes the upper bound for real
world experiments where also parts of speech and
tokens have to be obtained automatically (since
vocalization has been removed, linguistic features
have been removed, and lemmas have been
replaced with automatic stems). It should be noted
that our experiments, with the complete set of gold
standard features, achieve higher results than those
reported in the CoNLL 2007 shared task: a LAS of

74.77 (here) versus a LAS of 74.75 (CoNLL,
2007). This may be attributed to the change of the
parser since we use the 1.3.1 version whereas the
parser used in the 2007 shared task was the 0.4
version.

Using the settings above, we have run an
experiment to parse the test set, which is now
automatic in terms of tokenization, lemmatization,
and part of speech tags, and in the absence of the
linguistic features that enrich the gold standard
training and test sets. Table 4 presents the results
of this experiment.

 Automatic Gold Standard
LAS 63.10% 73.11%
UAS 72.19% 83.31%
LA 82.61% 84.39%

Table 4: Automatic dependency parsing experiment

The LAS drops more than 10 percentage

points from 73.11 to 63.10. This considerable drop
in accuracy is expected since there is a mismatch
in the tokenization which leads to mismatch in the
sentences. The 30 errors in tokenization affect 21
sentences out of a total of 129 in the test set. When
we evaluate the dependency parsing output on the
correctly tokenized sentences only, we obtain
much better results (shown in Table 5). Labeled
Attachment Score on correctly tokenized sentences
is 71.56%, Unlabeled Attachment Score 81.91%,
and Label Accuracy Score is 83.22%. This
indicates that no good quality parsing can be
obtained if there are problems in the tokenization.
A drop of a half percent in the quality of
tokenization causes a drop of ten percentage points
in the quality of parsing, whereas automatic POS
tags and stemming, and the lack of linguistic
features do not cause the same negative effect.

 Correctly-

tokenized
Sentences

Incorrectly-
Tokenized
Sentences

LAS 71.56% 33.60%
UAS 81.91% 38.32%
LA 83.22% 80.49%

Table 5: Dependency parsing Evaluation on Correctly

vs. Incorrectly Tokenized Sentences

14

While correctly tokenized sentences yield
results that are not extremely different from those
using gold standard information, and the drop in
accuracy in them can be attributed to the
differences introduced through stemming and
automatic parts of speech as well as the absence of
the linguistic features, incorrectly tokenized
sentences show a completely different picture as
the Labeled Attachment Score now plummets to
33.6%, which is 37.96 percentage points below
that on correctly tokenized sentences. The
Unlabeled Attachment Score also drops from
81.91% in correctly tokenized sentences to 38.32%
on incorrectly tokenized sentences with a
difference of 43.59 percentage points.

Error Analysis
Considering the total number of errors, out of the
5124 tokens in the test set, there are 1425 head
errors (28%), and 891 dependency errors (17%). In
addition, there are 8% of the tokens in which both
the dependency and the head are incorrectly
assigned by the parser. The POS tag with the
largest percentage of head errors is the Adverb (D)
with an error rate of 57%, followed by Preposition

(P) at 34%, and Conjunctions at 34%. The
preposition and conjunction errors are common
among all experiments: those with gold standard
and those with automatic information. These
results also show that assigning the correct head is
more difficult than assigning the correct
dependency. This is reasonable since some tokens
will have specific dependency types. Also, while
there are a limited number of dependency relations,
the number of potential heads is much larger.

If we look at the lexicon and examine the
tokens in which most errors occur, we can see one
conjunction and five prepositions. The conjunction
w (Eng. and) tops the list, followed by the
preposition l (Eng. for, to), followed by the
preposition fy (Eng. in), then the preposition b
(Eng. with), then the preposition ElY (Eng. on),
and finally the preposition mn (Eng. from, of). We
conclude this section by examining a very short
sentence in which we can see the effect of
tokenization on dependency parsing. Table 6 is a
sentence that has an instance of incorrect
tokenization.

Arabic المساعدات الأمريكية الاستثنائية لمصر بليون دولار حتى مارس
English The American exceptional aid to Egypt is a billion dollars

until March.
Buckwalter (Gold Standard
Tokenization)

AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr blywn dwlAr
HtY |*Ar

Buckwalter (Automatic Tokenization) AlmsAEdAt Al>mrykyp AlAstvnA}yp l mSr b lywn dwlAr
HtY |*Ar

Table 6: A sentence showing the effect of tokenization

The sentence has 8 words one of which

comprises two tokens. The word lmSr comprises a
preposition l, and the proper noun mSr (Eng.
Egypt). The tokenizer succeeds in splitting the
word into two tokens, but it fails on the one-token
word blywn (Eng. billion) and splits it into two
tokens b and lywn. The word is ambiguous
between blywn (Eng. one billion) and b+lywn
(Eng. in the city of Lyon), and since the second
solution is much more frequent in the training set,
it is the one incorrectly selected by the tokenizer.

This tokenization decision leads to an ill-
alignment between the gold standard sentence and
the automatic one as the gold standard has 8 tokens
while the automatically produced one has 9. This
thus affects the POS tagging decisions as blywn,

which in the gold standard is a NOUN, has been
now tagged as b/PREPOSITION and
lywn/PROPER_NOUN. This has also affected the
assignment of heads and dependency relations.
While blywn is a predicate dependent on the root
of the sentence, it has been annotated as two
tokens: b is a preposition dependent on the subject,
and lywn is an attribute dependent on b.

Using the Penn Tags
So far, we have used only the POS tags of the
PADT, and have not discussed the possibility of
using the Penn Arabic Treebank. The difference is
that the PADT tags are basic while the ATB ones
have detailed representations of inflections. While

15

the word AlmtHdp is given the tag ADJ in the
PADT, it is tagged as
DET+ADJ+FEMININE_SINGULAR_MARKER
in the ATB. Table 7 shows the effect of using the
Penn tagset with the gold standard full-featured
dataset in three different experiments as compared
with the PADT tagset:

(1) The original Unvocalized Experiment
with the full set of features and gold
standard components. The Penn tagset is
not used in this experiment, and it is
provided for reference purposes only.

(2) Unvocalized experiment with Penn tags as
CPOS tags. In this experiment, the Penn
tagset is used instead of the coarse grained
POS tagset, while the fine-grained pos
tagset remains unchanged.

(3) Using Penn tags as fine grained POS tags,
while the CPOS tags remain unchanged.

(4) Using the Penn POS tags in both
positions.

In the four experiments, the only features

that change are the POS and CPOS features.

Experiment LAS UAS
Unvocalized Original 74.16% 83.53

%
Using Penn Tags as CPOS
tags

74.12% 83.43
%

Using Penn tags as POS 72.40% 81.79
%

Using Penn tags in both
positions

69.63% 79.33
%

Table 7: Using the ATB tagset with the PADT dataset

As can be seen from Table 7, in all three

cases the Penn tagset produces lower results than
the PADT tagset. The reason for this may be that
the tagset is automatic in both cases, and the
perfect accuracy of the PADT tags helps the
classifier embedded in the MaltParser parser to
choose the correct label and head. The results also
show that when we use the Penn tagset as the
CPOS tagset, the results are almost no different
from the gold standard PADT tagset (74.12% vs.
74.16%). The fact that the Penn tagset does not
harm the results encourages the inclusion of the
Penn tags as CPOS tags in the automatic

experiments that have been used throughout this
chapter. The worst results are those obtained by
using the Penn tags in both positions (POS and
CPOS).

Using the Penn tagset with the reduced
experiments, those without the linguistic features,
gives a different picture from that in the full
standard experiments, as detailed in table 8.

Experiment LAS UAS
Reduced with both PADT
tags

72.54% 82.92
%

Reduced with Penn tags as
CPOS

73.09% 83.16
%

Reduced with Penn tags as
CPOS and automatic
tokenization

63.11% 72.38
%

Table 8: Including the Penn full tagset in the reduced

experiments

While the Penn tagset does not help
improve parsing accuracy with the full-featured
parsing experiments, it helps with the reduced
experiments. While the experiment without the
Penn tags score an LAS of 72.54%, replacing the
CPOS tags in this experiment with the Penn tagset
raises the accuracy to 73.09%, with an increase of
0.55%. This may be due to the fact that the full
tagset gives more information that helps the parser.
The increase is not as noticeable in the automatic
tokenization experiment where the accuracy
minimally changes from 63.10% to 63.11%.

Effect of Vocalization
We have stated in the methodology section that we
use unvocalized data since naturally occurring
Arabic is hardly vocalized. While this is a
reasonable approach, it is worth checking the effect
of vocalization on dependency parsing. Table 9
presents the results of vocalization effect in three
experiments: (a) All the gold standard features
with vocalization. This is the experiment reported
in the literature on Arabic dependency parsing in
CoNLL (2007), (b) All the gold standard features
without the vocalization, (c) All gold standard
features except for vocalization which is
automatic, and (d) the automatic experiment with
automatic vocalization. The vocalizer in the latter 2

16

experiments is trained on the PADT. The TIMBL
memory-based learner is used in the experiment.
The best results are obtained with the IB1
algorithm with similarity computed as weighted
overlap,. Relevance weights are computed with
gain ratio, and the number of k nearest neighbors is
set to 1. The vocalizer has an accuracy of 93.8% on
the PADT test set.

Experiment LAS UAS
Fully Gold Standard
Vocalized

74.77% 84.09
%

Fully Gold Standard
Unvocalized

74.16% 83.53
%

Full-featured with automatic
vocalization

74.43% 83.88
%

Completely automatic (with
automatic vocalization)

63.11% 72.19
%

Completely automatic
without vocalization

63.11% 72.38
%

Table 9: Vocalization Effect on Dependency

Parsing

As can be seen from Table 9, gold
standard vocalization with gold standard features
produces the best results (LAS: 74.77%) followed
by the same settings, but with automatic
vocalization with a LAS of 74.43%, then
unvocalized gold standard with a LAS of 74.16%.
The fact that even automatic vocalization produces
better results than unvocalized text given the same
conditions, in spite of a token error rate of 6.2%,
may be attributed to the ability of vocalization to
disambiguate text even when it is not perfect. We
can also notice that the LAS for the Automatic
experiment is the same whether or not vocalization
is used. This indicates that vocalization, in spite of
its imperfections, does not harm performance,
although it also does not help the parser.
Tokenization sets a ceiling for parsing accuracy.

5. Conclusion
We have presented an experiment in real world
dependency parsing of Arabic using the same data,
algorithm and settings used in the CoNLL (2007)
shared task on dependency parsing. The real world
experiment included performing tokenization,
stemming, and part of speech tagging of the data
before it was passed to MaltParser.

Tokenization was performed using the
memory-based segmenter/tokenizer/stemmer and it
reached an accuracy of 99.34% on the CoNLL
2007 test set. We performed stemming rather than
lemmatization due to the many problems and
difficulties involved in obtaining the lemmas.

Part of speech tagging scored 96.39% on
all tokens on gold standard tokenization, but the
accuracy dropped to 95.70% on automatic tokens.
We also found that using the coarse grained POS
tagset alone yielded better results than using it in
combination with the fine-grained POS tagset.

The tokens, stems, and CPOS tags were
then fed into the dependency parser, but the
linguistic features were not since it was not
feasible to obtain these automatically. The parser
yielded a Labeled Accuracy Score of 63.10%,
more than 10% below the accuracy obtained on
when all the components are gold standard. The
main reason behind the accuracy drop is the
tokenization module, since tokenization is
responsible for creating the nodes that carry
syntactic functions. Since this process was not
perfect, many nodes were wrong, and the right
heads were missing. When we evaluated the parser
on correctly tokenized sentences, we obtained a
Labeled Accuracy Score of 71.56%. On incorrectly
tokenized sentences, however, the LAS score drops
to 33.60%.

We have also found that the full tagset of
the Penn Arabic Treebank improves parsing results
minimally in the automatic experiments, but not in
the gold standard experiments.

Vocalization does not help in the real
world experiment unlike in the gold standard one.

These results show that tokenization is the
major hindrance to obtaining high quality parsing
in Arabic. Arabic computational linguistics should
thus focus on ways to perfect tokenization, or try to
find ways to parsing without having to perform
tokenization.

Acknowledgment
We would like to thank Joakim Nivre for his
helpful answers to our questions concerning
MaltParser.

17

References
Buchholz, Sabine and Marsi, Erwin (2006). CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Daelemans, Walter; Zavrel, Jakub; van der Sloot, Ko
and van den Bosch, Antal (2007). TiMBL: Tilburg
memory based learner – version 6.1 – reference guide.
Technical Report ILK 07-09, Induction of Linguistic
Knowledge, Computational Linguistics, Tilburg
University.

Daelemans, Walter,; Zavrel, Jakub; an den Bosch,
Antal, and van der Sloot, Ko (2007). MBT: Memory-
Based Tagger- Version 3.1. Reference Guide. Technical
Report ILK 07-09, Induction of Linguistic Knowledge,
Computational Linguistics, Tilburg University.

Hajič, Jan; Smrž, Otakar; Zemánek, Petr; Šnaidauf, Jan,
and Beška, Emanuel (2004). Prague Arabic
Dependency Treebank: Development in Data and Tools.
In Proceedings of the EMLAR International Conference
on Arabic Language Resources and Tools, pages 110-
117, Cairo, Egypt, September 2004.

Hall, Johan; Nilsson, Jens; Nivre, Joakim; Eryigit,
Gülsen; Megyesi, Beáta; Nilsson, Mattias and Saers,
Markus (2007). Single Malt or Blended? A Study in
Multilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
933-939.

Maamouri, Mohamed and Bies, Ann (2004) Developing
an Arabic Treebank: Methods, Guidelines, Procedures,
and Tools. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based
Languages, COLING 2004, Geneva, August 28, 2004.

Marton, Yuval; Habash, Nizar; and Rambow, Owen
(2010). Improving Arabic Dependency Parsing with
Lexical and Inflectional Morphological Features. In
Proceddings of The FirstWorkshop on Statistical
Parsing of Morphologically Rich Languages (SPMRL
2010), LA, California.

McDonald, Ryan; Lerman, Kevin and Pereira, Fernando
(2006). Multilingual dependency analysis with a two-
stage discriminative parser. CoNLLX shared task on
multilingual dependency parsing. In Proceedings of the
10th Conference on Computational Natural Language
Learning

Nivre, Joakim; Hall, Jonathan; Nilsson, Jens; Eryigit,
Gülsen and Marinov, Svetsolav (2006). Labeled
Pseudo-Projective Dependency Parsing with Support

Vector Machines. In Proceedings of the Tenth
Conference on Computational Natural Language
Learning (CoNLL)

Nivre, Joakim; Hall, Johan; Kübler, Sandra; McDonald,
Ryan; Nilsson, Jens; Riedel, Sebastian, and Yuret,
Deniz. (2007). The CoNLL 2007 shared task on
dependency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 915–932

Owen, Jonathan. The Arabic Grammatical Tradition. In
Hetzron, Robert (ed.) (1997). The Semitic Languages.
Routledge, London.

18

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 19–28,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Punctuation: Making a Point in Unsupervised Dependency Parsing

Valentin I. Spitkovsky
Computer Science Department

Stanford University and Google Inc.
valentin@cs.stanford.edu

Hiyan Alshawi
Google Inc.

Mountain View, CA, 94043, USA
hiyan@google.com

Daniel Jurafsky
Departments of Linguistics and Computer Science
Stanford University, Stanford, CA, 94305, USA

jurafsky@stanford.edu

Abstract

We show how punctuation can be used to im-
prove unsupervised dependency parsing. Our
linguistic analysis confirms the strong connec-
tion between English punctuation and phrase
boundaries in the Penn Treebank. However,
approaches that naively include punctuation
marks in the grammar (as if they were words)
do not perform well with Klein and Manning’s
Dependency Model with Valence (DMV). In-
stead, we split a sentence at punctuation and
impose parsing restrictions over its fragments.
Our grammar inducer is trained on the Wall
Street Journal (WSJ) and achieves 59.5% ac-
curacy out-of-domain (Brown sentences with
100 or fewer words), more than 6% higher
than the previous best results. Further evalu-
ation, using the 2006/7 CoNLL sets, reveals
that punctuation aids grammar induction in
17 of 18 languages, for an overall average
net gain of 1.3%. Some of this improvement
is from training, but more than half is from
parsing with induced constraints, in inference.
Punctuation-aware decoding works with exist-
ing (even already-trained) parsing models and
always increased accuracy in our experiments.

1 Introduction

Unsupervised dependency parsing is a type of gram-
mar induction — a central problem in computational
linguistics. It aims to uncover hidden relations be-
tween head words and their dependents in free-form
text. Despite decades of significant research efforts,
the task still poses a challenge, as sentence structure
is underdetermined by only raw, unannotated words.

Structure can be clearer informattedtext, which
typically includes proper capitalization and punctua-
tion (Gravano et al., 2009). Raw word streams, such

as utterances transcribed by speech recognizers, are
often difficult even for humans (Kim and Woodland,
2002). Therefore, one would expect grammar induc-
ers to exploit any available linguistic meta-data. And
yet in unsupervised dependency parsing, sentence-
internal punctuation has long been ignored (Carroll
and Charniak, 1992; Paskin, 2001; Klein and Man-
ning, 2004; Blunsom and Cohn, 2010,inter alia).

HTML is another kind of meta-data that is ordi-
narily stripped out in pre-processing. However, re-
cently Spitkovsky et al. (2010b) demonstrated that
web markup can successfully guide hierarchical
syntactic structure discovery, observing, for exam-
ple, that anchors often match linguistic constituents:

..., whereas McCain is secure on the topic, Obama
<a>[VP worries about winning the pro-Israel vote].

We propose exploring punctuation’s potential to
aid grammar induction. Consider a motivating ex-
ample (all of our examples are from WSJ), in which
all (six) marks align with constituent boundaries:

[SBAR Although it probably has reduced the level of
expenditures for some purchasers], [NP utilization man-
agement] — [PP like most other cost containment strate-
gies] — [VP doesn’t appear to have altered the long-term
rate of increase in health-care costs], [NP the Institute of
Medicine], [NP an affiliate of the National Academy of
Sciences], [VP concluded after a two-year study].

This link between punctuation and constituent
boundaries suggests that we could approximate
parsing by treating inter-punctuation fragments in-
dependently. In training, our algorithm first parses
each fragment separately, then parses the sequence
of the resulting head words. In inference, we use a
better approximation that allows heads of fragments
to be attached by arbitrary external words, e.g.:

The Soviets complicated the issue by offering to
[VP include light tanks], [SBAR which are as light as ...].

19

Count POS Sequence Frac Cum
1 3,492 NNP 2.8%
2 2,716 CD CD 2.2 5.0
3 2,519 NNP NNP 2.0 7.1
4 2,512 RB 2.0 9.1
5 1,495 CD 1.2 10.3
6 1,025 NN 0.8 11.1
7 1,023 NNP NNP NNP 0.8 11.9
8 916 IN NN 0.7 12.7
9 795 VBZ NNP NNP 0.6 13.3

10 748 CC 0.6 13.9
11 730 CD DT NN 0.6 14.5
12 705 PRP VBD 0.6 15.1
13 652 JJ NN 0.5 15.6
14 648 DT NN 0.5 16.1
15 627 IN DT NN 0.5 16.6
WSJ +103,148 more with Count≤ 621 83.4%

Table 1: Top 15 fragments of POS tag sequences in WSJ.

Count Non-Terminal Frac Cum
1 40,223 S 32.5%
2 33,607 NP 27.2 59.7
3 16,413 VP 13.3 72.9
4 12,441 PP 10.1 83.0
5 8,350 SBAR 6.7 89.7
6 4,085 ADVP 3.3 93.0
7 3,080 QP 2.5 95.5
8 2,480 SINV 2.0 97.5
9 1,257 ADJP 1.0 98.5

10 369 PRN 0.3 98.8
WSJ +1,446 more with Count≤ 356 1.2%

Table 2: Top 99% of the lowest dominating non-terminals
deriving complete inter-punctuation fragments in WSJ.

2 Definitions, Analyses and Constraints

Punctuation and syntax are related (Nunberg, 1990;
Briscoe, 1994; Jones, 1994; Doran, 1998,inter alia).
But are there simple enough connections between
the two to aid in grammar induction? This section
explores the regularities. Our study of punctuation
in WSJ (Marcus et al., 1993) parallels Spitkovsky
et al.’s (2010b,§5) analysis of markup from a web-
log, since their proposed constraints turn out to be
useful. Throughout, we define an inter-punctuation
fragment as a maximal (non-empty) consecutive se-
quence of words that does not cross punctuation
boundaries and is shorter than its source sentence.

2.1 A Linguistic Analysis

Out of 51,558 sentences, most — 37,076 (71.9%) —
contain sentence-internal punctuation. These punc-
tuated sentences contain 123,751 fragments, nearly
all — 111,774 (90.3%) — of them multi-token.

Common part-of-speech (POS) sequences compris-
ing fragments are diverse (note also their flat distri-
bution — see Table 1). The plurality of fragments
are dominated by a clause, but most are dominated
by one of several kinds of phrases (see Table 2).
As expected, punctuation does not occur at all con-
stituent boundaries: Of the top 15 productions that
yield fragments, five donot match the exact brack-
eting of their lowest dominating non-terminal (see
ranks 6, 11, 12, 14 and 15 in Table 3, left). Four of
them miss a left-adjacent clause, e.g.,S→ S NP VP:

[S [S It’s an overwhelming job], [NP she] [VP says.]]

This production is flagged because the fragment
NPVP is nota constituent — it is two; still,49.4%
of all fragments do align with whole constituents.

Inter-punctuation fragments correspond more
strongly to dependencies (see Table 3, right). Only
one production (rank 14) shows a daughter outside
her mother’s fragment. Some number of such pro-
ductions is inevitable and expected, since fragments
must coalesce (i.e., the root of at least one fragment
— in every sentence with sentence-internal punc-
tuation — must be attached by some word from a
different, external fragment). We find it noteworthy
that in 14 of the 15 most common cases, a word in
an inter-punctuation fragment derives precisely the
rest of that fragment, attaching none of the other,
external words. This is true for39.2% of all frag-
ments, and if we include fragments whose heads at-
tach other fragments’ heads, agreement increases to
74.0% (seestrict andlooseconstraints in§2.2, next).

2.2 Five Parsing Constraints

Spitkovsky et al. (2010b,§5.3) showed how to ex-
press similar correspondences with markup as pars-
ing constraints. They proposed four constraints but
employed only the strictest three, omitting imple-
mentation details. We revisit their constraints, speci-
fying precise logical formulations that we use in our
code, and introduce a fifth (most relaxed) constraint.

Let [x, y] be a fragment (or markup) spanning po-
sitionsx throughy (inclusive, with1 ≤ x < y ≤ l), in
a sentence of lengthl. And let [i, j]h be a sealed span
headed byh (1 ≤ i ≤ h ≤ j ≤ l), i.e., the word at po-
sition h dominates preciselyi . . . j (but none other):

i h j

20

Count Constituent Production Frac Cum
1 7,115 PP→ IN NP 5.7%
2 5,950 S→ NP VP 4.8 10.6
3 3,450 NP→ NP PP 2.8 13.3
4 2,799 SBAR→ WHNP S 2.3 15.6
5 2,695 NP→ NNP 2.2 17.8
6 2,615 S→ S NP VP 2.1 19.9
7 2,480 SBAR→ IN S 2.0 21.9
8 2,392 NP→ NNP NNP 1.9 23.8
9 2,354 ADVP→ RB 1.9 25.7

10 2,334 QP→ CD CD 1.9 27.6
11 2,213 S→ PP NP VP 1.8 29.4
12 1,441 S→ S CC S 1.2 30.6
13 1,317 NP→ NP NP 1.1 31.6
14 1,314 S→ SBAR NP VP 1.1 32.7
15 1,172 SINV→ S VP NP NP 0.9 33.6
WSJ +82,110 more with Count≤ 976 66.4%

Count Head-Outward Spawn Frac Cum
1 11,928 IN 9.6%
2 8,852 NN 7.2 16.8
3 7,802 NNP 6.3 23.1
4 4,750 CD 3.8 26.9
5 3,914 VBD 3.2 30.1
6 3,672 VBZ 3.0 33.1
7 3,436 RB 2.8 35.8
8 2,691 VBG 2.2 38.0
9 2,304 VBP 1.9 39.9

10 2,251 NNS 1.8 41.7
11 1,955 WDT 1.6 43.3
12 1,409 MD 1.1 44.4
13 1,377 VBN 1.1 45.5
14 1,204 IN VBD 1.0 46.5
15 927 JJ 0.7 47.3
WSJ +65,279 more with Count≤ 846 52.8%

Table 3: Top 15 productions yielding punctuation-induced fragments in WSJ, viewed as constituents (left) and as de-
pendencies (right). For constituents, we recursively expanded any internal nodes that did not align with the associated
fragmentation (underlined). For dependencies we dropped all daughters that fell entirely in the same region as their
mother (i.e., both inside a fragment, both to its left or bothto its right), keeping only crossing attachments (just one).

Define inside(h, x, y) as true iffx ≤ h ≤ y; and let
cross(i, j, x, y) be true iff (i < x ∧ j ≥ x ∧ j < y) ∨

(i > x ∧ i ≤ y ∧ j > y). The three tightest constraints
impose conditions which, when satisfied, disallow
sealing[i, j]h in the presence of an annotation[x, y]:

strict — requires[x, y] itself to be sealed in the
parse tree, voiding all seals that straddle exactly one
of {x, y} or protrude beyond[x, y] if their head is in-
side. This constraint holds for39.2% of fragments.
By contrast, only 35.6% of HTML annotations, such
as anchor texts and italics, agree with it (Spitkovsky
et al., 2010b). This necessarily fails in every sen-
tence with internal punctuation (since there,some
fragment must take charge and attach another), when
cross(i, j, x, y) ∨ (inside(h, x, y) ∧ (i < x ∨ j > y)).

... the British daily newspaper, The FinancialTimes .
x = i h = j = y

loose — if h ∈ [x, y], requires that everything in
x . . . y fall underh, with only h allowed external at-
tachments. This holds for74.0% of fragments —
87.5% of markup, failing whencross(i, j, x, y).

... arrests followed a“ Snake Day ” at Utrecht ...
i x h = j = y

sprawl — still requires thath derive x . . . y but
lifts restrictions on external attachments. Holding
for 92.9% of fragments (95.1% of markup), it fails

whencross(i, j, x, y) ∧ ¬inside(h, x, y).

Maryland Club also distributes tea, which ...
x = i h y j

These three strictest constraints lend themselves to a
straight-forward implementation as anO(l5) chart-
based decoder. Ordinarily, the probability of[i, j]h
is computed by multiplying the probability of the as-
sociatedunsealed span by two stopping probabilities
— that of the word ath on the left (adjacent ifi = h;
non-adjacent ifi < h) and on the right (adjacent if
h = j; non-adjacent ifh < j). To impose a con-
straint, we ran through all of the annotations[x, y]
associated with a sentence and zeroed out this prob-
ability if any of them satisfied disallowed conditions.

There are faster — e.g.,O(l4), and evenO(l3) —
recognizers for split head automaton grammars (Eis-
ner and Satta, 1999). Perhaps a more practical, but
still clear, approach would be to generaten-best lists
using a more efficient unconstrained algorithm, then
apply the constraints as a post-filtering step.

Relaxed constraints disallow joining adjacent
subtrees, e.g., preventing the seal[i, j]h from merg-
ing below theunsealed span[j +1, J]H , on the left:

i h j j + 1 H J

21

tear — preventsx . . . y from being torn apart by
external heads fromoppositesides. It holds for
94.7% of fragments (97.9% of markup), and is vi-
olated when(x ≤ j ∧ y > j ∧ h < x), in this case.

... they “were not consulted about the [Ridley decision]

in advance and were surprised at the action taken.

thread — requires only that no path from the root
to a leaf enter[x, y] twice. This holds for95.0% of
all fragments (98.5% of markup); it is violated when
(x ≤ j ∧ y > j ∧ h < x) ∧ (H ≤ y), again, in this
case. Example that satisfiesthreadbut violatestear:

The ... changes“all make a lot of sense to me,” he added.

The case when[i, j]h is to the right is entirely sym-
metric, and these constraints could be incorporated
in a more sophisticated decoder (sincei andJ do
not appear in the formulae, above). We implemented
them by zeroing out the probability of the word atH
attaching that ath (to its left), in case of a violation.

Note that all five constraints are nested. In partic-
ular, this means that it does not make sense to com-
bine them, for a given annotation[x, y], since the re-
sult would just match the strictest one. Our markup
number fortear is lower (97.9 versus 98.9%) than
Spitkovsky et al.’s (2010b), because theirs allowed
cases where markup wasneither torn nor threaded.

Common structures that violatethread(and, con-
sequently, all five of the constraints) include, e.g.,
“seamless” quotations and even ordinary lists:

Her recent report classifies the stock as a“hold.”

The company said its directors, management and
subsidiaries will remain long-term investors and ...

2.3 Comparison with Markup

Most punctuation-induced constraints are less ac-
curate than the corresponding markup-induced con-
straints (e.g.,sprawl: 92.9 vs. 95.1%;loose: 74.0
vs. 87.5%; but notstrict: 39.2 vs. 35.6%). However,
markup is rare: Spitkovsky et al. (2010b,§5.1) ob-
served that only 10% of the sentences in their blog
were annotated; in contrast, over 70% of the sen-
tences in WSJ are fragmented by punctuation.

Fragments are more than 40% likely to be dom-
inated by a clause; for markup, this number is be-
low 10% — nearly 75% of it covered by noun

phrases. Further, inter-punctuation fragments are
spread more evenly under noun, verb, prepositional,
adverbial and adjectival phrases (approximately
27:13:10:3:1 versus75:13:2:1:1) than markup.1

3 The Model, Methods and Metrics

We model grammar via Klein and Manning’s (2004)
Dependency Model with Valence (DMV), which
ordinarily strips out punctuation. Since this step
already requires identification of marks, our tech-
niques are just as “unsupervised.” We would have
preferred to test punctuation in their original set-up,
but this approach wasn’t optimal, for several rea-
sons. First, Klein and Manning (2004) trained with
short sentences (up to only ten words, on WSJ10),
whereas most punctuation appears in longer sen-
tences. And second, although we could augment
the training data (say, to WSJ45), Spitkovsky et
al. (2010a) showed that classic EM struggles with
longer sentences. For this reason, we use Viterbi
EM and the scaffolding suggested by Spitkovsky et
al. (2010a) — also the setting in which Spitkovsky et
al. (2010b) tested their markup-induced constraints.

3.1 A Basic System

Our system is based on Laplace-smoothed Viterbi
EM, following Spitkovsky et al.’s (2010a) two-stage
scaffolding: the first stage trains with just the sen-
tences up to length 15; the second stage then retrains
on nearly all sentences — those with up to 45 words.

Initialization
Klein and Manning’s (2004) “ad-hoc harmonic” ini-
tializer does not work very well for longer sentences,
particularly with Viterbi training (Spitkovsky et al.,
2010a, Figure 3). Instead, we use an improved ini-
tializer that approximates the attachment probability
between two words as an average, over all sentences,
of their normalized aggregateweighteddistances.
Our weighting function isw(d) = 1+1/ lg(1+d).2

Termination
Spitkovsky et al. (2010a) iterated until successive
changes in overall (best parse) per-token cross-
entropy dropped below2−20 bits. Since smoothing
can (and does, at times) increase the objective, we
found it more efficient to terminate early, after ten

1Markup and fragments are as likely to be in verb phrases.
2Integerd ≥ 1 is a distance between two tokens;lg is log

2
.

22

steps of suboptimal models. We used the lowest-
perplexity (not necessarily the last) model found, as
measured by the cross-entropy of the training data.

Constrained Training
Training with punctuation replaces ordinary Viterbi
parse trees, at every iteration of EM, with the out-
put of a constrained decoder. In all experiments
other than #2 (§5) we train with thelooseconstraint.
Spitkovsky et al. (2010b) found this setting to be
best for markup-induced constraints. We apply it to
constraints induced by inter-punctuation fragments.

Constrained Inference
Spitkovsky et al. (2010b) recommended using the
sprawlconstraint in inference. Once again, we fol-
low their advice in all experiments except #2 (§5).

3.2 Data Sets and Scoring

We trained on the Penn English Treebank’s Wall
Street Journal portion (Marcus et al., 1993). To eval-
uate, we automatically converted its labeled con-
stituents into unlabeled dependencies, using deter-
ministic “head-percolation” rules (Collins, 1999),
discarding punctuation, any empty nodes, etc., as is
standard practice (Paskin, 2001; Klein and Manning,
2004). We also evaluated against the parsed portion
of the Brown corpus (Francis and Kučera, 1979),
used as a blind, out-of-domain evaluation set,3 sim-
ilarly derived from labeled constituent parse trees.

We report directed accuracies — fractions of cor-
rectly guessed arcs, including the root, in unlabeled
reference dependency parse trees, as is also standard
practice (Paskin, 2001; Klein and Manning, 2004).
One of our baseline systems (§3.3) produces depen-
dency trees containing punctuation. In this case we
do not score the heads assigned to punctuation and
use forgiving scoring for regular words: crediting
correct heads separated from their children by punc-
tuation alone (from the point of view of the child,
looking up to the nearest non-punctuation ancestor).

3.3 Baseline Systems

Our primary baseline is the basic system without
constraints (standard training). It ignores punctu-
ation, as is standard, scoring 52.0% against WSJ45.

A secondary (punctuation as words) baseline in-

3Note that WSJ{15, 45} overlap with Section 23 — training
on the test set is standard practice in unsupervised learning.

corporates punctuation into the grammar as if it were
words, as insuperviseddependency parsing (Nivre
et al., 2007b; Lin, 1998; Sleator and Temperley,
1993,inter alia). It is worse, scoring only 41.0%.4,5

4 Experiment #1: Default Constraints

Our first experiment compares “punctuation as con-
straints” to the baseline systems. We use default set-
tings, as recommended by Spitkovsky et al. (2010b):
loosein training; andsprawl in inference. Evalua-
tion is on Section 23 of WSJ (all sentence lengths).
To facilitate comparison with prior work, we also re-
port accuracies against shorter sentences, with up to
ten non-punctuation tokens (WSJ10 — see Table 4).

We find that both constrained regimes improve
performance. Constrained decoding alone increases
the accuracy of a standardly-trained system from
52.0% to 54.0%. And constrained training yields
55.6% — 57.4% in combination with inference.

4We were careful to use exactly the same data sets in both
cases, not counting punctuation towards sentence lengths.And
we used forgiving scoring (§3.2) when evaluating these trees.

5To get this particular number we forced punctuation to be
tacked on, as a layer below the tree of words, to fairly compare
systems (using the same initializer). Since improved initializa-
tion strategies — both ours and Klein and Manning’s (2004)
“ad-hoc harmonic” initializer — rely on distances between to-
kens, they could be unfairly biased towards one approach or the
other, if punctuation counted towards length. We also trained
similar baselines without restrictions, allowing punctuation to
appear anywhere in the tree (still with forgiving scoring — see
§3.2), using the uninformed uniform initializer (Spitkovsky et
al., 2010a). Disallowing punctuation as a parent of a real word
made things worse, suggesting that not all marks belong near
the leaves (sentence stops, semicolons, colons, etc. make more
sense as roots and heads). We tried the weighted initializeralso
without restrictions and repeated all experiments withoutscaf-
folding, on WSJ15 and WSJ45 alone, but treating punctuation
as words never came within even 5% of (comparable) standard
training. Punctuation, as words, reliably disrupted learning.

WSJ∞ WSJ10
Supervised DMV 69.8 83.6

w/Constrained Inference 73.0 84.3

Punctuation as Words 41.7 54.8
Standard Training 52.0 63.2

w/Constrained Inference 54.0 63.6
Constrained Training 55.6 67.0

w/Constrained Inference 57.4 67.5

Table 4: Directed accuracies on Section 23 of WSJ∞ and
WSJ10 for the supervised DMV, our baseline systems and
the punctuation runs (all using the weighted initializer).

23

These are multi-point increases, but they could dis-
appear in a more accurate state-of-the-art system.

To test this hypothesis, we applied constrained de-
coding to asupervisedsystem. We found that this
(ideal) instantiation of the DMV benefits as much or
more than the unsupervised systems: accuracy in-
creases from 69.8% to 73.0%. Punctuation seems
to capture the kinds of, perhaps long-distance, regu-
larities that are not accessible to the model, possibly
because of its unrealistic independence assumptions.

5 Experiment #2: Optimal Settings

Spitkovsky et al. (2010b) recommended training
with looseand decoding withsprawlbased on their
experiments with markup. But are these the right
settings for punctuation? Inter-punctuation frag-
ments are quite different from markup — they are
more prevalent but less accurate. Furthermore, we
introduced a new constraint,thread, that Spitkovsky
et al. (2010b) had not considered (along withtear).

We next re-examined the choices of constraints.
Our full factorial analysis was similar, but signifi-
cantly smaller, than Spitkovsky et al.’s (2010b): we
excluded their larger-scale news and web data sets
that are not publicly available. Nevertheless, we
still tried every meaningful combination of settings,
testing boththreadandtear (instead ofstrict, since
it can’t work with sentences containing sentence-
internal punctuation), in both training and inference.
We did not find better settings thanloosefor train-
ing, andsprawl for decoding, among our options.

A full analysis is omitted due to space constraints.
Our first observation is that constrained inference,
using punctuation, is helpful and robust. It boosted
accuracy (on WSJ45) by approximately 1.5%, on
average, with all settings. Indeed,sprawl was con-
sistently (but only slightly, at 1.6%, on average) bet-
ter than the rest. Second, constrained training hurt
more often than it helped. It degraded accuracy in all
but one case,loose, where it gained approximately
0.4%, on average. Both improvements are statisti-
cally significant:p ≈ 0.036 for training with loose;
andp ≈ 5.6× 10−12 for decoding withsprawl.

6 More Advanced Methods

So far, punctuation has improved grammar induction
in a toy setting. But would it help a modern system?

Our next two experiments employ a slightly more
complicated set-up, compared with the one used up
until now (§3.1). The key difference is that this sys-
tem is lexicalized, as is standard among the more ac-
curate grammar inducers (Blunsom and Cohn, 2010;
Gillenwater et al., 2010; Headden et al., 2009).

Lexicalization
We lexicalize only in the second (full data) stage, us-
ing the method of Headden et al. (2009). For words
seen at least 100 times in the training corpus, we
augment their gold POS tag with the lexical item.
The first (data poor) stage remains entirely unlexi-
calized, with gold POS tags for word classes, as in
the earlier systems (Klein and Manning, 2004).

Smoothing
We do not use smoothing in the second stage except
at the end, for the final lexicalized model. Stage one
still applies “add-one” smoothing at every iteration.

7 Experiment #3: State-of-the-Art

The purpose of these experiments is to compare the
punctuation-enhanced DMV with other, recent state-
of-the-art systems. We find that, lexicalized (§6), our
approach performs better, by a wide margin; without
lexicalization (§3.1), it was already better for longer,
but not for shorter, sentences (see Tables 5 and 4).

We trained a variant of our systemwithout gold
part-of-speech tags, using the unsupervised word
clusters (Clark, 2000) computed by Finkel and Man-
ning (2009).6 Accuracy decreased slightly, to 58.2%
on Section 23 of WSJ (down only 0.2%). This result
improves over substantial performance degradations
previously observed for unsupervised dependency
parsing with induced word categories (Klein and
Manning, 2004; Headden et al., 2008,inter alia).

6Available fromhttp://nlp.stanford.edu/software/
stanford-postagger-2008-09-28.tar.gz:
models/egw.bnc.200

Brown WSJ∞ WSJ10
(Headden et al., 2009) — — 68.8

(Spitkovsky et al., 2010b) 53.3 50.4 69.3
(Gillenwater et al., 2010) — 53.3 64.3

(Blunsom and Cohn, 2010) — 55.7 67.7
Constrained Training 58.4 58.0 69.3

w/Constrained Inference 59.5 58.4 69.5

Table 5: Accuracies on the out-of-domain Brown100 set
and Section 23 of WSJ∞ and WSJ10, for the lexicalized
punctuation run and other recent state-of-the-art systems.

24

Unlexicalized, Unpunctuated Lexicalized ...and Punctuated
CoNLL Year Initialization @15 Training @15 Retraining @45 Retraining @45 Net
& Language 1. w/Inference 2. w/Inference 3. w/Inference 3′. w/Inference Gain

Arabic 2006 23.3 23.6 (+0.3) 32.8 33.1 (+0.4) 31.5 31.6 (+0.1) 32.1 32.6 (+0.5) +1.1
’7 25.6 26.4 (+0.8) 33.7 34.2 (+0.5) 32.7 33.6 (+0.9) 34.9 35.3 (+0.4) +2.6

Basque ’7 19.3 20.8 (+1.5) 29.9 30.9 (+1.0) 29.3 30.1 (+0.8) 29.3 29.9 (+0.6) +0.6
Bulgarian ’6 23.7 24.7 (+1.0) 39.3 40.7 (+1.4) 38.8 39.9 (+1.1) 39.9 40.5 (+0.6) +1.6
Catalan ’7 33.2 34.1 (+0.8) 54.8 55.5 (+0.7) 54.3 55.1 (+0.8) 54.3 55.2 (+0.9) +0.9
Czech ’6 18.6 19.6 (+1.0) 34.6 35.8 (+1.2) 34.8 35.7 (+0.9) 37.0 37.8 (+0.8) +3.0

’7 17.6 18.4 (+0.8) 33.5 35.4 (+1.9) 33.4 34.4 (+1.0) 35.2 36.2 (+1.0) +2.7
Danish ’6 22.9 24.0 (+1.1) 35.6 36.7 (+1.2) 36.9 37.8 (+0.9) 36.5 37.1 (+0.6) +0.2
Dutch ’6 15.8 16.5 (+0.7) 11.2 12.5 (+1.3) 11.0 11.9 (+1.0) 13.7 14.0 (+0.3) +3.0
English ’7 25.0 25.4 (+0.5) 47.2 49.5 (+2.3) 47.5 48.8 (+1.3) 49.3 50.3 (+0.9) +2.8
German ’6 19.2 19.6 (+0.4) 27.4 28.0 (+0.7) 27.0 27.8 (+0.8) 28.2 28.6 (+0.4) +1.6
Greek ’7 18.5 18.8 (+0.3) 20.7 21.4 (+0.7) 20.5 21.0 (+0.5) 20.9 21.2 (+0.3) +0.7
Hungarian ’7 17.4 17.7 (+0.3) 6.7 7.2 (+0.5) 6.6 7.0 (+0.4) 7.8 8.0 (+0.2) +1.4
Italian ’7 25.0 26.3 (+1.2) 29.6 29.9 (+0.3) 29.7 29.7 (+0.1) 28.3 28.8 (+0.5) -0.8
Japanese ’6 30.0 30.0 (+0.0) 27.3 27.3 (+0.0) 27.4 27.4 (+0.0) 27.5 27.5 (+0.0) +0.1
Portuguese ’6 27.3 27.5 (+0.2) 32.8 33.7 (+0.9) 32.7 33.4 (+0.7) 33.3 33.5 (+0.3) +0.8
Slovenian ’6 21.8 21.9 (+0.2) 28.3 30.4 (+2.1) 28.4 30.4 (+2.0) 29.8 31.2 (+1.4) +2.8
Spanish ’6 25.3 26.2 (+0.9) 31.7 32.4 (+0.7) 31.6 32.3 (+0.8) 31.9 32.3 (+0.5) +0.8
Swedish ’6 31.0 31.5 (+0.6) 44.1 45.2 (+1.1) 45.6 46.1 (+0.5) 46.1 46.4 (+0.3) +0.8
Turkish ’6 22.3 22.9 (+0.6) 39.1 39.5 (+0.4) 39.9 39.9 (+0.1) 40.6 40.9 (+0.3) +1.0

’7 22.7 23.3 (+0.6) 41.7 42.3 (+0.6) 41.9 42.1 (+0.2) 41.6 42.0 (+0.4) +0.1
Average: 23.4 24.0 (+0.7) 31.9 32.9 (+1.0) 31.9 32.6 (+0.7) 32.6 33.2 (+0.5) +1.3

Table 6: Multi-lingual evaluation for CoNLL sets, measuredat all three stages of training, with and without constraints.

8 Experiment #4: Multi-Lingual Testing

This final batch of experiments probes the general-
ization of our approach (§6) across languages. The
data are from 2006/7 CoNLL shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007a), where
punctuation was identified by the organizers, who
also furnished disjoint train/test splits. We tested
against all sentences in their evaluation sets.7,8

The gains arenot English-specific (see Table 6).
Every language improves with constrained decod-
ing (more so without constrained training); and all
but Italian benefit in combination. Averaged across
all eighteen languages, the net change in accuracy is
1.3%. After standard training, constrained decoding
alone delivers a 0.7% gain, on average, never caus-
ing harm in any of our experiments. These gains are
statistically significant:p ≈ 1.59 × 10−5 for con-
strained training; andp ≈ 4.27×10−7 for inference.

7With the exception of Arabic ’07, from which we discarded
one sentence with 145 tokens. We down-weighed languages
appearing in both years by 50% in our analyses, and excluded
Chinese entirely, since it had already been cut up at punctuation.

8Note that punctuation was treated differently in the two
years: in ’06, it was always at the leaves of the dependency
trees; in ’07, it matched original annotations of the sourcetree-
banks. For both, we used punctuation-insensitive scoring (§3.2).

We did not detect synergy between the two im-
provements. However, note that without constrained
training, “full” data sets do not help, on average, de-
spite having more data and lexicalization. Further-
more,after constrained training, we detected no ev-
idence of benefits to additional retraining: not with
the relaxedsprawlconstraint, nor unconstrained.

9 Related Work

Punctuation has been used to improve parsing since
rule-based systems (Jones, 1994). Statistical parsers
reap dramatic gains from punctuation (Engel et al.,
2002; Roark, 2001; Charniak, 2000; Johnson, 1998;
Collins, 1997,inter alia). And it is even known to
help in unsupervisedconstituent parsing (Seginer,
2007). But fordependencygrammar induction, until
now, punctuation remained unexploited.

Parsing Techniques Most-Similar to Constraints
A “divide-and-rule” strategy that relies on punctua-
tion has been used in supervised constituent parsing
of long Chinese sentences (Li et al., 2005). For En-
glish, there has been interest inbalancedpunctua-
tion (Briscoe, 1994), more recently using rule-based
filters (White and Rajkumar, 2008) in a combinatory
categorial grammar (CCG). Our focus is specifically

25

on unsupervisedlearning ofdependencygrammars
and is similar, in spirit, to Eisner and Smith’s (2005)
“vine grammar” formalism. An important difference
is that instead of imposing static limits on allowed
dependency lengths, our restrictions are dynamic —
they disallow some long (and some short) arcs that
would have otherwise crossed nearby punctuation.

Incorporating partial bracketings into grammar
induction is an idea tracing back to Pereira and Sch-
abes (1992). It inspired Spitkovsky et al. (2010b) to
mine parsing constraints from the web. In that same
vein, we prospected a more abundant and natural
language-resource — punctuation, using constraint-
based techniques they developed for web markup.

Modern Unsupervised Dependency Parsing

State-of-the-art in unsupervised dependency pars-
ing (Blunsom and Cohn, 2010) uses tree substitu-
tion grammars. These are powerful models, capa-
ble of learning large dependency fragments. To help
prevent overfitting, a non-parametric Bayesian prior,
defined by a hierarchical Pitman-Yor process (Pit-
man and Yor, 1997), is trusted to nudge training to-
wards fewer and smaller grammatical productions.

We pursued a complementary strategy: using
Klein and Manning’s (2004) much simpler Depen-
dency Model with Valence (DMV), but persistently
steering training away from certain constructions, as
guided by punctuation, to help preventunderfitting.

Various Other Uses of Punctuation in NLP

Punctuation is hard to predict,9 partly because it
can signal long-range dependences (Lu and Ng,
2010). It often provides valuable cues to NLP tasks
such as part-of-speech tagging and named-entity
recognition (Hillard et al., 2006), information ex-
traction (Favre et al., 2008) and machine transla-
tion (Lee et al., 2006; Matusov et al., 2006). Other
applications have included Japanese sentence anal-
ysis (Ohyama et al., 1986), genre detection (Sta-
matatos et al., 2000), bilingual sentence align-
ment (Yeh, 2003), semantic role labeling (Pradhan et
al., 2005), Chinese creation-title recognition (Chen
and Chen, 2005) and word segmentation (Li and
Sun, 2009), plus, recently, automatic vandalism de-

9Punctuation has high semantic entropy (Melamed, 1997);
for an analysis of the many roles played in the WSJ by the
comma — the most frequent and unpredictable punctuation
mark in that data set — see Beeferman et al. (1998, Table 2).

tection in Wikipedia (Wang and McKeown, 2010).

10 Conclusions and Future Work

Punctuation improves dependency grammar induc-
tion. Many unsupervised (and supervised) parsers
could be easily modified to usesprawl-constrained
decoding in inference. It applies to pre-trained mod-
els and, so far, helped every data set and language.

Tightly interwoven into the fabric of writing sys-
tems, punctuation frames most unannotated plain-
text. We showed that rules for converting markup
into accurate parsing constraints are still optimal for
inter-punctuation fragments. Punctuation marks are
more ubiquitous and natural than web markup: what
little punctuation-induced constraints lack in preci-
sion, they more than make up in recall — perhaps
both types of constraints would work better yet in
tandem. For language acquisition, a natural ques-
tion is whether prosody could similarly aid grammar
induction from speech (Kahn et al., 2005).

Our results underscore the power of simple mod-
els and algorithms, combined with common-sense
constraints. They reinforce insights fromjoint mod-
eling in supervisedlearning, where simplified, in-
dependent models, Viterbi decoding and expressive
constraints excel at sequence labeling tasks (Roth
and Yih, 2005). Such evidence is particularly wel-
come inunsupervisedsettings (Punyakanok et al.,
2005), where it is crucial that systems scale grace-
fully to volumes of data, on top of the usual desider-
ata — ease of implementation, extension, under-
standing and debugging. Future work could explore
softening constraints (Hayes and Mouradian, 1980;
Chang et al., 2007), perhaps using features (Eisner
and Smith, 2005; Berg-Kirkpatrick et al., 2010) or
by learning to associate different settings with var-
ious marks: Simply adding a hidden tag for “ordi-
nary” versus “divide” types of punctuation (Li et al.,
2005) may already usefully extend our model.

Acknowledgments

Partially funded by the Air Force Research Laboratory (AFRL),
under prime contract no. FA8750-09-C-0181, and by NSF, via
award #IIS-0811974. We thank Omri Abend, Slav Petrov and
anonymous reviewers for many helpful suggestions, and we are
especially grateful to Jenny R. Finkel for shaming us into using
punctuation, to Christopher D. Manning for reminding us to ex-
plore “punctuation as words” baselines, and to Noah A. Smith
for encouraging us to test against languages other than English.

26

References

D. Beeferman, A. Berger, and J. Lafferty. 1998.
CYBERPUNC: A lightweight punctuation annotation
system for speech. InICASSP.

T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and
D. Klein. 2010. Painless unsupervised learning with
features. InNAACL-HLT.

P. Blunsom and T. Cohn. 2010. Unsupervised induction
of tree substitution grammars for dependency parsing.
In EMNLP.

E. J. Briscoe. 1994. Parsing (with) punctuation, etc.
Technical report, Xerox European Research Labora-
tory.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. InCoNLL.

G. Carroll and E. Charniak. 1992. Two experiments on
learning probabilistic dependency grammars from cor-
pora. Technical report, Brown University.

M.-W. Chang, L. Ratinov, and D. Roth. 2007. Guiding
semi-supervision with constraint-driven learning. In
ACL.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In NAACL.

C. Chen and H.-H. Chen. 2005. Integrating punctuation
rules and naı̈ve Bayesian model for Chinese creation
title recognition. InIJCNLP.

A. Clark. 2000. Inducing syntactic categories by context
distribution clustering. InCoNLL-LLL.

M. Collins. 1997. Three generative, lexicalised models
for statistical parsing. InACL.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

C. D. Doran. 1998. Incorporating Punctuation into
the Sentence Grammar: A Lexicalized Tree Adjoin-
ing Grammar Perspective. Ph.D. thesis, University of
Pennsylvania.

J. Eisner and G. Satta. 1999. Efficient parsing for bilexi-
cal context-free grammars and head-automaton gram-
mars. InACL.

J. Eisner and N. A. Smith. 2005. Parsing with soft and
hard constraints on dependency length. InIWPT.

D. Engel, E. Charniak, and M. Johnson. 2002. Parsing
and disfluency placement. InEMNLP.

B. Favre, R. Grishman, D. Hillard, H. Ji, D. Hakkani-
Tür, and M. Ostendorf. 2008. Punctuating speech for
information extraction. InICASSP.

J. R. Finkel and C. D. Manning. 2009. Joint parsing and
named entity recognition. InNAACL-HLT.

W. N. Francis and H. Kučera, 1979.Manual of Informa-
tion to Accompany a Standard Corpus of Present-Day
Edited American English, for use with Digital Com-
puters. Department of Linguistics, Brown University.

J. Gillenwater, K. Ganchev, J. Graça, F. Pereira, and
B. Taskar. 2010. Posterior sparsity in unsupervised
dependency parsing. Technical report, University of
Pennsylvania.

A. Gravano, M. Jansche, and M. Bacchiani. 2009.
Restoring punctuation and capitalization in transcribed
speech. InICASSP.

P. J. Hayes and G. V. Mouradian. 1980. Flexible parsing.
In ACL.

W. P. Headden, III, D. McClosky, and E. Charniak.
2008. Evaluating unsupervised part-of-speech tagging
for grammar induction. InCOLING.

W. P. Headden, III, M. Johnson, and D. McClosky.
2009. Improving unsupervised dependency parsing
with richer contexts and smoothing. InNAACL-HLT.

D. Hillard, Z. Huang, H. Ji, R. Grishman, D. Hakkani-
Tür, M. Harper, M. Ostendorf, and W. Wang. 2006.
Impact of automatic comma prediction on POS/name
tagging of speech. InIEEE/ACL: SLT.

M. Johnson. 1998. PCFG models of linguistic tree rep-
resentations.Computational Linguistics, 24.

B. E. M. Jones. 1994. Exploring the role of punctuation
in parsing natural text.COLING.

J. G. Kahn, M. Lease, E. Charniak, M. Johnson, and
M. Ostendorf. 2005. Effective use of prosody in pars-
ing conversational speech. InHLT-EMNLP.

J.-H. Kim and P. C. Woodland. 2002. Implementation of
automatic capitalisation generation systems for speech
input. In ICASSP.

D. Klein and C. D. Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency and
constituency. InACL.

Y.-S. Lee, S. Roukos, Y. Al-Onaizan, and K. Papineni.
2006. IBM spoken language translation system. In
TC-STAR: Speech-to-Speech Translation.

Z. Li and M. Sun. 2009. Punctuation as implicit annota-
tions for Chinese word segmentation.Computational
Linguistics, 35.

X. Li, C. Zong, and R. Hu. 2005. A hierarchical parsing
approach with punctuation processing for long Chi-
nese sentences. InIJCNLP.

D. Lin. 1998. Dependency-based evaluation of MINI-
PAR. InEvaluation of Parsing Systems.

W. Lu and H. T. Ng. 2010. Better punctuation prediction
with dynamic conditional random fields. InEMNLP.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of English:
The Penn Treebank.Computational Linguistics, 19.

E. Matusov, A. Mauser, and H. Ney. 2006. Automatic
sentence segmentation and punctuation prediction for
spoken language translation. InIWSLT.

I. D. Melamed. 1997. Measuring semantic entropy. In
ACL-SIGLEX: Tagging Text with Lexical Semantics.

27

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007a. The CoNLL
2007 shared task on dependency parsing. InEMNLP-
CoNLL.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryiǧit,
S. Kübler, S. Marinov, and E. Marsi. 2007b. Malt-
Parser: A language-independent system for data-
driven dependency parsing.Natural Language Engi-
neering, 13.

G. Nunberg. 1990. The Linguistics of Punctuation.
CSLI Publications.

Y. Ohyama, T. Fukushima, T. Shutoh, and M. Shutoh.
1986. A sentence analysis method for a Japanese book
reading machine for the blind. InACL.

M. A. Paskin. 2001. Grammatical bigrams. InNIPS.
F. Pereira and Y. Schabes. 1992. Inside-outside reesti-

mation from partially bracketed corpora. InACL.
J. Pitman and M. Yor. 1997. The two-parameter Poisson-

Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25.

S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and
D. Jurafsky. 2005. Semantic role chunking combin-
ing complementary syntactic views. InCoNLL.

V. Punyakanok, D. Roth, W.-t. Yih, and D. Zimak. 2005.
Learning and inference over constrained output. InIJ-
CAI.

B. E. Roark. 2001.Robust Probabilistic Predictive Syn-
tactic Processing: Motivations, Models, and Applica-
tions. Ph.D. thesis, Brown University.

D. Roth and W.-t. Yih. 2005. Integer linear programming
inference for conditional random fields. InICML.

Y. Seginer. 2007. Fast unsupervised incremental parsing.
In ACL.

D. D. Sleator and D. Temperley. 1993. Parsing English
with a link grammar. InIWPT.

V. I. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Man-
ning. 2010a. Viterbi training improves unsupervised
dependency parsing. InCoNLL.

V. I. Spitkovsky, D. Jurafsky, and H. Alshawi. 2010b.
Profiting from mark-up: Hyper-text annotations for
guided parsing. InACL.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. 2000.
Text genre detection using common word frequencies.
In COLING.

W. Y. Wang and K. R. McKeown. 2010. “Got you!”: Au-
tomatic vandalism detection in Wikipedia with web-
based shallow syntactic-semantic modeling. InCOL-
ING.

M. White and R. Rajkumar. 2008. A more precise analy-
sis of punctuation for broad-coverage surface realiza-
tion with CCG. InGEAF.

K. C. Yeh. 2003. Bilingual sentence alignment based on
punctuation marks. InROCLING: Student.

28

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 29–38,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Modeling Infant Word Segmentation

Constantine Lignos
Department of Computer and Information Science

University of Pennsylvania
lignos@cis.upenn.edu

Abstract

While many computational models have been
created to explore how children might learn
to segment words, the focus has largely been
on achieving higher levels of performance and
exploring cues suggested by artificial learning
experiments. We propose a broader focus that
includes designing models that display prop-
erties of infants’ performance as they begin
to segment words. We develop an efficient
bootstrapping online learner with this focus in
mind, and evaluate it on child-directed speech.
In addition to attaining a high level of perfor-
mance, this model predicts the error patterns
seen in infants learning to segment words.

1 Introduction

The last fifteen years have seen an increased inter-
est in the problem of how infants learn to segment
a continuous stream of speech into words. Much of
this work has been inspired by experiments with in-
fants focusing on what capabilities infants have and
which cues they attend to. While experimental work
provides insight into the types of cues infants may be
using, computational modeling of the task provides
a unique opportunity to test proposed cues on rep-
resentative data and validate potential approaches to
using them.

While there are many potential approaches to the
problem, a desirable solution to the problem should
demonstrate acceptable performance in a simula-
tion of the task, rely on cues in the input that an
infant learner is able to detect at the relevant age,
and exhibit learning patterns similar to those of in-

fant learners. Most work in computational model-
ing of language acquisition has primarily focused
on achieving acceptable performance using a sin-
gle cue, transitional probabilities, but little effort has
been made in that work to try to connect these learn-
ing solutions to the actual learning patterns observed
in children outside of performance on short artificial
language learning experiments.

In this work we present a simple, easily extended
algorithm for unsupervised word segmentation that,
in addition to achieving a high level of performance
in the task, correlates with the developmental pat-
terns observed in infants. We discuss the connec-
tions between the design and behavior of our algo-
rithm and the cognitive capabilities of infants at the
age at which they appear to begin segmenting words.
We also discuss how our technique can easily be ex-
tended to accept additional cues to word segmenta-
tion beyond those implemented in our learner.

2 Related Work

As this paper examines the intersection of infants’
capabilities and computational modeling, we discuss
work in both domains, beginning with experimental
approaches to understanding how infants may per-
form the task of word segmentation.

2.1 Infant Word Segmentation

A potential account of how infants learn to iden-
tify words in fluent speech is that they learn words
in isolation and then use those words to segment
longer utterances (Peters, 1983; Pinker et al., 1984).
It is not clear, however, that infant-directed speech
provides enough detectable words in isolation for

29

such a strategy (Aslin et al., 1996). Whatever iso-
lated words children do hear, they appear to attend to
them; whether a word is heard in isolation is a better
predictor of whether a child has learned a word than
the word’s frequency (Brent and Siskind, 2001).

A more plausible alternative account to assume
children attend to patterns in the input, using them to
identify likely word units. Much experimental work
has followed from the finding that in artificial learn-
ing tasks, infants and adults appear to prefer word-
like units that match statistical patterns in the input
(Saffran et al., 1996b; Saffran et al., 1996a). Saffran
et al. and the authors of following studies (Aslin et
al., 1998; Saffran, 2001, among many others) sug-
gest that participants used transitional probabilities
to succeed in these experiments, but the actual strat-
egy used is unclear and may even be an artifact of
the perceptual system (Perruchet and Vinter, 1998;
Hewlett and Cohen, 2009).

More recent work using real language data has
not shown transitional probabilities to be as useful
a cue as originally suggested. Lew-Williams et al.
(2011) found that 9-month-old English-learning in-
fants were not able to learn high-transitional prob-
ability words in fluent Italian speech unless those
words were also presented in isolation. Given this
finding and the extensive exisiting modeling work
focusing on the used of transitional probabilities, we
believe it is crucial to additionally explore segmen-
tation strategies that rely on other cues in the input.

2.2 Modeling Word Segmentation
While experimental work has posited simple algo-
rithms that infants might use to accomplish the task
of word segmentation, when applied to real language
data these techniques have yielded very poor results
(Yang, 2004). This problem has created a chal-
lenge for researchers modeling language acquisition
to suggest more sophisticated strategies that infants
might use. These approaches have fallen into two
primary categories: optimization-based and boot-
strapping algorithm strategies.

Optimization-based strategies have focused on
techniques that a learner might use to arrive at an
optimal segmentation, either through a dynamic pro-
gramming approach (Brent, 1999), online learning
(Venkataraman, 2001), or nonparametric Bayesian
inference (Goldwater et al., 2009; Johnson and

Goldwater, 2009). These approaches fit within stan-
dard statistical approaches to natural language pro-
cessing, defining statistical objectives and inference
strategies, with the learners trying to optimize some
combination of the quality of its lexicon and repre-
sentations of the corpus.

In contrast, bootstrapping approaches (Gambell
and Yang, 2004; Lignos and Yang, 2010) to word
segmentation have focused on simple heuristics for
populating a lexicon and strategies for using the con-
tents of the lexicon to segment utterances. These ap-
proaches have focused on a procedure for segmen-
tation rather than defining an optimal segmentation
explicitly, and do not define a formal objective that
is to be optimized.

While bootstrapping approaches have generally
made stronger attempts to align with infants abili-
ties to process the speech signal (Gambell and Yang,
2004) than other approaches, little effort has been
made to connect the details of an implemented seg-
mentation strategy with children’s learning patterns
since the earliest computational models of the task
(Olivier, 1968). It is important to draw a con-
trast here between attempts to match patterns of hu-
man development with regard to word segmentation
with attempts to model performance in artificial lan-
guage learning experiments whose goal is to probe
word segmentation abilities in humans (Frank et al.,
2010). In this paper we are focused on matching the
progression of development and performance in nat-
uralistic experiments to characteristics of a segmen-
tation strategy, an approach similar to that employed
in English past tense learning (Rumelhart and Mc-
Clelland, 1986; Pinker, 2000; Yang, 2002).

We will now discuss the patterns of development
for children learning to segment English words,
which form the motivation for the design of our seg-
menter.

3 Infant Performance in Word
Segmentation

While the developmental patterns of English-
learning infants have been broadly studied, it has
been difficult to identify errors that must be caused
by failures to correctly segment words and not other
cognitive limitations, issues of morphological pro-
ductivity, or syntactic competency issues.

30

Brown (1973) offers one of the most compre-
hensive examinations of the types of errors that
young infants make regarding word segmentation.
He notes that Adam’s common errors included treat-
ing it’s-a, that-a, get-a, put-a, want-to, and at-that
as single words, as judged by various misproduc-
tions that involved these items. A possible analysis
of these errors is that in addition to the high level of
frequency with which those syllables co-occur, ele-
ments such as a and to do not carry any identifiable
amount of stress in natural speech.

In addition to the undersegmentations that Brown
identifies, Peters (1983) identifies the pattern of
oversegmenting function words begin other words,
including this famous dialog between a parent and
child, where in the child’s response have is pro-
nounced in the same way as the second syllable of
behave: Parent: Behave! Child: I am have!

The response by the child indicates that they have
analyzed behave as be have. There are two major
factors that could contribute to such an analysis: the
high frequency of be leading to it being treated as a
separate word (Saffran et al., 1996b), and the lack of
stress on be but stress on have which forms a word
contrary to the dominant pattern of stress in English
(Cutler and Butterfield, 1992).

Infants appear to use the ends of utterances to aid
segmentation, and as early at 7.5 months old they
are able to recognize novel words in fluent speech if
the novel words are presented at the ends of an utter-
ance and not utterance medially (Seidl and Johnson,
2006). Thus the reliable boundaries presented by the
edge of an utterance should be treated as informative
for a learner.

Most crucially, the syllable seems to be the unit
children use to form words. Experiments that have
been performed to gauge adult and infant compe-
tency in word segmentation have been designed with
the assumption that the only possible segmentation
points are at syllable boundaries. That infants should
be able to operate on syllables is unsurprising; in-
fants as young as 4-days-old are able to discrimi-
nate words based on syllable length (Bijeljac-Babic
et al., 1993) and phonotactic cues to syllable bound-
aries seem to be rapidly acquired by infants (On-
ishi et al., 2002). The use of the syllable in exper-
imental work on word segmentation stands in con-
trast to many computational models that have oper-

ated at the phoneme level (Brent, 1999; Venkatara-
man, 2001; Goldwater et al., 2009). An exception
to the focus on phoneme-based segmentation is the
joint learning model proposed by Johnson (2008)
that learns syllabification and other levels of repre-
sentation jointly with word segmentation, but that
model poses problems as a developmentally relevant
approach in that it predicts unattested joint syllabifi-
cation/segmentation errors by infants and problems
as a linguistically relevant approach due to its non-
phonotactic approach to learning syllabification.

From this survey, we see some relevant phenom-
ena that a good model of infant word segmentation
should replicate. (1) The learner should operate on
syllables. (2) At some stage of learning, underseg-
mentation function word collocations (e.g., that-a
should occur. (3) At some stage of learning, over-
segmentation of function words that may begin other
words (e.g., be-have) should occur. (4) The learner
should attend to the ends of utterances as use them
to help identify novel words.

4 An Algorithm for Segmentation

The algorithm we propose is similar in style to previ-
ous online bootstrapping segmenters (Gambell and
Yang, 2004; Lignos and Yang, 2010) but varies in a
few crucial aspects. First, it inserts word boundaries
in a left-to-right fashion as it processes each utter-
ance (i.e., in temporal order), unlike previous mod-
els which have worked from the outside in. Second,
it can handle cases where the segmentation is am-
biguous given the current lexicon and score multiple
possible segmentations. Finally, the use of word-
level stress information is an optional part of the
model, and not an essential part of the segmenta-
tion process. This allows us to examine the addi-
tional power that stress provides on top of a sub-
tractive segmentation system and allows the model
to generalize to languages where word-level stress
is not present in the same fashion as English (e.g.,
French). We first discuss the individual operations
the algorithm uses to segment an utterance, and then
discuss how they are combined in the segmenter.

4.1 The Lexicon

The learner we propose will primarily use items in
its lexicon to help identify new possible words. The

31

structure of the lexicon is as follows:

Lexicon. The lexicon contains the phonological ma-
terial of each word that the learner has previously
hypothesized. The lexicon stores a score along with
each word, which the segmenter may increment or
decrement.

The score assigned to each entry in the lexicon
represents the relative confidence that it is a true
word of the language. Each increment simply adds
to the score of an individual word and each decre-
ment subtracts from it.

4.2 Subtractive Segmentation

Subtractive segmentation is the process of using
known words to segment the speech signal, which
infants appear to be able to do as young as at six
months of age (Bortfeld et al., 2005).

Subtractive Segmentation. When possible, remove
a known word in the lexicon from the front of the
utterance being segmented.

One way to apply subtractive segmentation is a
greedy score-based heuristic for subtractive segmen-
tation (Lignos and Yang, 2010), such that whenever
multiple words in the lexicon could be subtracted
from an utterance, the entry with the highest score
will deterministically be used. This greedy approach
results in a “rich get richer” effect of the sort seen in
Dirichlet processes (Goldwater et al., 2009). We will
first discuss this approach and then later extend this
greedy search to a beam search.

Figure 1 gives the implementation of subtractive
segmentation in our algorithm. This algorithm re-
sults in the following properties:

Initially, utterances are treated as words in isola-
tion. When the lexicon is empty, no word bound-
aries will be inserted and the full contents of each
utterance will be added to the lexicon as a word.

High-frequency words are preferred. When pre-
sented with a choice of multiple words to subtract,
the highest scored word will be subtracted, which
will prefer higher frequency words over lower fre-
quency words in segmentation.

Syllables between words are not necessarily con-
sidered words. Syllables that occur between sub-
tractions are not added as words in the lexicon. For

example, if play and please are in the lexicon but
checkers is not, the utterance play checkers please
will be correctly segmented, but checkers will not
be added to the lexicon. Much like infants appear
to do, the learner does not place as much weight on
less reliable boundaries hypothesized in the middle
of an utterance (Seidl and Johnson, 2006).

4.3 Incorporating Stress Information

A particularly useful constraint for defining a word,
introduced to the problem of word segmentation by
Yang (2004) but previously discussed by Halle and
Vergnaud (1987), is as follows:

Unique Stress Constraint (USC): A word can bear
at most one primary stress.

Yang (2004) evaluated the effectiveness of the
USC in conjunction with a simple approach to us-
ing transitional probabilities, showing significant
performance improvements. The availability of
such stress cues is not, however, an uncontroversial
assumption; there are no language-universal cues
to stress and even within a single language auto-
matic detection of word-level stress is still unreli-
able (Van Kuijk and Boves, 1999), making auto-
matic capture of such data for simulation purposes
difficult.

Before taking advantage of word-level stress in-
formation, the infant learner would need to iden-
tify the acoustic correlates to word-level stress in her
language, and we will not address the specific mech-
anisms that an infant learner may use to accomplish
the task of identifying word-level stress in this paper.
Based on strong experimental evidence that infants
discriminate between weakly and strongly stressed
syllables and use it to group syllables into word-like
units (Jusczyk et al., 1999), we assume that an infant
may attend to this cue and we evaluate our model
with and without it.

We adopt the USC for segmentation in the follow-
ing fashion:

Unique Stress Segmentation (USS). Insert word
boundaries such that no word contains two strong
stresses. Do so in a lazy fashion, inserting bound-
aries as a last resort just before adding another syl-
lable to the current would cause it to contain two
strong stresses.

32

u← the syllables of the utterance, initially with no word boundaries
i← 0
while i < len(u) do

if u starts with one or more words in the lexicon then
Choose the highest scoring word w and remove it from the front of u by inserting a word boundary before and after it.
Increment the score of w
Advance i to the last word boundary inserted

else
Advance i by one syllable

end if
end while
Add the syllables between the last boundary inserted (or the beginning of the utterance if no boundaries were inserted) and the
end of the utterance as a word in the lexicon with a score of 1

Figure 1: Subtractive segmentation procedure

u← the syllables of the utterance, initally with no word boundaries
i← 0
seenStress← False
while i < len(u)− 1 do

if u[i] is stressed then
seenStress← True

end if
if seenStress and u[i + 1] is stressed then

Insert a word boundary between u[i] and u[i + 1]
w ← the syllables between the previous boundary inserted (or the beginning of the utterance if no boundaries were inserted)
and the boundary just inserted
Increment w’s score in the lexicon, adding it to the lexicon if needed
seenStress← False

end if
i← i + 1

end while
w ← the syllables between the last boundary inserted (or the beginning of the utterance if no boundaries were inserted) and the
end of the utterance
Increment w’s score in the lexicon, adding it to the lexicon if needed

Figure 2: A Unique Stress Segmentation Algorithm

This strategy is expressed in an algorithmic form
in Figure 2. The learner uses USS as a last resort
to prevent creating a segmentation with an impossi-
ble amount of stress in a single word. For example
consider an unsegmented English utterance with the
stressed syllables underlined: Givemetheball. Ap-
plying USS would create the following segmenta-
tion: Givemethe ball.

A USS-based algorithm would note the stress on
the first syllable, then keep scanning until another
stress is located on the fourth syllable, inserting a
break between the two. Givemethe and ball would
be added to the lexicon. While this is not a per-
fect segmentation, it can be used to aid subtractive
segmentation by seeding the lexicon, even if not all
entries added to the lexicon are not correct.

4.4 Combining Subtraction and Stress
Information

Given our bootstrapping methodology, it is highly
desirable to be able to integrate USS along with sub-
tractive segmentation. An algorithm that combines
both is shown in Figure 3.

4.5 Extending to Beam Search

The greedy segmentation proposed is limited in its
ability to find a good segmentation by its reliance on
local decisions. A frequent undersegmentation error
of the greedy segmenter is of this type: partof an
apple. Because partof has a higher score than part
at the point in learning where this utterance is en-
countered, the greedy segmenter will always choose
partof.

An alternative approach is to let the segmenter

33

u← the syllables of the utterance, initally with no word boundaries
i← 0
while i < len(u) do

if USS requires a word boundary then
Insert a word boundary and advance i, updating the lexicon as needed

else if Subtractive Segmentation can be performed then
Subtract the highest scoring word and advance i, updating the lexicon as needed

else
Advance i by one syllable

end if
end while
w ← the syllables between the last boundary inserted (or the beginning of the utterance if no boundaries were inserted) and the
end of the utterance
Increment w’s score in the lexicon, adding it to the lexicon if needed

Figure 3: An algorithm combining USS and Subtractive Segmentation

explore multiple hypotheses at once, using a sim-
ple beam search. New hypotheses are added to
support multiple possible subtractive segmentations.
For example, using the utterance above, at the be-
ginning of segmentation either part or partof could
be subtracted from the utterance, and both possi-
ble segmentations can be evaluated. The learner
scores these hypotheses in a fashion similar to the
greedy segmentation, but using a function based on
the score of all words used in the utterance. The
geometric mean has been used in compound split-
ting (Koehn and Knight, 2003), a task in many ways
similar to word segmentation, so we adopt it as the
criterion for selecting the best hypothesis. For a
hypothesized segmentation H comprised of words
wi . . . wn, a hypothesis is chosen as follows:

arg max
H

(
∏

wi∈H

score(wi))
1
n

For any w not found in the lexicon we must assign
a score; we assign it a score of one as that would
be its value assuming it had just been added to the
lexicon, an approach similar to Laplace smoothing.

Returning to the previous example, while the
score of partof is greater than that of part, the score
of of is much higher than either, so if both partof
an apple and part of an apple are considered, the
high score of of causes the latter to be chosen.
When beam search is employed, only words used in
the winning hypothesis are rewarded, similar to the
greedy case where there are no other hypotheses.

In addition to preferring segmentations that use
words of higher score, it is useful to reduce the

Algorithm Word Boundaries

Precision Recall F-Score
No Stress Information

Syllable Baseline 81.68 100.0 89.91
Subtractive Seg. 91.66 89.13 90.37
Subtractive Seg. + Beam 2 92.74 88.69 90.67

Word-level Stress

USS Only 91.53 18.82 31.21
USS + Subtractive Seg. 93.76 92.02 92.88
USS + Subtractive Seg. +
Beam 2

94.20 91.87 93.02

Table 1: Learner and baseline performance

score of words that led to the consideration of a los-
ing hypothesis. In the previous example we may
want to penalize partof so that we are less likely to
choose a future segmentation that includes it. Set-
ting the beam size to be two, forcing each hypothesis
to develop greedily after an ambiguous subtraction
causes two hypotheses to form, we are guaranteed
a unique word to penalize. In the previous example
partof causes the split between the two hypotheses
in the beam, and thus the learner penalizes it to dis-
courage using it in the future.

5 Results

5.1 Evaluation

To evaluate the performance of our model, we mea-
sured performance on child-directed speech, using
the same corpus used in a number of previous stud-
ies that used syllabified input (Yang, 2004; Gambell
and Yang, 2004; Lignos and Yang, 2010). The eval-

34

uation set was comprised of adult utterances from
the Brown (1973) data of the CHILDES database
(MacWhinney, 2000).1 Phonemic transcriptions of
words from the Carnegie Mellon Pronouncing Dic-
tionary (CMUdict) Version 0.7 (Weide, 1998), us-
ing the first pronunciation for each word and mark-
ing syllables with level 1 stress as strong syllables.
The corpus was syllabified using onset maximiza-
tion. Any utterance in which a word could not be
transcribed using CMUDICT was excluded, leaving
55,840 utterances. We applied a probabilistic re-
call function to the lexicon to simulate the fact that
a child learner will not perfectly recall all hypothe-
sized words either due to memory limitations, vari-
ability in the input, or any other possible source of
failure. We used the same function and constant as
used by Lignos and Yang (2010).

To adjust the word-level stress information to bet-
ter reflect natural speech, the stress information ob-
tained from CMUdict was post-processed in the con-
text of each utterance using the technique of Lig-
nos and Yang (2010). For any n adjacent primary-
stress syllables, only the nth syllable retains primary
stress; all others are made into weak syllables. This
reflects the fact that stress clash is avoided in English
and that infants may not reliably detect acoustic cor-
relates of stress in the input.

In addition to variations of our algorithm, we eval-
uated a baseline segmenter which marks every syl-
lable boundary as a word boundary, treating each
syllable as a word. We tested five variants of our
algorithm, adding combinations of USS, subtractive
segmentation, and adding beam search with a beam
size of two2 to subtractive segmentation.

Precision and recall metrics were calculated over
all word boundaries over all utterances in the cor-
pus. The segmenter’s task is effectively to classify
each syllable boundary as a word boundary or not.
As single-syllable utterances are unambiguously a
single word with no possible boundaries, they are

1A separate set of previous studies have used a corpus se-
lected by Brent (1999) for evaluation. Due to length limitations
and the fact that the results presented here cannot be meaning-
fully compared to those studies, we only present results on the
Brown (1973) data here.

2As larger beam sizes did not lead to any benefits, partly
because they do not straightforwardly allow for penalization,
we do not report results for larger beam sizes.

excluded from evaluation but still given as input.
Evaluation was performed by giving each algo-

rithm a single pass over the data set, with the perfor-
mance on every utterance included in the total score.
This is the most challenging metric for an online
segmenter, as early mistakes made when the learner
has been exposed to no data still count against it.

5.2 Performance
The performance of several variations of our algo-
rithm is given in Table 1. The most surprising re-
sult is the high performance provided by the sylla-
ble baseline. This good performance is both an arti-
fact of English and the metrics used to evaluate the
segmenters. In English, there are larger number of
monosyllabic words than in other languages, result-
ing in high precision in addition to the guaranteed
100% recall because it predicts every possible word
boundary. The standard metric of evaluating pre-
cision and recall over word boundaries rather than
words identified in each utterance also contributes
to this performance; when this baseline is evaluated
with a word-level precision and recall it does not
perform as well (Lignos and Yang, 2010).

Subtractive Segmentation provides an improve-
ment in utterance evaluation over the Syllable Base-
line, and adding beam search to it slightly improves
F-score, sacrificing precision for recall. This is to be
expected from the penalization step in beam search;
as the penalization penalizes some good words in ad-
dition to undesirable ones, the purification of the ut-
terance segmentation and the lexicon comes at the
cost of recall from over-penalization.

While USS alone is clearly not a sufficiently rich
segmentation technique, it is important to note that
it is a high precision indicator of word boundaries,
suggesting that stress information can be useful to
the learner even when used in this simple way. More
importantly, USS contributes unique information to
subtractive segmentation, as the utterance F-score
of subtractive segmentation improves from 90.37 to
92.88.

While the performance numbers show that the
segmenter performs competently at the task, the
more significant question at hand is whether the er-
rors committed by the learner match developmental
patterns of infants. As the design of the segmenter
predicts, the main error types of the Subtractive Seg-

35

mentation + USS algorithm fall into two classes:

Function word collocations. For example, the
third highest-scored non-word in the lexicon is
that’sa, congruent with observations of function
word collocations seen in children (Brown, 1973).

Oversegmentation of function words. The
greedy approach used for segmenting the words
of highest score results in function words being
aggressively segmented off the front of words, for
example a nother. The highest scored non-word in
the lexicon is nother as a result.

Adding beam search reduces the number of func-
tion word collocations in the segmenter’s output; the
learner’s most commonly penalized lexicon entry is
isthat. However, beam search also penalizes a lot of
words, such as another. Thus the strategy used in
beam search predicts an early use of function word
collocations, followed by later oversegmentation.

6 Discussion

In the discussion of related work, we identified two
major paradigms in modeling word segmentation:
optimization and bootstrapping approaches. The al-
gorithm presented here combines elements of both.
Its behavior over time and across utterances is that of
a bootstrapping learner, but when processing each
utterance it selects a segmentation based on a sim-
ple, cognitively plausible beam search.

By using a beam search of the kind suggested, it
is easy to see how a variety of other cues could be
integrated into the learning process. We have given a
simple function for selecting the best hypothesis that
only relies on lexicon scores, but more sophisticated
functions could take multiple cues into account. For
example it has been observed that 7-month-olds at-
tend more to distributional cues while 9-month-olds
attend more to stress cues (Thiessen and Saffran,
2003). A learner in which the weight placed on
stress cues increases as the learner receives more
data would match this pattern. Other research has
suggested a more complex hierarchy of cues (Mat-
tys et al., 2005), but how the weighting of the vari-
ous cues can be adjusted with more input remains an
open question.

A crucial frontier in word segmentation is the ex-
pansion of evaluation to include other languages. As

with many other tasks, creating solutions that per-
form well in a broad variety of languages is im-
portant but has not yet been pursued. Future work
should attempt to match developmental patterns in
other languages, which will require adding morpho-
logical complexity to the system; the techniques
developed for English are unlikely to succeed un-
changed in other languages.

Comparing with other algorithms’ published re-
sults is difficult because of varying choices of data
sets and metrics. For example, other syllable-based
algorithms have evaluated their performance using
word-level, as opposed to boundary-level, precision
and recall (Gambell and Yang, 2004; Lignos and
Yang, 2010). We have adopted the more popular
boundary-based metric here, but there is no way to
directly compare with work that does not use syllab-
ified input. The variety of possible evaluation met-
rics obviates the need for a longer-form exploration
of how existing approaches perform when evaluated
against varying metrics. Additionally, a more stan-
dard set of evaluation data in many languages would
greatly improve the ability to compare different ap-
proaches to this task.

7 Conclusion

The work presented here represents a step toward
bringing together developmental knowledge regard-
ing word segmentation and computational model-
ing. Rather than focusing on cues in artificial learn-
ing experiments which may or may not generalize
to the natural development of word segmentation in
children, we have shown how a simple algorithm
for segmentation mimics many of the patterns seen
in infants’ developing competence. We believe this
work opens the door to a promising line of research
that will make a stronger effort to see simulations
of language acquisition as not just an unsupervised
learning task but rather a modeling task that must
take into account a broad variety of phenomena.

8 Acknowledgments

I would like to thank Charles Yang and Mitch Mar-
cus for many enlightening discussions regarding this
work. The author was supported by an NSF IGERT
grant to the University of Pennsylvania Institute for
Research in Cognitive Science.

36

References

R.N. Aslin, J.Z. Woodward, N.P. LaMendola, and T.G.
Bever. 1996. Models of word segmentation in fluent
maternal speech to infants. Signal to syntax: Boot-
strapping from speech to grammar in early acquisi-
tion, pages 117–134.

R.N. Aslin, J.R. Saffran, and E.L. Newport. 1998.
Computation of conditional probability statistics by 8-
month-old infants. Psychological Science, 9(4):321.

R. Bijeljac-Babic, J. Bertoncini, and J. Mehler. 1993.
How do 4-day-old infants categorize multisyllabic ut-
terances? Developmental Psychology, 29:711–711.

H. Bortfeld, J.L. Morgan, R.M. Golinkoff, and K. Rath-
bun. 2005. Mommy and me. Psychological Science,
16(4):298.

M.R. Brent and J.M. Siskind. 2001. The role of ex-
posure to isolated words in early vocabulary develop-
ment. Cognition, 81(2):B33–B44.

M.R. Brent. 1999. An efficient, probabilistically sound
algorithm for segmentation and word discovery. Ma-
chine Learning, 34(1):71–105.

R. Brown. 1973. A First Language: The Early
Stages. Harvard Univ. Press, Cambridge, Mas-
sachusetts 02138.

A. Cutler and S. Butterfield. 1992. Rhythmic cues
to speech segmentation: Evidence from juncture
misperception. Journal of Memory and Language,
31(2):218–236.

M.C. Frank, S. Goldwater, T.L. Griffiths, and J.B. Tenen-
baum. 2010. Modeling human performance in statis-
tical word segmentation. Cognition.

T. Gambell and C. Yang. 2004. Statistics learning and
universal grammar: Modeling word segmentation. In
First Workshop on Psycho-computational Models of
Human Language Acquisition, page 49.

S. Goldwater, T.L. Griffiths, and M. Johnson. 2009. A
Bayesian framework for word segmentation: Explor-
ing the effects of context. Cognition.

M. Halle and J.R. Vergnaud. 1987. An essay on stress.
MIT Press.

D. Hewlett and P. Cohen. 2009. Word segmentation
as general chunking. In Psychocomputational Models
of Language Acquisition Workshop (PsychoCompLA),
July 29, 2009.

M. Johnson and S. Goldwater. 2009. Improving non-
parameteric Bayesian inference: experiments on unsu-
pervised word segmentation with adaptor grammars.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 317–325. Association for Computational
Linguistics.

M. Johnson. 2008. Using adaptor grammars to identify
synergies in the unsupervised acquisition of linguistic
structure. In 46th Annual Meeting of the ACL, pages
398–406. Citeseer.

P.W. Jusczyk, D.M. Houston, and M. Newsome. 1999.
The Beginnings of Word Segmentation in English-
Learning Infants. Cognitive Psychology, 39(3-4):159–
207.

P. Koehn and K. Knight. 2003. Empirical methods for
compound splitting. In Proceedings of the tenth con-
ference on European chapter of the Association for
Computational Linguistics-Volume 1, pages 187–193.
Association for Computational Linguistics.

C. Lew-Williams, B. Pelucchi, and J. Saffran. 2011. Iso-
lated words enhance statistical learning by 9-month-
old infants. In Budapest CEU Conference on Cogni-
tive Development 2011.

C. Lignos and C. Yang. 2010. Recession Segmenta-
tion: Simpler Online Word Segmentation Using Lim-
ited Resources. In Proceedings of CoNLL-2010, pages
88–97.

B. MacWhinney. 2000. The CHILDES Project: Tools
for Analyzing Talk. Lawrence Erlbaum Associates.

S.L. Mattys, L. White, and J.F. Melhorn. 2005. In-
tegration of multiple speech segmentation cues: A
hierarchical framework. Journal of Experimental
Psychology-General, 134(4):477–500.

D.C. Olivier. 1968. Stochastic grammars and language
acquisition mechanisms: a thesis. Ph.D. thesis, Har-
vard University.

K.H. Onishi, K.E. Chambers, and C. Fisher. 2002.
Learning phonotactic constraints from brief auditory
experience. Cognition, 83(1):B13–B23.

P. Perruchet and A. Vinter. 1998. PARSER: A model
for word segmentation. Journal of Memory and Lan-
guage, 39:246–263.

A.M. Peters. 1983. The units of language acquisition.
CUP Archive.

S. Pinker, Harvard University. The President, and Fellows
of Harvard College. 1984. Language learnability
and language development. Harvard University Press
Cambridge, MA.

S. Pinker. 2000. Words and rules: The ingredients of
language. Harper Perennial.

D.E. Rumelhart and J.L. McClelland. 1986. Parallel dis-
tributed processing: Explorations in the microstruc-
ture of cognition. MIT Press, Cambridge, MA.

J.R. Saffran, R.N. Aslin, and E.L. Newport. 1996a.
Statistical Learning by 8-month-old Infants. Science,
274(5294):1926.

J.R. Saffran, E.L. Newport, and R.N. Aslin. 1996b. Word
Segmentation: The Role of Distributional Cues. Jour-
nal of Memory and Language, 35(4):606–621.

37

J.R. Saffran. 2001. Words in a sea of sounds: The output
of infant statistical learning. Cognition, 81(2):149–
169.

A. Seidl and E.K. Johnson. 2006. Infant word segmenta-
tion revisited: edge alignment facilitates target extrac-
tion. Developmental Science, 9(6):565–573.

E.D. Thiessen and J.R. Saffran. 2003. When cues col-
lide: Use of stress and statistical cues to word bound-
aries by 7-to 9-month-old infants. Developmental Psy-
chology, 39(4):706–716.

D. Van Kuijk and L. Boves. 1999. Acoustic character-
istics of lexical stress in continuous telephone speech.
Speech Communication, 27(2):95–111.

A. Venkataraman. 2001. A statistical model for word
discovery in transcribed speech. Computational Lin-
guistics, 27(3):351–372.

R.L. Weide. 1998. The Carnegie Mellon Pronouncing
Dictionary [cmudict. 0.6].

C.D. Yang. 2002. Knowledge and learning in natural
language. Oxford University Press, USA.

C.D. Yang. 2004. Universal Grammar, statistics or both?
Trends in Cognitive Sciences, 8(10):451–456.

38

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 39–47,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Word Segmentation as General Chunking

Daniel Hewlett and Paul Cohen
Department of Computer Science

University of Arizona
Tucson, AZ 85721

{dhewlett,cohen}@cs.arizona.edu

Abstract

During language acquisition, children learn
to segment speech into phonemes, syllables,
morphemes, and words. We examine word
segmentation specifically, and explore the
possibility that children might have general-
purpose chunking mechanisms to perform
word segmentation. The Voting Experts (VE)
and Bootstrapped Voting Experts (BVE) algo-
rithms serve as computational models of this
chunking ability. VE finds chunks by search-
ing for a particular information-theoretic sig-
nature: low internal entropy and high bound-
ary entropy. BVE adds to VE the abil-
ity to incorporate information about word
boundaries previously found by the algorithm
into future segmentations. We evaluate the
general chunking model on phonemically-
encoded corpora of child-directed speech, and
show that it is consistent with empirical results
in the developmental literature. We argue that
it offers a parsimonious alternative to special-
purpose linguistic models.

1 Introduction

The ability to extract words from fluent speech ap-
pears as early as the seventh month in human de-
velopment (Jusczyk et al., 1999). Models of this
ability have emerged from such diverse fields as lin-
guistics, psychology and computer science. Many
of these models make unrealistic assumptions about
child language learning, or rely on supervision, or
are specific to speech or language. Here we present
an alternative: a general unsupervised model of
chunking that performs very well on word segmen-
tation tasks. We will examine the Voting Experts,

Bootstrapped Voting Experts, and Phoneme to Mor-
pheme algorithms in Section 2. Each searches for a
general, information-theoretic signature of chunks.
Each can operate in either a fully unsupervised set-
ting, where the input is a single continuous se-
quence of phonemes, or a semi-supervised setting,
where the input is a sequence of sentences. In Sec-
tion 4, we evaluate these general chunking methods
on phonetically-encoded corpora of child-directed
speech, and compare them to a representative set of
computational models of early word segmentation.
Section 4.4 presents evidence that words optimize
the information-theoretic signature of chunks. Sec-
tion 5 discusses segmentation methods in light of
what is known about the segmentation abilities of
children.

2 General Chunking

The Voting Experts algorithm (Cohen and Adams,
2001) defines the chunk operationally as a sequence
with the property that elements within the sequence
predict one another but do not predict elements out-
side the sequence. In information-theoretic terms,
chunks have low entropy internally and high entropy
at their boundaries. Voting Experts (VE) is a lo-
cal, greedy algorithm that works by sliding a rel-
atively small window along a relatively long input
sequence, calculating the internal and boundary en-
tropies of sequences within the window.

The name Voting Experts refers to the two “ex-
perts” that vote on possible boundary locations:
One expert votes to place boundaries after se-
quences that have low internal entropy (also called
surprisal), given by HI(seq) = − log P (seq).
The other places votes after sequences that have

39

high branching entropy, given by HB(seq) =
−

∑
c∈S P (c|seq) log P (c|seq), where S is the set

of successors to seq. In a modified version of VE,
a third expert “looks backward” and computes the
branching entropy at locations before, rather than af-
ter, seq.

The statistics required to calculate HI and HB are
stored efficiently using an n-gram trie, which is typ-
ically constructed in a single pass over the corpus.
The trie depth is 1 greater than the size of the slid-
ing window. Importantly, all statistics in the trie are
normalized so as to be expressed in standard devia-
tion units. This allows statistics from sequences of
different lengths to be compared.

The sliding window is then passed over the cor-
pus, and each expert votes once per window for the
boundary location that best matches that expert’s cri-
teria. After voting is complete, the algorithm yields
an array of vote counts, each element of which is
the number of times some expert voted to segment
at that location. The result of voting on the string
thisisacat could be represented in the follow-
ing way, where the number between each letter is
the number of votes that location received, as in
t0h0i1s3i1s4a4c1a0t.

With the final vote totals in place, the boundaries
are placed at locations where the number of votes
exceeds a chosen threshold. For further details of the
Voting Experts algorithm see Cohen et al. (2007),
and also Miller and Stoytchev (2008).

2.1 Generality of the Chunk Signature
The information-theoretic properties of chunks upon
which VE depends are present in every non-random
sequence, of which sequences of speech sounds are
only one example. Cohen et al. (2007) explored
word segmentation in a variety of languages, as well
as segmenting sequences of robot actions. Hewlett
and Cohen (2010) demonstrated high performance
for a version of VE that segmented sequences of ut-
terances between a human teacher and an AI stu-
dent. Miller and Stoytchev (2008) applied VE in a
kind of bootstrapping procedure to perform a vision
task similar to OCR: first to chunk columns of pix-
els into letters, then to chunk sequences of these dis-
covered letters into words. Of particular relevance to
the present discussion are the results of Miller et al.
(2009), who showed that VE was able to segment a

continuous audio speech stream into phonemes. The
input in that experiment was generated to mimic the
input presented to infants by Saffran et al. (1996),
and was discretized for VE with a Self-Organizing
Map (Kohonen, 1988).

2.2 Similar Chunk Signatures
Harris (1955) noticed that if one proceeds incremen-
tally through a sequence of letters and asks speakers
of the language to list all the letters that could ap-
pear next in the sequence (today called the succes-
sor count), the points where the number increases
often correspond to morpheme boundaries. Tanaka-
Ishii and Jin (2006) correctly recognized that this
idea was an early version of branching entropy, one
of the experts in VE, and they developed an algo-
rithm called Phoneme to Morpheme (PtM) around it.
PtM calculates branching entropy in both directions,
but it does not use internal entropy, as VE does. It
detects change-points in the absolute branching en-
tropy rather than local maxima in the standardized
entropy. PtM achieved scores similar to those of VE
on word segmentation in phonetically-encoded En-
glish and Chinese.

Within the morphology domain, Johnson and
Martin’s HubMorph algorithm (2003) constructs a
trie from a set of words, and then converts it into
a DFA by the process of minimization. HubMorph
searches for stretched hubs in this DFA, which are
sequences of states in the DFA that have a low
branching factor internally, and high branching fac-
tor at the edges (shown in Figure 1). This is a nearly
identical chunk signature to that of VE, only with
successor/predecessor count approximating branch-
ing entropy. The generality of this idea was not lost
on Johnson and Martin, either: Speaking with re-
spect to the morphology problem, Johnson and Mar-
tin close by saying “We believe that hub-automata
will be the basis of a general solution for Indo-
European languages as well as for Inuktitut.” 1

2.3 Chunking and Bootstrapping
Bootstrapped Voting Experts (BVE) is an exten-
sion to VE that incorporates knowledge gained from
prior segmentation attempts when segmenting new
input, a process known as bootstrapping. This

1Inuktitut is a polysynthetic Inuit language known for its
highly complex morphology.

40

Figure 1: The DFA signature of a hub (top) and stretched
hub in the HubMorph algorithm. Figure from Johnson
and Martin (2003).

knowledge does not consist in the memorization of
whole words (chunks), but rather in statistics de-
scribing the beginnings and endings of chunks. In
the word segmentation domain, these statistics ef-
fectively correspond to phonotactic constraints that
are inferred from hypothesized segmentations. In-
ferred boundaries are stored in a data structure called
a knowledge trie (shown in Figure 2), which is es-
sentially a generalized prefix or suffix trie.

a

3

t

3

t

3

h

2

s

1

o

1

root

. . .

a

3

t

3

t

3

h

2

s

1

o

1

root

#

3

#

3

o

1

n

1

#

1

e

3

n

1

Figure 2: A portion of the knowledge trie built from
#the#cat#sat#on#the#mat#. Numbers within
each node are frequency counts.

BVE was tested on a phonemically-encoded cor-
pus of child-directed speech and achieved a higher
level of performance than any other unsupervised al-
gorithm (Hewlett and Cohen, 2009). We reproduce
these results in Section 4.

3 Computational Models of Word
Segmentation

While many algorithms exist for solving the word
segmentation problem, few have been proposed
specifically as computational models of word seg-
mentation in language acquisition. One of the most
widely cited is MBDP-1 (Model-Based Dynamic
Programming) by Brent (1999). Brent describes
three features that an algorithm should have to qual-

ify as an algorithm that “children could use for seg-
mentation and word discovery during language ac-
quisition.” Algorithms should learn in a completely
unsupervised fashion, should segment incrementally
(i.e., segment each utterance before considering the
next one), and should not have any built-in knowl-
edge about specific natural languages (Brent, 1999).

However, the word segmentation paradigm Brent
describes as “completely unsupervised” is actually
semi-supervised, because the boundaries at the be-
ginning and end of each utterance are known to
be true boundaries. A fully unsupervised paradigm
would include no boundary information at all, mean-
ing that the input is, or is treated as, a continuous se-
quences of phonemes. The MBDP-1 algorithm was
not designed for operation in this continuous condi-
tion, as it relies on having at least some true bound-
ary information to generalize.

MBDP-1 achieves a robust form of bootstrapping
through the use of Bayesian maximum-likelihood
estimation of the parameters of a language model.
More recent algorithms in the same tradition, includ-
ing the refined MBDP-1 of Venkataraman (2001),
the WordEnds algorithm of Fleck (2008), and the
Hierarchical Dirichlet Process (HDP) algorithm of
Goldwater (2007), share this limitation. However,
infants are able to discover words in a single stream
of continuous speech, as shown by the seminal series
of studies by Saffran et al. (1996; 1998; 2003). In
these studies, Saffran et al. show that both adults and
8-month-old infants quickly learn to extract words
of a simple artificial language from a continuous
speech stream containing no pauses.

The general chunking algorithms VE, BVE, and
PtM work in either condition. The unsupervised,
continuous condition is the norm (Cohen et al.,
2007; Hewlett and Cohen, 2009; Tanaka-Ishii and
Jin, 2006) but these algorithms are easily adapted
to the semi-supervised, incremental condition. Re-
call that these methods make one pass over the entire
corpus to gather statistics, and then make a second
pass to segment the corpus, thus violating Brent’s re-
quirement of incremental segmentation. To adhere
to the incremental requirement, the algorithms sim-
ply must segment each sentence as it is seen, and
then update their trie(s) with statistics from that sen-
tence. While VE and PtM have no natural way to
store true boundary information, and so cannot ben-

41

efit from the supervision inherent in the incremental
paradigm, BVE has the knowledge trie which serves
exactly this purpose. In the incremental paradigm,
BVE simply adds each segmented sentence to the
knowledge trie, which will inform the segmentation
of future sentences. This way it learns from its own
decisions as well as the ground truth boundaries sur-
rounding each utterance, much like MBDP-1 does.
BVE and VE were first tested in the incremental
paradigm by Hewlett and Cohen (2009), though only
on sentences from a literary corpus, George Orwell’s
1984.

4 Evaluation of Computational Models

In this section, we evaluate the general chunking al-
gorithms VE, BVE, and PtM in both the continu-
ous, unsupervised paradigm of Saffran et al. (1996)
and the incremental, semi-supervised paradigm as-
sumed by bootstrapping algorithms like MBDP-1.
We briefly describe the artificial input used by Saf-
fran et al., and then turn to the broader problem
of word segmentation in natural languages by eval-
uating against corpora drawn from the CHILDES
database (MacWhinney and Snow, 1985).

We evaluate segmentation quality at two levels:
boundaries and words. At the boundary level, we
compute the Boundary Precision (BP), which is sim-
ply the percentage of induced boundaries that were
correct, and Boundary Recall (BR), which is the
percentage of true boundaries that were recovered
by the algorithm. These measures are commonly
combined into a single metric, the Boundary F-
score (BF), which is the harmonic mean of BP and
BR: BF = (2 × BP × BR)/(BP + BR). Gener-
ally, higher BF scores correlate with finding cor-
rect chunks more frequently, but for completeness
we also compute the Word Precision (WP), which is
the percentage of induced words that were correct,
and the Word Recall (WR), which is the percent-
age of true words that were recovered exactly by the
algorithm. These measures can naturally be com-
bined into a single F-score, the Word F-score (WF):
WF = (2×WP×WR)/(WP + WR).

4.1 Artificial Language Results

To simulate the input children heard during Saf-
fran et al.’s 1996 experiment, we generated a corpus

of 400 words, each chosen from the four artificial
words from that experiment (dapiku, tilado,
burobi, and pagotu). As in the original study,
the only condition imposed on the random sequence
was that no word would appear twice in succession.
VE, BVE, and PtM all achieve a boundary F-score
of 1.0 whether the input is syllabified or considered
simply as a stream of phonemes, suggesting that a
child equipped with a chunking ability similar to VE
could succeed even without syllabification.

4.2 CHILDES: Phonemes

To evaluate these algorithms on data that is closer
to the language children hear, we used corpora
of child-directed speech taken from the CHILDES
database (MacWhinney and Snow, 1985). Two cor-
pora have been examined repeatedly in prior stud-
ies: the Bernstein Ratner corpus (Bernstein Rat-
ner, 1987), abbreviated BR87, used by Brent (1999),
Venkataraman (2001), Fleck (2008), and Goldwater
et al. (2009), and the Brown corpus (Brown, 1973),
used by Gambell and Yang (2006).

Before segmentation, all corpora were encoded
into a phonemic representation, to better simulate
the segmentation problem facing children. The
BR87 corpus has a traditional phonemic encoding
created by Brent (1999), which facilitates compar-
ison with other published results. Otherwise, the
corpora are translated into a phonemic representa-
tion using the CMU Pronouncing Dictionary, with
unknown words discarded.

The BR87 corpus consists of speech from nine
different mothers to their children, who had an av-
erage age of 18 months (Brent, 1999). BR87 con-
sists of 9790 utterances, with a total of 36441 words,
yielding an average of 3.72 words per utterance. We
evaluate word segmentation models against BR87 in
two different paradigms, the incremental paradigm
discussed above and an unconstrained paradigm.
Many of the results in the literature do not constrain
the number of times algorithms can process the cor-
pus, meaning that algorithms generally process the
entire corpus once to gather statistics, and then at
least one more time to actually segment it. Results
of VE and other algorithms in this unconstrained set-
ting are presented below in Table 1. In this test, the
general chunking algorithms were given one contin-
uous corpus with no boundaries, while the results for

42

bootstrapping algorithms were reported in a semi-
supervised condition.

Algorithm BP BR BF WP WR WF
PtM 0.861 0.897 0.879 0.676 0.704 0.690
VE 0.875 0.803 0.838 0.614 0.563 0.587
BVE 0.949 0.879 0.913 0.793 0.734 0.762
MBDP-1 0.803 0.843 0.823 0.670 0.694 0.682
HDP 0.903 0.808 0.852 0.752 0.696 0.723
WordEnds 0.946 0.737 0.829 NR NR 0.707

Table 1: Results for the BR87 corpus with unconstrained
processing of the corpus. Algorithms in italics are semi-
supervised.

In the incremental setting, the corpus is treated as
a series of utterances and the algorithm must seg-
ment each one before moving on to the next. This is
designed to better simulate the learning process, as a
child would normally listen to a series of utterances
produced by adults, analyzing each one in turn. To
perform this test, we used the incremental versions
of PtM, VE, and BVE described in Section 3, and
compared them with MBDP-1 on the BR87 corpus.
Each point in Figure 3 shows the boundary F-score
of each algorithm on the last 500 utterances. Note
that VE and PtM do not benefit from the informa-
tion about boundaries at the beginnings and endings
of utterances, yet they achieve levels of performance
not very inferior to MBDP-1 and BVE, which do
leverage true boundary information.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

B
o

u
n

d
ar

y
F-

Sc
o

re
 (

B
F)

Thousands of Utterances

VE

MBDP-1

BVE

PtM

Figure 3: Results for three chunking algorithms and
MBDP-1 on BR87 in the incremental paradigm.

We also produced a phonemic encoding of the
BR87 and Bloom73 (Bloom, 1973) corpora from
CHILDES with the CMU pronouncing dictionary,
which encodes stress information (primary, sec-
ondary, or unstressed) on phonemes that serve as
syllable nuclei. Stress information is known to be

a useful factor in word segmentation, and infants
appear to be sensitive to stress patterns by as early
as 8 months of age (Jusczyk et al., 1999). Results
with these corpora are shown below in Figures 4 and
5. For each of the general chunking algorithms, a
window size of 4 was used, meaning decisions were
made in a highly local manner. Even so, BVE out-
performs MBDP-1 in this arguably more realistic
setting, while VE and PtM rival it or even surpass
it. Note that the quite different results shown in Fig-
ure 3 and Figure 4 are for the same corpus, under
two different phonemic encodings, illustrating the
importance of accurately representing the input chil-
dren receive.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

B
o

u
n

d
ar

y
F-

Sc
o

re
 (

B
F)

Thousands of Utterances

VE

MBDP-1

BVE

PtM

Figure 4: Results for chunking algorithms and MBDP-1
on BR87 (CMU) in the incremental paradigm.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.5 1 1.5 2 2.5

B
o

u
n

d
ar

y
F-

Sc
o

re
 (

B
F)

Thousands of Utterances

VE

MBDP-1

BVE

PtM

Figure 5: Results for chunking algorithms and MBDP-1
on Bloom73 (CMU) in the incremental paradigm.

4.3 CHILDES: Syllables

In many empirical studies of word segmentation in
children, especially after Saffran et al. (1996), the
problem is treated as though syllables were the ba-
sic units of the stream to be segmented, rather than
phonemes. If we assume children can syllabify their

43

phonemic representation, and that word boundaries
only occur at syllable boundaries, then word seg-
mentation becomes a very different, and potentially
much easier, problem. This must be the case, as the
process of syllabification removes a high percent-
age of the potential boundary locations, and all of
the locations it removes would be incorrect choices.
Table 2 supports this argument. In the CHILDES
corpora examined here, over 85% of the words di-
rected to the child are monosyllabic. This means that
the trivial All-Locations baseline, which segments
at every possible location, achieves an F-measure of
0.913 when working with syllabic input, compared
to only 0.524 for phonemic input.

Gambell and Yang (2006) present an algorithm
for word segmentation that achieves a boundary F-
score of 0.946 on correctly syllabified input. In or-
der to achieve this level of performance, Gambell
and Yang use a form of bootstrapping combined
with a rule called the “Unique Stress Constraint,”
or USC, which simply requires that each word con-
tain exactly one stressed syllable. Gambell and Yang
developed this algorithm partially as a response to
a hypothesis put forward by Saffran et al. (1996)
to explain their own experimental results. Saffran
et al. concluded that young infants can attend to
the transitional probabilities between syllables, and
posit word boundaries where transitional probability
(TP) is low. The TP from syllable X to syllable Y is
simply given by:

P (Y |X) = frequency of XY/frequency of X (1)

While TP is sufficient to explain the results of Saf-
fran et al.’s 1996 study, it performs very poorly on
actual child-directed speech, regardless of whether
the probabilities are calculated between phonemes
(Brent, 1999) or syllables. Because of the dramatic
performance gains shown by the addition of USC
in testing, as well as the poor performance of TP,
Gambell and Yang conclude that the USC is required
for word segmentation and thus is a likely candidate
for inclusion in Universal Grammar (Gambell and
Yang, 2006).

However, as the results in Table 2 show, VE is
capable of slightly superior performance on syllable
input, without assuming any prior constraints on syl-
lable stress distribution. Moreover, the performance
of both algorithms is also only a few points above

Algorithm BP BR BF
TP 0.416 0.233 0.298
TP + USC 0.735 0.712 0.723
Bootstrapping + USC 0.959 0.934 0.946
Voting Experts 0.918 0.992 0.953
All Points 0.839 1.000 0.913

Table 2: Performance of various algorithms on the Brown
corpus from CHILDES. Other than VE and All Points,
values are taken from (Gambell and Yang, 2006).

the baseline of segmenting at every possible bound-
ary location (i.e., at every syllable). These results
show the limitations of simple statistics like TP, but
also show that segmenting a sequence of syllables is
a simple problem for more powerful statistical algo-
rithms like VE. The fact that a very high percentage
of the words found by VE have one stressed syllable
suggest that a rule like the USC could be emergent
rather than innate.

4.4 Optimality of the VE Chunk Signature

It is one thing to find chunks in sequences, another
to have a theory or model of chunks. The question
addressed in this section is whether the chunk sig-
nature – low internal entropy and high boundary en-
tropy – is merely a good detector of chunk bound-
aries, or whether it characterizes chunks, them-
selves. Is the chunk signature merely a good detec-
tor of word boundaries, or are words those objects
that maximize the signal from the signature? One
way to answer the question is to define a “chunki-
ness score” and show that words maximize the score
while other objects do not.

The chunkiness score is:

Ch(s) =
Hf (s) + Hb(s)

2
− log Pr(s) (2)

It is just the average of the forward and backward
boundary entropies, which our theory says should
be high at true boundaries, minus the internal en-
tropy between the boundaries, which should be low.
Ch(s) can be calculated for any segment of any se-
quence for which we can build a trie.

Our prediction is that words have higher chunk-
iness scores than other objects. Given a sequence,
such as the letters in this sentence, we can generate
other objects by segmenting the sequence in every

44

possible way (there are 2n−1 of these for a sequence
of length n). Every segmentation will produce some
chunks, each of which will have a chunkiness score.

For each 5-word sequence (usually between 18
and 27 characters long) in the Bloom73 corpus from
CHILDES, we generated all possible chunks and
ranked them by their chunkiness. The average rank
of true words was the 98.7th percentile of the distri-
bution of chunkiness. It appears that syntax is the
primary reason that true chunks do not rank higher:
When the word-order in the training corpus is scram-
bled, the rank of true words is the 99.6th percentile
of the chunkiness distribution. These early results,
based on a corpus of child-directed speech, strongly
suggest that words are objects that maximize chunk-
iness. Keep in mind that the chunkiness score knows
nothing of words: The probabilities and entropies on
which it is based are estimated from continuous se-
quences that contain no boundaries. It is therefore
not obvious or necessary that the objects that maxi-
mize chunkiness scores should be words. It might be
that letters, or phones, or morphemes, or syllables,
or something altogether novel maximize chunkiness
scores. However, empirically, the chunkiest objects
in the corpus are words.

5 Discussion

Whether segmentation is performed on phonemic or
syllabic sequences, and whether it is unsupervised or
provided information such as utterance boundaries
and pauses, information-theoretic algorithms such
as VE, PtM and especially BVE perform segmen-
tation very well. The performance of VE on BR87
is on par with other state-of-the-art semi-supervised
segmentation algorithms such as WordEnds (Fleck,
2008) and HDP (Goldwater et al., 2009). The
performance of BVE on corpora of child-directed
speech is unmatched in the unconstrained case, to
the best of our knowledge.

These results suggest that BVE provides a sin-
gle, general chunking ability that that accounts for
word segmentation in both scenarios, and potentially
a wide variety of other cognitive tasks as well. We
now consider other properties of BVE that are es-
pecially relevant to natural language learning. Over
time, BVE’s knowledge trie comes to represent the
distribution of phoneme sequences that begin and

end words it has found. We now discuss how this
knowledge trie models phonotactic constraints, and
ultimately becomes an emergent lexicon.

5.1 Phonotactic Constraints
Every language has a set of constraints on how
phonemes can combine together into syllables,
called phonotactic constraints. These constraints af-
fect the distribution of phonemes found at the be-
ginnings and ends of words. For example, words
in English never begin with /ts/, because it is not a
valid syllable onset in English. Knowledge of these
constraints allows a language learner to simplify the
segmentation problem by eliminating many possi-
ble segmentations, as demonstrated in Section 4.3.
This approach has inspired algorithms in the litera-
ture, such as WordEnds (Fleck, 2008), which builds
a statistical model of phoneme distributions at the
beginnings and ends of words. BVE also learns a
model of phonotactics at word boundaries by keep-
ing similar statistics in its knowledge trie, but can
do so in a fully unsupervised setting by inferring its
own set of high-precision word boundaries with the
chunk signature.

5.2 An Emergent Lexicon
VE does not represent explicitly a “lexicon” of
chunks that it has discovered. VE produces chunks
when applied to a sequence, but its internal data
structures do not represent the chunks it has dis-
covered explicitly. By contrast, BVE stores bound-
ary information in the knowledge trie and refines it
over time. Simply by storing the beginnings and
endings of segments, the knowledge trie comes to
store sequences like #cat#, where # represents a
word boundary. The set of such bounded sequences
constitutes an emergent lexicon. After segmenting
a corpus of child-directed speech, the ten most fre-
quent words of this lexicon are you, the, that, what,
is, it, this, what’s, to, and look. Of the 100 most
frequent words, 93 are correct. The 7 errors include
splitting off morphemes such as ing, and merging
frequently co-occurring word pairs such as do you.

6 Implications for Cognitive Science

Recently, researchers have begun to empirically as-
sess the degree to which segmentation algorithms
accurately model human performance. In particular,

45

Frank et al. (2010) compared the segmentation pre-
dictions made by TP and a Bayesian Lexical model
against the segmentation performance of adults, and
found that the predictions of the Bayesian model
were a better match for the human data. As men-
tioned in Section 4.3, computational evaluation has
demonstrated repeatedly that TP provides a poor
model of segmentation ability in natural language.
Any of the entropic chunking methods investigated
here can explain the artificial language results moti-
vating TP, as well as the segmentation of natural lan-
guage, which argues for their inclusion in future em-
pirical investigations of human segmentation ability.

6.1 Innate Knowledge

The word segmentation problem provides a reveal-
ing case study of the relationship between nativism
and statistical learning. The initial statistical pro-
posals, such as TP, were too simple to explain the
phenomenon. However, robust statistical methods
were eventually developed that perform the linguis-
tic task successfully. With statistical learning mod-
els in place that perform as well as (or better than)
models based on innate knowledge, the argument for
an impoverished stimulus becomes difficult to main-
tain, and thus the need for a nativist explanation is
removed.

Importantly, it should be noted that the success
of a statistical learning method is not an argument
that nothing is innate in the domain of word segmen-
tation, but simply that it is the learning procedure,
rather than any specific linguistic knowledge, that is
innate. The position that a statistical segmentation
ability is innate is bolstered by speech segmentation
experiments with cotton-top tamarins (Hauser et al.,
2001) that have yielded similar results to Saffran’s
experiments with human infants, suggesting that the
ability may be present in the common ancestor of
humans and cotton-top tamarins.

Further evidence for a domain-general chunking
ability can be found in experiments where human
subjects proved capable of discovering chunks in
a single continuous sequence of non-linguistic in-
puts. Saffran et al. (1999) found that adults and 8-
month-old infants were able to segment sequences
of tones at the level of performance previously estab-
lished for syllable sequences (Saffran et al., 1996).
Hunt and Aslin (1998) measured the reaction time

of adults when responding to a single continuous
sequence of light patterns, and found that subjects
quickly learned to exploit predictive subsequences
with quicker reactions, while delaying reaction at
subsequence boundaries where prediction was un-
certain. In both of these results, as well as the word
segmentation experiments of Saffran et al., humans
learned to segment the sequences quickly, usually
within minutes, just as general chunking algorithms
quickly reach high levels of performance.

7 Conclusion

We have shown that a domain-independent theory of
chunking can be applied effectively to the problem
of word segmentation, and can explain the ability of
children to segment a continuous sequence, which
other computational models examined here do not
attempt to explain. The human ability to segment
continuous sequences extends to non-linguistic do-
mains as well, which further strengthens the gen-
eral chunking account, as these chunking algorithms
have been successfully applied to a diverse array of
non-linguistic sequences. In particular, BVE com-
bines the power of the information-theoretic chunk
signature with a bootstrapping capability to achieve
high levels of performance in both the continuous
and incremental paradigms.

8 Future Work

Within the CHILDES corpus, our results have only
been demonstrated for English, which leaves open
the possibility that other languages may present
a more serious segmentation problem. In En-
glish, where many words in child-directed speech
are mono-morphemic, the difference between find-
ing words and finding morphs is small. In some
languages, ignoring the word/morph distinction is
likely to be a more costly assumption, especially
for highly agglutinative or even polysynthetic lan-
guages. One possibility that merits further explo-
ration is that, in such languages, morphs rather than
words are the units that optimize chunkiness.

Acknowledgements
This work was supported by the Office of Naval Re-
search under contract ONR N00141010117. Any views
expressed in this publication are solely those of the au-
thors and do not necessarily reflect the views of the ONR.

46

References

Richard N. Aslin, Jenny R. Saffran, and Elissa L. New-
port. 1998. Computation of Conditional Probability
Statistics by 8-Month-Old Infants. Psychological Sci-
ence, 9(4):321–324.

Nan Bernstein Ratner, 1987. The phonology of parent-
child speech, pages 159–174. Erlbaum, Hillsdale, NJ.

Lois Bloom. 1973. One Word at a Time. Mouton, Paris.
Michael R. Brent. 1999. An Efficient, Probabilistically

Sound Algorithm for Segmentation and Word Discov-
ery. Machine Learning, (34):71–105.

Roger Brown. 1973. A first language: The early stages.
Harvard University, Cambridge, MA.

Paul Cohen and Niall Adams. 2001. An algorithm
for segmenting categorical time series into meaning-
ful episodes. In Proceedings of the Fourth Symposium
on Intelligent Data Analysis.

Paul Cohen, Niall Adams, and Brent Heeringa. 2007.
Voting Experts: An Unsupervised Algorithm for
Segmenting Sequences. Intelligent Data Analysis,
11(6):607–625.

Margaret M. Fleck. 2008. Lexicalized phonotactic word
segmentation. In Proceedings of The 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 130–138,
Columbus, Ohio, USA. Association for Computational
Linguistics.

Michael C Frank, Harry Tily, Inbal Arnon, and Sharon
Goldwater. 2010. Beyond Transitional Probabilities :
Human Learners Impose a Parsimony Bias in Statisti-
cal Word Segmentation. In Proceedings of the 32nd
Annual Meeting of the Cognitive Science Society.

Timothy Gambell and Charles Yang. 2006. Statistics
Learning and Universal Grammar: Modeling Word
Segmentation. In Workshop on Psycho-computational
Models of Human Language.

Sharon Goldwater, Thomas L Griffiths, and Mark John-
son. 2009. A Bayesian Framework for Word Segmen-
tation: Exploring the Effects of Context. Cognition,
112(1):21–54.

Sharon Goldwater. 2007. Nonparametric Bayesian mod-
els of lexical acquisition. Ph.D. dissertation, Brown
University.

Zellig S. Harris. 1955. From Phoneme to Morpheme.
Language, 31(2):190–222.

Marc D. Hauser, Elissa L. Newport, and Richard N.
Aslin. 2001. Segmentation of the speech stream in a
non-human primate: statistical learning in cotton-top
tamarins. Cognition, 78(3):B53–64.

Daniel Hewlett and Paul Cohen. 2009. Bootstrap Voting
Experts. In Proceedings of the Twenty-first Interna-
tional Joint Conference on Artificial Intelligence.

Daniel Hewlett and Paul Cohen. 2010. Artificial General
Segmentation. In The Third Conference on Artificial
General Intelligence.

Ruskin H. Hunt and Richard N. Aslin. 1998. Statisti-
cal learning of visuomotor sequences: Implicit acqui-
sition of sub-patterns. In Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society,
Mahwah, NJ. Lawrence Erlbaum Associates.

Howard Johnson and Joel Martin. 2003. Unsupervised
learning of morphology for English and Inuktitut. Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology (HLT-
NAACL 2003), pages 43–45.

Peter W. Jusczyk, Derek M. Houston, and Mary New-
some. 1999. The Beginnings of Word Segmentation
in English-Learning Infants. Cognitive Psychology,
39(3-4):159–207.

Teuvo Kohonen. 1988. Self-organized formation of topo-
logically correct feature maps.

Brian MacWhinney and Catherine E Snow. 1985. The
child language data exchange system (CHILDES).
Journal of Child Language.

Matthew Miller and Alexander Stoytchev. 2008. Hierar-
chical Voting Experts: An Unsupervised Algorithm for
Hierarchical Sequence Segmentation. In Proceedings
of the 7th IEEE International Conference on Develop-
ment and Learning, pages 186–191.

Matthew Miller, Peter Wong, and Alexander Stoytchev.
2009. Unsupervised Segmentation of Audio Speech
Using the Voting Experts Algorithm. Proceedings of
the 2nd Conference on Artificial General Intelligence
(AGI 2009).

Jenny R. Saffran and Erik D. Thiessen. 2003. Pattern
induction by infant language learners. Developmental
Psychology, 39(3):484–494.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. New-
port. 1996. Statistical Learning by 8-Month-Old In-
fants. Science, 274(December):926–928.

Jenny R. Saffran, Elizabeth K Johnson, Richard N. Aslin,
and Elissa L. Newport. 1999. Statistical learning of
tone sequences by human infants and adults. Cogni-
tion, 70(1):27–52.

Kumiko Tanaka-Ishii and Zhihui Jin. 2006. From
Phoneme to Morpheme: Another Verification Using
a Corpus. In Proceedings of the 21st International
Conference on Computer Processing of Oriental Lan-
guages, pages 234–244.

Anand Venkataraman. 2001. A procedure for unsuper-
vised lexicon learning. In Proceedings of the Eigh-
teenth International Conference on Machine Learning.

47

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, page 48,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Computational Linguistics for Studying Language in People:
Principles, Applications and Research Problems

Invited talk

Bruce Hayes
Department of Linguistics, UCLA
bhayes@humnet.ucla.edu

One of the goals of computational linguistics is to create automated systems that can learn, generate, and
understand language at all levels of structure (semantics, syntax, morphology, phonology, phonetics). This
is a very demanding task whose complete fulfillment lies far in the future. Human beings can learn, gen-
erate, and understand language at all levels of structure, and the study of how they do it can be pursued by
computational modeling. Indeed, one sort of “acid test” for theories in linguistics is whether they can serve
as the basis for successful models of this kind. A research strategy for theoretical linguistics based on mod-
eling thus invites close collaboration between “mainstream” linguists and their computational colleagues.

Such collaborations make the job of the computationalists, already very demanding, even harder. The col-
lision between a computational model and human data arises when we apply the Turing test: the model ought
to behave like a human, not just in generating a correct output, but in every conceivable sense: generating
alternative outputs for a single input, (often with a nuanced sense of preferences among them), generating
human-like mistakes, generating child-like mistakes when given incomplete information, and so on. I sug-
gest that linguists could serve as good Turing testers, because it is their daily practice in professional life to
interrogate their models in the most ingenious ways they can find, probing for deficiencies though compari-
son to complex human intuitions and behavior.

With this as backdrop, I offers a series of case studies, of three different kinds: (1) Turing tests: cases
where interrogation by linguists revealed non-humanlike traits in computational models that performed well
by traditional computational criteria (precision, recall, etc.); (2) Success stories: particular results of com-
putational linguistics that have proven useful so far in modeling language in humans; (3) Suggestions for
future work: proposals in linguistic theory that look promising and would benefit from computational
analysis.

48

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 49–57,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Search-based Structured Prediction applied to Biomedical Event Extraction

Andreas Vlachos and Mark Craven
Department of Biostatistics and Medical Informatics

University of Wisconsin-Madison
{vlachos,craven}@biostat.wisc.edu

Abstract

We develop an approach to biomedical event
extraction using a search-based structured pre-
diction framework, SEARN, which converts
the task into cost-sensitive classification tasks
whose models are learned jointly. We show
that SEARN improves on a simple yet strong
pipeline by 8.6 points in F-score on the
BioNLP 2009 shared task, while achieving the
best reported performance by a joint inference
method. Additionally, we consider the issue of
cost estimation during learning and present an
approach called focused costing that improves
improves efficiency and predictive accuracy.

1 Introduction

The term biomedical event extraction is used to re-
fer to the task of extracting descriptions of actions
and relations involving one or more entities from
the biomedical literature. The recent BioNLP 2009
shared task (BioNLP09ST) on event extraction (Kim
et al., 2009) focused on event types of varying com-
plexity. Each event consists of a trigger and one or
more arguments, the latter being proteins or other
events. Any token in a sentence can be a trigger for
one of the nine event types and, depending on their
associated event types, triggers are assigned appro-
priate arguments. Thus, the task can be viewed as
a structured prediction problem in which the output
for a given instance is a (possibly disconnected) di-
rected acyclic graph (not necessarily a tree) in which
vertices correspond to triggers or protein arguments,
and edges represent relations between them.

Despite being a structured prediction task, most of
the systems that have been applied to BioNLP09ST

to date are pipelines that decompose event extrac-
tion into a set of simpler classification tasks. Clas-
sifiers for these tasks are typically learned indepen-
dently, thereby ignoring event structure during train-
ing. Typically in such systems, the relationships
among these tasks are taken into account by incor-
porating post-processing rules that enforce certain
constraints when combining their predictions, and
by tuning classification thresholds to improve the ac-
curacy of joint predictions. Pipelines are appealing
as they are relatively easy to implement and they of-
ten achieve state-of-the-art performance (Bjorne et
al., 2009; Miwa et al., 2010).

Because of the nature of the output space, the task
is not amenable to sequential or grammar-based ap-
proaches (e.g. linear CRFs, HMMs, PCFGs) which
employ dynamic programming in order to do ef-
ficient inference. The only joint inference frame-
work that has been applied to BioNLP09ST to date
is Markov Logic Networks (MLNs) (Riedel et al.,
2009; Poon and Vanderwende, 2010). However,
MLNs require task-dependent approximate infer-
ence and substantial computational resources in or-
der to achieve state-of-the-art performance.

In this work we explore an alternative joint in-
ference approach to biomedical event extraction us-
ing a search-based structured prediction framework,
SEARN (Daumé III et al., 2009). SEARN is an
algorithm that converts the problem of learning a
model for structured prediction into learning a set
of models for cost-sensitive classification (CSC).
CSC is a task in which each training instance has
a vector of misclassification costs associated with it,
thus rendering some mistakes on some instances to
be more expensive than others (Domingos, 1999).
Compared to a standard pipeline, SEARN is able to

49

achieve better performance because its models are
learned jointly. Thus, each of them is able to use fea-
tures representing the predictions made by the oth-
ers, while taking into account possible mistakes.

In this paper, we make the following contribu-
tions. Using the SEARN framework, we develop a
joint inference approach to biomedical event extrac-
tion. We evaluate our approach on the BioNLP09ST
dataset and show that SEARN improves on a simple
yet strong pipeline by 8.6 points in F-score, while
achieving the best reported performance on the task
by a joint inference method. Additionally, we con-
sider the issue of cost estimation and present an ap-
proach called focused costing that improves perfor-
mance. We believe that these contributions are likely
to be relevant to applications of SEARN to other
natural language processing tasks that involve struc-
tured prediction in complex output spaces.

2 BioNLP 2009 shared task description

BioNLP09ST focused on the extraction of events
involving proteins whose names are annotated in
advance. Each event has two types of arguments,
Theme and Cause, which correspond respectively to
the Agent and Patient roles in semantic role label-
ing (Gildea and Jurafsky, 2002). Nine event types
are defined which can be broadly classified in three
categories, namely Simple, Binding and Regulation.
Simple events include Gene expression, Transcrip-
tion, Protein catabolism, Phosphorylation, and Lo-
calization events. These have only one Theme ar-
gument which is a protein. Binding events have
one or more protein Themes. Finally, Regulation
events, which include Positive regulation, Nega-
tive regulation and Regulation, have one obligatory
Theme and one optional Cause, each of which can
be either a protein or another event. Each event has
a trigger which is a contiguous string that can span
over one or more tokens. Triggers and arguments
can be shared across events. In an example demon-
strating the complexity of the task, given the passage
“. . . SQ 22536 suppressed gp41-induced IL-10 pro-
duction in monocytes”, systems should extract the
three appropriately nested events listed in Fig. 1d.

Performance is measured using Recall, Precision
and F-score over complete events, i.e. the trigger,
the event type and the arguments all must be correct

in order to obtain a true positive. It is important to
note that if either the trigger, the type, or an argu-
ment of a predicted event is incorrect then this event
will result in one false positive and one false nega-
tive. In the example of Fig. 1, if “suppressed” is rec-
ognized incorrectly as a Regulation trigger then it is
better to not assign a Theme to it so that we avoid
a false positive due to extracting an event with in-
correct type. Finally, the evaluation ignores triggers
that do not form events.

3 Event extraction decomposition

Figure 1 describes the event extraction decomposi-
tion that we use throughout the paper. We assume
that the sentences to be processed are parsed into
syntactic dependencies and lemmatized. Each stage
has its own module, which is either a learned classi-
fier (trigger recognition, Theme/Cause assignment)
or a rule-based component (event construction).

3.1 Trigger recognition
In trigger recognition the system decides whether a
token acts as a trigger for one of the nine event types
or not. Thus it is a 10-way classification task. We
only consider tokens that are tagged as nouns, verbs
or adjectives by the parser, as they cover the majority
of the triggers in the BioNLP09ST data. The main
features used in the classifier represent the lemma
of the token which is sufficient to predict the event
type correctly in most cases. In addition, we include
features that conjoin each lemma with its part-of-
speech tag. This allows us to handle words with
the same nominal and verbal form that have differ-
ent meanings, such as “lead”. While the domain
restricts most lemmas to one event type, there are
some whose event type is determined by the context,
e.g. “regulation” on its own denotes a Regulation
event but in “positive regulation” it denotes a Posi-
tive regulation event instead. In order to capture this
phenomenon, we add as features the conjunction of
each lemma with the lemma of the tokens immedi-
ately surrounding it, as well as with the lemmas of
the tokens with which it has syntactic dependencies.

3.2 Theme and Cause assignment
In Theme assignment, we form an agenda of can-
didate trigger-argument pairs for all trigger-protein
combinations in the sentence and classify them as

50

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

(a) Trigger recognition

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

ThemeTheme

(b) Theme assignment

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

Theme

Cause

Theme

(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

(d) Event construction

Figure 1: The stages of our event extraction decomposition. Protein names are shown in bold.

Themes or not. Whenever a trigger is predicted to be
associated with a Theme, we form candidate pairs
between all the Regulation triggers in the sentence
and that trigger as the argument, thus allowing the
prediction of nested events. Also, we remove candi-
date pairs that could result in directed cycles, as they
are not allowed by the task.

The features used to predict whether a trigger-
argument pair should be classified as a Theme are
extracted from the syntactic dependency path and
the textual string between them. In particular, we
extract the shortest unlexicalized dependency path
connecting each trigger-argument pair, allowing the
paths to follow either dependency direction. One set
of features represents these paths, and in addition,
we have sets of features representing each path con-
joined with the lemma, the PoS tag and the event
type of the trigger, the type of the argument and
the first and last lemmas in the dependency path.
The latter help by providing some mild lexicaliza-
tion. We also add features representing the textual
string between the trigger and the argument, com-
bined with the event type of the trigger. While not as
informative as dependency paths, such features help
in sentences where the parse is incorrect, as triggers
and their arguments tend to appear near each other.

In Cause assignment, we form an agenda of can-
didate trigger-argument pairs using only the Regu-
lation class triggers that were assigned at least one
Theme. These are combined with protein names and
other triggers that were assigned a Theme. We ex-

tract features as in Theme assignment, further fea-
tures representing the conjunction of the dependency
path of the candidate pair with the path(s) from the
trigger to its Theme(s).

3.3 Event construction

In event construction, we convert the predictions of
the previous stages into a set of legal events. If
a Binding trigger is assigned multiple Themes, we
choose to form either one event per Theme or one
event with multiple Themes. Following Bjorne et
al. (2009), we group the arguments of each Binding
trigger according to the first label in their syntac-
tic dependency path and generate events using the
cross-product of these groups. For example, assum-
ing the parse was correct and all the Themes recog-
nized, “interactions of A and B with C” results in
two Binding events with two Themes each, A with
C, and B with C respectively. We add the exception
that if two Themes are in the same token (e.g. “A/B
interactions”) or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.

4 Structured prediction with SEARN

SEARN (Daumé III et al., 2009) forms the struc-
tured output prediction for an instance s as a se-
quence of T multiclass predictions ŷ1:T made by a
hypothesis h. The latter consists of a set of classi-
fiers that are learned jointly. Each prediction ŷt can
use features from s as well as from all the previous
predictions ŷ1:t−1. These predictions are referred to

51

as actions and we adopt this term in order to distin-
guish them from the structured output predictions.

The SEARN algorithm is presented in Alg. 1. It
initializes hypothesis h to the optimal policy π (step
2) which predicts the optimal action in each step
t according to the gold standard. The optimal ac-
tion at step t is the one that minimizes the overall
loss over s assuming that all future actions ŷt+1:T

are also made optimally. The loss function ` is de-
fined by the structured prediction task considered.
Each iteration begins by making predictions for all
instances s in the training data S (step 6). For each
s and each action ŷt, a cost-sensitive classification
(CSC) example is generated (steps 8-12). The fea-
tures are extracted from s and the previous actions
ŷ1:t−1 (step 8). The cost for each possible action
yi

t is estimated by predicting the remaining actions
y′t+1:T in s using h (step 10) and evaluating the cost
incurred given that action (step 11). Using a CSC
learning algorithm, a new hypothesis is learned (step
13) which is combined with the current one accord-
ing to the interpolation parameter β.

Algorithm 1 SEARN
1: Input: labeled instances S , optimal policy π, CSC

learning algorithm CSCL, loss function `
2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1:T
7: for ŷt in h(s) do
8: Extract features Φt = f(s, ŷ1:t−1)
9: for each possible action yi

t do
10: Predict y′t+1:T = h(s|ŷ1:t−1, y

i
t)

11: Estimate cit = `(ŷ1:t−1, y
i
t, y′t+1:T)

12: Add (Φt, ct) to E
13: Learn a hypothesis hnew = CSCL(E)
14: h = βhnew + (1− β)h
15: Output: policy h without π

In each iteration, SEARN moves away from the
optimal policy and uses the learned hypotheses in-
stead when predicting (steps 6 and 10). Thus, each
hnew is adapted to the actions chosen by h instead
of those of the optimal policy. When the depen-
dence on the latter becomes insignificant, the algo-
rithm terminates and returns the weighted ensemble
of learned hypotheses without the optimal policy.

Note though that the estimation of the costs in step
11 is always performed using the gold standard.

The interpolation parameter β determines how
fast SEARN moves away from the optimal policy
and as a result how many iterations will be needed to
minimize the dependence on it. Dependence in this
context refers to the probability of using the optimal
policy instead of the learned hypothesis in choos-
ing an action during prediction. In each iteration,
the features extracted Φt are progressively corrupted
with the actions chosen by the learned hypotheses
instead of those of the optimal policy.

Structural information under SEARN is incorpo-
rated in two ways. First, via the costs that are es-
timated using the loss over the instance rather than
isolated actions (e.g. in PoS tagging, the loss would
be the number of incorrect PoS tags predicted in
a sentence if a token is tagged as noun). Second,
via the features extracted from the previous actions
(ŷ1:t−1) (e.g. the PoS tag predicted for the previ-
ous token can be a feature). These types of features
are possible in a standard pipeline as well, but dur-
ing training they would have to be extracted using
the gold standard instead of the actual predictions
made by the learned hypotheses, as during testing.
Since the prediction for each instance (ŷ1:T in step
6) changes in every iteration, the structure features
used to predict the actions have to be extracted anew.

The extraction of features from previous actions
implies a search order. For some tasks, such as PoS
tagging, there is a natural left-to-right order in which
the tokens are treated, however for many tasks this
is not the case.

Finally, SEARN can be used to learn a pipeline of
independently trained classifiers. This is achieved
using only one iteration in which the cost for each
action is set to 0 if it follows from the gold standard
and to 1 otherwise. This adaptation allows for a fair
comparison between SEARN and a pipeline.

5 SEARN for biomedical event extraction

In this section we discuss how we learn the event
extraction decomposition described in Sec. 3 under
SEARN. Each instance is a sentence consisting of
the tokens, the protein names and the syntactic pars-
ing output. The hypothesis learned in each iteration
consists of a classifier for each stage of the pipeline,

52

excluding event construction which is rule-based.
Unlike PoS tagging, there is no natural ordering

of the actions in event extraction. Ideally, the ac-
tions predicted earlier should be less dependent on
structural features and/or easier so that they can in-
form the more structure dependent/harder ones. In
trigger recognition, we process the tokens from left
to right since modifiers appearing before nouns tend
to affect the meaning of the latter, e.g. “binding ac-
tivity”. In Theme and Cause assignment, we predict
trigger-argument pairs in order of increasing depen-
dency path length, assuming that since dependency
paths are the main source of features at this stage and
shorter paths are less sparse, pairs containing shorter
ones should be more reliable to predict.

In addition to the features mentioned in Sec. 3,
SEARN allows us to extract and learn weights for
structural features for each action from the previous
ones. During trigger recognition, we add as features
the combination of the lemma of the current token
combined with the event type (if any) assigned to
the previous and the next token, as well as to the to-
kens that have syntactic dependencies with it. Dur-
ing Theme assignment, when considering a trigger-
argument pair, we add features based on whether it
forms an undirected cycle with previously predicted
Themes, whether the trigger has been assigned a pro-
tein as a Theme and the candidate Theme is an event
trigger (and the reverse) and whether the argument
has become the Theme of a trigger with the same
event type. We also add a feature indicating whether
the trigger has three Themes predicted already. Dur-
ing Cause assignment, we add features representing
whether the trigger has been assigned a protein as a
Cause and the candidate Cause is an event trigger.

The loss function ` sums the number of false pos-
itive and false negative events, which is the evalua-
tion measure of BioNLP09ST. The optimal policy is
derived from the gold standard and returns the ac-
tion that minimizes this loss over the sentence given
the previous actions and assuming that all future ac-
tions are optimal. In trigger recognition, it returns
either the event type for tokens that are triggers or a
“notrigger” label otherwise. In Theme assignment,
for a given trigger-argument pair the optimal policy
returns Theme only if the trigger is recognized cor-
rectly and the argument is indeed a Theme for that
trigger according to the gold standard. In case the ar-

gument is another event, we require that at least one
of its Themes to be recognized correctly as well. In
Cause assignment, the requirements are the same as
those for the Themes, but we also require that at least
one Theme of the trigger in the trigger-argument pair
to be considered correct. These additional checks
follow from the task definition, under which events
must have all their elements identified correctly.

5.1 Cost estimation
Cost estimation (steps 5-12 in Alg. 1) is crucial to
the successful application of SEARN. In order to
highlight its importance, consider the example of
Fig. 2 focusing on trigger recognition.

In the first iteration (Fig. 2a), the actions for the
sentence will be made using the optimal policy only,
thus replicating the gold standard. During costing,
if a token is not a trigger according to the gold stan-
dard (e.g. “SQ”), then the cost for incorrectly pre-
dicting that it is a trigger is 0, as the optimal policy
will not assign Themes to a trigger with incorrect
event type. Such instances are ignored by the cost-
sensitive learner. If a token is a trigger according to
the gold standard, then the cost for not predicting it
as such or predicting its type incorrectly is equal to
the number of the events that are dependent on it, as
they will become false negatives. False positives are
avoided as we are using the optimal policy in this
iteration.

In the second iteration (Fig. 2b), the optimal pol-
icy is interpolated with the learned hypothesis, thus
some of the actions are likely to be incorrect. As-
sume that “SQ” is incorrectly predicted to be a
Neg reg trigger and assigned a Theme. During cost-
ing, the action of labeling “SQ” as Neg reg has a
cost of 1, as it would result in a false positive event.
Thus the learned hypothesis will be informed that it
should not label “SQ” as a trigger as it would assign
Themes to it incorrectly and it is adapted to handle
its own mistakes. Similarly, the action of labeling
“production” as Neg reg in this iteration would in-
cur a cost of 6, as the learned hypothesis would as-
sign a Theme incorrectly, thus resulting in 3 false
negative and 3 false positive events. Therefore, the
learned hypothesis will be informed that assigning
the wrong event type to “production” is worse than
not predicting a trigger.

By evaluating the cost of each action according to

53

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

Theme

Cause

Theme

token No Gene exp Pos reg Neg reg
SQ 0 0 0 0
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 3

(a) First iteration (optimal policy only)

SQ
Neg reg

22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Neg reg

Theme

Theme

Cause

ThemeTheme

token No Gene exp Pos reg Neg reg
SQ 0 0 0 1
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 6

(b) Second iteration (interpolation)

Figure 2: Prediction (top) and CSC examples for trigger recognition actions (bottom) in the first two SEARN
iterations. Each CSC example has its own vector of misclassification costs.

its effect on the prediction for the whole sentence,
we are able to take into account steps in the pre-
diction process that are not learned as actions. For
example, if the Binding event construction heuris-
tic described in Sec. 3.3 cannot produce the correct
events for a token that is a Binding trigger despite
the Themes being assigned correctly, then this will
increase the cost for tagging that trigger as Binding.

The interpolation between the optimal policy and
the learned hypothesis is stochastic, thus affecting
the cost estimates obtained. In order to obtain more
reliable estimates, one can average multiple sam-
ples for each action by repeating steps 10 and 11
of Alg. 1. However, the computational cost is effec-
tively multiplied by the number of samples.

In step 11 of Alg. 1, the cost of each action is esti-
mated over the whole sentence. While this allows us
to take structure into account, it can result in costs
being affected by a part of the output that is not re-
lated to that action. This is likely to occur in event
extraction, as sentences can often be long and con-
tain disconnected event components in their output
graphs. For this reason, we refine the cost estimation
of each action to take into account only the events
that are connected to it through either gold standard
or predicted events. For example, in Fig. 2 the cost
estimation for “SQ” will ignore the predicted events
in the first iteration and the gold standard, while it
will take them into account in the second one. We
refer to this refinement as focused costing.

A different approach proposed by Daumé III et
al. (2009) is to assume that all actions following the

one we are costing are going to be optimal and use
the optimal policy to approximate the prediction of
the learned hypothesis in step 10 of Alg. 1. In tasks
where the learned hypothesis is accurate enough,
this has no performance loss and it is computation-
ally efficient as the optimal policy is deterministic.
However, in event extraction the learned hypothesis
is likely to make mistakes, thus the optimal policy
does not provide a good approximation for it.

5.2 CSC learning with passive-aggressive
algorithms

The SEARN framework requires a multiclass CSC
algorithm to learn how to predict actions. This algo-
rithm must be computationally fast during parameter
learning and prediction, as in every iteration we need
to learn a new hypothesis and to consider each pos-
sible action for each instance in order to construct
the cost-sensitive examples. Daumé III et al. (2009)
showed that any binary classification algorithm can
be used to perform multiclass CSC by employing an
appropriate conversion between the tasks. The main
drawback of this approach is its reliance on multi-
ple subsamplings of the training data, which can be
inefficient for large datasets and many classes.

With these considerations in mind, we implement
a multiclass CSC learning algorithm using the gen-
eralization of the online passive-aggressive (PA) al-
gorithm for binary classification proposed by Cram-
mer et al. (2006). For each training example xt,
the K-class linear classifier with K weight vectors
w

(k)
t makes a prediction ŷt and suffers a loss `t. In

54

the case of multiclass CSC learning, each example
has its own cost vector ct. If the loss is 0 then the
weight vectors of the classifier are not updated (pas-
sive). Otherwise, the weight vectors are updated
minimally so that the prediction on example xt is
corrected (aggressive). The update takes into ac-
count the loss and the aggressiveness parameter C.
Crammer et al. (2006) describe three variants to per-
form the updates which differ in how the learning
rate τt is set. In our experiments we use the variant
named PA-II with prediction-based updates (Alg. 2).
Since we are operating in a batch learning setting
(i.e. we have access to all the training examples and
their order is not meaningful), we perform multiple
rounds over the training examples shuffling their or-
der, and average the weight vectors obtained.

Algorithm 2 Passive-aggressive CSC learning
1: Input: training examples X = x1 . . . xT , cost vec-

tors c1 . . . cT ≥ 0, rounds R, aggressiveness C
2: Initialize weights w(k)

0 = (0, ..., 0)
3: for r = 1, ..., R do
4: Shuffle X
5: for xt ∈ X do
6: Predict ŷt = argmaxk(w

(k)
t · xt)

7: Receive cost vector ct ≥ 0
8: if c(ŷt)

t > 0 then

9: Suffer loss `t = w
(ŷt)
t ·xt−w(yt)

t ·xt+

√
c
(ŷt)
t

10: Set learning rate τt = `t

||xt||2+ 1
2C

11: Update w(yt)
t+1 = wt + τtxt

12: Update w(ŷt)
t+1 = wt − τtxt

13: Average wavg = 1
T×R

∑T×R
i=0 wi

6 Experiments

BioNLP09ST comprises three datasets – training,
development and test – which consist of 800, 150
and 260 abstracts respectively. After the end
of the shared task, an on-line evaluation server
was activated in order to allow the evaluation on
the test data once per day, without allowing ac-
cess to the data itself. We report results using
Recall/Precision/F-score over complete events using
the approximate span matching/approximate recur-
sive matching variant which was the primary perfor-
mance criterion in BioNLP09ST. This variant counts
a predicted event as a true positive if its trigger is

extracted within a one-token extension of the gold-
standard trigger. Also, in the case of nested events,
those events below the top-level need their trigger,
event type and Theme but not their Cause to be cor-
rectly identified for the top-level event to be consid-
ered correct. The same event matching variant was
used in defining the loss as described in Sec. 5.

A pre-processing step we perform on the train-
ing data is to reduce the multi-token triggers in the
gold standard to their syntactic heads. This proce-
dure simplifies the task of assigning arguments to
triggers and, as the evaluation variant used allows
approximate trigger matching, it does not result in
a performance loss. For syntactic parsing, we use
the output of the BLLIP re-ranking parser adapted to
the biomedical domain by McClosky and Charniak
(2008), as provided by the shared task organizers
in the Stanford collapsed dependency format with
conjunct dependency propagation. Lemmatization
is performed using morpha (Minnen et al., 2001).

In all our experiments, for CSC learning with PA,
the C parameter is set by tuning on 10% of the train-
ing data and the number of rounds is fixed to 10. For
SEARN, we set the interpolation parameter β to 0.3
and the number of iterations to 12. The costs for
each action are obtained by averaging three samples
as described in Sec. 5.1. β and the number of sam-
ples are the only parameters that need tuning and we
use the development data for this purpose.

First we compare against a pipeline of indepen-
dently learned classifiers obtained as described in
Sec. 4 in order to assess the benefits of joint learning
under SEARN using focused costing. The results
shown in Table 1 demonstrate that SEARN obtains
better event extraction performance on both the de-
velopment and test sets by 7.7 and 8.6 F-score points
respectively. The pipeline baseline employed in our
experiments is a strong one: it would have ranked
fifth in BioNLP09ST and it is 20 F-score points bet-
ter than the baseline MLN employed by Poon and
Vanderwende (2010). Nevertheless, the indepen-
dently learned classifier for triggers misses almost
half of the event triggers, from which the subsequent
stages cannot recover. On the other hand, the trig-
ger classifier learned with SEARN overpredicts, but
since the Theme and Cause classifiers are learned
jointly with it they maintain relatively high precision
with substantially higher recall compared to their in-

55

pipeline SEARN focus SEARN default
R P F R P F R P F

triggerdev 53.0 61.1 56.8 81.8 34.2 48.2 84.9 12.0 21.0
Themedev 44.2 79.6 56.9 62.0 69.1 65.4 59.0 65.1 61.9
Causedev 18.1 59.2 27.8 30.6 45.0 36.4 31.9 45.5 37.5
Eventdev 35.8 68.9 47.1 50.8 59.5 54.8 47.4 54.3 50.6
Eventtest 30.8 67.4 42.2 44.5 59.1 50.8 41.3 53.6 46.6

Table 1: Recall / Precision / F-score on BioNLP09ST development and test data. Left-to-right: pipeline of
independently learned classifiers, SEARN with focused costing, SEARN with default costing.

dependently learned counterparts. The benefits of
SEARN are more pronounced in Regulation events
which are more complex. For these events, it im-
proves on the pipeline on both the development and
test sets by 11 and 14.2 F-score points respectively.

The focused costing approach we proposed con-
tributes to the success of SEARN. If we replace it
with the default costing approach which uses the
whole sentence, the F-score drops by 4.2 points on
both development and test datasets. The default
costing approach mainly affects the trigger recog-
nition stage, which takes place first. Trigger over-
prediction is more extreme in this case and renders
the Theme assignment stage harder to learn. While
the joint learning of the classifiers ameliorates this
issue and the event extraction performance is even-
tually higher than that of the pipeline, the use of fo-
cused costing improves the performance even fur-
ther. Note that trigger overprediction also makes
training slower, as it results in evaluating more ac-
tions for each sentence. Finally, using one instead
of three samples per action decreases the F-score by
1.3 points on the development data.

Compared with the MLN approaches applied to
BioNLP09ST, our predictive accuracy is better than
that of Poon and Vanderwende (2010) which is the
best joint inference performance to date and substan-
tially better than that of Riedel et al. (2009) (50 and
44.4 in F-score respectively). Recently, McClosky
et al. (2011) combined multiple decoders for a de-
pendency parser with a reranker, achieving 48.6 in
F-score. While they also extracted structure fea-
tures for Theme and Cause assignment, their model
is restricted to trees (ours can output directed acyclic
graphs) and their trigger recognizer is learned inde-
pendently.

When we train SEARN combining the training

and the development sets, we reach 52.3 in F-score,
which is better than the performance of the top
system in BioNLP09ST (51.95) by Bjorne et al.
(2009) which was trained in the same way. The
best performance to date is reported by Miwa et al.
(2010) (56.3 in F-score), who experimented with six
parsers, three dependency representations and vari-
ous combinations of these. They found that different
parser/dependency combinations provided the best
results on the development and test sets.

A direct comparison between learning frame-
works is difficult due to the differences in task de-
composition and feature extraction. In particular,
event extraction results depend substantially on the
quality of the syntactic parsing. For example, Poon
and Vanderwende (2010) heuristically correct the
syntactic parsing used and report that this improved
their performance by four F-score points.

7 Conclusions

We developed a joint inference approach to biomed-
ical event extraction using the SEARN framework
which converts a structured prediction task into a set
of CSC tasks whose models are learned jointly. Our
approach employs the PA algorithm for CSC learn-
ing and a focused cost estimation procedure which
improves the efficiency and accuracy of the standard
cost estimation method. Our approach provides the
best reported results for a joint inference method on
the BioNLP09ST task. With respect to the experi-
ments presented by Daumé III et al. (2009), we em-
pirically demonstrate the gains of using SEARN on
a problem harder than sequential tagging.

Acknowledgments
The authors were funded by NIH/NLM grant R01 /
LM07050.

56

References
Jari Bjorne, Juho Heimonen, Filip Ginter, Antti Airola,

Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP 2009 Work-
shop Companion Volume for Shared Task, pages 10–
18.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75:297–325.

Pedro Domingos. 1999. Metacost: a general method for
making classifiers cost-sensitive. In Proceedings of
the 5th International Conference on Knowledge Dis-
covery and Data Mining, pages 155–164.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28:245–288.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Pro-
ceedings of the BioNLP 2009 Workshop Companion
Volume for Shared Task, pages 1–9.

David McClosky and Eugene Charniak. 2008. Self-
training for biomedical parsing. In Proceedings of
the 46th Annual Meeting of the Association of Compu-
tational Linguistics: Human Language Technologies,
pages 101–104.

David McClosky, Mihai Surdeanu, and Christopher D.
Manning. 2011. Event extraction as dependency pars-
ing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English. Natu-
ral Language Engineering, 7(3):207–223.

Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and
Jun’ichi Tsujii. 2010. Evaluating dependency repre-
sentation for event extraction. In Proceedings of the
23rd International Conference on Computational Lin-
guistics, pages 779–787.

Hoifung Poon and Lucy Vanderwende. 2010. Joint in-
ference for knowledge extraction from biomedical lit-
erature. In Proceedings of the Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 813–821.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Jun’ichi Tsujii. 2009. A Markov logic approach
to bio-molecular event extraction. In Proceedings of

the BioNLP 2009 Workshop Companion Volume for
Shared Task, pages 41–49.

57

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 58–67,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Using Sequence Kernels to identify Opinion Entities in Urdu

Smruthi Mukund
†
 and Debanjan Ghosh

*
 Rohini K Srihari

†
SUNY at Buffalo, NY

smukund@buffalo.edu
*

Thomson Reuters Corporate R&D

debanjan.ghosh@thomsonreuters.com

SUNY at Buffalo, NY

rohini@cedar.buffalo.edu

Abstract

Automatic extraction of opinion holders

and targets (together referred to as opinion

entities) is an important subtask of senti-

ment analysis. In this work, we attempt to

accurately extract opinion entities from

Urdu newswire. Due to the lack of re-

sources required for training role labelers

and dependency parsers (as in English) for

Urdu, a more robust approach based on (i)

generating candidate word sequences

corresponding to opinion entities, and (ii)

subsequently disambiguating these se-

quences as opinion holders or targets is

presented. Detecting the boundaries of such

candidate sequences in Urdu is very differ-

ent than in English since in Urdu,

grammatical categories such as tense,

gender and case are captured in word

inflections. In this work, we exploit the

morphological inflections associated with

nouns and verbs to correctly identify

sequence boundaries. Different levels of

information that capture context are

encoded to train standard linear and se-

quence kernels. To this end the best per-

formance obtained for opinion entity

detection for Urdu sentiment analysis is

58.06% F-Score using sequence kernels

and 61.55% F-Score using a combination

of sequence and linear kernels.

1 Introduction

Performing sentiment analysis on newswire da-

ta facilitates the development of systems capable

of answering perspective questions like “How did

people react to the latest presidential speech?” and

“Does General Musharraf support the Indo-Pak

peace treaty?”. The components involved in de-

veloping such systems require accurate identifica-

tion of opinion expressions and opinion entities.

Several of the approaches proposed in the literature

to automatically extract the opinion entities rely on

the use of thematic role labels and dependency

parsers to provide new lexical features for opinion

words (Bethard et al., 2004). Semantic roles (SRL)

also help to mark the semantic constituents (agent,

theme, proposition) of a sentence. Such features

are extremely valuable for a task like opinion en-

tity detection.

English is a privileged language when it comes

to the availability of resources needed to contribute

features for opinion entity detection. There are

other widely spoken, resource poor languages,

which are still in the infantile stage of automatic

natural language processing (NLP). Urdu is one

such language. The main objective of our research

is to provide a solution for opinion entity detection

in the Urdu language. Despite Urdu lacking NLP

resources required to contribute features similar to

what works for the English language, the perform-

ance of our approach is comparable with English

for this task (compared with the work of Weigand

and Klalow, 2010 ~ 62.61% F1). The morphologi-

cal richness of the Urdu language enables us to

extract features based on noun and verb inflections

that effectively contribute to the opinion entity ex-

traction task. Most importantly, these features can

be generalized to other Indic languages (Hindi,

Bengali etc.) owing to the grammatical similarity

between the languages.

58

English has seen extensive use of sequence ker-

nels (string and tree kernels) for tasks such as rela-

tion extraction (Culotta and Sorensen, 2004) and

semantic role labeling (Moschitti et al., 2008). But,

the application of these kernels to a task like opin-

ion entity detection is scarcely explored (Weigand

and Klalow, 2010). Moreover, existing works in

English perform only opinion holder identification

using these kernels. What makes our approach

unique is that we use the power of sequence ker-

nels to simultaneously identify opinion holders and

targets in the Urdu language.

Sequence kernels allow efficient use of the

learning algorithm exploiting massive number of

features without the traditional explicit feature rep-

resentation (such as, Bag of Words). Often, in case

of sequence kernels, the challenge lies in choosing

meaningful subsequences as training samples in-

stead of utilizing the whole sequence. In Urdu

newswire data, generating candidate sequences

usable for training is complicated. Not only are the

opinion entities diverse in that they can be con-

tained within noun phrases or clauses, the clues

that help to identify these components can be con-

tained within any word group - speech events,

opinion words, predicates and connectors.

1 Pakistan ke swaat sarhad ke janoobi shahar Banno

ka havayi adda zarayye ablaagk tavvju ka markaz

ban gaya hai.

[Pakistan’s provincial border’s south city’s airbase

has become the center of attraction for all reporters.]

Here, the opinion target spans across four noun

chunks, “Pakistan’s | provincial border’s | south

city’s | airbase”. The case markers (connectors)

“ke”and“ka” indicate the span.

2 Habib miyan ka ghussa bad gaya aur wo apne aurat

ko maara.

[Habib miya’s anger increased and he hit his own

wife.]

Here, the gender (Masculine) inflection of the verb

“maara” (hit) indicates that the agent performing

this action is “Habib miya” (Masculine)

3 Ansari ne kaha “mere rayee mein Aamir Sohail eek

badimaak aur Ziddi insaan hai”.

[Ansari said, “according to me Aamir Sohail is one

crazy and stubborn man”]

Here, cues similar to English such as “mere rayee

mein” (according to) indicate the opinion holder.

Another interesting behavior here is the presence of

nested opinion holders. “kaha” (said) indicates that

this statement was made by Ansari only.

4 Sutlan bahut khush tha, naseer key kaam se.

[Sultan was very happy with Naseer’s work]

Here, the target of the expression “khush” is after the

verb “khush tha”(was happy) – SVO structure

Table 1: Examples to outline the complexity of the task

Another contributing factor is the free word or-

der of the Urdu language. Although the accepted

form is SOV, there are several instances where the

object comes after the verb or the object is before

the subject. In Urdu newswire data, the average

number of words in a sentence is 42 (Table 3).

This generates a large number of candidate se-

quences that are not opinion entities, on account of

which the data used for training is highly unbal-

anced. The lack of tools such as dependency pars-

ers makes boundary detection for Urdu different

from English, which in turn makes opinion entity

extraction a much harder task. Examples shown in

table 1 illustrate the complexity of the task.

One safe assumption that can be made for opin-

ion entities is that they are always contained in a

phrase (or clause) that contains a noun (common

noun, proper noun or pronoun), which is either the

subject or the object of the predicate. Based on

this, we generate candidate sequences by consider-

ing contextual information around noun phrases. In

example 1 of Table 1, the subsequence that is gen-

erated will consider all four noun phrases “Paki-

stan’s | provincial border’s | south city’s |

airbase” as a single group for opinion entity.

We demonstrate that investigating postpositions

to capture semantic relations between nouns and

predicates is crucial in opinion entity identifica-

tion. Our approach shows encouraging perform-

ance.

2 Related Work

Choi et al., (2005) consider opinion entity iden-

tification as an information extraction task and the

opinion holders are identified using a conditional

random field (Lafferty et al., 2001) based se-

quence-labeling approach. Patterns are extracted

using AutoSlog (Riloff et al., 2003). Bloom et al.,

(2006) use hand built lexicons for opinion entity

identification. Their method is dependent on a

combination of heuristic shallow parsing and de-

pendency parsing information. Kim and Hovy

59

(2006) map the semantic frames of FrameNet

(Baker et al., 1998) into opinion holder and target

for adjectives and verbs to identify these compo-

nents. Stoyanov and Cardie (2008) treat the task of

identifying opinion holders and targets as a co-

reference resolution problem. Kim et al., (2008)

used a set of communication words, appraisal

words from Senti-WordNet (Esuli and Sebastiani,

2006) and NLP tools such as NE taggers and syn-

tactic parsers to identify opinion holders accu-

rately. Kim and Hovy (2006) use structural

features of the language to identify opinion enti-

ties. Their technique is based on syntactic path and

dependency features along with heuristic features

such as topic words and named entities. Weigand

and Klalow (2010) use convolution kernels that

use predicate argument structure and parse trees.

For Urdu specifically, work in the area of clas-

sifying subjective and objective sentences is at-

tempted by Mukund and Srihari, (2010) using a

vector space model. NLP tools that include POS

taggers, shallow parser, NE tagger and morpho-

logical analyzer for Urdu is provided by Mukund

et al., (2010). This is the only extensive work done

for automating Urdu NLP, although other efforts to

generate semantic role labels and dependency

parsers are underway.

3 Linguistic Analysis for Opinion Entities

In this section we introduce the different cues

used to capture the contextual information for cre-

ating candidate sequences in Urdu by exploiting

the morphological richness of the language.

Table 2: Case Inflections on Nouns

Urdu is a head final language with post-

positional case markers. Some post-positions are

associated with grammatical functions and some

with specific roles associated with the meaning of

verbs (Davison, 1999). Case markers play a very

important role in determining the case inflections

of nouns. The case inflections that are useful in the

context of opinion entity detection are “ergative”,

“dative”, “genitive”, “instrumental” and “loca-

tive”. Table 2 outlines the constructs.

Consider example 1 below. (a) is a case where

“Ali” is nominative. However, in (b) “Ali” is da-

tive. The case marker “ko” helps to identify sub-

jects of certain experiential and psychological

predicates: sensations, psychological or mental

states and obligation or compulsion. Such predi-

cates clearly require the subject to be sentient, and

further, indicate that they are a ected in some

manner, correlating with the semantic properties

ascribed to the dative’s primary use (Grimm,

2007).

Example (1):

(a) Ali khush hua (Ali became happy)

(b) Ali ko khushi hui (Ali became happy)

Example (2):

(a) Sadaf kaam karne ki koshish karti hai (Sadaf

tries to do work)

Semantic information in Urdu is encoded in a

way that is very different from English. Aspect,

tense and gender depend on the noun that a verb

governs. Example 2 shows the dependency that

verbs have on nouns without addressing the lin-

guistic details associated with complex predicates.

In example 2, the verb “karti”(do) is feminine

and the noun it governs ~Sadaf is also feminine.

The doer for the predicate “karti hai”(does) is

“Sadaf” and there exists a gender match. This

shows that we can obtain strong features if we are

able to accurately (i) identify the predicates, (ii)

find the governing noun, and (iii) determine the

gender.

In this work, for the purpose of generating can-

didate sequences, we encompass the post-position

responsible for case inflection in nouns, into the

noun phrase and group the entire chunk as one sin-

gle candidate. In example 1, the dative inflection

on ‘Ali’ is due to the case marker ‘ko’. Here, ‘Ali

ko’ will always be considered together in all candi-

date sequences that this sentence generates. This

Case Clitic

Form

Examples

Ergative (ne) Ali ne ghussa dikhaya ~

Ali showed anger

Accusa-

tive

(ko) Ali ko mainey maara ~

I hit Ali

Dative (ko,ke) Similar to accusative

Instru-

mental

(se) Yeh kaam Ali se hua ~

This work was done by

Ali

Genitive (ka, ke, ki) Ali ka ghussa, baap re

baap! ~ Ali’s anger, oh

my God!

Locative (mein, par,

tak, tale,

talak)

Ali mein ghussa zyaada

hai ~ there is a lot of

anger in Ali

60

behavior can also be observed in example 1 of ta-

ble 1.

We use Semantex
TM

 (Srihari et al., 2008) - an

end to end NLP framework for Urdu that provides

POS, NE, shallow parser and morphological ana-

lyzer, to mark tense, mood, aspect, gender and

number inflections of verbs and case inflections of

nouns. For ease of parsing, we enclose dative and

accusative inflected nouns and the respective case

markers in a tag called POSSESS. We also enclose

locative, genitive and ergative inflections and case

markers in a tag called DOER.

4 Methodology

Sequence boundaries are first constructed based

on the POSSESS, DOER and NP (noun chunk)

tags prioritized by the position of the tag while

parsing. We refer to these chunks as “candidates”

as they are the possible opinion entity candidates.

We generate candidate sequences by combining

these candidates with opinion expressions (Mu-

kund and Srihari, 2010) and the predicates that

contain or follow the expression words (~khushi in

(b) of example 1 above).

We evaluate our approach in two steps:

(i) Boundary Detection - detecting opinion

entities that contain both holders and tar-

gets

(ii) Entity Disambiguation - disambiguating

opinion holders from opinion targets

In the following sections, we briefly describe

our research methodology including sequence

creation, choice of kernels and the challenges thus

encountered.

4.1 Data Set

The data used for the experiments are newswire

articles from BBC Urdu
1
 that are manually anno-

tated to reflect opinion holders, targets, and ex-

pressions (emotion bearing words).

Number of subjective sentences 824

Average word length of each sentence 42

Number of opinion holders 974

Number of opinion targets 833

Number of opinion expressions 894

Table 3: Corpus Statistics

1
 www.bbc.co.uk/urdu/

Table 3 summarizes the corpus statistics. The inter

annotator agreement established between two an-

notators over 30 documents was found to be 0.85

using Cohen’s Kappa score (averaged over all

tags). The agreement is acceptable as tagging emo-

tions is a difficult and a personalized task.

4.2 Support Vector Machines (SVM) and

Kernel Methods

SVMs belong to a class of supervised machine

learning techniques that merge the nuances of sta-

tistical learning theory, kernel mapping and opti-

mization techniques to discover separating

hyperplanes. Given a set of positive and negative

data points, based on structural risk minimization,

SVMs attempt to find not only a separating hyper-

plane that separates two categories (Vapnik and

Kotz, 2006) but also maximize the boundary be-

tween them (maximal margin separation tech-

nique). In this work, we propose to use a variation

of sequence kernels for opinion entity detection.

4.3 Sequence Kernels

The lack of parsers that capture dependencies in

Urdu sentences inhibit the use of ‘tree kernels’

(Weigand and Klalow, 2010). In this work, we ex-

ploit the power of a set of sequence kernels known

as ‘gap sequence string kernels’ (Lodhi et al.,

2002). These kernels provide numerical compari-

son of phrases as entire sequences rather than a

probability at the chunk level. Gap sequence ker-

nels measure the similarity between two sequences

(in this case a sequence of Urdu words) by count-

ing the number of common subsequences. Gaps

between words are penalized with suitable use of

decay factor to compensate for

matches between lengthy word sequences.

Formally, let be the feature space over

words. Consequently, we declare other disjoint

feature spaces (stem words, POS,

chunks, gender inflections, etc.)

and
.
For any two-feature

vectors let compute the number

of common features between s and t. Table 5 lists

the features used to compute .

Given two sequences, s and t and the kernel

function that calculates the number of

61

weighted sparse subsequences of length n (say,

n=2: bigram) common to both s and t, then

is as shown in eq 1 (Bunescu and

Mooney, 2005).

(i,j,k are dimensions) ------ Eq 1.

Generating correct sequences is a prior require-

ment for sequence kernels. For example, in the task

of relation extraction, features included in the

shortest path between the mentions of the two se-

quences (which hold the relation) play a decisive

role (Bunescu and Mooney, 2005). Similarly, in

the task of role labeling (SRL - Moschitti et al.,

2008), syntactic sub-trees containing the arguments

are crucial in finding the correct associations. Our

approach to create candidate sequences for opinion

entity detection in Urdu is explained in the next

section.

4.4 Candidate Sequence Generation

Each subjective sentence in Urdu contains sev-

eral noun phrases with one or more opinion ex-

pressions. The words that express opinions

(expression words) can be contained within a verb

predicate (if the predicate is complex) or precede

the verb predicate. These subjective sentences are

first pre-processed to mark the morphological in-

flections as mentioned in §3.

Table 4: Candidate Sequence Generation

We define training candidate sequences as the

shortest substring t which is a tuple that contains

the candidate noun phrase (POSSESS, DOER or

NP), an emotion expression and the closest predi-

cate. Table 4 outlines the steps taken to create the

candidate sequences and figure 1 illustrates the

different tuples for a sample sentence.

Experiments conducted by Weigand and

Klakow (2010) consider <candidate, predicate>

and <candidate, expression> tuples. However, in

Urdu the sense of expression and predicate are so

tightly coupled (in many examples they subsume

each other and hence inseparable), that specifically

trying to gauge the influence of predicate and

expression separately on candidates is impossible.

There are three advantages in our approach to

creating candidate sequences: (i) by pairing ex-

pressions with their nearest predicates, several un-

necessary candidate sequences are eliminated, (ii)

phrases that do not contain nouns are automatically

not considered (see RBP chunk in figure 1), and

(iii) by considering only one candidate chunk at a

time in generating the candidate sequence, we en-

sure that the sequence that is generated is short for

better sequence kernel performance.

4.4.1 Linear Kernel features

For linear kernels we define features explicitly

based on the lexical relationship between the can-

didate and its context. Table 5 outlines the features

used.

Feature Sets and Description

Set 1

Baseline
1. head word of candidate

2. case marker contained within candidate?

3. expression words

4. head word of predicate

5. POS sequence of predicate words

6. # of NPs between candidate and emotion

Set 2 7. the DOER

8. expression right after candidate?

Set 3 9. gender match between candidate and

predicate

10. predicate contains emotion words?

Set 4 11. POS sequence of candidate

Set 5 12. “kah” feature in the predicate

13. locative feature?

14. genitive feature on noun?

Table 5: Linear Kernel Features

1 A sentence is parsed to extract all likely candi-

date chunks – POSSESS, DOER, NP in that

order.

2 <expression, predicate> tuples are first selected

based on nearest neighbor rule :

1. Predicates that are paired with the expres-

sion words either contain the expressions or

follow the expressions.

2. Stand alone predicates are simply ignored as

they do not contribute to the holder identifi-

cation task (they contribute to either the sen-

tence topic or the reason for the emotion).

3 For each candidate,

<candidate, expression, predicate> tuples are

generated without changing the word order.

(Fig. 1 – example candidates maintain the same

word order)

62

Figure 1: Illustration of candidate sequences

4.4.1 Sequence Kernel features

Features commonly used for sequence kernels

are based on words (such as character-based or

word-based sequence kernels). In this work, we

consider to be a feature space over Urdu words

along with other disjoint features such as POS,

gender, case inflections. In the kernel, however, for

each combination (see table 6) the similarity

matching function that computes the num-

ber of similar features remains the same.

Table 6: Disjoint feature set for sequence kernels

Sequence kernels are robust and can deal with

complex structures. There are several overlapping

features between the feature sets used for linear

kernel and sequence kernel. Consider the POS

path information feature. This is an important fea-

ture for the linear kernel. However this feature

need not be explicitly mentioned for the sequence

kernel as the model internally learns the path in-

formation. In addition, several Boolean features

explicitly described for the linear kernel (2 and 13

in table 5) are also learned automatically in the

sequence kernel by matching subsequences.

5 Experiments

The data used for our experiments is explained

in §4.1. Figure 2 gives a flow diagram of the entire

process. LIBSVM’s (Chang and Lin, 2001) linear

kernel is trained using the manually coded features

mentioned in table 5. We integrated our proposed

sequence kernel with the same toolkit. This se-

quence kernel uses the features mentioned in table

6 and the decay factor is set to 0.5.

Figure 2: Overall Process

KID Kernel Type

1 word based kernel (baseline)

2 word + POS (parts of speech)

3 word + POS + chunk

4 word + POS + chunk + gender inflection

63

The candidate sequence generation algorithm gen-

erated 8,329 candidate sequences (contains all opi-

nion holders and targets – table 3) that are used for

training both the kernels. The data is parsed using

Semantex
TM

 to apply POS, chunk and morphology

information. Our evaluation is based on the exact

candidate boundary (whether the candidate is en-

closed in a POSSESS, DOER or NP chunk).All

scores are averaged over a 5-fold cross validation

set.

5.1 Comparison of Kernels

We apply both linear kernels (LK) and se-

quence kernels (SK) to identify the entities as well

as disambiguate between the opinion holders and

targets. Table 7 illustrates the baselines and the

best results for boundary detection of opinion enti-

ties. ID 1 of table 7 represents the result of using

LK with feature set 1 (table 5). We interpret this as

our baseline result. The best F1 score for this clas-

sifier is 50.17%.

Table 7: Boundary detection of Opinion Entities

Table 8 compares various kernels and combina-

tions. Set 1 of table 8 shows the relative effect of

feature sets for LK and how each set contributes to

detecting opinion entity boundaries. Although sev-

eral features are inspired by similar classification

techniques (features used for SRL and opinion

mining by Choi et al., (2005) ~ set 1, table 5), the

free word nature of Urdu language renders these

features futile. Moreover, due to larger average

length of each sentence and high occurrences of

NPs (candidates) in each sentence, the number of

candidate instances (our algorithm creates 10 se-

quences per sentence on average) is also very high

as compared to any English corpus. This makes

the training corpus highly imbalanced. Interest-

ingly, when features like – occurrence of postposi-

tions, “kah” predicate, gender inflections etc. are

used, classification improves (set 1, Feature set

1,2,3,4,5, table 8).

Table 8: Kernel Performance

ID 3 of table 7 displays the baseline result for SK.

Interestingly enough, the baseline F1 for SK is

very close to the best LK performance. This shows

the robustness of SK and its capability to learn

complex substructures with only words. A se-

quence kernel considers all possible subsequence

matching and therefore implements a concept of

partial (fuzzy) matching. Because of its tendency

to learn all fuzzy matches while penalizing the

gaps between words intelligently, the performance

of SK in general has better recall (Wang, 2008). To

explain the recall situation, consider set 2 of table

8. This illustrates the effect of disjoint feature

scopes of each feature (POS, chunk, gender). Each

feature adds up and expands the feature space of

sequence kernel and allows fuzzy matching there-

by improving the recall. Hence KID 4 has almost

20% recall gain over the baseline (SK baseline).

However, in many cases, this fuzzy matching

accumulates in wrong classification and lowers

precision. A fairly straightforward approach to

overcome this problem is to employ a high preci-

sion kernel in addition to sequence kernel. Another

limitation of SK is its inability to capture complex

I

D
Kernel

Features

(table

5/6)

Prec.

(%)

Rec.

(%)

F1

(%)

1 LK
Baseline

(Set 1)
39.58 51.49 44.75

2 LK(best)
Set 1, 2,

3, 4, 5
44.20 57.99 50.17

3 SK
Baseline

(KID 1)
58.22 42.75 49.30

4 SK (best) KID 4 54.00 62.79 58.06

5

Best LK

+ best

SK

KID 4,

Set 1, 2,

3, 4, 5

58.43 65.04 61.55

Set Kernel KID Prec.

(%)

Rec.

(%)

F1

(%)

Baseline

(Set 1)

39.58 51.49 44.75

Set 1,2 39.91 52.57 45.38

Set 1, 2, 3 43.55 57.72 49.65

Set 1,2,3,4 44.10 56.90 49.68

1

LK

Feature set

1,2,3,4,5

44.20 57.99 50.17

Baseline -

KID 1

58.22 42.75 49.30

KID 2 58.98 47.55 52.65

KID 3 58.18 49.62 53.59

2

SK

KID 4 54.00 62.79 58.06

KID 1 +

best LK

51.44 68.89 58.90

KID 2 +

best LK

59.18 62.98 61.02

KID 3 +

best LK

55.18 68.38 61.07

3

SK +

LK

KID 4 +

best LK

58.43 65.04 61.55

64

grammatical structure and dependencies making it

highly dependent on only the order of the string

sequence that is supplied.

We also combine the similarity scores of SK

and LK to obtain the benefits of both kernels. This

permits SK to expand the feature space by natu-

rally adding structural features (POS, chunk) re-

sulting in high recall. At the same time, LK with

strict features (such as the use of “kah” verb) or

rigid word orders (several Boolean features) will

help maintain acceptable precision. By summing

the contribution of both kernels, we achieve an F1

of 61.55% (Set 3, table 8), which is 17.8%, more

(relative gain – around 40%) than the LK baseline

results (ID 1, table 7).

Table 9: Opinion entity disambiguation for best features

Our next sets of experiments are conducted to dis-

ambiguate opinion holders and targets. A large

number of candidate sequences that are created are

not candidates for opinion entities. This results in a

huge imbalance in the data set. Jointly classify

opinion holders, opinion targets and false candi-

dates with one model can be attempted if this im-

balance in the data set due to false candidates can

be reduced. However, this has not been attempted

in this work. In order to showcase the feasibility of

our method, we train our model only on the gold

standard candidate sequences that contain opinion

entities for entity disambiguation.

The two kernels are applied on just the two

classes (opinion holder vs. opinion target). Com-

bined kernels identify holders with a 65.26% F1

(table 9). However, LK performs best for target

identification (61.23%). We believe that this is due

to opinion holders and targets sharing similar syn-

tactic structures. Hence, the sequence information

that SK learns affects accuracy but improves recall.

6 Challenges

Based on the error analysis, we observe some

common mistakes and provide some examples.

1. Mistakes resulting due to POS tagger and shal-

low chunker errors.

2. Errors due to heuristic rules for morphological

analysis.

3. Mistakes due to inaccurate identification of ex-

pression words by the subjectivity classifier.

4. Errors due to complex and unusual sentence

structures which the kernels failed to capture.

Example (3):

Is na-insaafi ka badla hamein zaroor layna chahiye.

[we have to certainly take revenge for this injustice.]

Example (4):

Kya hum dayshadgardi ka shikar banna chahatein

hai?

[Do we want to become victims of terrorism?]

Example (5):

Jab secretary kisi aur say baat karke husthi hai, tho

Pinto ko ghussa aata hai.

[When the secretary talks to someone and laughs,

Pinto gets angry.]

Example 3 is a false positive. The emotion is “an-

ger”, indicated by “na-insaafi ka badla” (revenge

for injustice) and “zaroor” (certainly). But only

the second expression word is identified accu-

rately. The sequence kernel model determines na-

insaafi (injustice) to be the opinion holder when it

is actually the reason for the emotion. However, it

also identifies the correct opinion holder - hamein

(we). Emotions associated with interrogative sen-

tences are not marked (example 4) as there exists

no one word that captures the overall emotion.

However, the subjectivity classifier identifies such

sentences as subjective candidates. This results in

false negatives for opinion entity detection. The

target (secretary) in example 5, fails to be detected

as no candidate sequence that we generate indi-

cates the noun “secretary” to be the target. We

propose to address these issues in our future work.

7 Conclusion

We describe an approach to identify opinion en-

tities in Urdu using a combination of kernels. To

the best of our knowledge this is the first attempt

where such an approach is used to identify opinion

entities in a language lacking the availability of

resources for automatic text processing. The per-

formance for this task for Urdu is equivalent to the

state of the art performance for English (Weigand

and Klakow, 2010) on the same task.

Kernel Opinion

Entity

Prec.

(%)

Rec.

(%)

F1

(%)

Holder 58.71 66.67 62.44 LK

(best) Target 65.53 57.48 61.23

Holder 60.26 69.46 64.54 SK

 Target 59.75 49.73 54.28

Holder 62.90 69.81 65.26 Both

kernels Target 60.71 55.44 57.96

65

References

Collin F. Baker, Charles J. Fillmore, John B. Lowe.

1998. The Berkeley FrameNet Project, Proceedings

of the 17th international conference on Computa-

tional linguistics, August 10-14. Montreal, Quebec,

Canada

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios

Hatzivassiloglou, and Dan Jurafsky. 2004. Automatic

Extraction of Opinion Propositions and their Holders,

AAAI Spring Symposium on Exploring Attitude and

Affect in Text: Theories and Applications.

Kenneth Bloom, Sterling Stein, and Shlomo Argamon.

2007. Appraisal Extraction for News Opinion Analy-

sis at NTCIR-6. In Proceedings of NTCIR-6 Work-

shop Meeting, Tokyo, Japan.

R. C. Bunescu and R. J. Mooney. 2005. A shortest path

dependency kernel for relation extraction. In Pro-

ceedings of HLT/EMNLP.

R. C. Bunescu and R. J. Mooney. 2005. Subsequence

Kernels for Relation Extraction. NIPS. Vancouver.

December.

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM:

a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth

Patwardhan. 2005. Identifying Sources of Opinions

with Conditional Random Fields and Extraction Pat-

terns. In Proceedings of the Conference on Human

Language Technology and Empirical Methods in

Natural Language Processing (HLT/EMNLP), Van-

couver, Canada.

Aaron Culotta and Jeffery Sorensen. 2004. Dependency

tree kernels for relation extraction. In Proceedings of

the 42rd Annual Meeting of the Association for

Computational Linguistics. pp. 423-429.

Alice Davison. 1999. Syntax and Morphology in Hindi

and Urdu: A Lexical Resource. University of Iowa.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sen-

tiWordNet: A publicly available lexical resource for

opinion mining. In Proc of LREC. Vol 6, pp 417-422.

Scott Gimm. 2007. Subject Marking in Hindi/Urdu: A

Study in Case and Agency. ESSLLI Student Session.

Malaga, Spain.

Youngho Kim, Seaongchan Kim and Sun-Hyon

Myaeng. 2008. Extracting Topic-related Opinions

and their Targets in NTCIR-7. In Proceedings of the

7th NTCIR Workshop Meeting. Tokyo. Japan.

John Lafferty, Andrew McCallum and F. Pereira. 2001.

Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In: Proc.

18th International Conf. on Machine Learning, Mor-

gan Kaufmann, San Francisco, CA . pp. 282–289

Huma Lodhi, Craig Saunders, John Shawe-Taylor,

Nello Cristianini, Chris Watkins. 2002. Text

classification using string kernels. J. Mach. Learn.

Res. 2 (March 2002), 419-44.

Kim, Soo-Min. and Eduard Hovy. 2006. Extracting

Opinions, Opinion Holders, and Topics Expressed in

Online News Media Text. In ACL Workshop on Sen-

timent and Subjectivity in Text.

Alessandro Moschitti, Daniele Pighin, Roberto Basili.

2008. Tree kernels for semantic role labeling. Com-

putational Linguistics. Vol 34, num 2, pp 193-224.

Smruthi Mukund and Rohini K. Srihari. 2010. A Vector

Space Model for Subjectivity Classification in Urdu

aided by Co-Training, In Proceedings of the 23rd In-

ternational Conference on Computational Linguistics,

Beijing, China.

Smruthi Mukund, Rohini K. Srihari and Erik Peterson.

2010. An Information Extraction System for Urdu –

A Resource Poor Language. Special Issue on Infor-

mation Retrieval for Indian Languages.

Ellen Riloff, Janyce Wiebe and Theresa Wilson. 2003.

Learning subjective nouns using extraction pattern

bootstrapping. In Proceedings of the Seventh Confer-

ence on Natural Language Learning (CoNLL-03).

Rohini K. Srihari, W. Li, C. Niu, and T. Cornell. 2008.

InfoXtract: A Customizable Intermediate Level In-

formation Extraction Engine, Journal of Natural Lan-

guage Engineering, Cambridge U. Press, 14(1), pp.

33-69.

Veselin Stoyanov and Claire Cardie. 2008. Annotating

Topic Opinions. In Proceedings of the Sixth Interna-

tional Conference on Language Resources and Eval-

uation (LREC 2008), Marrakech, Morocco.

John Shawe-Taylor and Nello Cristianni. 2004. Kernel

methods for pattern analysis. Cambridge University

Press.

Mengqiu Wang. 2008. A Re-examination of Depend-

ency Path Kernels for Relation Extraction, In

Proceedings of IJCNLP 2008.

Michael Wiegand and Dietrich Klalow. 2010. Convolu-

tion kernels for opinion holder extraction. In Proc. of

Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the

Association for Computational Linguistics. pp 795-

803, ACL

66

Vladimir Vapnik, S.Kotz. 2006. Estimation of De-

pendences Based on Empirical Data. Springer, 510

pages.

67

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 68–77,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Subword and spatiotemporal models for identifying actionable information
in Haitian Kreyol

Robert Munro
Department of Linguistics

Stanford University
Stanford, CA, 94305

rmunro@stanford.edu

Abstract

Crisis-affected populations are often able to
maintain digital communications but in a
sudden-onset crisis any aid organizations will
have the least free resources to process such
communications. Information that aid agen-
cies can actually act on, ‘actionable’ informa-
tion, will be sparse so there is great poten-
tial to (semi)automatically identify actionable
communications. However, there are hurdles
as the languages spoken will often be under-
resourced, have orthographic variation, and
the precise definition of ‘actionable’ will be
response-specific and evolving. We present
a novel system that addresses this, drawing
on 40,000 emergency text messages sent in
Haiti following the January 12, 2010 earth-
quake, predominantly in Haitian Kreyol. We
show that keyword/ngram-based models us-
ing streaming MaxEnt achieve up to F=0.21
accuracy. Further, we find current state-of-
the-art subword models increase this substan-
tially to F=0.33 accuracy, while modeling the
spatial, temporal, topic and source contexts of
the messages can increase this to a very ac-
curate F=0.86 over direct text messages and
F=0.90-0.97 over social media, making it a vi-
able strategy for message prioritization.

1 Introduction

The recent proliferation of cellphone technologies
has resulted in rapid increases in the volume of in-
formation coming out of crisis-affected regions. In
the wake of the January 12, 2010 earthquake in
Haiti local emergency response services were inop-
erable but 70-80% of cell-towers were quickly re-

stored. With 83%/67% of men/women possessing
a cellphone, the nation remained largely connected.
People within Haiti were texting, calling and inter-
acting with social media, but aid agencies were not
equipped to process so much information. This is
because in any sudden onset crisis, this flood of in-
formation out of the region coincides with crisis-
response organizations already working at capacity
as they move in. The problem definition is clear:
how can we filter this information to identify action-
able intelligence to support relief efforts?

The solution is complicated. There may be
few resources for the language(s) of the crisis-
affected population and the ratio of actionable to
non-actionable information will often be very large,
especially when reported through social-media and
other non-official channels. In the absence of ex-
isting electronic resources models must be built on-
the-fly and account for substantial spelling varia-
tions. The definition of what constitutes action-
able intelligence will often be context-specific and
changing, too. In the data used here ‘actionable’
changed quickly from Search and Rescue to any
medical emergency and then to include clusters of
requests for food and water. The models will there-
fore need to be time-sensitive or otherwise adaptive.

The system presented here attempts to address
these problems, finding that the accurate identifica-
tion of actionable information can be achieved with
subword models, the automatic identification of top-
ics (categories), and spatiotemporal clustering, all
within a streaming architecture. It is evaluated us-
ing 40,811 emergency text messages sent in Haiti
following the January 12, 2010 earthquake.

68

2 Evaluation data

Three sets of short-messages are used, all from be-
tween January 12 and May 12, 2010:

1. Mission 4636. 40,811 text-messages sent to a
free number, ‘4636’, in Haiti.

2. Radio Station. 7,528 text-messages sent to a
Haitian radio station.

3. Twitter. 63,195 Haiti-related tweets.

The Mission 4636messages were translated, ge-
olocated and categorized by a volunteer online
crowdsourced workforce, predominantly from the
Haitian diaspora, and by paid workers within Haiti
(Munro, 2010). English-speaking crisis-mappers
identified actionable messages and refined the coor-
dinates and categories. The categories are a standard
set of UN-defined emergency categories with some
additions (48 total). The definition of an ‘actionable’
message was defined by the main responders to the
messages, the US Coast Guard and the US Marines
working with Southern Command, and included any
messages with an identifiable location that contained
a request for medical assistance, Search and Rescue,
water-shortages, clusters of requests for food in ar-
eas not known to aid workers, security, and reports
of unaccompanied minors.

The radio station and Twitter messages are not
structured or geolocated. They are used here as po-
tential false-positives in a needle-in-a-haystack sce-
nario where the majority of messages are irrelevant.
A recent Red Cross survey (2010) found that nearly
half the respondents would use social media to re-
port emergencies, so this is a realistic scenario.

3 Streaming models

Supervised streaming-models attempt to classify an
incoming stream of unlabeled items by building up
training-data on past items (Aggarwal, 2006; Hul-
ten et al., 2001; Babcock et al., 2002). The mod-
els are often time-sensitive with training data either
weighted towards or exclusively consisting of more
recently seem items, especially in the context of con-
cept drift or bounded memory (Zhang et al., 2008).

There is a penalty for applying GOLD labels to
past items for training: either only a subset can be
labeled or there is a time-delay. When only a subset

can be labeled the scenario is similar to that ofactive
learning(Cohn et al., 1996; Tong and Koller, 2002).
When there is a delay not all past items are imme-
diately available, meaning that short-term concept
drifts might not be adapted to. In both cases, accu-
racy is continually evaluated over incoming items.

Here, the time-delay penalty was used for all Mis-
sion 4636 messages as it is closer to the actual sce-
nario where each potential emergency message is ul-
timately read by a person but with potential delays
from sudden bursts and backlogs.

The messages were divided into 100 temporally
ordered sets. Each set belongs to one epochi in
the streaming architecture,R, such thatRi is eval-
uated onR0, . . . , Ri−1 (R1 is evaluated on a model
trained onR0; R2 is evaluated on a model trained
on{R0, R1}; R3 is evaluated on a model trained on
{R0, R1, R2}, etc.). The accuracy is therefore cal-
culated overR1, . . . , R99 (all but the first set).

The results here report a system using a MaxEnt
learning algorithm with Quasi-Newton optimization
and a convergence tolerance of10−4. Changing pa-
rameter settings or swapping out the learning algo-
rithm with linear and quadratic kernel SVMs made
little difference in accuracy (see discussion of other
models below).

4 Features (F)

G : Words and ngrams.
W : Subword patterns (extended definition below).
P : Source of the message (phone number).
T : Time received.
C : Categories (c0,...,47).
L : Location (longitude and latitude).
L∃ : Has-location (there is an identifiable location

within the message).

G, W , P andT were calculated directly from the
messages.C andL∃ were predicted using indepen-
dent streaming models andL was clustered through
tiling (see below).

4.1 Hierarchical streaming models for
has-location (L∃) and category (C)

The SMS protocol does not encode locations or cate-
gories. The streaming model was extended to a two-
level hierarchical architecture so that we could use
(predicted) locations and categories as features.

69

Nou tigwav,nou pa gen manje nou pa gen kay. m.
‘We are Petit Goave, we don’t have food, we don’t have a house.Thanks.
Actionable -72.86537, 18.43264 1/22/2010 16:59 2a. Food Shortage, 2b. Water shortage

Lopital Sacre-Coeur ki nan vil Milot, 14 km nan sid vil Okap, p re pou li resevwa moun malad e l’ap
mande pou moun ki malad yo ale la.
‘Sacre-Coeur Hospital which located in this village Milot 14 km south of Oakp is ready to receive those
who are injured. Therefore, we are asking those who are sick to report to that hospital.’
Actionable -72.21272, 19.60869 2/13/2010 22:33 4a. Healthservices

Mwen se [FIRST NAME] [LAST NAME] depi jeremi mwen ta renmen jw enm travay.
‘My name is [FIRST NAME] [LAST NAME], I’m in Jeremi and I wouldlike to find work.’
Not Actionable -74.1179, 18.6423 1/22/2010 18:29 5. Other

Rue Casseus no 9 gen yon sant kap bay swen ak moun ki blese e mounki brile.
‘Street Casseus no 9, there is a center that helps people thatare wounded or burnt.’
Actionable -72.32857,18.53019 1/19/2010 11:21 4a. Healthservices

Paket moun delmas 32 ki forme organisation kap mache pran manje sou non pep yo ankesel lakay
‘People in Delmas 32 formed an association that takes food inthe name of everyone in the neighborhood’
Not Actionable -72.30815,18.54414 2/4/2010 1:21 5. Other

Table 1: Examples of messages, with translation, actionable flag, location, timestamp and categories. The final two
were a consistent false negative and false positive respectively. The former likely because of sparsity - places offering
services were rare - and the latter because reports of possible corruption were not, unfortunately, considered actionable.

A set S, of 49 base streaming models predicted
the has-location,L∃, feature and categories,c0,...,47.
That is, unlike the main model,R, which predicts
the ‘Actionable’/‘Not Actionable’ division, each
modelS predicts either the existence of a location
within the text or binary per-category membership.
The predictions for each message were added to the
final model as feature confidence values per-label.
This is richer than simply using the best-guess labels
for each modelS and it was clear in early processing
that confidence features produced consistently more
accurate final models than binary predicted labels.
In fact, using model confidence features forL∃ ac-
tually outperforms an oracle binary has-location fea-
ture,O(L∃) (see results).

The sameG, W , P andT features were used for
theS andR models.

As the final modelR requires the outputs fromS
for training, andS are themselves predictive models,
theL∃ andC features are not included until the sec-
ond training epochR1. In the context of machine-
learning for sudden onset humanitarian information
processing any delay could be significant. One sim-

ple solution is starting with smaller epoch sizes.

4.2 Subword features

A typical former creole, Haitian Kreyol has very
simple morphology but the text message-language
produces many compounds and reductions (‘my
family’: fanmi mwen, fanmwen, fanmi m, fanmi’m,
fanmim’, fanmim), so it requires segmentation.
There is also substantial variation due to lack of
spelling conventions, geographic variation, varying
literacy, more-or-less French spellings for cognates,
and character sets/accents (‘thank you’:mesi, ḿesi,
méci meci, merci). See Table 2 for further examples
and common subword patterns that were discovered
across very different surface forms.

The approach here builds on the earlier work of
Munro and Manning (2010), adapted from Gold-
water et al. (2009), where unsupervised methods
were used to segment and phonologically normalize
the words. For example, the process might turn all
variants of ‘thank you’ into‘mesi’ and all variants
of ‘my family’ into ‘fan mwen’. This regulariza-
tion allows a model to generalize over the different

70

Abbrev. Full Form Pattern Meaning

s’on se yon sVn is a
avèn avèknou VvVn with us
relem rele mwen relem call me
wap ouap uVp you are
map mwen ap map I will be
zanmim zanmi mwen zanmim my friend
lavel lave li lavel to wash (it)

Table 2: Abbreviations and full forms of words, showing
substantial variation but common subword patterns and
character alternations (V=any vowel).

forms even in the event of singleton word variants.
Here we incorporated the segmentation into the su-
pervised learning task rather than model the phono-
logical/orthographic variation as a pre-learning nor-
malization step, as in Munro and Manning. A set
of candidate segmentations and normalizations were
added to our final model as features representing
both the pre and post-normalization, allowing the
model to arrive at the optimal training weights be-
tween the unnormalized/unsegmented and normal-
ized/segmented variants.

This meant that rather than optimizing the sub-
word segmentation according to a Gaussian prior
over unlabeled data we optimized the segmentation
according to the predictive ability of a given seg-
mentationper model. This is further from the lin-
guistic reality of the segments than our earlier ap-
proach but the richer feature space led to an increase
in accuracy in all test cases here.

The subword models were only applied to the
original messages. The English translations were
not included among the features as it is not realis-
tic to assume manual translation of every message
before the less labor-intensive task of identifying ac-
tionable items.

4.3 Oracle features

While the SMS protocol does not encode the
geographical origin of the message, other proto-
cols/systems do, especially those used by smart-
phones. Similarly, cell-tower granularity of loca-
tions might be available, phone numbers might bea
priori associated with locations, or locations could
be formalized within the text using methods like

‘Tweak the Tweet’ (Starbird and Stamberger, 2010).
Therefore, it is reasonable to also simulate a scenario
where the messages come pre-geocoded. We com-
pared our results to models also containing the ora-
cle longitude and latitude of the messages,O(L) (no
attempt was made to predictL, the precise longitude
and latitude - a challenging but interesting task) and
the oracle existence of a locationO(L∃).

It is less likely that messages come pre-
categorized but oracle features for the categories
were also evaluated to compare the performance for
models containing the predictive categories to ones
containing the actual categories,O(c0,...,47).

4.4 Spatial clustering

In addition to identifying locations, we also used the
latitude and longitude to geographically cluster mes-
sages. This was to capture two phenomena:

1. Hot spots:some areas were in greater need of
aid than others.

2. Clustered food requests:the definition of ‘ac-
tionable’ extended to clustered requests for
food, but not requests from lone individuals.

Figure 1 shows a Port-au-Prince (Pótoprens)
neighborhood with incident reports from the text
messages. Thex, y axes (latitude, longitude) show
the clusters given by the Ushahidi map and thez axis
shows the temporal distribution of messages over a
two month period. Both the spatial and temporal
distributions clearly show a high frequency of both
clusters and outliers.

The most accurate clustering divided the mes-
sages by longitude and latitude into tiles approxi-
mating 100m2, 1km2 and 10km2. At each gran-
ularity, tiling was repeated with an offset by half
on each dimension to partially smooth the arbitrari-
ness of tile boundaries. This resulted in each geo-
located messages being a member of 12 tiles in to-
tal, which were included as 12 featuresL. We were
not able to find an unsupervised spatial clustering al-
gorithm that improved the results beyond this brute-
force method of multiple tiles at different granulari-
ties (see discussion of other models tested below).

4.5 Temporal modeling and discounting

It is common to calculate a discounting function
over training epochs in streaming models (Aggar-

71

Figure 1: Map of a Port-au-Prince neighborhood with in-
cident reports from text messages, with spatial clusters on
the latitudinal and longitudinal axes and temporal distri-
butions on the time axis, showing both spatial and tem-
poral clustering, with frequent outliers.

wal, 2006; Hulten et al., 2001; Babcock et al., 2002).
We used a slightly different method here where

the time-stamp feature,T , performs this function,
arriving at the relative probability for a given time
period t in the final model,R (Zhang et al., 2008).
It has several advantages over a simple weighted
discounting function. First,t is calculated incre-
mentally, not per training epoch, meaning that the
weight θ for t is calculated until the most recently
seen items. Second, it freesT to cluster accord-
ing to temporal divisions other than the (arbitrary)
divisions of training epochs. Finally, it allows un-
constrained weights for different temporal clusters,
permitting the final distribution of weights over dif-
ferentts to define complex and possibly nonmono-
tonic discounting functions. Modeling time as a fea-
ture rather than a discounting function also made
it simpler to combine temporal and spatial cluster-
ing. The featureT consisted of multiple buckets
of time-stamps per message and also composite fea-
tures with theO(L) tiles when present.

4.6 Other models tested

Several other machine-learning methods were tested
but ultimately not reported here.

Intuitively, SVMs with non-linear kernels could
more accurately model geographic divisions in
the latitude and longitude dimensions and dis-
cover different combinations of features likehas-
location=true andcategory=emergency. However,
we were not able to find a combination of kernels

and parameter settings that demonstrated this. It is
possible that we could not avoid over-fitting or that
the composite features had already sufficiently cap-
tured the combinations.

Munro and Manning (2010) also found gains us-
ing supervised LDA (Ramage et al., 2009), which
has also previously been used for disaster response
clustering (Kireyev et al., 2009). We implemented
supervised LDA and unsupervised LDA topic mod-
els, but they showed modest improvements over the
baseline model only. We presume that this is be-
cause when we add the predicted categories from
our (supervised) category learning task, they already
contained enough information about topic divisions.

We looked at several methods for spatio-temporal
clustering including cliques (Zhang et al., 2004), k-
means (Wagstaff et al., 2001), and targeted low fre-
quency clusters (Huang et al., 2003). The change in
accuracy was negligible but the exploration of meth-
ods was by no means exhaustive. One exception
was using nearest-neighbor spatiotemporal cluster-
ing, however the gains were predominantly repeated
messages from the same person and thus already
captured by the source feature,P .

Several systems have been built by humanitar-
ian organizations for filtering/prioritizing messages,
mostly keyword and memory-based. All are cur-
rently less accurate than the baseline system here
and their predicted outputs gave no gains as features.
TheSwiftRiversystem built on NLTK library (Bird
et al., 2009) was the most promising, only underper-
forming the baseline by F=0.01.

5 Results

The results in Table 3 show that a combination of
streaming models with subword models improves
the accuracy of identifying actionable messages. All
increases in accuracy are significant relative to the
baseline.

The temporal feature,T , alone gives F=0.045 in-
crease in accuracy indicating that there is substantial
concept drift and an adaptive model is necessary for
accurate classification.

The subword models,W , increase the gain to
0.119 showing that despite Kreyol being a morpho-
logically simple language the variation in spellings
and compounds is significant.

72

Model Precision Recall F-value F-Gain

Words/Ngrams (G) 0.622 0.124 0.207 n/a
Temporal feature (G,T) 0.716 0.153 0.252 0.045
Subwords and Source (G,T,W,P) 0.548 0.233 0.326 0.119
Categories (predicted:G,T,C, P) 0.464 0.240 0.316 0.109
Location (predicted:G,T,L∃, P) 0.572 0.212 0.310 0.103
Categories (oracle:G,T,O(C), P) 0.565 0.225 0.322 0.115
Location (oracle:G,T,O(L∃), P) 0.746 0.168 0.274 0.067
Spatial clusters (L) 0.896 0.653 0.756 0.549
All non-oracle and spatial clusters 0.872 0.840 0.855 0.648

Pre-filtered spatial clusters 0.613 0.328 0.428 0.221

Radio station 0.961 0.854 0.904 n/a
Twitter 0.950 0.989 0.969 n/a

Table 3: The final results for the different models. The first three andLocation (oracle)contain only single streaming
models. The others use a hierarchical streaming model combining features with the outputs from the base streaming
modelsS. The model combining all features is the most accurate at F=0.855, 0.648 above the baseline model optimized
over words and word sequences (ngrams). ThePre-filtered spatial clusterscontains the same architecture/features as
the most accurate model, but with those messages not containing an identifiable location (and therefore automatically
non-actionable) stripped from the training and test data. The finalRadio stationandTwitter models used the messages
sent to a radio station and Twitter as the non-actionable items, using the same training model asAll non-oracle and
spatial clusters.

5.1 Oracle vs predicted outputs

Comparing the oracle values and predicted outputs
from the categories and the identification of mes-
sages containing locations,O(C), O(L∃), C, L∃, we
see that the predictive model for categories only
slightly underperforms the oracle, but the predictive
model for locationsoutperforms the oracle model.
We suspect that this is because the predictions are
probabilities, not binary indicators of the existence
of a location. Therefore, the richer real-valued
feature space led to greater information for the fi-
nal model despite any predictive errors in this base
model. Another reason can be clearly seen in the
precision, 0.746 for theO(L) model, one of the
highest precision-to-recall ratios. The final model
is clearly giving too much weight to the existence
of a location as a predictor of an actionable la-
bel. SmoothingO(L) makes little difference as it
is a high-frequency binary feature, but the greater
range of probability values inL are necessarily more
sparse and therefore more de-weighted by smooth-
ing.

Identifying locations is one area that could be ex-

panded on greatly. Initial experiments with named-
entity recognition were abandoned when it was clear
that the data was too sparse and too different from
existing data sets, but perhaps text-message-specific
named-entity recognition methods could lead to
even more accurate results for identifying locations.

5.2 Spatial clustering

By adding spatial clusters we get the greatest leap in
accuracy: F=0.756, a substantial F=0.549 over the
baseline. This is strong evidence in favor of extend-
ing text-only messaging to location-aware messag-
ing. As with the prediction of locations, it is likely
that methods for spatial clustering other than brute-
force bucketing could lead to more accurate results,
but as stated earlier we were not able to identify any.

Combining the base streaming model outputs
with all features leads to the most accurate model. It
is expected that this would produce the best results,
but at F=0.855 we have averysignificant gain over
any of the models implementing only single-stream
learning, or without the full feature space.

73

5.3 Pre-filtering

Somewhat counterintuitively, pre-filtering messages
without known locations (in both training and test
data) decreased the accuracy to F=0.428. Oracle fil-
tering of true-negative test items will not change re-
call and can only increase precision, so clearly there
is ‘signal’ in the ‘noise’ here. Analysis of the mes-
sages showed that many non-actionable messages
were not related to emergencies at all (general ques-
tions, requests for work, etc), as were many mes-
sages without identifiable locations. That is, people
who tended to not send actionable information also
tended to not include locations. Because of this cor-
relation, the content of messages without locations
becomes useful information for the model.

A careful analysis of the training models con-
firms this: the word and subword features for non-
actionable messages with no locations had non-zero
weights. Pre-filtering them therefore resulted in an
impoverished training set.

It is standard practice in the humanitarian indus-
try to pre-filter messages that are easily identified
as non-actionable (for obvious reasons: it reduces
the manual processing), which is what occurred in
Haiti - only about 5% of messages were treated as
‘actionable’ candidates. The results here indicate
that if manual processing is extended to automated
or semi-automated processing this strategy needs to
change, with all potential training items included in
the models.

5.4 Comparison to non-emergency messages

For the social media scenarios where we combined
the actionable test items with the messages sent to
a radio station and Twitter the accuracy was highest
of all. This is a promising result for seeking action-
able information in non-traditional sources. The ra-
dio station is particularly promising as almost all the
messages where in Haitian Kreyol and spoke about
the same locations as the 4636 messages.

While the Twitter messages were extremely ac-
curate at F=0.969, the majority of the tweets were
in English or French from people outside of Haiti,
so this model was at least in part about language
identification, a much simpler task and less novel
from a research perspective. Nonetheless, while at
least part of the accuracy is easily explained this was

the most sparse test set with only 0.025% actionable
items, so the application scenario is very promising.

5.5 Prioritization

Applying ROC analysis, the methods here could
speed up the prioritization of actionable messages
by a factor of 10 to 1 based on content alone. That
is, on average an actionable message falls within the
90th percentile for probability of being actionable.
By including spatial clustering this becomes the 98th
percentile. There is great potential for improvements
but the methods reported here could already be used
to efficiently prioritize the triage of the most impor-
tant messages within a semi-automated system.

6 Related Work

6.1 trillion text messages were sent in 2010 - more
than emails and social network communications
combined (ITU, 2010), especially in areas of great
linguistic diversity (Maffi, 2005). This easily makes
it the leastwell-studied method for digital commu-
nication relative to the amount digital information
being generated.

The lack of research is probably due to obstacles
in obtaining data. By contrast Twitter’s API has led
to much recent research, primarily in sentiment anal-
ysis (O’Connor et al., 2010; Alexander Pak, 2010;
Sriram et al., 2010) and unsupervised event detec-
tion (Petrović et al., 2010). The task of identifying
sentiment is different to filtering actionable intelli-
gence, we were not training on tweets, and Twitter-
language is reportedly different from text-message-
language (Krishnamurthy et al., 2008). However,
there are similarities relating to problems of mes-
sage brevity and the ability to extend the feature-
space. For example, Sriram et al. (2010) also found
that modeling the source of a message improved ac-
curacy. Eisenstein et al. (Eisenstein et al., 2010)
show promising results in identifying an author’s
geographic location from micro-blogs, but the lo-
cations are course-grained and rely on a substantial
message history per-source.

In recent work with medical text messages in the
Chichewa language, we compared the accuracy of
rule-based and unsupervised phonological normal-
ization and morphological segmentation when ap-
plied to a classification task over medical labels,

74

showing substantial gains from subword models
(Munro and Manning, 2010).

A cluster of earlier work looked at SMS-SPAM in
English (Healy et al., 2005; Hidalgo et al., 2006;
Cormack et al., 2007) and Beaufort et al. (2010)
used a similar preprocessing method for normaliz-
ing text-messages in French, combining rule-based
models with a finite-state framework. The accuracy
was calculated relative to BLEU scores for ‘correct’
French, not as a classification task.

Machine-translation into a more well-spoken lan-
guage can extend the potential workforce. Early
results are promising (Lewis, 2010) but still leave
some latency in deployment.

For streaming architectures, Zhang et al. (2008)
proposed a similar method for calculating per epoch
weights as an alternative to a discounting function
with significant gains. Wang et al. (2007) also
looked at multiple parallel streams of text from dif-
ferent newspapers reporting the same events but we
couldn’t apply their method here as there were few
instances of the same pairs of people independently
reporting two distinct events. The two-tiered archi-
tecture used here is similar to a hierarchical model,
the main difference being epoch-based retraining
and the temporal offset of the base models feed-
ing into the final one. Joint learning over hierarchi-
cal models has been successful in NLP (Finkel and
Manning, 2010) but to our best knowledge no one
has published work on joint learning over hierarchi-
cal streaming models, in NLP or otherwise.

7 Conclusions

From models optimized over words and ngrams
to one including temporal clustering and subword
models the accuracy rises from F=0.207 to F=0.326.
Clearly, the words that someone has chosen to ex-
press a message is just one small aspect of the
context in which that message is understood and
by combining different learning models with richer
features we can prioritize actionable reports with
some accuracy. With spatial clustering this rises to
F=0.885, indicating that geographic location was the
single most important factor for prioritizing action-
able messages.

These results are only a first step as there is great
potential for research identifying more accurate and

efficient learning paradigms. A growing number of
our communications are real-time text with frequent
spelling variants and a spatial component (tweets,
location-based ‘check-ins’, instant messaging, etc)
so there will be increasingly more data available in
an increasing variety of languages.

It is easy to imagine many humanitarian applica-
tions for classifying text-messages with spatiotem-
poral information. Social development organiza-
tions are already using text messaging to support
health (Leach-Lemens, 2009), banking (Peevers et
al., 2008), access to market information (Jagun et al.,
2008), literacy (Isbrandt, 2009), and there is the po-
tential to aid many of them. Even more importantly,
this work can contribute to information processing
strategies in future crises. Had a system like the one
presented here been in place for Haiti then the iden-
tification of actionable messages could have been
expedited considerably and a greater volume pro-
cessed. I coordinated the Mission 4636 volunteers
who were translating and mapping the messages in
real-time, so this research is partially motivated by
the need to see what I could have done better, with a
view to being better prepared for future crises.

The results for social media are especially promis-
ing. In total, the tweets contained 1,178,444 words
- the size of approximately 10 novels - but if there
was just one real emergency among them, there was
a 97% chance it would rise to the top when ordered
by actionable confidence.

Acknowledgments

With thanks to the volunteers of Mission 4636.
Their work translating, categorizing and mapping
communications showed the humanitarian commu-
nity the benefits of crowdsourcing/microtasking and
is now also helping us prepare for higher-volume
semi-automated systems. Thanks also to the volun-
teers and workers of Samasource/FATEM in Haiti,
Ushahidi Haiti in Boston, and to the engineers at
CrowdFlower and Ushahidi who built the platforms
we used for translation and mapping.

This work was supported by a Stanford Grad-
uate Fellowship and owes thanks to collaborative
work and conversations with Chris Manning and
colleagues in the Stanford NLP Research Group.

75

References

Charu C. Aggarwal. 2006. Data Streams: Mod-
els and Algorithms (Advances in Database Systems).
Springer-Verlag, New York.

Patrick Paroubek Alexander Pak. 2010. Twitter as a cor-
pus for sentiment analysis and opinion mining. InPro-
ceeding of the 2010 International Conference on Lan-
guage Resources and Evaluation (LREC 2010).

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev
Motwani, and Jennifer Widom. 2002. Models and
issues in data stream systems. InProceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pages 1–16.
ACM.

Richard Beaufort, Sophie Roekhaut, Louise-Amélie
Cougnon, and Cédrick Fairon. 2010. A hybrid
rule/model-based finite-state framework for normaliz-
ing sms messages. InProceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics ACL 2010.

BSteven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. Oreilly &
Associates Inc.

David A. Cohn, Zoubin Ghahramani, and Michael Jor-
dan. 1996. Active learning with statistical models.
Arxiv preprint cs/9603104.

Gordon V. Cormack, José Mara Gómez Hidalgo, and En-
rique Puertas Sánz. 2007. Feature engineering for
mobile (SMS) spam filtering. InThe 30th annual in-
ternational ACM SIGIR conference on research and
development in information retrieval.

The American Red Cross. 2010. Social media in disas-
ters and emergencies. Presentation.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for ge-
ographic lexical variation. InProceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2010).

Jenny Rose Finkel and Christopher D. Manning. 2010.
Hierarchical joint learning: Improving joint parsing
and named entity recognition with non-jointly labeled
data. InAnnual Conference of the Association for
Computational Linguistics (ACL 2010).

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A bayesian framework for word segmen-
tation: Exploring the effects of context.Cognition,
112(1):21–54.

Matt Healy, Sarah Jane Delany, and Anton Zamolotskikh.
2005. An assessment of case-based reasoning for
Short Text Message Classification. InThe 16th Irish
Conference on Artificial Intelligence & Cognitive Sci-
ence.

José Mara Gómez Hidalgo, Guillermo Cajigas Bringas,
Enrique Puertas Sánz, and Francisco Carrero Garca.
2006. Content based SMS spam filtering. InACM
symposium on Document engineering.

Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei.
2003. Mining confident co-location rules without a
support threshold. InProceedings of the 2003 ACM
symposium on Applied computing.

Geoff Hulten, Laurie Spencer, and Pedro Domingos.
2001. Mining time-changing data streams. InPro-
ceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM.

Scott Isbrandt. 2009. Cell Phones in West Africa: im-
proving literacy and agricultural market information
systems in Niger. White paper: Projet Alphabétisation
de Base par Cellulaire.

ITU. 2010. The world in 2010: ICT facts and figures.
International Telecommunication Union.

Abi Jagun, Richard Heeks, and Jason Whalley. 2008.
The impact of mobile telephony on developing country
micro-enterprise: A Nigerian case study.Information
Technologies and International Development, 4.

Kirill Kireyev, Leysia Palen, and Kenneth M. Ander-
son. 2009. Applications of topics models to analy-
sis of disaster-related Twitter data. InProceedings of
the NIPS Workshop on Applications for Topic Models:
Text and Beyond.

Balachander Krishnamurthy, Phillipa Gill, and Martin
Arlitt. 2008. A few chirps about Twitter. InProceed-
ings of the first workshop on Online social networks,
New York.

Carole Leach-Lemens. 2009. Using mobile phones in
HIV care and prevention.HIV and AIDS Treatment in
Practice, 137.

Will Lewis. 2010. Haitian Creole: How to Build and
Ship an MT Engine from Scratch in 4 days, 17 hours,
& 30 minutes. In14th Annual Conference of the Eu-
ropean Association for Machine Translation.

Luisa Maffi. 2005. Linguistic, cultural, and biological
diversity. Annual Review of Anthropology, 34:599–
617.

Robert Munro and Christopher D. Manning. 2010. Sub-
word variation in text message classification. InPro-
ceedings of the Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL 2010).

Robert Munro. 2010. Crowdsourced translation for
emergency response in Haiti: the global collaboration
of local knowledge. InAMTA Workshop on Collabo-
rative Crowdsourcing for Translation.

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010.

76

From tweets to polls: Linking text sentiment to public
opinion time series. InProceedings of the Fourth
International AAAI Conference on Weblogs and Social
Media.

Gareth Peevers, Gary Douglas, and Mervyn A. Jack.
2008. A usability comparison of three alternative mes-
sage formats for an SMS banking service.Interna-
tional Journal of Human-Computer Studies, 66.

Sasa Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with application
to twitter. In Proceedings of the Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL 2010).

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled LDA: A
supervised topic model for credit attribution in multi-
labeled corpora. InProceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Singapore.

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Fer-
hatosmanoglu, and Murat Demirbas. 2010. Short text
classification in twitter to improve information filter-
ing. In Proceeding of the 33rd international ACM SI-
GIR conference on research and development in infor-
mation retrieval.

Kate Starbird and Jeannie Stamberger. 2010. Tweak the
Tweet: Leveraging Microblogging Proliferation with a
Prescriptive Syntax to Support Citizen Reporting. In
Proceedings of the 7th International ISCRAM Confer-
ence.

Simon Tong and Daphne Koller. 2002. Support vec-
tor machine active learning with applications to text
classification. The Journal of Machine Learning Re-
search, 2:45–66.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan
Schr
”odl. 2001. Constrained k-means clustering with
background knowledge. InProceedings of the Eigh-
teenth International Conference on Machine Learning,
volume 577, page 584. Citeseer.

Xuanhui Wang, Cheng Xiang Zhai, Xiao Hu, and Richard
Sproat. 2007. Mining correlated bursty topic pat-
terns from coordinated text streams. InProceedings
of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Xin Zhang, Nikos Mamoulis, David W. Cheung, and Yu-
tao Shou. 2004. Fast mining of spatial collocations.
In Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 384–393. ACM.

Peng Zhang, Xingquan Zhu, and Yong Shi. 2008. Cate-
gorizing and mining concept drifting data streams. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining.

77

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 78–86,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Gender Attribution: Tracing Stylometric Evidence Beyond Topic and Genre

Ruchita Sarawgi, Kailash Gajulapalli, and Yejin Choi
Department of Computer Science

Stony Brook University
NY 11794, USA

{rsarawgi, kgajulapalli, ychoi}@cs.stonybrook.edu

Abstract

Sociolinguistic theories (e.g., Lakoff (1973))
postulate that women’s language styles differ
from that of men. In this paper, we explore
statistical techniques that can learn to iden-
tify the gender of authors in modern English
text, such as web blogs and scientific papers.
Although recent work has shown the efficacy
of statistical approaches to gender attribution,
we conjecture that the reported performance
might be overly optimistic due to non-stylistic
factors such as topic bias in gender that can
make the gender detection task easier. Our
work is the first that consciously avoids gender
bias in topics, thereby providing stronger evi-
dence to gender-specific styles in language be-
yond topic. In addition, our comparative study
provides new insights into robustness of var-
ious stylometric techniques across topic and
genre.

1 Introduction

Sociolinguistic theories (e.g., Lakoff (1973)) postu-
late that women’s language styles differ from that
of men with respect to various aspects of communi-
cation, such as discourse behavior, body language,
lexical choices, and linguistic cues (e.g., Crosby
and Nyquist (1977), Tannen (1991), Argamon et al.
(2003), Eckert and McConnell-Ginet (2003), Arga-
mon et al. (2007)). In this paper, we explore statis-
tical techniques that can learn to identify the gen-
der of authors in modern English text, such as web
blogs and scientific papers, motivated by sociolin-
guistic theories for gender attribution.

There is a broad range of potential applications
across computational linguistics and social science
where statistical techniques for gender attribution
can be useful: e.g., they can help understanding de-
mographic characteristics of user-created web text
today, which can provide new insight to social sci-
ence as well as intelligent marketing and opinion
mining. Models for gender attribution can also help
tracking changes to gender-specific styles in lan-
guage over different domain and time. Gender de-
tectors can be useful to guide the style of writing as
well, if one needs to assume the style of a specific
gender for imaginative writing.

Although some recent work has shown the effi-
cacy of machine learning techniques to gender at-
tribution (e.g., Koppel et al. (2002), Mukherjee and
Liu (2010)), we conjecture that the reported perfor-
mance might be overly optimistic under scrutiny due
to non-stylistic factors such as topic bias in gender
that can make the gender detection task easier. In-
deed, recent research on web blogs reports that there
is substantial gender bias in topics (e.g., Janssen and
Murachver (2004), Argamon et al. (2007)) as well
as in genre (e.g., Herring and Paolillo (2006)).

In order to address this concern, we perform the
first comparative study of machine learning tech-
niques for gender attribution after deliberately re-
moving gender bias in topics and genre. Further-
more, making the task even more realistic (and chal-
lenging), we experiment with cross-topic and cross-
genre gender attribution, and provide statistical ev-
idence to gender-specific styles in language beyond
topic and genre. Five specific questions we aim to
investigate are:

78

Q1 Are there truly gender-specific characteristics
in language? or are they confused with gender
preferences in topics and genre?

Q2 Are there deep-syntactic patterns in women’s
language beyond words and shallow patterns?

Q3 Which stylometric analysis techniques are ef-
fective in detecting characteristics in women’s
language?

Q4 Which stylometric analysis techniques are ro-
bust against domain change with respect to top-
ics and genre?

Q5 Are there gender-specific language characteris-
tics even in modern scientific text?

From our comparative study of various techniques
for gender attribution, including two publicly avail-
able systems - Gender Genie1 and Gender Guesser2

we find that (1) despite strong evidence for deep
syntactic structure that characterizes gender-specific
language styles, such deep patterns are not as robust
as shallow morphology-level patterns when faced
with topic and genre change, and that (2) there are
indeed gender-specific linguistic signals that go be-
yond topics and genre, even in modern and scientific
literature.

2 Related Work

The work of Lakoff (1973) initiated the research on
women’s language, where ten basic characteristics
of women’s language were listed. Some exemplary
ones are as follows:

1 Hedges: e.g., “kind of”, “it seems to be”

2 Empty adjectives: e.g., “lovely”, “adorable”,
“gorgeous”

3 Hyper-polite: e.g., “would you mind ...”, “I’d
much appreciate if ...”

4 Apologetic: e.g., “I am very sorry, but I think
that ...”

5 Tag questions: e.g., “you don’t mind, do you?”
1http://bookblog.net/gender/genie.php
2Available at http://www.hackerfactor.com/

GenderGuesser.php

Many sociolinguists and psychologists consequently
investigated on the validity of each of the above
assumptions and extended sociolinguistic theo-
ries on women’s language based on various con-
trolled experiments and psychological analysis (e.g.,
Crosby and Nyquist (1977), McHugh and Ham-
baugh (2010)).

While most theories in socioliguistics and psy-
chology focus on a small set of cognitively identi-
fiable patterns in women’s language (e.g., the use of
tag questions), some recent studies in computer sci-
ence focus on investigating the use of machine learn-
ing techniques that can learn to identify women’s
language from a bag of features (e.g., Koppel et al.
(2002), Mukherjee and Liu (2010)).

Our work differs from most previous work in
that we consciously avoid gender bias in topics and
genre in order to provide more accurate analysis
of statistically identifiable patterns in women’s lan-
guage. Furthermore, we compare various techniques
in stylometric analysis within and beyond topics and
genre.

3 Dataset without Unwanted Gender Bias

In this section, we describe how we prepared our
dataset to avoid unwanted gender bias in topics and
genre. Much of previous work has focused on for-
mal writings, such as English literature, newswire
articles and the British Natural Corpus(BNC) (e.g.,
Argamon et al. (2003)), while recent studies ex-
panded toward more informal writing such as web
blogs (e.g., Mukherjee and Liu (2010)). In this
work, we chose two very different and prominent
genre electronically available today: web blogs and
scientific papers.

Blogs: We downloaded blogs from popular blog
sites for 7 distinctive topics:3 education, travel, spir-
ituality, entertainment, book reviews, history and
politics. Within each topic, we find 20 articles writ-
ten by male authors, and additional 20 articles writ-
ten by female authors. We took the effort to match
articles written by different gender even at the sub-
topic level. For example, if we take a blog written
about the TV show “How I met your mother” by a
female author, then we also find a blog written by a

3wordpress.com, blogspot.com & nytimes.
com/interactive/blogs/directory.html

79

male author on the same show. Note that previous
research on web blogs does not purposefully main-
tain balanced topics between gender, thereby bene-
fiting from topic bias inadvertently. From each blog,
we keep the first 450 (+/- 20) words preserving the
sentence boundaries.4 We plan to make this data
publically available.

Scientific Papers: Scientific papers have not been
studied in previous research on gender attribution.
Scientific papers correspond to very formal writ-
ing where gender-specific language styles are not
likely to be conspicuous (e.g., Janssen and Mu-
rachver (2004)).

For this dataset, we collected papers from the re-
searchers in our own Natural Language Processing
community. We randomly selected 5 female and 5
male authors, and collected 20 papers from each au-
thor. We tried to select these authors across a variety
of subtopics within NLP research, so as to reduce
potential topic-bias in gender even in research. It is
also worthwhile to mention that authors in our selec-
tion are highly established ones who have published
over multiple subtopics in NLP.

Similarly as the blog dataset, we keep the first
450 (+/- 20) words preserving the sentence bound-
aries. Some papers are co-authored by researchers
of mixed gender. In those cases, we rely on the gen-
der of the advisory person as she or he is likely to
influence on the abstract and intro the most.

4 Statistical Techniques

In this section, we describe three different types of
statistical language models that learn patterns at dif-
ferent depth. The first kind is based on probabilis-
tic context-free grammars (PCFG) that learn deep
long-distance syntactic patterns (Section 4.1). The
second kind is based on token-level language mod-
els that learn shallow lexico-syntactic patterns (Sec-
tion 4.2). The last kind is based on character-level
language models that learn morphological patterns
on extremely short text spans (Section 4.3). Fi-
nally, we describe the bag-of-word approach using
the maximum entropy classifier (Section 4.4).

4Note that existing gender detection tools require a mini-
mum 300 words for appropriate identification.

4.1 Deep Syntactic Patterns using
Probabilistic Context free Grammar

A probabilistic context-free grammar (PCFG) cap-
tures syntactic regularities beyond shallow ngram-
based lexico-syntactic patterns. Raghavan et al.
(2010) recently introduced the use of PCFG for au-
thorship attribution for the first time, and demon-
strated that it is highly effective for learning stylistic
patterns for authorship attribution. We therefore ex-
plore the use of PCFG for gender attribution. We
give a very concise description here, referring to
Raghavan et al. (2010) for more details.

(1) Train a generic PCFG parser Go on manually
tree-banked corpus such as WSJ or Brown.

(2) Given training corpus D for gender attribution,
tree-bank each training document di ∈ D using
the PCFG parser Go.

(3) For each gender γ, train a new gender-specific
PCFG parser Gγ using only those tree-banked
documents in D that correspond to gender γ.

(4) For each test document, compare the likelihood
of the document determined by each gender-
specific PCFG parser Gγ , and the gender cor-
responding to the higher score.

Note that PCFG models can be considered as a kind
of language models, where probabilistic context-
free grammars are used to find the patterns in lan-
guage, rather than n-grams. We use the implementa-
tion of Klein and Manning (2003) for PCFG models.

4.2 Shallow Lexico-Syntactic Patterns using
Token-level Language Models

Token-based (i.e. word-based) language models
have been employed in a wide variety of NLP ap-
plications, including those that require stylometric
analysis, e.g., authorship attribution (e.g., Uzner and
Katz (2005)), and Wikipedia vandalism detection
(Wang and McKeown, 2010). We expect that token-
based language models will be effective in learning
shallow lexico-syntactic patterns of gender specific
language styles. We therefore experiment with un-
igram, bigram, and trigram token-level models, and
name them as TLM(n=1), TLM(n=2), TLM(n=3),
respectively, where TLM stands for Token-based

80

lexicon based deep syntax morphology b.o.w. shallow lex-syntax
Gender Gender PCFG CLM CLM CLM ME TLM TLM TLM

Data Type Genie Guesser n=1 n=2 n=3 n=1 n=2 n=3

Male Only 72.1 68.6 53.4 65.8 69.0 63.4 57.6 67.1 67.8 66.2
Female Only 27.1 06.4 74.8 57.6 73.6 76.8 73.8 60.1 64.2 64.2

All 50.0 37.5 64.1 61.70 71.3 70.3 65.8 63.7 66.1 65.4

Table 1: Overall Accuracy of Topic-Balanced Gender Attribution on Blog Data (Experiment-I)

Language Models. We use the LingPipe package5

for experiments.

4.3 Shallow Morphological Patterns using
Character-level Language Models

Next we explore the use of character-level lan-
guage models to investigate whether there are mor-
phological patterns that characterize gender-specific
styles in language. Despite its simplicity, previ-
ous research have reported that character-level lan-
guage models are effective for authorship attribu-
tion (e.g., Peng et al. (2003b)) as well as genre
classification (e.g., Peng et al. (2003a), Wu et al.
(2010)). We experiment with unigram, bigram,
and trigram character-level models, and name them
as CLM(n=1), CLM(n=2), CLM(n=3), respectively,
where CLM stands for Character-based Language
Models. We again make use of the LingPipe pack-
age for experiments.

Note that there has been no previous research
that directly compares the performance of character-
level language models to that of PCFG based models
for author attribution, not to mention for gender at-
tribution.

4.4 Bag of Words using
Maximum Entropy (MaxEnt) Classifier

We include Maximum Entropy classifier using sim-
ple unigram features (bag-of-words) for comparison
purposes, and name it as ME. We use the MALLET
package (McCallum, 2002) for experiments.

5 Experimental Results

Note that our two datasets are created to specifically
answer the following question: are there gender-
specific characteristics in language beyond gender

5Available at http://alias-i.com/lingpipe/

preferences in topics and genre? One way to answer
this question is to test whether statistical models can
detect gender attribution on a dataset that is dras-
tically different from the training data in topic and
genre. Of course, it is a known fact that machine
learning techniques do not transfer well across dif-
ferent domains (e.g., Blitzer et al. (2006)). However,
if they can still perform considerably better than ran-
dom prediction, then it would prove that there is in-
deed gender-specific stylometric characteristics be-
yond topic and genre. In what follows, we present
five different experimental settings across two differ-
ent dataset to compare in-domain and cross-domain
performance of various techniques for gender attri-
bution.

5.1 Experiments with Blog Dataset

First we conduct two different experiments using the
blog data in the order of increasing difficulty.

[Experiment-I: Balanced Topic] Using the web
blog dataset introduced in Section 3, we perform
gender attribution (classification) task on balanced
topics. For each topic, 80% of the documents are
used for training and remaining ones are used for
testing, yielding 5-fold cross validation. Both train-
ing and test data have balanced class distributions
so that random guess would yield 50% of accuracy.
The results are given in Table 1. Note that the “over-
all accuracy” corresponds to the average across the
five folds.

The PCFG model achieves prediction accuracy
64.1%, demonstrating statistical evidence to gender-
specific characteristics in syntactic structure. The
PCFG model outperforms two publicly available
systems - Gender Genie and Gender Guesser, which
are based on a fixed list of indicator words. The dif-
ference is statistically significant (p = 0.01 < 0.05)

81

lexicon based deep syntax morphology b.o.w. shallow lex-syntax
Gender Gender PCFG CLM CLM CLM ME TLM TLM TLM

Topic Genie Guesser n=1 n=2 n=3 n=1 n=2 n=3

Per Topic Accuracy (%) for All Authors
Entertain 50.0 42.5 50.0 52.5 67.5 67.5 60.0 57.5 57.5 57.5

Book 50.0 42.5 65.0 57.5 67.5 72.5 55.0 60.0 67.5 67.5
Politics 35.0 30.0 50.0 47.5 52.5 50.0 45.0 52.5 52.5 52.5
History 40.0 35.0 77.5 65.0 80.0 80.0 55.0 65.0 65.0 65.0

Education 62.5 42.5 55.0 63.0 65.0 70.0 63.0 55.0 57.5 52.5
Travel 62.5 37.5 63.0 65.0 63.0 63.0 63.0 62.5 65.0 65.0

Spirituality 50.0 32.5 53.0 78.0 78.0 78.0 50.0 65.0 70.0 72.5
Avg 50.0 37.5 59.0 61.2 68.3 68.3 55.87 60.0 61.3 61.5

Per Topic Accuracy (%) for Female Authors
Entertain 25.0 10.0 85.0 70.0 50.0 85.0 70.0 75.0 75.0 75.0

Book 15.0 15.0 95.0 80.0 95.0 90.0 85.0 75.0 90.0 90.0
Politics 10.0 05.0 65.0 00.0 05.0 00.0 35.0 30.0 30.0 25.0
History 10.0 05.0 90.0 70.0 80.0 75.0 70.0 50.0 50.0 50.0

Education 45.0 10.0 80.0 95.0 85.0 90.0 100.0 50.0 55.0 50.0
Travel 65.0 00.0 85.0 90.0 100.0 100.0 100.0 85.0 95.0 90.0

Spirituality 20.0 00.0 60.0 65.0 65.0 70.0 45.0 50.0 50.0 50.0
Avg 27.1 06.4 80.0 67.1 68.6 72.9 72.1 59.3 63.6 61.4

Per Topic Accuracy (%) for Male Authors
Entertain 75.0 75.0 15.0 35.0 85.0 50.0 50.0 40.0 40.0 40.0

Book 80.0 70.0 35.0 35.0 40.0 55.0 25.0 45.0 45.0 45.0
Politics 60.0 55.0 35.0 95.0 100.0 100.0 55.0 75.0 75.0 80.0
History 70.0 65.0 65.0 60.0 80.0 85.0 40.0 80.0 80.0 80.0

Education 80.0 75.0 30.0 30.0 45.0 50.0 25.0 60.0 60.0 55.0
Travel 60.0 75.0 40.0 40.0 25.0 25.0 25.0 40.0 35.0 40.0

Spirituality 80.0 65.0 45.0 90.0 90.0 85.0 55.0 80.0 90.0 95.0
Avg 72.1 68.6 37.9 55.0 66.4 64.2 39.3 60.0 60.8 62.1

Table 2: Per-Topic & Per-Gender Accuracy of Cross-Topic Gender Attribution on Blog Data (Experiment-II)

using paired student’s t-test.6

Interestingly, the best performing approaches are
character-level language models, performing sub-
stantially better (71.30% for n=2) than both the
token-level language models (66.1% for n=2) and
the PCFG model (64.10%). The difference between
CLM(n=2) and PCFG is statistically significant (p =
0.015 < 0.05) using paired student’s t-test, while the
difference between TLM(n=2) and PCFG is not.

6We also experimented with the interpolated PCFG model
following Raghavan et al. (2010) using various interpolation
dataset, but we were not able to achieve a better result in our
experiments. We omit the results of interpolated PCFG models
for brevity.

As will be seen in the following experiment
(Experiment-II) using the Blog dataset as well, the
performance of PCFG models is very close to that
of unigram language models. As a result, one might
wonder whether PCFG models are learning any use-
ful syntactic pattern beyond terminal productions
that can help discriminating gender-specific styles in
language. This question will be partially answered
in the fourth experiment (Experiment-IV) using
the Scientific Paper dataset, where PCFG models
demonstrate considerably better performance over
the unigram language models.

Following Raghavan et al. (2010), we also exper-

82

lexicon based deep syntax morphology b.o.w. shallow lex-syntax
Gender Gender PCFG CLM CLM CLM ME TLM TLM TLM

Data Type Genie Guesser n=1 n=2 n=3 n=1 n=2 n=3

Male Only 85.0 63.0 59.0 96.0 94.0 99.0 62.0 68.0 68.0 68.0
Female Only 9.0 0.0 36.0 10.0 8.0 18.0 61.0 34.0 32.0 32.0

All 47.0 31.5 47.5 53.0 51.0 58.5 61.5 51.0 50.0 50.0

Table 3: Overall Accuracy of Cross-Topic /Cross-Genre Gender Attribution on Scientific Papers (Experiment-III)

imented with ensemble methods that linearly com-
bine the output of different classifiers, but we omit
the results in Table 1, as we were not able to ob-
tain consistently higher performance than the simple
character-level language models in our dataset.

[Experiment-II: Cross-Topic] Next we perform
cross-topic experiments using the same blog dataset,
in order to quantify the robustness of different tech-
niques against topic change. We train on 6 topics,
and test on the remaining 1 topic, making 7-fold
cross validation. The results are shown in Table 2,
where the top one third shows the performance for
all authors, the next one third shows the performance
with respect to only female authors, the bottom one
third shows the performance with respect to only
male authors.

Again, the best performing approaches are based
on character-level language models, achieving upto
68.3% in accuracy. PCFG models and token-level
language models achieve substantially lower accu-
racy of 59.0% and 61.5% respectively. Per-gender
analysis in Table 1 reveals interesting insights into
different approaches. In particular, we find that
Gender Genie and Gender Guesser are biased to-
ward male authors, attributing the majority authors
as male. PCFG and ME on the other hand are bi-
ased toward female authors. Both character-level
and token-level language models show balanced dis-
tribution between gender. We also experimented
with ensemble methods, but omit the results as we
were not able to obtain higher scores than simple
character-level language models.

From these two experiments so far, we find that
PCFG models and word-level language models are
neither as effective, nor as robust as character-level
language models for gender attribution. Despite
overall low performance of PCFG models, this re-

sult suggests that PCFG models are able to learn
gender-specific syntactic patterns, albeit the signals
from deep syntax seem much weaker than those of
very shallow morphological patterns.

5.2 Experiments with Scientific Papers
Next we present three different experiments using
the scientific data, in the order of decreasing diffi-
culty.

[Experiment-III: Cross-Topic & Cross-Genre]
In this experiment, we challenge statistical tech-
niques for gender attribution by changing both top-
ics and genre across training and testing. To do so,
we train models on the blog dataset and test on the
scientific paper dataset. Notice that this is a dramati-
cally harder task than the previous two experiments.

Note also that previous research thus far has not
reported experiments such as this, or even like the
previous one. It is worthwhile to mention that our
goal in this paper is not domain adaptation for gen-
der attribution, but merely to quantify to what degree
the gender-specific language styles can be traced
across different topics and genre, and which tech-
niques are robust against domain change.

The results are shown in Table 5. Precisely as ex-
pected, the performance of all models drop signif-
icantly in this scenario. The two baseline systems
– Gender Genie and Gender Guesser, which are not
designed for formal scientific writings also perform
worse in this dataset. Table 4 discussed in the next
experiment will provide more insight into this by
providing per-gender accuracy of these baseline sys-
tems.

From this experiment, we find a rather surprising
message: although the performance of most statis-
tical approaches decreases significantly, notice that
most approaches perform still better than random
(50%) prediction, achieving upto 61.5% accuracy.

83

lexicon based deep syntax morphology b.o.w. shallow lex-syntax
Gender Gender PCFG CLM CLM CLM ME TLM TLM TLM

Data Type Genie Guesser n=1 n=2 n=3 n=1 n=2 n=3

Per Author Accuracy (%) for All Authors
All 47.0 31.5 76.0 73.0 72.0 76.0 70.50 63.5 62.5 62.5

Per Author Accuracy (%) for Male Authors
A 80.0 55.0 75.0 100.0 100.0 100.0 45.0 45.0 40.0 40.0
B 90.0 75.0 75.0 80.0 70.0 85.0 55.0 45.0 40.0 40.0
C 95.0 55.0 85.0 85.0 90.0 95.0 90.0 90.0 90.0 90.0
D 85.0 65.0 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0
E 75.0 65.0 90.0 70.0 85.0 80.0 70.0 70.0 70.0 60.0

Avg 85.0 63.0 85.0 86.0 89.0 92.0 72.0 70.0 68.0 66.0

Per Author Accuracy (%) for Female Authors
F 15.0 0.0 95.0 05.0 30.0 75.0 100.0 85.0 85.0 85.0
G 5.0 0.0 25.0 55.0 70.0 85.0 75.0 80.0 85.0 85.0
H 10.0 0.0 65.0 70.0 45.0 35.0 40.0 35.0 30.0 30.0
I 15.0 0.0 80.0 85.0 45.0 50.0 65.0 35.0 35.0 35.0
J 0.0 0.0 70.0 85.0 85.0 85.0 65.0 50.0 50.0 60.0

Avg 9.0 0.0 67.0 60.0 55.0 66.0 69.0 57.0 57.0 59.0

Table 4: Per-Author Accuracy of Cross-Topic Gender Attribution for Scientific Papers (Experiment-IV)

Considering that the models are trained on dras-
tically different topics and genre, this result sug-
gests that there are indeed gender-specific linguis-
tic signals beyond different topics and genre. This
is particularly interesting given that scientific papers
correspond to very formal writing where gender-
specific language styles are not likely to be conspic-
uous (e.g., Janssen and Murachver (2004)).

[Experiment-IV: Cross-Topic] Next we perform
cross-topic experiment, only using the scientific pa-
per dataset. Because the stylistic difference in genre
is significantly more prominent than the stylistic dif-
ference in topics, this should be a substantially eas-
ier task than the previous experiment. Nevertheless,
previous research to date has not attempted to eval-
uate gender attribution techniques across different
topics. Here we train on 4 authors per gender (8 au-
thors in total), and test on the remaining 2 authors,
making 5-fold cross validation. As before, the class
distributions are balanced in both training and test
data.

The experimental results are shown in Table 4,
where we report per-author, per-gender, and overall
average accuracy. As expected, the overall perfor-

mance increase dramatically, as models are trained
on articles in the same genre. It is interesting to
see how Gender Genie and Gender Guesser are ex-
tremely biased toward male authors, achieving al-
most zero accuracy with respect to articles written
by female authors. Here the best performing models
are PCFG and CLM(n=3), both achieving 76.0% in
accuracy. Token-level language models on the other
hand achieve significantly lower performance.

Remind that in the first two experiments based
on the blog data, PCFG models and token-level lan-
guage models performed similarly. Given that, it is
very interesting that PCFG models now perform just
as good as character-level language models, while
outperforming token-level language models signifi-
cantly. We conjecture following two reasons to ex-
plain this:

• First, scientific papers use very formal lan-
guage, thereby suppressing gender-specific lex-
ical cues that are easier to detect (e.g., empty
words such as “lovely”, “gorgeous” (Lakoff,
1973)). In such data, deep syntactic patterns
play a much stronger role in detecting gender
specific language styles. This also indirectly

84

lexicon based deep syntax morphology b.o.w. shallow lex-syntax
Gender Gender PCFG CLM CLM CLM ME TLM TLM TLM

Data Type Genie Guesser n=1 n=2 n=3 n=1 n=2 n=3

Male Only 85.0 63.0 86.0 92.0 92.0 91.0 86.0 86.0 87.0 88.0
Female Only 9.0 0.0 84.0 88.0 87.0 92.0 91.0 83.0 84.0 86.0

All 47.0 31.5 85.0 90.0 88.50 91.50 88.50 85.0 85.5 87.0

Table 5: Overall Accuracy of Topic-Balanced Gender Attribution on Scientific Papers (Experiment-V)

addresses the concern raised in Experiment-I
& II as to whether the PCFG models are learn-
ing any syntactic pattern beyond terminal pro-
ductions that are similar to unigram language
models.

• Second, our dataset is constructed in such a
way that the training and test data do not share
articles written by the same authors. Further-
more, the authors are chosen so that the main
research topics are substantially different from
each other. Therefore, token-based language
models are likely to learn topical words and
phrases, and suffer when the topics change dra-
matically between training and testing.

[Experiment-V: Balanced Topic] Finally, we
present the conventional experimental set up, where
topic distribution is balanced between training and
test dataset. This is not as interesting as the previous
two scenarios, however, we include this experiment
in order to provide a loose upper bound. Because
we choose each different author from each different
sub-topic of research, we need to split articles by the
same author into training and testing to ensure bal-
anced topic distribution. We select 80% of articles
from each author as training data, and use the re-
maining 20% as test data, resulting in 5-fold cross
validation.

This is the easiest task among the three exper-
iments using the scientific paper data, hence the
performance increases substantially. As before,
character-level language models perform the best,
with CLM n=3 reaching extremely high accuracy
of 91.50%. All other statistical approaches perform
very well achieving at least 85% or higher accuracy.

Note that token-level language models perform
very poorly in the previous experimental setting,
while performing close to the top performer in this

experiment. We make the following two conclusions
based on the last two experiments:

• Token-level language models have the ten-
dency of learning topics words, rather than just
stylometric cues.

• When performing cross-topic gender attribu-
tion (as in Experiment-IV), PCFG models are
more robust than token-level language models.

6 Conclusions

We postulate that previous study in gender attribu-
tion might have been overly optimistic due to gen-
der specific preference on topics and genre. We per-
form the first comparative study of machine learn-
ing techniques for gender attribution consciously re-
moving gender bias in topics. Rather unexpect-
edly, we find that the most robust approach is based
on character-level language models that learn mor-
phological patterns, rather than token-level language
models that learn shallow lexico-syntactic patterns,
or PCFG models that learn deep syntactic patterns.
Another surprising finding is that we can trace sta-
tistical evidence of gender-specific language styles
beyond topics and genre, and even in modern scien-
tific papers.

Acknowledgments

We thank reviewers for giving us highly insightful
and valuable comments.

References
Shlomo Argamon, Moshe Koppel, Jonathan Fine, and

Anat Rachel Shimoni. 2003. Gender, genre, and writ-
ing style in formal written texts. Text, 23.

Shlomo Argamon, Moshe Koppel, James W. Pennebaker,
and Jonathan Schler. 2007. Mining the blogosphere:

85

Age, gender and the varieties of selfexpression. In
First Monday, Vol. 12, No. 9.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Conference on Empirical Methods
in Natural Language Processing, Sydney, Australia.

Faye Crosby and Linda Nyquist. 1977. The female reg-
ister: an empirical study of lakoff’s hypotheses. In
Language in Society, 6, pages 313 – 322.

Penelope Eckert and Sally McConnell-Ginet. 2003. Lan-
guage and gender. Cambridge University Press.

Susan C. Herring and John C. Paolillo. 2006. Gender
and genre variations in weblogs. In Journal of Soci-
olinguistics, Vol. 10, No. 4., pages 439 –459.

Anna Janssen and Tamar Murachver. 2004. The relation-
ship between gender and topic in gender-preferential
language use. In Written Communication, 21, pages
344– 367.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of the 41st An-
nual Meeting on Association for Computational Lin-
guistics, pages 423–430. Association for Computa-
tional Linguistics.

Moshe Koppel, Shlomo Argamon, and Anat Shimoni.
2002. Automatically categorizing written texts by
author gender. Literary and Linguistic Computing,
17(4):401–412, June.

Robin T. Lakoff. 1973. Language and woman’s place. In
Language in Society, Vol. 2, No. 1, pages 45 – 80.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet.

Maureen C. McHugh and Jennifer Hambaugh. 2010.
She said, he said: Gender, language, and power. In
Handbook of Gender Research in Psychology. Volume
1: Gender Research in General and Experimental Psy-
chology, pages 379 – 410.

Arjun Mukherjee and Bing Liu. 2010. Improving gen-
der classification of blog authors. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’10, pages 207–217,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Fuchun Peng, Dale Schuurmans, Vlado Keselj, and Shao-
jun Wang. 2003a. Language independent authorship
attribution with character level n-grams. In EACL.

Funchun Peng, Dale Schuurmans, and Shaojun Wang.
2003b. Language and task independent text catego-
rization with simple language models. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics.

Sindhu Raghavan, Adriana Kovashka, and Raymond
Mooney. 2010. Authorship attribution using proba-
bilistic context-free grammars. In Proceedings of the
ACL, pages 38–42, Uppsala, Sweden, July. Associa-
tion for Computational Linguistics.

Deborah Tannen. 1991. You just don’t understand:
Women and men in conversation. Ballantine Books.

Ozlem Uzner and Boris Katz. 2005. A Compara-
tive Study of Language Models for Book And Au-
thor Recognition. In Second International Joint Con-
ference on Natural Language Processing:Full Papers,
pages 1969–980. Association for Computational Lin-
guistics.

William Yang Wang and Kathleen R. McKeown.
2010. “got you!”: Automatic vandalism detec-
tion in wikipedia with web-based shallow syntactic-
semantic modeling. In 23rd International Conference
on Computational Linguistics (Coling 2010), page
1146?1154.

Zhili Wu, Katja Markert, and Serge Sharoff. 2010. Fine-
grained genre classification using structural learning
algorithms. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 749–759, Uppsala, Sweden, July. Association
for Computational Linguistics.

86

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 87–96,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Improving the Impact of Subjectivity Word Sense Disambiguation on
Contextual Opinion Analysis

Cem Akkaya, Janyce Wiebe, Alexander Conrad
University of Pittsburgh

Pittsburgh PA, 15260, USA
{cem,wiebe,conrada}@cs.pitt.edu

Rada Mihalcea
University of North Texas
Denton TX, 76207, USA
rada@cs.unt.edu

Abstract

Subjectivity word sense disambiguation
(SWSD) is automatically determining which
word instances in a corpus are being used with
subjective senses, and which are being used
with objective senses. SWSD has been shown
to improve the performance of contextual
opinion analysis, but only on a small scale and
using manually developed integration rules.
In this paper, we scale up the integration of
SWSD into contextual opinion analysis and
still obtain improvements in performance,
by successfully gathering data annotated by
non-expert annotators. Further, by improving
the method for integrating SWSD into con-
textual opinion analysis, even greater benefits
from SWSD are achieved than in previous
work. We thus more firmly demonstrate the
potential of SWSD to improve contextual
opinion analysis.

1 Introduction

Often, methods for opinion, sentiment, and sub-
jectivity analysis rely on lexicons of subjective
(opinion-carrying) words (e.g., (Turney, 2002;
Whitelaw et al., 2005; Riloff and Wiebe, 2003; Yu
and Hatzivassiloglou, 2003; Kim and Hovy, 2004;
Bloom et al., 2007; Andreevskaia and Bergler, 2008;
Agarwal et al., 2009)). Examples of such words are
the following (in bold):

(1) He is a disease to every team he has gone to.
Converting to SMF is a headache.
The concert left me cold.
That guy is such a pain.

However, even manually developed subjectiv-
ity lexicons have significant degrees of subjectivity
sense ambiguity (Su and Markert, 2008; Gyamfi et
al., 2009). That is, many clues in these lexicons have
both subjective and objective senses. This ambiguity
leads to errors in opinion and sentiment analysis, be-
cause objective instances represent false hits of sub-
jectivity clues. For example, the following sentence
contains the keywords from (1) used with objective
senses:

(2) Early symptoms of the disease include severe
headaches, red eyes, fevers and cold chills, body
pain, and vomiting.

Recently, in (Akkaya et al., 2009), we introduced
the task of subjectivity word sense disambiguation
(SWSD), which is to automatically determine which
word instances in a corpus are being used with sub-
jective senses, and which are being used with objec-
tive senses. We developed a supervised system for
SWSD, and exploited the SWSD output to improve
the performance of multiple contextual opinion anal-
ysis tasks.

Although the reported results are promising, there
are three obvious shortcomings. First, we were able
to apply SWSD to contextual opinion analysis only
on a very small scale, due to a shortage of anno-
tated data. While the experiments show that SWSD
improves contextual opinion analysis, this was only
on the small amount of opinion-annotated data that
was in the coverage of our system. Two questions
arise: is it feasible to obtain greater amounts of
the needed data, and do SWSD performance im-
provements on contextual opinion analysis hold on a

87

larger scale. Second, the annotations in (Akkaya et
al., 2009) are piggy-backed on SENSEVAL sense-
tagged data, which are fine-grained word sense an-
notations created by trained annotators. A concern
is that SWSD performance improvements on con-
textual opinion analysis can only be achieved using
such fine-grained expert annotations, the availability
of which is limited. Third, (Akkaya et al., 2009) uses
manual rules to apply SWSD to contextual opinion
analysis. Although these rules have the advantage
that they transparently show the effects of SWSD,
they are somewhat ad hoc. Likely, they are not opti-
mal and are holding back the potential of SWSD to
improve contextual opinion analysis.

To address these shortcomings, in this paper, we
investigate (1) the feasibility of obtaining a substan-
tial amount of annotated data, (2) whether perfor-
mance improvements on contextual opinion analy-
sis can be realized on a larger scale, and (3) whether
those improvements can be realized with subjectiv-
ity sense tagged data that is not built on expert full-
inventory sense annotations. In addition, we explore
better methods for applying SWSD to contextual
opinion analysis.

2 Subjectivity Word Sense Disambiguation

2.1 Annotation Tasks

We adopt the definitions of subjective (S) and ob-
jective (O) from (Wiebe et al., 2005; Wiebe and Mi-
halcea, 2006; Wilson, 2007). Subjective expressions
are words and phrases being used to express mental
and emotional states, such as speculations, evalua-
tions, sentiments, and beliefs. A general covering
term for such states is private state (Quirk et al.,
1985), an internal state that cannot be directly ob-
served or verified by others. Objective expressions
instead are words and phrases that lack subjectivity.

The contextual opinion analysis experiments de-
scribed in Section 3 include both S/O and polar-
ity (positive,negative, neutral) classifications. The
opinion-annotated data used in those experiments is
from the MPQA Corpus (Wiebe et al., 2005; Wilson,
2007),1 which consists of news articles annotated for
subjective expressions, including polarity.

1Available at http://www.cs.pitt.edu/mpqa

2.1.1 Subjectivity Sense Labeling
For SWSD, we need the notions of subjective

and objective senses of words in a dictionary. We
adopt the definitions from (Wiebe and Mihalcea,
2006), who describe the annotation scheme as fol-
lows. Classifying a sense as S means that, when
the sense is used in a text or conversation, one ex-
pects it to express subjectivity, and also that the
phrase or sentence containing it expresses subjectiv-
ity. As noted in (Wiebe and Mihalcea, 2006), sen-
tences containing objective senses may not be objec-
tive. Thus, objective senses are defined as follows:
Classifying a sense as O means that, when the sense
is used in a text or conversation, one does not expect
it to express subjectivity and, if the phrase or sen-
tence containing it is subjective, the subjectivity is
due to something else.

Both (Wiebe and Mihalcea, 2006) and (Su and
Markert, 2008) performed agreement studies of the
scheme and report that good agreement can be
achieved between human annotators labeling the
subjectivity of senses (κ values of 0.74 and 0.79, re-
spectively).

(Akkaya et al., 2009) followed the same annota-
tion scheme to annotate the senses of the words used
in the experiments. For this paper, we again use
the same scheme and annotate WordNet senses of
90 new words (the process of selecting the words is
described in Section 2.4).

2.1.2 Subjectivity Sense Tagging
The training and test data for SWSD consists of

word instances in a corpus labeled as S or O, in-
dicating whether they are used with a subjective or
objective sense.

Because there was no such tagged data at the time,
(Akkaya et al., 2009) created a data set by com-
bining two types of sense annotations: (1) labels of
senses within a dictionary as S or O (i.e., the subjec-
tivity sense labels of the previous section), and (2)
sense tags of word instances in a corpus (i.e., SEN-
SEVAL sense-tagged data).2 The subjectivity sense
labels were used to collapse the sense labels in the
sense-tagged data into the two new senses, S and O.
The target words (Akkaya et al., 2009) chose are the
words tagged in SENSEVAL that are also members

2Please see the paper for details on the SENSEVAL data
used in the experiments.

88

Sense Set1 (Subjective)
{ attack, round, assail, lash out, snipe, assault } – attack in
speech or writing; ”The editors attacked the House Speaker”
{ assail, assault, set on, attack } – attack someone emotionally;
”Nightmares assailed him regularly”

Sense Set2 (Objective)
{ attack } – begin to injure; ”The cancer cells are attacking his
liver”; ”Rust is attacking the metal”
{ attack, aggress } – take the initiative and go on the offensive;
”The visiting team started to attack”

Figure 1: Sense sets for target word “attack” (abridged).

of the subjectivity lexicon of (Wilson et al., 2005;
Wilson, 2007).3 There are 39 such words. (Akkaya
et al., 2009) chose words from a subjectivity lexicon
because such words are known to have subjective
usages.

For this paper, subjectivity sense-tagged data was
obtained from the MTurk workers using the anno-
tation scheme of (Akkaya et al., 2010). A goal is to
keep the annotation task as simple as possible. Thus,
the workers are not directly asked if the instance of
a target word has a subjective or an objective sense,
because the concept of subjectivity would be diffi-
cult to explain in this setting. Instead the workers
are shown two sets of senses – one subjective set and
one objective set – for a specific target word and a
text passage in which the target word appears. Their
job is to select the set that best reflects the meaning
of the target word in the text passage. The set they
choose gives us the subjectivity label of the instance.

A sample annotation task is shown below. An
MTurk worker has access to two sense sets of the
target word “attack” as seen in Figure 1. The S and
O labels appear here only for the purpose of this pa-
per; the workers do not see them. The worker is pre-
sented with the following text passage holding the
target word “attack”:

Ivkovic had been a target of intra-party
feuding that has shaken the party. He was
attacked by Milosevic for attempting to
carve out a new party from the Socialists.

In this passage, the use of “attack” is most similar
to the first entry in sense set one; thus, the correct
answer for this problem is Sense Set-1.

3Available at http://www.cs.pitt.edu/mpqa

(Akkaya et al., 2010) carried out a pilot study
where a subjectivity sense-tagged dataset was cre-
ated for eight SENSEVAL words through MTurk.
(Akkaya et al., 2010) evaluated the non-expert la-
bel quality against gold-standard expert labels which
were obtained from (Akkaya et al., 2009) relying
on SENSEVAL. The non-expert annotations are reli-
able, achieving κ scores around 0.74 with the expert
annotations.

For some words, there may not be a clean split be-
tween the subjective and objective senses. For these,
we opted for another strategy for obtaining MTurk
annotations. Rather than presenting the workers
with WordNet senses, we show them a set of objec-
tive usages, a set of subjective usages, and a text pas-
sage in which the target word appears. The workers’
job is to judge which set of usages the target instance
is most similar to.

2.2 SWSD System

We follow the same approach as in (Akkaya et al.,
2009) to build our SWSD system. We train a differ-
ent supervised SWSD classifier for each target word
separately. This means the overall SWSD system
consists of as many SWSD classifiers as there are
target words. We utilize the same machine learning
features as in (Akkaya et al., 2009), which are com-
monly used in Word Sense Disambiguation (WSD).

2.3 Expert SWSD vs. Non-expert SWSD

Before creating a large subjectivity sense-tagged
corpus via MTurk, we want to make sure that non-
expert annotations are good enough to train reliable
SWSD classifiers. Thus, we decided to compare
the performance of a SWSD system trained on non-
expert annotations and on expert annotations. For
this purpose, we need a subjectivity sense-tagged
corpus where word instances are tagged both by ex-
pert and non-expert annotations. Fortunately, we
have such a corpus. As discussed in Section 3,
(Akkaya et al., 2009) created a subjecvitivity sense-
tagged corpus piggybacked on SENSEVAL. This
gives us a gold-standard corpus tagged by experts.
There is also a small subjectivity sense-tagged cor-
pus consisting of eight target words obtained from
non-expert annotators in (Akkaya et al., 2010). This
corpus is a subset of the gold-standard corpus from
(Akkaya et al., 2009) and it consists of 60 tagged

89

Acc p-value
SWSDGOLD 79.2 -
SWSDMJL 78.4 0.542
SWSDMJC 78.8 0.754

Table 1: Comparison of SWSD systems

instances for each target word.
Actually, (Akkaya et al., 2010) gathered three la-

bels for each instance. This gives us two options
to train the non-expert SWSD system: (1) training
the system on the majority vote labels (SWSDMJL)
(2) training three systems on the three separate la-
bel sets and taking the majority vote prediction
(SWSDMJC). Additionally, we train an expert SWSD
system (SWSDGOLD) – a system trained on gold
standard expert annotations. All these systems are
trained on 60 instances of the eight target words for
which we have both non-expert and expert annota-
tions and are evaluated on the remaining instances
of the gold-standard corpus. This makes a total of
923 test instances for the eight target words with a
majority class baseline of 61.8.

Table 1 reports micro-average accuracy of each
system and the two-tailed p-value between the ex-
pert SWSD system and the two non-expert SWSD
systems. The p-value is calculated with McNemar’s
test. It shows that there is no statistically signif-
icant difference between classifiers trained on ex-
pert gold-standard annotations and non-expert anno-
tations. We adopt SWSDMJL in all our following ex-
periments, because it is more efficient.

2.4 Corpus Creation

For our experiments, we have multiple goals, which
effect our decisions on how to create the subjectiv-
ity sense-tagged corpus via MTurk. First, we want
to be able to disambiguate more target words than
(Akkaya et al., 2009). This way, SWSD will be able
to disambiguate a larger portion of the MPQA Cor-
pus allowing us to evaluate the effect of SWSD on
contextual opinion analysis on a larger scale. This
will also allow us to investigate additional integra-
tion methods of SWSD into contextual opinion anal-
ysis rather than simple ad hoc manual rules utilized
in (Akkaya et al., 2009). Second, we want to show
that we can rely on non-expert annotations instead of
expert annotations, which will make an annotation

effort on a larger-scale both practical and feasible,
timewise and costwise. Optimally, we could have
annotated via MTurk the same subjectivity sense-
tagged corpus from (Akkaya et al., 2009) in order to
compare the effect of a non-expert SWSD system on
contextual opinion analysis directly with the results
reported for an expert SWSD system in (Akkaya et
al., 2009). But, this would have diverted our re-
sources to reproduce the same corpus and contradict
our goal to extend the subjectivity sense-tagged cor-
pus to new target words. Moreover, we have already
shown in Section 2.3 that non-expert annotations can
be utilized to train reliable SWSD classifiers. It is
reasonable to believe that similar performance on
the SWSD task will reflect to similar improvements
on contextual opinion analysis. Thus, we decided
to prioritize creating a subjectivity sense-tagged cor-
pus for a totally new set of words. We aim to show
that the favourable results reported in (Akkaya et al.,
2009) will still hold on new target words relying on
non-expert annotations.

We chose our target words from the subjectivity
lexicon of (Wilson et al., 2005), because we know
they have subjective usages. The contextual opin-
ion systems we want to improve rely on this lexicon.
We call the words in the lexicon subjectivity clues.
At this stage, we want to concentrate on the fre-
quent and ambiguous subjectivity clues. We chose
frequent ones, because they will have larger cov-
erage in the MPQA Corpus. We chose ambiguous
ones, because these clues are the ones that are most
important for SWSD. Choosing most frequent and
ambiguous subjectivity clues guarantees that we uti-
lize our limited resources in the most efficient way.
We judge a clue to be ambiguous if it appears more
than 25% and less than 75% of the times in a sub-
jective expression. We get these statistics by simply
counting occurrences in the MPQA Corpus inside
and outside of subjective expressions.

There are 680 subjectivity clues that appear in the
MPQA Corpus and are ambiguous. Out of those, we
selected the 90 most frequent that have to some ex-
tent distinct objective and subjective senses in Word-
Net, as judged by the co-authors. The co-authors an-
notated the WordNet senses of those 90 target words.
For each target word, we selected approximately 120
instances randomly from the GIGAWORD Corpus.
In a first phase, we collected three sets of MTurk an-

90

notations for the selected instances. In this phase,
MTurk workers base their judgements on two sense
sets they observe. This way, we get training data to
build SWSD classifiers for these 90 target words.

The quality of these classifiers is important, be-
cause we will exploit them for contextual opinion
analysis. Thus, we evaluate them by 10-fold cross-
validation. We split the target words into three
groups. If the majority class baseline of a word is
higher than 90%, it is considered as skewed (skewed
words have a performance at least as good as the ma-
jority class baseline). If a target word improves over
its majority class baseline by 25% in accuracy, it is
considered as good. Otherwise, it is considered as
mediocre. This way, we end up with 24 skewed, 35
good, and 31 mediocre words. There are many pos-
sible reasons for the less reliable performance for
the mediocre group. We hypothesize that a major
problem is the similarity between the objective and
subjective sense sets of a word, thus leading to poor
annotation quality. To check this, we calculate the
agreement between three annotation sets and report
averages. The agreement in the mediocre group is
78.68%, with a κ value of 0.57, whereas the aver-
age agreement in the good group is 87.51%, with
a κ value of 0.75. These findings support our hy-
pothesis. Thus, the co-authors created usage inven-
tories for the words in the mediocre group as de-
scribed in Section 2.1.1. We initiated a second phase
of MTurk annotations. We collect for the mediocre
group another three sets of MTurk annotations for
120 instances, this time utilizing usage inventories.
The 10-fold cross-validation experiments show that
nine of the 31 words in the mediocre group shift to
the good group. Only for these nine words, we ac-
cept the annotations collected via usage inventories.
For all other words, we use the annotations collected
via sense inventories. From now on, we will refer
to this non-expert subjectivity sense-tagged corpus
consisting of the tagged data for all 90 target words
as the MTurkSWSD Corpus (agreement on the entire
MTurkSWSD corpus is 85.54%, κ:0.71).

3 SWSD Integration

Now that we have the MTurkSWSD Corpus, we
are ready to evaluate the effect of SWSD on con-
textual opinion analysis. In this section, we ap-
ply our SWSD system trained on MTurkSWSD to

both expression-level classifiers from (Akkaya et al.,
2009): (1) the subjective/objective (S/O) classifier
and (2) the contextual polarity classifier. Both clas-
sifiers are introduced in Section 3.1

Our SWSD system can disambiguate 90 target
words, which have 3737 instances in the MPQA
Corpus. We refer to this subset of the MPQA Corpus
as MTurkMPQA. This subset makes up the cover-
age of our SWSD system. Note that MTurkMPQA
is 5.2 times larger than the covered MPQA subset
in (Akkaya et al., 2009) referred as senMPQA. We
try different strategies to integrate SWSD into the
contextual classifiers. In Section 3.2, we follow the
same rule-based strategy as in (Akkaya et al., 2009)
for completeness. In Section 3.3, we introduce two
new learning strategies for SWSD integration out-
performing existing rule-based strategy. We evalu-
ate the improvement gained by SWSD on MTurkM-
PQA.

3.1 Contextual Classifiers

The original contextual polarity classifier is intro-
duced in (Wilson et al., 2005). We use the same im-
plementation as in (Akkaya et al., 2009). This classi-
fier labels clue instances in text as contextually neg-
ative/positive/neutral. The gold standard is defined
on the MPQA Corpus as follows. If a clue instance
appears in a positive expression, it is contextually
positive (Ps). If it appears in a negative expression,
it is contextually negative (Ng). If it is in an objec-
tive expression or in a neutral subjective expression,
it is contextually neutral (N). The contextual polar-
ity classifier consists of two separate steps. The first
step is an expression-level neutral/polar (N/P) clas-
sifier. The second step classifies only polar instances
further into positive and negative classes. This way,
the overall system performs a three-way classifica-
tion (Ng/Ps/N).

The subjective/objective classifier is introduced in
(Akkaya et al., 2009). It relies on the same machine
learning features as the N/P classifier (i.e. the first
step of the contextual polarity classifier). The only
difference is that the classes are S/O instead of N/P.
The gold standard is defined on the MPQA Corpus
in the following way. If a clue instance appears in
a subjective expression, it is contextually S. If it ap-
pears in an objective expression, it is contextually O.
Both contextual classifiers are supervised.

91

Baseline Acc OF SF

MTurkMPQA 52.4% (O)
OS/O 67.1 68.9 65.0
R1R2 71.1 72.7 69.2

senMPQA 63.1% (O)
OS/O 75.4 65.4 80.9
R1R2 81.3 75.9 84.8

Table 2: S/O classifier with and without SWSD.

3.2 Rule-Based SWSD Integration

(Akkaya et al., 2009) integrates SWSD into a con-
textual classifier by simple rules. The rules flip the
output of the contextual classifier if some conditions
hold. They make use of following information: (1)
SWSD output, (2) the contextual classifier’s confi-
dence and (3) the presence of another subjectivity
clue – any clue from the subjectivity lexicon – in the
same expression.

For the contextual S/O classifier, (Akkaya et al.,
2009) defines two rules: one flipping the S/O classi-
fier’s output from O to S (R1) and one flipping from
S to O (R2). R1 is defined as follows : if the contex-
tual classifier decides a target word instance is con-
textually O and SWSD decides that it is used in a S
sense, then SWSD overrules the contextual S/O clas-
sifier’s output and flips it from O to S, because an
instance in a S sense will make the surrounding ex-
pression subjective. R2 is a little bit more complex.
It is defined as follows: If the contextual classifier la-
bels a clue instance as S but (1) SWSD decides that
it is used in an O sense, (2) the contextual classifier’s
confidence is low, and (3) there is no other subjec-
tivity clue in the same expression, then R2 flips the
contextual classifier’s output from S to O. The ra-
tionale behind R2 is that even if the target word in-
stance has an O sense, there might be another reason
(e.g. the presence of another subjectivity clue in the
same expression) for the expression enclosing it to
be subjective.

We use the exact same rules and adopt the same
confidence threshold. Table 2 holds the comparison
of the original contextual classifier and the classi-
fier with SWSD support on senMPQA as reported in
(Akkaya et al., 2009) and on MTurkMPQA. OS/O is
the original S/O classifier; R1R2 is the system with
SWSD support utilizing both rules. We report only
R1R2, since (Akkaya et al., 2009) gets highest im-
provement utilizing both rules.

Baseline Acc NF PF

MTurkMPQA 70.6% (P)
ON/P 72.3 82.0 39.8
R4 74.5 84.0 37.8

senMPQA 73.9% (P)
ON/P 79.0 86.7 50.3
R4 81.6 88.6 52.3

Table 3: N/P classifier with and without SWSD

In Table 2 we see that R1R2 achieves 4% percent-
age points improvement in accuracy over OS/O on
MTurkMPQA. The improvement is statistically sig-
nificant at the p < .01 level with McNemar’s test. It
is accompanied with improvements both in subjec-
tive F-measure (SF) and objective F-measure (OF).
It is not possible to directly compare improvements
on senMPQA and MTurkMPQA since they are dif-
ferent subsets of the MPQA Corpus. SWSD support
brings 24% error reduction on senMPQA over the
original S/O classifier. In comparison, on MTurkM-
PQA, the error reduction is 12%. We see that the im-
provements on the large MTurkMPQA set still hold,
but not as strong as in (Akkaya et al., 2009).

(Akkaya et al., 2009) uses a similar rule to
make the contextual polarity classifier sense-aware.
Specifically, the rule is applied to the output of the
first step (N/P classifier). The rule, R4, flips P to N
and is analogous to R2. If the contextual classifier
labels a clue instance as P but (1) SWSD decides
that it is used in an O sense, (2) the contextual clas-
sifier’s confidence is low, and (3) there is no other
clue instance in the same expression, then R4 flips
the contextual classifier’s output from P to N.

Table 3 holds the comparison of the original N/P
classifier with and without SWSD support on sen-
MPQA as reported in (Akkaya et al., 2009) and on
MTurkMPQA. ON/P is the original N/P classifier; R4
is the system with SWSD support utilizing rule R4.
Since our main focus is not rule-based integration,
we did not run the second step of the polarity classi-
fier. We report the second step result below for the
learning-based SWSD integration in section 3.4.

In Table 3, we see that R4 achieves 2.2 percent-
age points improvement in accuracy over ON/P on
MTurkMPQA. The improvement is statistically sig-
nificant at the p < .01 level with McNemar’s test.
It is accompanied with improvement only in objec-
tive F-measure (OF). SWSD support brings 12.4%
error reduction on senMPQA (Akkaya et al., 2009).

92

On MTurkMPQA, the error reduction is 8%. We see
that the rule-based SWSD integration still improves
both contextual classifiers on MTurkMPQA, but the
gain is not as large as on senMPQA. This might be
due to the brittleness of the rule-based integration.

3.3 Learning SWSD Integration
Now that we can disambiguate a larger portion of
the MPQA Corpus than in (Akkaya et al., 2009),
we can investigate machine learning methods for
SWSD integration to deal with the brittleness of the
rule-based integration. In this section, we introduce
two learning methods to apply SWSD to the contex-
tual classifiers. For the learning methods, we rely on
exactly the same information as the rule-based inte-
gration: (1) SWSD output, (2) the contextual clas-
sifier’s output, (3) the contextual classifier’s confi-
dence, and (4) the presence of another clue instance
in the same expression. The rationale is the same as
for the rule-based integration, namely to relate sense
subjectivity and contextual subjectivity.

3.3.1 Method1
In the first method, we extend the machine learn-

ing features of the underlying contextual classifiers
by adding (1) and (4) from above. We evaluate the
extended contextual classifiers on MTurkMPQA via
10-fold cross-validation. Tables 4 and 5 hold the
comparison of Method1 (EXTS/O, EXTN/P) to the
original contextual classifiers (OS/O, ON/P) and to the
rule-based SWSD integration (R1R2, R4). We see
substantial improvement for Method1. It achieves
39% error reduction over OS/O and 25% error reduc-
tion over ON/P. For both classifiers, the improvement
in accuracy over the rule-based integration is statisti-
cally significant at the p< .01 level with McNemar’s
test.

3.3.2 Method2
This method defines a third classifier that accepts

as input the contextual classifier’s output and the
SWSD output and predicts what the contextual clas-
sifier’s output should have been. We can think of
this third classifier as the learning counterpart of
the manual rules from Section 3.2, since it actu-
ally learns when to flip the contextual classifier’s
output considering SWSD evidence. Specifically,
this merger classifier relies on four machine learn-
ing features (1), (2), (3), (4) from above (the ex-

Acc OF SF
OS/O 67.1 68.9 65.0
R1R2 71.1 72.7 69.2
EXTS/O 80.0 81.4 78.3
MERGERS/O 78.2 80.3 75.5

Table 4: S/O classifier with learned SWSD integration

Acc NF PF
ON/P 72.3 82.0 39.8
R4 74.5 84.0 37.8
EXTN/P 79.1 85.7 61.1
MERGERN/P 80.4 86.7 62.8

Table 5: N/P classifier with learned SWSD integration

act same information used in rule-based integration).
Because it is a supervised classifier, we need train-
ing data where we have clue instances with cor-
responding contextual classifier and SWSD predic-
tions. Fortunately, we can use senMPQA for this
purpose. We train our merger classifier on senM-
PQA (we get contextual classifier predictions via 10-
fold cross-validation on the MPQA Corpus) and ap-
ply it to MTurkMPQA. We use SVM classifier from
the Weka package (Witten and Frank., 2005) with
its default settings. Tables 4 and 5 hold the com-
parison of Method2 (MERGERS/O, MERGERN/P) to
the original contextual classifiers (Oo/s, ON/P) and
the rule-based SWSD integration (R1R2, R4). It
achieves 29% error reduction over OS/O and 29% er-
ror reduction over ON/P. The improvement on the
rule-based integration is statistically significant at
the p < .01 level with McNemar’s test. Method2
performs better (statistically significant at the p <
.05 level) than Method1 for the N/P classifier but
worse (statistically significant at the p < .01 level)
for the S/O classifier.

3.4 Improving Contextual Polarity
Classification

We have seen that Method2 is the best method to
improve the N/P classifier, which is the first step
of the contextual polarity classifier. To assess the
overall improvement in polarity classification, we
run the second step of the contextual polarity clas-
sifier after correcting the first step with Method2.
Table 6 summarizes the improvement propagated to

93

Acc NF NgF PsF

MTurkMPQA
OPs/Ng/N 72.1 83.0 34.2 15.0
MERGERN/P 77.8 87.4 53.0 27.7

senMPQA
OPs/Ng/N 77.6 87.2 39.5 40.0
R4 80.6 89.1 43.2 44.0

Table 6: Polarity classifier with and without SWSD.

Ps/Ng/N classification. For comparison, we also
include results from (Akkaya et al., 2009) on sen-
MPQA. Method2 results in 20% error reduction in
accuracy over OPs/Ng/N (R4 achieves 13.4% error
reduction on senMPQA). The improvement on the
rule-based integration is statistically significant at
the p < .01 level with McNemar’s test. More im-
portantly, the F-measure for all the labels improves.
This indicates that non-expert MTurk annotations
can replace expert annotations for our end-goal – im-
proving contextual opinion analysis – while reduc-
ing time and cost requirements by a large margin.
Moreover, we see that the improvements in (Akkaya
et al., 2009) scale up to new subjectivity clues.

4 Related Work

One related line of research is to automatically
assign subjectivity and/or polarity labels to word
senses in a dictionary (Valitutti et al., 2004; An-
dreevskaia and Bergler, 2006; Wiebe and Mihalcea,
2006; Esuli and Sebastiani, 2007; Su and Markert,
2009). In contrast, the task in our paper is to auto-
matically assign labels to word instances in a corpus.

Recently, some researchers have exploited full
word sense disambiguation in methods for opinion-
related tasks. For example, (Martı́n-Wanton et al.,
2010) exploit WSD for recognizing quotation polar-
ities, and (Rentoumi et al., 2009; Martı́n-Wanton et
al., 2010) exploit WSD for recognizing headline po-
larities. None of this previous work investigates per-
forming a coarse-grained variation of WSD such as
SWSD to improve their application results, as we do
in this work.

A notable exception is (Su and Markert, 2010),
who exploit SWSD to improve the performance on
a contextual NLP task, as we do. While the task
in our paper is subjectivity and sentiment analy-
sis, their task is English-Chinese lexical substitu-
tion. As (Akkaya et al., 2009) did, they anno-

tated word senses, and exploited SENSEVAL data
as training data for SWSD. They did not directly an-
notate words in context with S/O labels, as we do in
our work. Further, they did not separately evaluate a
SWSD system component.

Many researchers work on reducing the granular-
ity of sense inventories for WSD (e.g., (Palmer et al.,
2004; Navigli, 2006; Snow et al., 2007; Hovy et al.,
2006)). Their criteria for grouping senses are syn-
tactic and semantic similarities, while the groupings
in work on SWSD are driven by the goals to improve
contextual subjectivity and sentiment analysis.

5 Conclusions and Future Work

In this paper, we utilized a large pool of non-expert
annotators (MTurk) to collect subjectivity sense-
tagged data for SWSD. We showed that non-expert
annotations are as good as expert annotations for
training SWSD classifiers. Moreover, we demon-
strated that SWSD classifiers trained on non-expert
annotations can be exploited to improve contextual
opinion analysis.

The additional subjectivity sense-tagged data en-
abled us to evaluate the benefits of SWSD on con-
textual opinion analysis on a corpus of opinion-
annotated data that is five times larger. Using the
same rule-based integration strategies as in (Akkaya
et al., 2009), we found that contextual opinion anal-
ysis is improved by SWSD on the larger datasets.
We also experimented with new learning strategies
for integrating SWSD into contextual opinion analy-
sis. With the learning strategies, we achieved greater
benefits from SWSD than the rule-based integration
strategies on all of the contextual opinion analysis
tasks.

Overall, we more firmly demonstrated the poten-
tial of SWSD to improve contextual opinion analy-
sis. We will continue to gather subjectivity sense-
tagged data, using sense inventories for words that
are well represented in WordNet for our purposes,
and with usage inventories for those that are not.

6 Acknowledgments

This material is based in part upon work supported
by National Science Foundation awards #0917170
and #0916046.

94

References
Apoorv Agarwal, Fadi Biadsy, and Kathleen Mckeown.

2009. Contextual phrase-level polarity analysis us-
ing lexical affect scoring and syntactic N-grams. In
Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009), pages 24–32. Asso-
ciation for Computational Linguistics.

Cem Akkaya, Janyce Wiebe, and Rada Mihalcea. 2009.
Subjectivity word sense disambiguation. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing, pages 190–199, Singa-
pore, August. Association for Computational Linguis-
tics.

Cem Akkaya, Alexander Conrad, Janyce Wiebe, and
Rada Mihalcea. 2010. Amazon mechanical turk for
subjectivity word sense disambiguation. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechani-
cal Turk, pages 195–203, Los Angeles, June. Associa-
tion for Computational Linguistics.

Alina Andreevskaia and Sabine Bergler. 2006. Mining
wordnet for a fuzzy sentiment: Sentiment tag extrac-
tion from wordnet glosses. In Proceedings of the 11rd
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL-2006).

Alina Andreevskaia and Sabine Bergler. 2008. When
specialists and generalists work together: Overcom-
ing domain dependence in sentiment tagging. In Pro-
ceedings of ACL-08: HLT, pages 290–298, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Kenneth Bloom, Navendu Garg, and Shlomo Argamon.
2007. Extracting appraisal expressions. In HLT-
NAACL 2007, pages 308–315, Rochester, NY.

Andrea Esuli and Fabrizio Sebastiani. 2007. Pagerank-
ing wordnet synsets: An application to opinion min-
ing. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
424–431, Prague, Czech Republic, June. Association
for Computational Linguistics.

Yaw Gyamfi, Janyce Wiebe, Rada Mihalcea, and Cem
Akkaya. 2009. Integrating knowledge for subjectiv-
ity sense labeling. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT 2009), pages
10–18, Boulder, Colorado, June. Association for Com-
putational Linguistics.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. 2006. Ontonotes: The 90% solution.
In Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short
Papers, New York City.

Soo-Min Kim and Eduard Hovy. 2004. Determining the
sentiment of opinions. In Proceedings of the Twen-
tieth International Conference on Computational Lin-
guistics (COLING 2004), pages 1267–1373, Geneva,
Switzerland.

Tamara Martı́n-Wanton, Aurora Pons-Porrata, Andrés
Montoyo-Guijarro, and Alexandra Balahur. 2010.
Opinion polarity detection - using word sense disam-
biguation to determine the polarity of opinions. In
ICAART 2010 - Proceedings of the International Con-
ference on Agents and Artificial Intelligence, Volume
1, pages 483–486.

R. Navigli. 2006. Meaningful clustering of senses helps
boost word sense disambiguation performance. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, Sydney, Australia.

M. Palmer, O. Babko-Malaya, and H. T. Dang. 2004.
Different sense granularities for different applications.
In HLT-NAACL 2004 Workshop: 2nd Workshop on
Scalable Natural Language Understanding, Boston,
Massachusetts.

Randolph Quirk, Sidney Greenbaum, Geoffry Leech, and
Jan Svartvik. 1985. A Comprehensive Grammar of the
English Language. Longman, New York.

Vassiliki Rentoumi, George Giannakopoulos, Vangelis
Karkaletsis, and George A. Vouros. 2009. Sentiment
analysis of figurative language using a word sense
disambiguation approach. In Proceedings of the In-
ternational Conference RANLP-2009, pages 370–375,
Borovets, Bulgaria, September. Association for Com-
putational Linguistics.

Ellen Riloff and Janyce Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP-2003), pages 105–
112, Sapporo, Japan.

R. Snow, S. Prakash, D. Jurafsky, and A. Ng. 2007.
Learning to merge word senses. In Proceedings of
the Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), Prague, Czech
Republic.

Fangzhong Su and Katja Markert. 2008. From word
to sense: a case study of subjectivity recognition. In
Proceedings of the 22nd International Conference on
Computational Linguistics (COLING-2008), Manch-
ester.

Fangzhong Su and Katja Markert. 2009. Subjectivity
recognition on word senses via semi-supervised min-
cuts. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 1–9, Boulder, Colorado, June. Associ-
ation for Computational Linguistics.

95

Fangzhong Su and Katja Markert. 2010. Word sense
subjectivity for cross-lingual lexical substitution. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 357–
360, Los Angeles, California, June. Association for
Computational Linguistics.

Peter Turney. 2002. Thumbs up or thumbs down? Se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics (ACL-02), pages 417–424, Philadelphia, Pennsyl-
vania.

Alessandro Valitutti, Carlo Strapparava, and Oliviero
Stock. 2004. Developing affective lexical resources.
PsychNology, 2(1):61–83.

Casey Whitelaw, Navendu Garg, and Shlomo Argamon.
2005. Using appraisal taxonomies for sentiment anal-
ysis. In Proceedings of CIKM-05, the ACM SIGIR
Conference on Information and Knowledge Manage-
ment, Bremen, DE.

Janyce Wiebe and Rada Mihalcea. 2006. Word sense
and subjectivity. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1065–1072, Sydney, Aus-
tralia, July. Association for Computational Linguistics.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation,
39(2/3):164–210.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the Hu-
man Language Technologies Conference/Conference
on Empirical Methods in Natural Language Process-
ing (HLT/EMNLP-2005), pages 347–354, Vancouver,
Canada.

Theresa Wilson. 2007. Fine-grained Subjectivity and
Sentiment Analysis: Recognizing the Intensity, Polar-
ity, and Attitudes of private states. Ph.D. thesis, Intel-
ligent Systems Program, University of Pittsburgh.

I. Witten and E. Frank. 2005. Data Mining: Practical
Machine Learning Tools and Techniques, Second Edi-
tion. Morgan Kaufmann, June.

Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards
answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sen-
tences. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP-
2003), pages 129–136, Sapporo, Japan.

96

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 97–105,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Effects of Meaning-Preserving Corrections on Language Learning

Dana Angluin ∗

Department of Computer Science
Yale University, USA

dana.angluin@yale.edu

Leonor Becerra-Bonache
Laboratoire Hubert Curien

Université de Saint-Etienne, France
leonor.becerra@univ-st-etienne.fr

Abstract

We present a computational model of lan-
guage learning via a sequence of interactions
between a teacher and a learner. Experiments
learning limited sublanguages of 10 natural
languages show that the learner achieves a
high level of performance after a reasonable
number of interactions, the teacher can pro-
duce meaning-preserving corrections of the
learner’s utterances, and the learner can de-
tect them. The learner does not treat correc-
tions specially; nonetheless in several cases,
significantly fewer interactions are needed by
a learner interacting with a correcting teacher
than with a non-correcting teacher.

1 Introduction

A child learning his or her native language typically
does so while interacting with other people who are
using the language to communicate in shared situ-
ations. The correspondence between situations and
utterances seems likely to be a very important source
of information for the language learner. Once a
child begins to produce his or her own utterances,
other people’s responses to them (or lack thereof)
are another source of information about the lan-
guage. When the child’s utterances fall short of
adult-level competence, sometimes the other person
in the conversation will repeat the child’s utterance
in a more correct form. A number of studies have
focused on the phenomenon of such corrections and
questions of their frequency in child-directed speech

∗Research supported by the National Science Foundation,
Grant CCF-0916389.

and whether children can and do make use of them;
some of these studies are discussed in the next sec-
tion.

In this paper we construct a computational model
with a learner and a teacher who interact in a se-
quence of shared situations. In each situation the
teacher and learner interact as follows. First the
learner uses what it has learned about the language
to (attempt to) generate an utterance appropriate to
the situation. The teacher then analyzes the correct-
ness of the learner’s utterance and either generates
an utterance intended as a correction of the learner’s
utterance, or generates another utterance of its own
appropriate to the situation. Finally, the learner uses
information given by its own utterance, the teacher’s
utterance and the situation to update its knowledge
of the language. At the conclusion of this interac-
tion, a new interaction is begun with the next situa-
tion in the sequence.

Both the learner and the teacher engage in com-
prehension and production of utterances which are
intended to be appropriate to their shared situation.
This setting allows us to study several questions:
whether the teacher can offer meaningful correc-
tions to the learner, whether the learner can detect
intended corrections by the teacher, and whether the
presence of corrections by the teacher has an ef-
fect on language acquisition by the learner. For our
model, the answer to each of these questions is yes,
and while the model is in many respects artificial and
simplified, we believe it sheds new light on these is-
sues. Additional details are available (Angluin and
Becerra-Bonache, 2010).

97

2 Meaning-preserving corrections

Formal models of language acquisition have mainly
focused on learning from positive data, that is, utter-
ances that are grammatically correct. But a question
that remains open is: Do children receive negative
data and can they make use of it?

Chomsky’s poverty of stimulus argument has
been used to support the idea of human innate lin-
guistic capacity. It is claimed that there are princi-
ples of grammar that cannot be learned from positive
data only, and negative evidence is not available to
children. Hence, since children do not have enough
evidence to induce the grammar of their native lan-
guage, the additional knowledge language learners
need is provided by some form of innate linguistic
capacity.

E. M. Gold’s negative results in the framework
of formal language learning have also been used to
support the innateness of language. Gold proved
that superfinite classes of languages are not learn-
able from positive data only, which implies than
none of the language classes defined by Chomsky
to model natural language is learnable from positive
data only (Gold, 1967).

Brown and Hanlon (Brown and Hanlon, 1970)
studied negative evidence understood as explicit
approvals or disapprovals of a child’s utterance
(e.g.,“That’s right” or “That’s wrong.”) They
showed that there is no dependence between these
kinds of answers and the grammaticality of chil-
dren’s utterances. These results were taken as show-
ing that children do not receive negative data. But
do these results really show this? It seems evident
that parents rarely address their children in that way.
During the first stages of language acquisition chil-
dren make a lot of errors, and parents are not con-
stantly telling them that their sentences are wrong;
rather the important thing is that they can communi-
cate with each other. However, it is worth studying
whether other sources of negative evidence are pro-
vided to children. Is this the only form of negative
data? Do adults correct children in a different way?

Some researchers have studied other kinds of
negative data based on reply-types (e.g., Hirsh-
Pasek et al. (Hirsh-Pasek et al., 1984), Demetras
et al. (Demetras et al., 1986) and Morgan and
Travis (Morgan and Travis, 1989).) These studies

argue that parents provide negative evidence to their
children by using different types of reply to gram-
matical versus ungrammatical sentences. Marcus
analyzed such studies and concluded that there is
no evidence that this kind of feedback (he called it
noisy feedback) is required for language learning,
or even that it exists (Marcus, 1993). He argued
for the weakness, inconsistency and inherently ar-
tificial nature of this kind of feedback. Moreover, he
suggested that even if such feedback exists, a child
would learn which forms are erroneous only after
complex statistical comparisons. Therefore, he con-
cluded that internal mechanisms are necessary to ex-
plain how children recover from errors in language
acquisition.

Since the publication of the work of Marcus, the
consensus seemed to be that children do not have ac-
cess to negative data. However, a study carried out
by Chouinard and Clark shows that this conclusion
may be wrong (Chouinard and Clark, 2003). First,
they point out that the reply-type approach does not
consider whether the reply itself also contains cor-
rective information, and consequently, replies that
are corrective are erroneously grouped with those
that are not. Moreover, if we consider only reply-
types, they may not help to identify the error made.
Hence, Chouinard and Clark propose another view
of negative evidence that builds on Clark’s principle
of contrast (Clark, 1987; Clark, 1993). Parents often
check up on a child’s erroneous utterances, to make
sure they have understood them. They do this by
reformulating what they think the child intended to
express. Hence, the child’s utterance and the adult’s
reformulation have the same meaning, but different
forms. Because children attend to contrasts in form,
any change in form that does not mark a different
meaning will signal to children that they may have
produced an utterance that is not acceptable in the
target language. In this way, reformulations iden-
tify the locus of any error, and hence the existence
of an error. Chouinard and Clark analyze longitu-
dinal data from five children between two and four
years old, and show that adults reformulate erro-
neous child utterances often enough to help learn-
ing. Moreover, these results show that children not
only detect differences between their own utterance
and the adult reformulation, but that they make use
of that information.

98

In this paper we explore this new view of nega-
tive data proposed by Chouinard and Clark. Cor-
rections (in form of reformulations) have a semantic
component that has not been taken into account in
previous studies. Hence, we propose a new com-
putational model of language learning that gives an
account of meaning-preserving corrections, and in
which we can address questions such as: What are
the effects of corrections on learning syntax? Can
corrections facilitate the language learning process?

3 The Model

We describe the components of our model, and give
examples drawn from the primary domain we have
used to guide the development of the model.

3.1 Situation, meanings and utterances.

A situation is composed of some objects and some
of their properties and relations, which pick out
some aspects of the world of joint interest to the
teacher and learner. A situation is represented as a
set of ground atoms over some constants (denoting
objects) and predicates (giving properties of the ob-
jects and relations between them.) For example, a
situation s1 consisting of a big purple circle to the
left of a big red star is represented by the follow-
ing set of ground atoms: s1 = {bi1 (t1), pu1 (t1),
ci1 (t1), le2 (t1, t2), bi1 (t2), re1 (t2), st1 (t2)}.

Formally, we have a finite set P of predicate
symbols, each of a specific arity. We also have a
set of constant symbols t1, t2, . . ., which are used
to represent distinct objects. A ground atom is an
expression formed by applying a predicate symbol
to the correct number of constant symbols as argu-
ments.

We also have a set of of variables x1, x2, A
variable atom is an expression formed by applying
a predicate symbol to the correct number of vari-
ables as arguments. A meaning is a finite sequence
of variable atoms. Note that the atoms do not con-
tain constants, and the order in which they appear is
significant. A meaning is supported in a situation if
there exists a support witness, that is, a mapping of
its variables to distinct objects in the situation such
that the image under the mapping of each atom in
the meaning appears in the situation. If a meaning is
supported in a situation by a unique support witness

then it is denoting in the situation. We assume that
both the teacher and learner can determine whether
a meaning is denoting in a situation.

We also have a finite alphabet W of words. An
utterance is a finite sequence of words. The tar-
get language is the set of utterances the teacher may
produce in some situation; in our examples, this in-
cludes utterances like the star or the star to the right
of the purple circle but not star of circle small the
green. We assume each utterance in the target lan-
guage is assigned a unique meaning. An utterance
is denoting in a situation if the meaning assigned
to utterance is denoting in the situation. Intuitively,
an utterance is denoting if it uniquely picks out the
objects it refers to in a situation.

In our model the goal of the learner is to be able
to produce every denoting utterance in any given sit-
uation. Our model is probabilistic, and what we re-
quire is that the probability of learner errors be re-
duced to very low levels.

3.2 The target language and meaning
transducers.

We represent the linguistic competence of the
teacher by a finite state transducer that both recog-
nizes the utterances in the target language and trans-
lates each correct utterance to its meaning. Let A
denote the set of all variable atoms over P . We de-
fine a meaning transducer M with input symbols
W and output symbols A as follows. M has a fi-
nite set Q of states, an initial state q0 ∈ Q, a finite
set F ⊆ Q of final states, a deterministic transition
function δ mappingQ×W toQ, and an output func-
tion γ mapping Q×W to A∪ {ε}, where ε denotes
the empty sequence.

The transition function δ is extended in the usual
way to δ(q, u). The language of M , denoted L(M)
is the set of all utterances u ∈ W ∗ such that
δ(q0, u) ∈ F . For each utterance u, we defineM(u)
to be the meaning of u, that is, the finite sequence of
non-empty outputs produced by M in processing u.
Fig. 1 shows a meaning transducer M1 for a limited
sublanguage of Spanish. M1 assigns the utterance el
triangulo rojo the meaning (tr1 (x1), re1 (x1)).

3.3 The learning task.
Initially the teacher and learner know the predicates
P and are able to determine whether a meaning is

99

a / !

0 1 2

6

3 4

el / !

circulo / ci1(x1)

cuadrado / sq1(x1)

triangulo / tr1(x1)

encima / ab2(x1,x2)

a / ! la / !

5

izquierda / le2(x1,x2)

derecha / le2(x2,x1)

rojo / re1(x1)

verde / gr1(x1)

azul / bl1(x1)

encima / ab2(x1,x2)

7

del / !

8 9
circulo / ci1(x2)

cuadrado / sq1(x2)

triangulo / tr1(x2)

rojo / re1(x2)

verde / gr1(x2)

azul / bl1(x2)

Figure 1: Meaning transducer M1.

denoting in a situation. The learner and teacher both
also know a shared set of categories that classify a
subset of the predicates into similarity groups. The
categories facilitate generalization by the learner
and analysis of incorrect learner utterances by the
teacher. In our geometric shape domain the cate-
gories are shape, size, and color; there is no category
for the positional relations. Initially the teacher also
has the meaning transducer for the target language,
but the learner has no language-specific knowledge.

4 The Interaction of Learner and Teacher

In one interaction of the learner and teacher, a new
situation is generated and presented to both of them.
The learner attempts to produce a denoting utter-
ance for the situation, and the teacher analyzes the
learner’s utterance and decides whether to produce
a correction of the learner’s utterance or a new de-
noting utterance of its own. Finally, the learner uses
the situation and the teacher’s utterance to update its
current grammar for the language.

In this section we describe the algorithms used by
the learner and teacher to carry out the steps of this
process.

4.1 Comprehension and the co-occurrence
graph.

To process the teacher’s utterance, the learner
records the words in the utterance and the predi-
cates in the situation in an undirected co-occurrence
graph. Each node is a word or predicate symbol and
there is an edge for each pair of nodes. Each node u
has an occurrence count, c(u), recording the number
of utterances or situations it has occurred in. Each

edge (u, v) also has an occurrence count, c(u, v),
recording the number of utterance/situation pairs in
which the endpoints of the edge have occurred to-
gether. From the co-occurrence graph the learner de-
rives a directed graph with the same nodes, the im-
plication graph, parameterized by a noise threshold
θ (set at 0.95 in the experiments.) For each ordered
pair of nodes u and v, the directed edge (u, v) is in-
cluded in the implication graph if c(u, v)/c(u) ≥ θ.
The learner then deletes edges from predicates to
words and computes the transitively reduced im-
plication graph.

The learner uses the transitively reduced implica-
tion graph to try to find the meaning of the teacher’s
utterance by translating the words of the utterance
into a set of sequences of predicates, and determin-
ing if there is a unique denoting meaning corre-
sponding to one of the predicate sequences. If so, the
unique meaning is generalized into a general form
by replacing each predicate by its category gener-
alization. For example, if the learner detects the
unique meaning (tr1 (x1), re1 (x1)), it is general-
ized to the general form (shape1 (x1), color1 (x1)).
The learner’s set of general forms is the basis for its
production.

4.2 Production by the learner.

Each general form denotes the set of possible mean-
ings obtained by substituting appropriate symbols
from P for the category symbols. To produce a de-
noting utterance for a situation, the learner finds all
the meanings generated by its general forms using
predicates from the situation and tests each meaning
to see if it is denoting, producing a set of possible de-
noting meanings. If the set is empty, the learner pro-
duces no utterance. Otherwise, it attempts to trans-
late each denoting meaning into an utterance.

The learner selects one of these utterances with
a probability depending on a number stored with
the corresponding general form recording the last
time a teacher utterance matched it. This ensures
that repeatedly matched general forms are selected
with asymptotically uniform probability, while gen-
eral forms that are only matched a few times are se-
lected with probability tending to zero.

100

4.3 From meaning to utterance.

The process the learner uses to produce an utter-
ance from a denoting meaning is as follows. For
a meaning that is a sequence of k atoms, there are
two related sequences of positions: the atom posi-
tions 1, 2, . . . , k and the gap positions 0, 1, . . . , k.
The atom positions refer to the corresponding atoms,
and gap position i refers to the position to the right
of atom i, (where gap position 0 is to the left of atom
a1.) The learner generates a sequence of zero or
more words for each position in left to right order:
gap position 0, atom position 1, gap position 1, atom
position 2, and so on, until gap position k. The re-
sulting sequences of words are concatenated to form
the final utterance.

The choice of what sequence of words to pro-
duce for each position is represented by a decision
tree. For each variable atom the learner has en-
countered, there is a decision tree that determines
what sequence of words to produce for that atom
in the context of the whole meaning. For exam-
ple, in a sublanguage of Spanish in which there are
both masculine and feminine nouns for shapes, the
atom re1 (x1) has a decision tree that branches on
the value of the shape predicate applied to x1 to se-
lect either rojo or roja as appropriate. For the gap
positions, there are decision trees indexed by the
generalizations of all the variable atoms that have
occurred; the variable atom at position i is general-
ized, and the corresponding decision tree is used to
generate a sequence of words for gap position i. Gap
position 0 does not follow any atom position and has
a separate decision tree.

If there is no decision tree associated with a given
atom or gap position in a meaning, the learner falls
back on a “telegraphic speech” strategy. For a gap
position with no decision tree, no words are pro-
duced. For an atom position whose atom has no as-
sociated decision tree, the learner searches the tran-
sitively reduced implication graph for words that
approximately imply the predicate of the atom and
chooses one of maximum observed frequency.

4.4 The teacher’s response.

If the learner produces an utterance, the teacher an-
alyzes it and then chooses its own utterance for the
situation. The teacher may find the learner’s utter-

ance correct, incorrect but correctable, or incorrect
and uncorrectable. If the learner’s utterance is in-
correct but correctable, the teacher chooses a pos-
sible correction for it. The teacher randomly de-
cides whether or not to use the correction as its ut-
terance according to the correction probability. If
the teacher does not use the correction, then its own
utterance is chosen uniformly at random from the
denoting utterances for the situation.

If the learner’s utterance is one of the correct de-
noting utterances for the situation, the teacher clas-
sifies it as correct. If the learner’s utterance is
not correct, the teacher “translates” the learner’s ut-
terance into a sequence of predicates by using the
meaning transducer for the language. If the result-
ing sequence of predicates corresponds to a denot-
ing meaning, the learner’s utterance is classified as
having an error in form. The correction is cho-
sen by considering the denoting utterances with the
same sequence of predicates as the learner’s utter-
ance, and choosing one that is “most similar” to the
learner’s utterance. For example, if the learner’s ut-
terance was el elipse pequeno and (el1 , sm1) cor-
responds to a denoting utterance for the situation,
the teacher chooses la elipse pequena as the cor-
rection. If the learner’s utterance is neither correct
nor an error in form, the teacher uses a measure of
similarity between the learner’s sequence of predi-
cates and those of denoting utterances to determine
whether there is a “close enough” match. If so, the
teacher classifies the learner’s utterance as having
an error in meaning and chooses as the possible
correction a denoting utterance whose predicate se-
quence is “most similar” to the learner’s predicate
sequence. If the learner produces an utterance and
none of these cases apply, then the teacher classifies
the learner’s utterance as uninterpretable and does
not offer a correction.

When the teacher has produced an utterance, the
learner analyzes it and updates its grammar of the
language as reflected in the co-occurrence graph,
the general forms, and the decision trees for word
choice. The decision trees are updated by comput-
ing an alignment between the teacher’s utterance and
the learner’s understanding of the teacher’s meaning,
which assigns a subsequence of words from the ut-
terance to each atom or gap position in the meaning.
Each subsequence of words is then added to the data

101

for the decision tree corresponding to the position of
that subsequence.

If the learner has produced an utterance and finds
that the teacher’s utterance has the same meaning,
but is expressed differently, then the learner classi-
fies the teacher’s utterance as a correction. In the
current model, the learner reports this classification,
but does not use it in any way.

5 Empirical Results

We have implemented and tested our learning and
teaching procedures in order to explore questions
about the roles of corrections in language learning.
We have used a simplified version of the Miniature
Language Acquisition task proposed by Feldman et
al. (Feldman et al., 1990). Although this task is not
as complex as those faced by children, it involves
enough complexity to be compared to many real-
word tasks.

The questions that we address in this section are
the following. (1) Can the learner accomplish the
learning task to a high level of correctness and cov-
erage from a “reasonable” number of interactions
(that is, well short of the number needed to memo-
rize every legal situation/sentence pair)? (2) What
are the effects of correction or non-correction by
the teacher on the learner’s accomplishment of the
learning tasks?

5.1 The specific learning tasks.

Each situation has two objects, each with three at-
tributes (shape, color and size), and one binary rela-
tion between the two objects (above or to the left of.)
The attribute of shape has six possible values (cir-
cle, square, triangle, star, ellipse, and hexagon), that
of color has six possible values (red, orange, yellow,
green, blue, and purple), and that of size three possi-
ble values (big, medium, and small.) There are 108
distinct objects and 23,328 distinct situations. Situ-
ations are generated uniformly at random.

For several natural languages we construct a lim-
ited sublanguage of utterances related to these situ-
ations. A typical utterance in English is the medium
purple star below the small hexagon. There are 168
meanings referring to a single object and 112,896
meanings referring to two objects, for a total of
113,064 possible meanings. The 113,064 possible

meanings are instances of 68 general forms: 4 refer-
ring to a single object and 64 referring to two ob-
jects. These languages are the 68-form languages.

We consulted at least one speaker of each lan-
guage to help us construct a meaning transducer to
translate appropriate phrases in the language to all
113,064 possible meanings. Each transducer was
constructed to have exactly one accepted phrase for
each possible meaning. We also constructed trans-
ducers for reduced sublanguages, consisting of the
subset of utterances that refer to a single object (168
utterances) and those that refer to two objects, but in-
clude all three attributes of both (46,656 utterances.)
Each meaning in the reduced sublanguage is an in-
stance of one of 8 general forms, while most of the
lexical and syntactic complexity of the 68-form lan-
guage is preserved. We refer to these reduced sub-
languages as the 8-form languages.

5.2 How many interactions are needed to
learn?

The level of performance of a learner is measured
using two quantities: the correctness and complete-
ness of the learner’s utterances in a given situation.
The learning procedure has a test mode in which the
learner receives a situation and responds with the
set of U utterances it could produce in that situa-
tion, with their corresponding production probabili-
ties. The correctness of the learner is the sum of the
production probabilities of the elements of U that
are in the correct denoting set. The completeness
of the learner is the fraction of all correct denoting
utterances that are in U . The averages of correct-
ness and completeness of the learner for 200 ran-
domly generated situations are used to estimate the
overall correctness and completeness of the learner.
A learner reaches a level p of performance if both
correctness and completeness are at least p.

In the first set of trials the target level of per-
formance is 0.99 and the learner and teacher en-
gage in a sequence of interactions until the learner
first reaches this level of performance. The perfor-
mance of the learner is tested at intervals of 100 in-
teractions. Fig. 2 shows the number of interactions
needed to reach the 0.99 level of performance for
each 68-form language with correction probabilities
of 0.0 (i.e., the teacher never corrects the learner)
and 1.0 (i.e., the teacher offers a correction to the

102

learner every time it classifies the learner’s utterance
as an error in form or an error in meaning.) For
correction probability 1.0, it also shows the number
of incorrect utterances by the learner, the number of
corrections offered by the teacher, and the percent-
age of teacher utterances that were corrections. Each
entry is the median value of 10 trials except those in
the last column. It is worth noting that the learner
does not treat corrections specially.

0.0 1.0 incorrect corrections c/u%
English 700 750 25.0 11.5 1.5%
German 800 750 71.5 52.5 7.0%
Greek 3400 2600 344.0 319.0 12.3%
Hebrew 900 900 89.5 62.5 6.9%
Hungarian 750 800 76.5 58.5 7.3%
Mandarin 700 800 50.0 31.5 3.9%
Russian 3700 2900 380.0 357.0 12.3%
Spanish 1000 850 86.0 68.0 8.0%
Swedish 1000 900 54.0 43.5 4.8%
Turkish 800 900 59.0 37.0 4.1%

Figure 2: Interactions, incorrect learner utterances and
corrections by the teacher to reach the 0.99 level of per-
formance for 68-form languages.

In the column for correction probability 0.0 there
are two clear groups: Greek and Russian, each with
at least 3400 interactions and the rest of the lan-
guages, each with at most 1000 interactions. The
first observation is that the learner achieves correct-
ness and completeness of 0.99 for each of these lan-
guages after being exposed to a small fraction of all
possible situations and utterances. Even 3700 inter-
actions involve at most 16.5% of all possible situa-
tions and at most 3.5% of all possible utterances by
the teacher, while 1000 interactions involve fewer
than 4.3% of all situations and fewer than 1% of all
possible utterances.

5.3 How do corrections affect learning?

In the column for correction probability 1.0 we see
the same two groups of languages. For Greek, the
number of interactions falls from 3400 to 2600, a
decrease of about 24%. For Russian, the number of
interactions falls from 3700 to 2900, a decrease of
about 21%. Corrections have a clear positive effect
in these trials for Greek and Russian, but not for the
rest of the languages.

Comparing the numbers of incorrect learner utter-
ances and the number of corrections offered by the

teacher, we see that the teacher finds corrections for
a substantial fraction of incorrect learner utterances.
The last column of Fig. 2 shows the percentage of
the total number of teacher utterances that were cor-
rections, from a low of 1.5% to a high of 12.3%.

There are several processes at work in the im-
provement of the learner’s performance. Compre-
hension improves as more information accumulates
about words and predicates. New correct general
forms are acquired, and unmatched incorrect gen-
eral forms decrease in probability. More data im-
proves the decision tree rules for choosing phrases.
Attainment of the 0.99 level of performance may be
limited by the need to acquire all the correct general
forms or by the need to improve the correctness of
the phrase choices.

In the case of Greek and Russian, most of the tri-
als had acquired their last general form by the time
the 0.90 level of performance was reached, but for
the other languages correct general forms were still
being acquired between the 0.95 and the 0.99 lev-
els of performance. Thus the acquisition of gen-
eral forms was not a bottleneck for Greek and Rus-
sian, but was for the other languages. Because the
teacher’s corrections generally do not help with the
acquisition of new general forms (the general form
in a correction is often the same one the learner
just used), but do tend to improve the correctness
of phrase choice, we do not expect correction to re-
duce the number of interactions to attain the 0.99
level of performance when the bottleneck is the ac-
quisition of general forms. This observation led us
to construct reduced sublanguages with just 8 gen-
eral forms to see if correction would have more of
an effect when the bottleneck of acquiring general
forms was removed.

The reduced sublanguages have just 8 general
forms, which are acquired relatively early. Fig. 3
gives the numbers of interactions to reach the 0.99
level of performance (except for Turkish, where the
level is 0.95) for the 8-form sublanguages with cor-
rection probability 0.0 and 1.0. These numbers are
the means of 100 trials (except for Greek and Rus-
sian, which each had 20 trials); the performance of
the learner was tested every 50 interactions.

Comparing the results for 8-form sublanguages
with corresponding 68-form languages, we see that
some require notably fewer interactions for 8-form

103

0.0 1.0 % reduction
English 247.0 202.0 18.2 %
German 920.0 683.5 25.7 %
Greek 6630.0 4102.5 38.1 %
Hebrew 1052.0 771.5 26.7 %
Hungarian 1632.5 1060.5 35.0 %
Mandarin 340.5 297.5 12.6 %
Russian 6962.5 4640.0 33.4 %
Spanish 908.0 630.5 30.6 %
Swedish 214.0 189.0 11.7 %
Turkish 1112.0* 772.0* 30.6 %

Figure 3: Interactions to reach the 0.99 level of perfor-
mance for 8-form languages. (For Turkish: the 0.95
level.)

sublanguages (English, Mandarin, and Swedish)
while others require notably more (Greek, Hungar-
ian and Russian.) In the case of Turkish, the learner
cannot attain the 0.99 level of performance for the
8-form sublanguage at all, though it does so for the
68-form language; this is caused by limitations in
learner comprehension as well as the differing fre-
quencies of forms. Thus, the 8-form languages are
neither uniformly easier nor uniformly harder than
their 68-form counterparts. Arguably, the restric-
tions that produce the 8-form languages make them
“more artificial” than the 68-form languages; how-
ever, the artificiality helps us understand more about
the possible roles of correction in language learning.

Even though in the case of the 8-form languages
there are only 8 correct general forms to acquire, the
distribution on utterances with one object versus ut-
terances with two objects is quite different from the
case of the 68-form languages. For a situation with
two objects of different shapes, there are 40 denot-
ing utterances in the case of 68-form languages, of
which 8 refer to one object and 32 refer to two ob-
jects. In the case of the 8-form languagues, there are
10 denoting utterances, of which 8 refer to one ob-
ject and 2 refer to two objects. Thus, in situations
of this kind (which are 5/6 of the total), utterances
referring to two objects are 4 times more likely in
the case of 68-form languages than in the case of 8-
form languages. This means that if the learner needs
to see utterances involving two objects in order to
master certain aspects of syntax (for example, cases

of articles, adjectives and nouns), the waiting time is
noticeably longer in the case of 8-form languages.

This longer waiting time emphasizes the effects
of correction, because the initial phase of learning
is a smaller fraction of the whole. In the third col-
umn of Fig. 3 we show the percentage reduction in
the number of interactions to reach the 0.99 level
of performance (except: 0.95 for Turkish) from cor-
rection probability 0.0 to correction probability 1.0
for the 8-form languages. For each language, cor-
rections produce a reduction, ranging from a low of
11.7% for Swedish to a high of 38.1% for Greek.
This confirms our hypothesis that corrections can
substantially help the learner when the problem of
acquiring all the general forms is not the bottleneck.

6 Discussion and Future Work

We show that a simple model of a teacher can offer
meaning-preserving corrections to the learner and
such corrections can significantly reduce the num-
ber of interactions for the learner to reach a high
level of performance. This improvement does not
depend on the learner’s ability to detect corrections:
the effect depends on the change in the distribution
of teacher utterances in the correcting versus non-
correcting conditions. This suggests re-visiting dis-
cussions in linguistics that assume that the learner
must identify teacher corrections in order for them
to have an influence on the learning process.

Our model of language is very simplified, and
would have to be modified to deal with issues such
as multi-word phrases bearing meaning, morpho-
logical relations between words, phonological rules
for word choice, words with more than one mean-
ing and meanings that can be expressed in more
than one way, languages with freer word-orders and
meaning components expressed by non-contiguous
sequences of words. Other desirable directions
to explore include more sophisticated use of co-
occurrence information, more powerful methods of
learning the grammars of meanings, feedback to al-
low the learning of production to improve compre-
hension, better methods of alignment between utter-
ances and meanings, methods to allow the learner’s
semantic categories to evolve in response to lan-
guage learning, and methods allowing the learner to
make use of its ability to detect corrections.

104

References
D. Angluin and L. Becerra-Bonache. 2010. A Model

of Semantics and Corrections in Language Learning.
Technical Report, Yale University Department of
Computer Science, YALE/DCS/TR-1425.

R. Brown and C. Hanlon. 1970. Derivational complexity
and the order of acquisition in child speech. In J.R.
Hayes (ed.): Cognition and the Development of Lan-
guage. Wiley, New York, NY.

M.M. Chouinard and E.V. Clark. 2003. Adult Reformu-
lations of Child Errors as Negative Evidence. Journal
of Child Language, 30:637–669.

E.V. Clark 1987. The principle of contrast: a constraint
on language acquisition. In B. MacWhinney (ed.):
Mechanisms of language acquisition. Erlbaum, Hills-
dale, NJ.

E.V. Clark 1993. The Lexicon in Acquisition. Cambridge
University Press, Cambridge, UK.

M. J. Demetras, K. N. Post and C.E. Snow. 1986. Brown
and Hanlon revisited: mothers’ sensitivity to ungram-
matical forms. Journal of Child Language, 2:81–88.

J.A. Feldman, G. Lakoff, A. Stolcke and S. Weber 1990.
Miniature Language Acquisition: A Touchstone for
Cognitive Science. Annual Conference of the Cogni-
tive Science Society, 686–693.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

K. Hirsh-Pasek, R.A. Treiman M. and Schneiderman.
1984. Brown and Hanlon revisited: mothers’ sensi-
tivity to ungrammatical forms. Journal of Child Lan-
guage, 2:81–88.

G.F. Marcus 1993. Negative evidence in language acqui-
sition. Cognition, 46:53–95.

J.L. Morgan and L.L. Travis. 1989. Limits on negative
information in language input. Journal of Child Lan-
guage, 16:531–552.

105

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 106–114,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Assessing Benefit from Feature Feedback in Active Learning
for Text Classification

Shilpa Arora
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
shilpaa@cs.cmu.edu

Eric Nyberg
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

ehn@cs.cmu.edu

Abstract

Feature feedback is an alternative to instance
labeling when seeking supervision from hu-
man experts. Combination of instance and
feature feedback has been shown to reduce the
total annotation cost for supervised learning.
However, learning problems may not benefit
equally from feature feedback. It is well un-
derstood that the benefit from feature feed-
back reduces as the amount of training data
increases. We show that other characteristics
such as domain, instance granularity, feature
space, instance selection strategy and propor-
tion of relevant text, have a significant effect
on benefit from feature feedback. We estimate
the maximum benefit feature feedback may
provide; our estimate does not depend on how
the feedback is solicited and incorporated into
the model. We extend the complexity mea-
sures proposed in the literature and propose
some new ones to categorize learning prob-
lems, and find that they are strong indicators
of the benefit from feature feedback.

1 Introduction

Linear classifiers model the response as a weighted
linear combination of the features in input instances.
A supervised approach to learning a linear classifier
involves learning the weights for the features from
labeled data. A large number of labeled instances
may be needed to determine the class association of
the features and learn accurate weights for them. Al-
ternatively, the user may directly label the features.
For example, for a sentiment classification task, the
user may label features, such as words or phrases,

as expressing positive or negative sentiment. Prior
work (Raghavan et al., 2006; Zaidan et al., 2007)
has demonstrated that users are able to reliably pro-
vide useful feedback on features.

Direct feedback on a list of features (Raghavan et
al., 2006; Druck et al., 2008) is limited to simple fea-
tures like unigrams. However, unigrams are limited
in the linguistic phenomena they can capture. Struc-
tured features such as dependency relations, paths in
syntactic parse trees, etc., are often needed for learn-
ing the target concept (Pradhan et al., 2004; Joshi
and Rosé, 2009). It is not clear how direct feature
feedback can be extended straightforwardly to struc-
tured features, as they are difficult to present visu-
ally for feedback and may require special expertise
to comprehend. An alternative approach is to seek
indirect feedback on structured features (Arora and
Nyberg, 2009) by asking the user to highlight spans
of text, called rationales, that support the instance
label (Zaidan et al., 2007). For example, when clas-
sifying the sentiment of a movie review, rationales
are spans of text in the review that support the senti-
ment label for the review.

Assuming a fixed cost per unit of work, it might
be cheaper to ask the user to label a few features, i.e.
identify relevant features and their class association,
than to label several instances. Prior work (Ragha-
van et al., 2006; Druck et al., 2008; Druck et al.,
2009; Zaidan et al., 2007) has shown that a combi-
nation of instance and feature labeling can be used
to reduce the total annotation cost required to learn
the target concept. However, the benefit from feature
feedback may vary across learning problems. If we
can estimate the benefit from feature feedback for a

106

given problem, we can minimize the total annotation
cost for achieving the desired performance by select-
ing the optimal annotation strategy (feature feedback
or not) at every stage in learning. In this paper, we
present the ground work for this research problem by
analyzing how benefit from feature feedback varies
across different learning problems and what charac-
teristics of a learning problem have a significant ef-
fect on benefit from feature feedback.

We define a learning problem (P = {D, G, F , L,
I , S}) as a tuple of the domain (D), instance gran-
ularity (G), feature representation (F), labeled data
units (L), amount of irrelevant text (I) and instance
selection strategy (S).

With enough labeled data, we may not benefit
from feature feedback. Benefit from feature feed-
back also depends on the features used to represent
the instances. If the feature space is large, we may
need several labeled instances to identify the rele-
vant features, while relatively fewer labeled features
may help us quickly find these relevant features.
Apart from the feature space size, it also matters
what types of features are used. When hand crafted
features from a domain expert are used (Pradhan et
al., 2004) we expect to gain less from feature feed-
back as most of the features will be relevant. On
the other hand, when features are extracted automat-
ically as patterns in annotation graphs (Arora et al.,
2010) feature feedback can help to identify relevant
features from the large feature space.

In active learning, instances to be labeled are se-
lectively sampled in each iteration. Benefit from fea-
ture feedback will depend on the instances that were
used to train the model in each iteration. In the case
of indirect feature feedback through rationales or di-
rect feature feedback in context, instances selected
will also determine what features receive feedback.
Hence, instance selection strategy should affect the
benefit from feature feedback.

In text classification, an instance may contain a
large amount of text, and even a simple unigram
representation will generate a lot of features. Often
only a part of the text is relevant for the classifica-
tion task. For example, in movie reviews, often the
reviewers talk about the plot and characters in addi-
tion to providing their opinion about the movie. Of-
ten this extra information is not relevant to the clas-
sification task and bloats the feature space without

adding many useful features. With feature feedback,
we hope to filter out some of this noise and improve
the model. Thus, the amount of irrelevant informa-
tion in the instance should play an important role in
determining the benefit from feature feedback. We
expect to see less of such noise when the text in-
stance is more concise. For example, a movie review
snippet (about a sentence length) tends to have less
irrelevant text than a full movie review (several sen-
tences). In addition to analyzing document instances
with varying amount of noise, we also compare the
benefit from feature feedback for problems with dif-
ferent granularity. Granularity for a learning prob-
lem is defined based on the average amount of text
in its instances.

Benefit from feature feedback will also depend on
how feedback is solicited from the user and how it
is incorporated back into the model. Independently
from these factors, we estimate the maximum pos-
sible benefit and analyze how it varies across prob-
lems. Next we describe measures proposed in the
literature and propose some new ones for categoriz-
ing learning problems. We then discuss our experi-
mental setup and analysis.

2 Related Work

There has been little work on categorizing learn-
ing problems and how benefit from feature feedback
varies with them. To the best of our knowledge
there is only one work in this area by Raghavan et
al. (2007). They categorize problems in terms of
their feature complexity. Feature complexity is de-
fined in terms of the minimum number of features
required to learn a good classifier (close to maxi-
mum performance). If the concept can be described
by a weighted combination of a few well-selected
features, it is considered to be of low complexity.

In this estimate of complexity, an assumption is
made that the best performance is achieved when
the learner has access to all available features and
not for any subset of the features. This is a reason-
able assumption for text classification problems with
robust learners like SVMs together with appropriate
regularization and sufficient training data.

Instead of evaluating all possible combinations of
features to determine the minimum number of fea-
tures required to achieve close to the best perfor-

107

mance, feature complexity is estimated using an in-
telligent ranking of the features. This ranking is
based on their discriminative ability determined us-
ing a large amount of labeled data (referred to as
oracle) and a feature selection criterion such as In-
formation Gain (Rijsbergen, 1979). It is intuitive
that the rate of learning, i.e., the rate at which per-
formance improves as we add more features to the
model, is also associated with problem complexity.
Raghavan et al. (2007) define the feature learning
convergence profile (pfl) as the area under the fea-
ture learning curve (performance vs. number of fea-
tures used in training), given by:

pfl =
∑log2N

t=1 F1(M, 2t)
log2N × F1(M, N)

(1)

where F1(M, 2t) is the F1 score on the test data
when using all M instances for training with top
ranked 2t features. The features are added at an ex-
ponentially increasing interval to emphasize the rel-
ative increase in feature space size. The three feature
complexity measures proposed by Raghavan et al.
(2007) are the following: 1) Feature size complex-
ity (Nf): Logarithm (base 2) of the number of fea-
tures needed to achieve 95% of the best performance
(when all instances are available), 2) Feature profile
complexity (Fpc), given by Fpc = 1 − pfl, and 3)
Combined feature complexity (Cf) , Cf = Fpc ∗ nf ,
incorporates both the learning profile and the num-
ber of features required.

In order to evaluate the benefit from feature feed-
back, Raghavan et al. (2007) use their tandem learn-
ing approach of interleaving instance and feature
feedback (Raghavan et al., 2006), referred to as
interactive feature selection (ifs). The features
are labeled as ‘relevant’ (feature discriminates well
among the classes), or ‘non-relevant/don’t know’.
The labeled features are incorporated into learning
by scaling the value of the relevant features by a con-
stant factor in all instances.

Raghavan et al. (2007) measure the benefit from
feature feedback as the gain in the learning speed
with feature feedback. The learning speed measures
the rate of performance improvement with increas-
ing amount of supervision. It is defined in terms of
the convergence profile similar to feature learning
convergence profile in Equation 1, except in terms

of the number of labeled units instead of the num-
ber of features. A labeled unit is either a labeled
instance or an equivalent set of labeled features with
the same annotation time. The benefit from feature
feedback is then measured as the difference in the
convergence profile with interactive feature selec-
tion (pifs) and with labeled instances only (pal).

Raghavan et al. (2007) analysed 9 corpora and
358 binary classification tasks. Most of these cor-
pora, such as Reuters (Lewis, 1995), 20-newsgroup
(Lang, 1995), etc., have topic-based category la-
bels. For all classification tasks, they used simple
and fixed feature space containing only unigram fea-
tures (n-gram features were added where it seemed
to improve performance). They observed a negative
correlation (r = −0.65) between the benefit from
feature feedback and combined feature complexity
(Cf), i.e., feature feedback accelerates active learn-
ing by an amount that is inversely proportional to
the feature complexity of the problem. If a concept
can be expressed using a few well-selected features
from a large feature space, we stand to benefit from
feature feedback as few labeled features can provide
this information. On the other hand, if learning a
concept requires all or most of the features in the
feature space, there is little knowledge that feature
feedback can provide.

3 Estimating Maximum Benefit &
Additional Measures

In this section, we highlight some limitations of the
prior work that we address in this work.

Raghavan et al. (2007) only varied the domain
among different problems they analyzed, i.e, only
the variable D in our problem definition (P =
{D,G,F, L, I, S}). However, as motivated in the
introduction, other characteristics are also important
when categorizing learning problems and it is not
clear if we will observe similar results on problems
that differ in these additional characteristics. In this
work, we apply their measures to problems that dif-
fer in these characteristics in addition to the domain.

Analysis in Raghavan et al. (2007) is specific to
their approach for incorporating feature feedback
into the model, which may not work well for all do-
mains and datasets as also mentioned in their work
(Section 6.1). It is not clear how their results can be

108

extended to alternate approaches for seeking and in-
corporating feature feedback. Thus, in this work we
analyze the maximum benefit a given problem can
get from feature feedback independent of the feed-
back solicitation and incorporation approach.

Raghavan et al. (2007) analyze benefit from fea-
ture feedback at a fixed training data size of 42 la-
beled units. However, the difference between learn-
ing problems may vary with the amount of labeled
data. Some problems may benefit significantly from
feature feedback even at relatively larger amount of
labeled data. On the other hand, with very large
training set, the benefit from feature feedback can
be expected to be small and not significant for all
problems and all problems will look similar. Thus,
we evaluate the benefit from feature feedback at dif-
ferent amount of labeled data.

Raghavan et al. (2007) evaluate benefit from fea-
ture feedback in terms of the gain in learning speed.
However, the learning rate does not tell us how much
improvement we get in performance at a given stage
in learning. In fact, even if at every point in the
learning curve performance with feature feedback
was lower than performance without feature feed-
back, the rate of convergence to the corresponding
maximum performance may still be higher when us-
ing feature feedback. Thus, in this work, in addi-
tion to evaluating the improvement in the learning
speed, we also evaluate the improvement in the ab-
solute performance at a given stage in learning.

3.1 Determining the Maximum Benefit

Annotating instances with or without feature feed-
back may require different annotation time. It is
only fair to compare different annotation strategies
at same annotation cost. Raghavan et al. (2006)
found that on average labeling an instance takes the
same amount of time as direct feedback on 5 fea-
tures. Zaidan et al. (2007) found that on average
it takes twice as much time to annotate an instance
with rationales than to annotate one without ratio-
nales. In our analysis, we focus on feedback on fea-
tures in context of the instance they occur in, i.e., in-
direct feature feedback through rationales or direct
feedback on features that occur in the instance be-
ing labeled. Thus, based on the findings in Zaidan et
al. (2007), we assume that on average annotating an
instance with feature feedback takes twice as much

time as annotating an instance without feature feed-
back. We define a currency for annotation cost as
Annotation cost Units (AUs). For an annotation bud-
get of a AUs, we compare two annotation strategies
of annotating a instances without feature feedback
or a

2 instances with feature feedback.
In this work, we only focus on using feature feed-

back as an alternative to labeled data, i.e., to pro-
vide evidence about features in terms of their rele-
vance and class association. Thus, the best feature
feedback can do is provide as much evidence about
features as evidence from a large amount of labeled
data (oracle). Let F1(k,Nm) be the F1 score of a
model trained with features that occur in m train-
ing instances (Nm) and evidence for these features
from k instances (k ≥ m). For an annotation budget
of a AUs, we define the maximum improvement in
performance with feature feedback (IPa) as the dif-
ference in performance with feature feedback from
oracle on a

2 training instances and performance with
a training instances without feature feedback.

IPa = F1(o, Na
2
)− F1(a, Na) (2)

where o is the number of instances in the oracle
dataset (o >> a). We also compare annotation
strategies in terms of the learning rate similar to
Raghavan et al. (2007), except that we estimate and
compare the maximum improvement in the learning
rate. For an annotation budget of a AUs, we define
the maximum improvement in learning rate from 0
to a AUs (ILR0−a) as follows.

ILR0−a = pcp
wFF − pcp

woFF (3)

where pcp
wFF and pcp

woFF are the convergence
profiles with and without feature feedback at same
annotation cost, calculated as follows.

pcp
wFF =

∑log2
a
2

t=1 F1(o, N2t)
log2

a
2 × F1(o, Na

2
)

(4)

pcp
woFF =

∑log2a
t=2 F1(2t, N2t)

(log2a− 1)× F1(a, Na)
(5)

where 2t denotes the training data size in iteration
t. Like Raghavan et al. (2007), we use exponen-
tially increasing intervals to emphasize the relative
increase in the training data size, since adding a few

109

labeled instances earlier in learning will give us sig-
nificantly more improvement in performance than
adding the same number of instances later on.

3.2 Additional Metrics

The feature complexity measures require an ‘ora-
cle’, simulated using a large amount of labeled data,
which is often not available. Thus, we need mea-
sures that do not require an oracle.

Benefit from feature feedback will depend on the
uncertainty of the model on its predictions, since it
suggests uncertainty on the features and hence scope
for benefit from feature feedback. We use the proba-
bility of the predicted label from the model as an es-
timate of the model’s uncertainty. We evaluate how
benefit from feature feedback varies with summary
statistics such as mean, median and maximum prob-
ability from the model on labels for instances in a
held out dataset.

4 Experiments, Results and Observations

In this section, we describe the details of our exper-
imental setup followed by the results.

4.1 Data

We analyzed three datasets: 1) Movie reviews
with rationale annotations by Zaidan et al. (2007),
where the task is to classify the sentiment (posi-
tive/negative) of a review, 2) Movie review snippets
from Rotten Tomatoes (Pang and Lee., 2005), and 3)
WebKB dataset with the task of classifying whether
or not a webpage is a faculty member’s homepage.
Raghavan et al. (2007) found that the webpage clas-
sification task has low feature complexity and ben-
efited the most from feature feedback. We compare
our results on this task and the sentiment classifica-
tion task on the movie review datasets.

4.2 Experimental Setup

Table 1 describes the different variables and their
possible values in our experiments. We make a log-
ical distinction for granularity based on whether an
instance in the problem is a document (several sen-
tences) or a sentence. Labeled data is composed of
instances and their class labels with or without fea-
ture feedback. As discussed in Section 3.1, instances
with feature feedback take on average twice as much

time to annotate as instances without feature feed-
back. Thus, we measure the labeled data in terms of
the number of annotation cost units which may mean
different number of labeled instances based on the
annotation strategy. We used two feature configura-
tions of “unigram only” and “unigram+dependency
triples”. The unigram and dependency annotations
are derived from the Stanford Dependency Parser
(Klein and Manning, 2003).

Rationales by definition are spans of text in a re-
view that convey the sentiment of the reviewer and
hence are the part of the document most relevant for
the classification task. In order to vary the amount
of irrelevant text, we vary the amount of text (mea-
sured in terms of the number of characters) around
the rationales that is included in the instance repre-
sentation. We call this the slack around rationales.
When using the rationales with or without the slack,
only features that overlap with the rationales (and
the slack, if used) are used to represent the instance.
Since we only have rationales for the movie review
documents, we only studied the effect of varying the
amount of irrelevant text on this dataset.

Variable Possible Values
Domain (D) {Movie Review classifica-

tion (MR), Webpage classi-
fication (WebKB)}

Instance Granu-
larity (G)

{document (doc), sentence
(sent)}

Feature Space (F) {unigram only (u), uni-
gram+dependency (u+d)}

Labeled Data
(#AUs) (L)

{64, 128, 256, 512, 1024}

Irrelevant Text (I) {0, 200, 400, 600,∞ }
Instance Selection
Strategy (S))

{deterministic (deter), un-
certainty (uncert)}

Table 1: Experiment space for analysis of learning prob-
lems (P = {D,G, F, L, I, S})

For all our experiments, we used Support Vec-
tor Machines (SVMs) with linear kernel for learn-
ing (libSVM (Chang and Lin, 2001) in Minorthird
(Cohen, 2004)). For identifying the discrimina-
tive features we used the information gain score.
For all datasets we used 1800 total examples with
equal number of positive and negative examples. We

110

held out 10% of the data for estimating model’s un-
certainty as explained in Section 3.2. The results
we present are averaged over 10 cross validation
folds on the remaining 90% of the data (1620 in-
stances). In a cross validation fold, 10% data is used
for testing (162 instances) and all of the remaining
1458 instances are used as the ‘oracle’ for calculat-
ing the feature complexity measures and estimating
the maximum benefit from feature feedback as dis-
cussed in Sections 2 and 3.1 respectively. The train-
ing data size is varied from 64 to 1024 instances
(from the total of 1458 instances for training in a
fold), based on the annotation cost budget. Instances
with their label are added to the training set either in
the original order they existed in the dataset, i.e. no
selective sampling (deterministic), or in the decreas-
ing order of current model’s uncertainty on them.
Uncertainty sampling in SVMs (Tong and Koller,
2000) selects the instances closest to the decision
boundary since the model is expected to be most un-
certain about these instances. In each slice of the
data, we ensured that there is equal distribution of
the positive and negative class. SVMs do not yield
probabilistic output but a decision boundary, a com-
mon practice is to fit the decision values from SVMs
to a sigmoid curve to estimate the probability of the
predicted class (Platt, 1999).

4.3 Results and Analysis

To determine the effect of various factors on benefit
from feature feedback, we did an ANOVA analysis
with Generalized Linear Model using a 95% confi-
dence interval. The top part of Table 2 shows the
average F1 score for the two annotation strategies
at same annotation cost. As can be seen, with fea-
ture feedback, we get a significant improvement in
performance.

Next we analyze the significance of the effect of
various problem characteristics discussed above on
benefit from feature feedback in terms of improve-
ment in performance (IP) at given annotation cost
and improvement in learning rate (ILR). Improve-
ment in learning rate is calculated by comparing
the learning profile for the two annotation strategies
with increasing amount of labeled data, up to the
maximum annotation cost of 1024 AUs.

As can be seen from the second part of Table 2,
most of the factors have a significant effect on bene-

fit from feature feedback. The benefit is significantly
higher for the webpage classification task than the
sentiment classification task in the movie review do-
main. We found that average feature complexity for
the webpage classification task (Nf = 3.07) to be
lower than average feature complexity for the senti-
ment classification task (Nf = 5.18) for 1024 train-
ing examples. Lower feature complexity suggests
that the webpage classification concept can be ex-
pressed with few keywords such as professor, fac-
ulty, etc., and with feature feedback we can quickly
identify these features. Sentiment on the other hand
can be expressed in a variety of ways which explains
the high feature complexity.

The benefit is more for document granularity than
sentence granularity, which is intuitive as feature
space is substantially larger for documents and we
expect to gain more from the user’s feedback on
which features are important. This difference is sig-
nificant for improvement in the learning rate and
marginally significant for improvement in perfor-
mance. Note that here we are comparing docu-
ments (with or without rationale slack) and sen-
tences. However, documents with low rationale
slack should have similar amount of noise as a sen-
tence. Also, a significant difference between do-
mains suggests that documents in WebKB domain
might be quite different from those in Movie Review
domain. This may explain the marginal significant
difference between benefit for documents and sen-
tences. To understand the effect of granularity alone,
we compared the benefit from feature feedback for
documents (without removing any noise) and sen-
tences in movie review domain only and we found
that this difference in also not significant. Thus, con-
trary to our intuition, sentences and documents seem
to benefit equally from feature feedback.

The benefit is more when the feature space is
larger and more diverse, i.e., when dependency fea-
tures are used in addition to unigram features. We
found that on average adding dependency features
to unigram features increases the feature space by
a factor of 10. With larger feature space, feature
feedback can help to identify a few relevant features.
As can also be seen, feature feedback is more help-
ful when there is more irrelevant text, i.e., there is
noise that feature feedback can help to filter out.
Unlike improvement in performance, the improve-

111

ment in learning rate does not decrease monoton-
ically as the amount of rationale slack decreases.
This supports our belief that improvement in perfor-
mance does not necessarily imply improvement in
the learning rate. We saw similar result when com-
paring benefit from feature feedback at different in-
stance granularity. Improvement in learning rate for
problems with different granularity was statistically
significant but improvement in performance was not
significant. Thus, both metrics should be used when
evaluating the benefit from feature feedback.

We also observe that when training examples are
selectively sampled as the most uncertain instances,
we gain more from feature feedback than without
selective sampling. This is intuitive as instances
the model is uncertain about are likely to contain
features it is uncertain about and hence the model
should benefit from feedback on features in these in-
stances. Next we evaluate how well the complexity
measures proposed in Raghavan et al. (2007) corre-
late with improvement in performance and improve-
ment in learning rate.

V ar. V alues AvgF1 Group

Strat. wFF 78.2 A
woFF 68.2 B

V ar. V alues AvgIP GrpIP AvgILR GrpILR

D WebKB 11.9 A 0.32 A
MR 8.0 B 0.20 B

G Doc 10.9 A 0.30 A
Sent 9.0 A 0.22 B

F u+d 12.1 A 0.30 A
u 7.8 B 0.22 B

I

∞ 12.8 A 0.34 A
600 11.2 A B 0.23 B
400 11.1 A B 0.26 A B
200 9.8 B 0.26 A B
0 4.8 C 0.21 B

S Uncer. 12.7 A 0.32 A
Deter. 7.1 B 0.20 B

Table 2: Effect of variables defined in Table 1 on benefit
from feature feedback. AvgIP is the average increase in
performance (F1) and AvgILR is the average increase in
the learning rate. Different letters in GrpIP and GrpILR

indicate significantly different results.

For a given problem with an annotation cost bud-
get of a AUs, we calculate the benefit from feature
feedback by comparing the performance with fea-

ture feedback on a
2 instances and the performance

without feature feedback on a instances as described
in Section 3.1. The feature complexity measures are
calculated using a

2 instances, since it should be the
characteristics of these a

2 training instances that de-
termine whether we would benefit from feature feed-
back on these a

2 instances or from labeling new a
2

instances. As can be seen from Table 3, the correla-
tion of feature complexity measures with both mea-
sures of benefit from feature feedback is strong, neg-
ative and significant. This suggests that problems
with low feature complexity, i.e. concepts that can
be expressed with few well-selected features, benefit
more from feature feedback.

It is intuitive that the benefit from feature feed-
back decreases as amount of labeled data increases.
We found a significant negative correlation (−0.574)
between annotation budget (number of AUs) and
improvement in performance with feature feedback.
However, note that this correlation is not very
strong, which supports our belief that factors other
than the amount of labeled data affect benefit from
feature feedback.

Measure R(IP) R(ILR)
Nf -0.625 -0.615
Fpc -0.575 -0.735
Cf -0.603 -0.629

Table 3: Correlation coefficient (R) for feature size com-
plexity (Nf), feature profile complexity (Fpc) and com-
bined feature complexity (Cf) with improvement in per-
formance (IP) and improvement in learning rate (ILR).
All results are statistically significant (p < 0.05)

Feature complexity measures require an ‘oracle’
simulated using a large amount of labeled data
which is not available for real annotation tasks.
In Section 3.2, we proposed measures based on
model’s uncertainty that do not require an oracle.
We calculate the mean, maximum and median of
the probability scores from the learned model on in-
stances in the held out dateset. We found a signifi-
cant but low negative correlation of these measures
with improvement in performance with feature feed-
back (maxProb = −0.384, meanProb = −0.256,
medianProb = −0.242). This may seem counter-
intuitive. However, note that when the training data
is very small, the model might be quite certain about

112

its prediction even when it is wrong and feature feed-
back may help by correcting the model’s beliefs. We
observed that these probability measures have only
medium and significant positive correlation (around
0.5) with training datasize. Also, the held out dataset
we used may not be representative of the whole set
and using a larger dataset may give us more accurate
estimate of the model’s uncertainty. There are also
other ways to measure the model’s uncertainty, for
example, in SVMs the distance of an instance from
the decision boundary gives us an estimate of the
model’s uncertainty about that instance. We plan to
explore additional measures for model’s uncertainty
in the future.

5 Conclusion and Future Work

In this work, we analyze how the benefit from fea-
ture feedback varies with different problem charac-
teristics and how measures for categorizing learning
problems correlate with benefit from feature feed-
back. We define a problem instance as a tuple of
domain, instance granularity, feature representation,
labeled data, amount of irrelevant text and selective
sampling strategy.

We compare the two annotation strategies, with
and without feature feedback, in terms of both im-
provement in performance at a given stage in learn-
ing and improvement in learning rate. Instead of
evaluating the benefit from feature feedback us-
ing a specific feedback incorporation approach, we
estimate and compare how the maximum benefit
from feature feedback varies across different learn-
ing problems. This tells us what is the best feature
feedback can do for a given learning problem.

We find a strong and significant correlation be-
tween feature complexity measures and the two
measures of maximum benefit from feature feed-
back. However, these measures require an ‘ora-
cle’, simulated using a large amount of labeled data
which is not available in real world annotation tasks.
We present measures based on the uncertainty of the
model on its prediction that do not require an oracle.
The proposed measures have a low but significant
correlation with benefit from feature feedback. In
our current work, we are exploring other measures
of uncertainty of the model. It is intuitive that a met-
ric that measures the uncertainty of the model on

parameter estimates should correlate strongly with
benefit from feature feedback. Variance in param-
eter estimates is one measure of uncertainty. The
Bootstrap or Jacknife method (Efron and Tibshirani,
1994) of resampling from the training data is one
way of estimating variance in parameter estimates
that we are exploring.

So far only a linear relationship of various mea-
sures with benefit from feature feedback has been
considered. However, some of these relationships
may not be linear or a combination of several mea-
sures together may be stronger indicators of the ben-
efit from feature feedback. We plan to do further
analysis in this direction in the future.

We only considered one selective sampling strat-
egy based on model’s uncertainty which we found
to provide more benefit from feature feedback. In
the future, we plan to explore other selective sam-
pling strategies. For example, density-based sam-
pling (Donmez and Carbonell, 2008) selects the in-
stances that are representative of clusters of simi-
lar instances, and may facilitate more effective feed-
back on a diverse set of features.

In this work, feature feedback was simulated us-
ing an oracle. Feedback from the users, however,
might be less accurate. Our next step will be to ana-
lyze how the benefit from feature feedback varies as
the quality of feature feedback varies.

Our eventual goal is to estimate the benefit from
feature feedback for a given problem so that the right
annotation strategy can be selected for a given learn-
ing problem at a given stage in learning and the total
annotation cost for learning the target concept can
be minimized. Note that in addition to the charac-
teristics of the labeled data analyzed so far, expected
benefit from feature feedback will also depend on
the properties of the data to be labeled next for the
two annotation strategies - with or without feature
feedback.

Acknowledgments

We thank Carolyn P. Rosé, Omid Madani, Hema
Raghavan, Jaime Carbonell, Pinar Donmez and
Chih-Jen Lin for helpful discussions, and the re-
viewers for their feedback. This work is supported
by DARPA’s Machine Reading program under con-
tract FA8750-09-C-0172.

113

References
Shilpa Arora and Eric Nyberg. 2009. Interactive annota-

tion learning with indirect feature voting. In Proceed-
ings of NAACL-HLT 2009 (Student Research Work-
shop).

Shilpa Arora, Elijah Mayfield, Carolyn Penstein Rosé,
and Eric Nyberg. 2010. Sentiment classification
using automatically extracted subgraph features. In
Proceedings of the Workshop on Emotion in Text at
NAACL.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines. Soft-
ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

William W. Cohen. 2004. Minorthird: Methods for iden-
tifying names and ontological relations in text using
heuristics for inducing regularities from data.

Pinar Donmez and Jaime G. Carbonell. 2008. Paired
Sampling in Density-Sensitive Active Learning. In
Proceedings of the International Symposium on Arti-
ficial Intelligence and Mathematics.

Gregory Druck, Gideon Mann, and Andrew McCallum.
2008. Learning from labeled features using general-
ized expectation criteria. In SIGIR ’08: Proceedings
of the 31st annual international ACM SIGIR confer-
ence on Research and development in information re-
trieval, pages 595–602, New York, NY, USA. ACM.

Gregory Druck, Burr Settles, and Andrew McCallum.
2009. Active learning by labeling features. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association
for Computational Linguistics.

B. Efron and R.J. Tibshirani. 1994. An introduction to
the bootstrap. Monographs on Statistics and Applied
Probability. Chapman and Hall/CRC, New York.

Mahesh Joshi and Carolyn Penstein Rosé. 2009. Gen-
eralizing dependency features for opinion mining. In
ACL-IJCNLP ’09: Proceedings of the ACL-IJCNLP
2009 Conference Short Papers, pages 313–316, Mor-
ristown, NJ, USA. Association for Computational Lin-
guistics.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In ACL ’03: Proceedings
of the 41st Annual Meeting on Association for Compu-
tational Linguistics, pages 423–430, Morristown, NJ,
USA. Association for Computational Linguistics.

K. Lang. 1995. NewsWeeder: Learning to filter net-
news. In 12th International Conference on Machine
Learning (ICML95), pages 331–339.

D. Lewis. 1995. The reuters-21578 text categorization
test collection.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL.

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In ADVANCES IN LARGE MARGIN
CLASSIFIERS, pages 61–74. MIT Press.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James H.
Martin, and Dan Jurafsky. 2004. Shallow seman-
tic parsing using support vector machines. In Pro-
ceedings of the Human Language Technology Con-
ference/North American chapter of the Association of
Computational Linguistics (HLT/NAACL).

Hema Raghavan, Omid Madani, and Rosie Jones. 2006.
Active learning with feedback on features and in-
stances. Journal of Machine Learning Research,
7:1655–1686.

Hema Raghavan, Omid Madani, and Rosie Jones. 2007.
When will feature feedback help? quantifying the
complexity of classification problems. In IJCAI Work-
shop on Human in the Loop Computing.

C. J. Van Rijsbergen. 1979. Information Retrieval. But-
terworths, London, 2 edition.

Simon Tong and Daphne Koller. 2000. Support vector
machine active learning with applications to text clas-
sification. In JOURNAL OF MACHINE LEARNING
RESEARCH, pages 999–1006.

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Human Language
Technologies: Proceedings of the Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT), pages 260–
267, Rochester, NY, April.

114

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 115–124,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

ULISSE:
an Unsupervised Algorithm for Detecting Reliable Dependency Parses

Felice Dell’Orletta, Giulia Venturi and Simonetta Montemagni
Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC–CNR)

via G. Moruzzi, 1 – Pisa (Italy)
{felice.dellorletta,giulia.venturi,simonetta.montemagni}@ilc.cnr.it

Abstract

In this paper we present ULISSE, an unsu-
pervised linguistically–driven algorithm to se-
lect reliable parses from the output of a de-
pendency parser. Different experiments were
devised to show that the algorithm is robust
enough to deal with the output of different
parsers and with different languages, as well
as to be used across different domains. In
all cases, ULISSE appears to outperform the
baseline algorithms.

1 Introduction

While the accuracy of state–of–the–art parsers is in-
creasing more and more, this is still not enough for
their output to be used in practical NLP–based ap-
plications. In fact, when applied to real–world texts
(e.g. the web or domain–specific corpora such as
bio–medical literature, legal texts, etc.) their accu-
racy decreases significantly. This is a real problem
since it is broadly acknowledged that applications
such as Information Extraction, Question Answer-
ing, Machine Translation, and so on can benefit sig-
nificantly from exploiting the output of a syntactic
parser. To overcome this problem, over the last few
years a growing interest has been shown in assessing
the reliability of automatically produced parses: the
selection of high quality parses represents nowadays
a key and challenging issue. The number of stud-
ies devoted to detecting reliable parses from the out-
put of a syntactic parser is spreading. They mainly
differ with respect to the kind of selection algo-
rithm they exploit. Depending on whether training
data, machine learning classifiers or external parsers

are exploited, existing algorithms can be classified
into i) supervised–based, ii) ensemble–based and iii)
unsupervised–based methods.

The first is the case of the construction of a ma-
chine learning classifier to predict the reliability of
parses on the basis of different feature types. Yates
et al. (2006) exploited semantic features derived
from the web to create a statistical model to de-
tect unreliable parses produced by a constituency
parser. Kawahara and Uchimoto (2008) relied on
features derived from the output of a supervised de-
pendency parser (e.g. dependency lengths, num-
ber of unknown words, number of coordinated con-
junctions, etc.), whereas Ravi et al. (2008) exploited
an external constituency parser to extract text–based
features (e.g. sentence length, unknown words, etc.)
as well as syntactic features to develop a super-
vised predictor of the target parser accuracy. The
approaches proposed by Reichart and Rappoport
(2007a) and Sagae and Tsujii (2007) can be classi-
fied as ensemble–based methods. Both select high
quality parses by computing the level of agreement
among different parser outputs: wheras the former
uses several versions of a constituency parser, each
trained on a different sample from the training data,
the latter uses the parses produced by different de-
pendency parsing algorithms trained on the same
data. However, a widely acknowledged problem of
both supervised–based and ensemble–based meth-
ods is that they are dramatically influenced by a) the
selection of the training data and b) the accuracy and
the typology of errors of the used parser.

To our knowledge, Reichart and Rappoport
(2009a) are the first to address the task of high qual-

115

ity parse selection by resorting to an unsupervised–
based method. The underlying idea is that syntactic
structures that are frequently created by a parser are
more likely to be correct than structures produced
less frequently. For this purpose, their PUPA (POS–
based Unsupervised Parse Assessment Algorithm)
uses statistics about POS tag sequences of parsed
sentences produced by an unsupervised constituency
parser.

In this paper, we address this unsupervised sce-
nario with two main novelties: unlike Reichart and
Rappoport (2009a), a) we address the reliable parses
selection task using an unsupervised method in a
supervised parsing scenario, and b) we operate on
dependency–based representations. Similarly to Re-
ichart and Rappoport (2009a) we exploit text inter-
nal statistics: but whereas they rely on features that
are closely related to constituency representations,
we use linguistic features which are dependency–
motivated. The proposed algorithm has been eval-
uated for selecting reliable parses from English and
Italian corpora; to our knowledge, this is the first
time that such a task has been applied to a less re-
sourced language such as Italian. The paper is or-
ganised as follows: in Section 2 we illustrate the
ULISSE algorithm; sections 3 and 4 are devoted to
the used parsers and baselines. Section 5 describes
the experiments and discusses achieved results.

2 The ULISSE Algorithm

The ULISSE (Unsupervised LInguiStically–driven
Selection of dEpendency parses) algorithm takes as
input a set of parsed sentences and it assigns to each
dependency tree a score quantifying its reliability. It
operates in two different steps: 1) it collects statis-
tics about a set of linguistically–motivated features
extracted from a corpus of parsed sentences; 2) it
calculates a quality (or reliability) score for each an-
alyzed sentence using the feature statistics extracted
from the whole corpus.

2.1 Selection of features

The features exploited by ULISSE are all linguis-
tically motivated and rely on the dependency tree
structure. Different criteria guided their selection.
First, as pointed out in Roark et al. (2007), we
needed features which could be reliably identified

within the automatic output of a parser. Second,
we focused on dependency structures that are widely
agreed in the literature a) to reflect sentences’ syn-
tactic and thus parsing complexity and b) to impose
a high cognitive load on the parsing of a complete
sentence.

Here follows the list of features used in the exper-
iments reported in this paper, which turned out to be
the most effective ones for the task at hand.
Parse tree depth: this feature is a reliable indicator
of sentence complexity due to the fact that, with sen-
tences of approximately the same length, parse tree
depth can be indicative of increased sentence com-
plexity (Yngve, 1960; Frazier, 1985; Gibson, 1998;
Nenkova, 2010).
Depth of embedded complement ‘chains’: this
feature is a subtype of the previous one, focusing on
the depth of chains of embedded complements, ei-
ther prepositional complements or nominal and ad-
jectival modifiers. Long chains of embedded com-
plements make the syntactic structure more complex
and their analysis much more difficult.
Arity of verbal predicates: this feature refers to the
number of dependency links sharing the same ver-
bal head. Here, there is no obvious relation between
the number of dependents and sentence complexity:
both a small number and a high number of depen-
dents can make the sentence processing quite com-
plex, although for different reasons (elliptical con-
structions in the former case, a high number of mod-
ifiers in the latter).
Verbal roots: this feature counts the number of ver-
bal roots with respect to number of all sentence roots
in the target corpus.
Subordinate vs main clauses: subordination is gen-
erally considered to be an index of structural com-
plexity in language. Two distinct features are con-
sidered for monitoring this aspect: one measuring
the ratio between main and subordinate clauses and
the other one focusing on the relative ordering of
subordinate clauses with respect to the main clause.
It is a widely acknowledged fact that highly com-
plex sentences contain deeply embedded subordi-
nate clauses; however, subordinate clauses are easier
to process if they occur in post–verbal rather than in
pre–verbal position (Miller, 1998).
Length of dependency links: McDonald and Nivre
(2007) report that statistical parsers have a drop in

116

accuracy when analysing long distance dependen-
cies. This is in line with Lin (1996) and Gibson
(1998) who claim that the syntactic complexity of
sentences can be predicted with measures based on
the length of dependency links, given the memory
overhead of very long distance dependencies. Here,
the dependency length is measured in terms of the
words occurring between the syntactic head and the
dependent.
Dependency link plausibility (henceforth, Arc-
POSFeat): this feature is used to calculate the plausi-
bility of a dependency link given the part–of–speech
of the dependent and the head, by also considering
the PoS of the head father and the dependency link-
ing the two.

2.2 Computation Score
The quality score (henceforth, QS) of parsed sen-
tences results from a combination of the weights as-
sociated with the monitored features. ULISSE is
modular and can use several weights combination
strategies, which may be customised with respect to
the specific task exploiting the output of ULISSE.

For this study, QS is computed as a simple prod-
uct of the individual feature weights. This follows
from the necessity to recognize high quality parses
within the input set of parsed sentences: the prod-
uct combination strategy is able to discard low qual-
ity parse trees even in presence of just one low
weight feature. Therefore, QS for each sentence i
in the set of input parsed sentences I is QS(Si) =∏n

y=1 Weight(Si, fy), where Si is the i–th sentence
of I , n is the total number of selected features and
Weight(Si, fy) is the computed weight for the y–th
feature.

Selected features can be divided into two classes,
depending on whether they are computed with re-
spect to each sentence and averaged over all sen-
tences in the target corpus (global features), or they
are computed with respect to individual dependency
links and averaged over all of them (local features).
The latter is the case of the ArcPOSFeat feature,
whereas the all other ones represent global features.

For the global features, the Weight(Si, fy) is de-
fined as:

Weight(Si, fy) =
F (V (fy), range(L(Si), r))

|range(L(Si), r)| ,

(1)

where V (fy) is the value of the y–th feature (ex-
tracted from Si), L(Si) is the length of the sen-
tence Si, range(L(Si), r) defines a range cov-
ering values from L(Si) − r and L(Si) + r,
F (V (fy), range(L(Si), r)) is the frequency of
V (fy) in all sentences in I that has a value of
length in range(L(Si), r1) and |range(L(Si), r)|
is the total number of sentences in I with length
in range(L(Si), r). For what concerns the lo-
cal feature ArcPOSFeat, ULISSE assigns a weight
for each arc in Si: in principle different strate-
gies can be used to compute a unique weight for
this feature for Si. Here, the sentence weight
for the feature ArcPOSFeat is computed as the
minimum weight among the weights of all arcs
of Si. Therefore, Weight(Si, ArcPOSFeat) =
min{weight((Pd, Ph, t)), ∀(Pd, Ph, t) ∈ Si},
where the triple (Pd, Ph, t) is an arc in Si in which
Pd is the POS of the dependent, Ph is the POS
of the syntactic head and t is the type of the de-
pendency relation and weight((Pd, Ph, t)) is the
weight of the specific arc (Pd, Ph, t). The individ-
ual arc weight is computed as follows:

weight((Pd, Ph, t)) =
F ((Pd, Ph, t))
F ((Pd, X, t))

·

· F ((Pd, Ph, t))
F ((X, Ph, t))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((Pd, Ph, t))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((Ph, Ph2, t2))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((((Pd, X, t))(X,Ph2, t2)))

,

where F (x) is the frequency of x in I , X is a vari-
able and (arc1 arc2) represent two consecutive arcs
in the tree.

3 The Parsers

ULISSE was tested against the output of two really
different data–driven parsers: the first–order Max-
imum Spanning Tree (MST) parser (McDonald et
al., 2006) and the DeSR parser (Attardi, 2006) using
Support Vector Machine as learning algorithm. The

1We set r=0 in the in–domain experiments and r=2 in the
out–of–domain experiment reported in Sec 5.3.

117

former is a graph–based parser (following the so–
called “all–pairs” approach Buchholz et al. (2006))
where every possible arc is considered in the con-
struction of the optimal parse tree and where depen-
dency parsing is represented as the search for a max-
imum spanning tree in a directed graph. The latter
is a Shift–Reduce parser (following a “stepwise” ap-
proach, Buchholz et al. (2006)), where the parser
is trained and learns the sequence of parsing actions
required to build the parse tree.

Although both parser models show a similar accu-
racy, McDonald and Nivre (2007) demonstrate that
the two types of models exhibit different behaviors.
Their analysis exemplifies how different the two
parsers behave when their accuracies are compared
with regard to some linguistic features of the ana-
lyzed sentences. To mention only a few, the Shift–
Reduce parser tends to perform better on shorter
sentences, while the MST parser guarantees a higher
accuracy in identifying long distance dependencies.
As regards the identification of dependency types,
the MST parser shows a better ability to identify
the dependents of the sentences’ roots whereas the
Shift–Reduce tends to better recognize specific rela-
tions (e.g. Subject and Object).

McDonald and Nivre (2007) describe how the
systems’ behavioral differences are due to the dif-
ferent parsing algorithms implemented by the Shift–
Reduce and the MST parsing models. The Shift
Reduce parser constructs a dependency tree by per-
forming a sequence of parser actions or transitions
through a greedy parsing strategy. As a result of
this parsing procedure, a Shift Reduce parser cre-
ates shorter arcs before longer arcs. The latter could
be the reason for the lower accuracy in identifying
longer arcs when compared to the MST parser. This
also influences a lower level of accuracy in the anal-
ysis of longer sentences that usually contain longer
arcs than shorter sentences. The MST parser’s abil-
ity to analyze both short and long arcs is invariant
as it employs a graph-based parsing method where
every possible arc is considered in the construction
of the dependency tree.

4 The Baselines

Three different increasingly complex baseline mod-
els were used to evaluate the performance of

ULISSE.
The first baseline is constituted by a Random Se-

lection (RS) of sentences from the test sets. This
baseline is calculated in terms of the scores of the
parser systems on the test set.

The second baseline is represented by the Sen-
tence Length (SL), starting from the assumption,
demonstrated by McDonald and Nivre (2007), that
long sentences are harder to analyse using statistical
dependency parsers than short ones. This is a strong
unsupervised baseline based on raw text features,
ranking the parser results from the shortest sentence
to the longest one.

The third and most advanced baseline, exploiting
parse features, is the PUPA algorithm (Reichart and
Rappoport, 2007a). PUPA uses a set of parsed sen-
tences to compute the statistics on which its scores
are based. The PUPA algorithm operates on a con-
stituency based representation and collects statistics
about the POS tags of the words in the yield of the
constituent and of the words in the yields of neigh-
boring constituents. The sequences of POS tags that
are more frequent in target corpus receive higher
scores after proper regularization is applied to pre-
vent potential biases. Therefore, the final score as-
signed to a constituency tree results from a combina-
tion of the scores of its extracted sequences of POSs.

In order to use PUPA as a baseline, we imple-
mented a dependency–based version, hencefoth re-
ferred to as dPUPA. dPUPA uses the same score
computation of PUPA and collects statistics about
sequences of POS tags: the difference lies in the fact
that in this case the POS sequences are not extracted
from constituency trees but rather from dependency
trees. To be more concrete, rather than represent-
ing a sentence as a collection of constituency–based
sequences of POSs, dPUPA represents each sen-
tence as a collection of sequences of POSs cov-
ering all identified dependency subtrees. In par-
ticular, each dependency tree is represented as the
set of all subtrees rooted by non–terminal nodes.
Each subtree is then represented as the sequence
of POS tags of the words in the subtree (reflect-
ing the word order of the original sentence) inte-
grated with the POS of the leftmost and rightmost
in the sentence (NULL when there are no neigh-
bors). Figure 1 shows the example of the depen-
dency tree for the sentence I will give you the ball.

118

Figure 1: Example of dependency tree.

If we consider the subtree rooted by give (in the
dotted circle), the resulting POS sequence is as
follows: POS2 POS3 POS4 POS5 POS6 NULL,
where POS3 POS4 POS5 POS6 is the sequence of
POS tags in the subtree, POS2 is the left neighbor
POS tag and NULL marks the absence of a right
neighbor.

5 Experiments and Results

The experiments were organised as follows: a target
corpus was automatically POS tagged (Dell’Orletta,
2009) and dependency–parsed; the ULISSE and
baseline algorithms of reliable parse selection were
run on the POS–tagged and dependency–parsed tar-
get corpus in order to identify high quality parses;
results achieved by the selection algorithms were
evaluated with respect to a subset of the target cor-
pus of about 5,000 word–tokens (henceforth referred
to as “test set”) for which gold-standard annotation
was available. Different sets of experiments were
devised to test the robustness of our algorithm. They
were performed with respect to i) the output of the
parsers described in Section 3, ii) two different lan-
guages, iii) different domains.

For what concerns the languages, we chose Italian
and English for two main reasons. First of all, they
pose different challenges to a parser since they are
characterised by quite different syntactic features.
For instance, Italian, as opposed to English, is char-
acterised by a relatively free word order (especially
for what concerns subject and object relations with
respect to the verb) and by the possible absence of
an overt subject. Secondly, as it is shown in Section
5.1, Italian is a less resourced language with respect
to English. This is a key issue, since as demonstrated

by Reichart and Rappoport (2007b) and McClosky
et al. (2008), small and big treebanks pose different
problems in the reliable parses selection.

Last but not least, we aimed at demonstrating that
ULISSE can be successfully used not only with texts
belonging to the same domain as the parser train-
ing corpus. For this purpose, ULISSE was tested
on a target corpus of Italian legislative texts, whose
automatic linguistic analysis poses domain–specific
challenges (Venturi, 2010). Out–of–domain experi-
ments are being carried out also for English.

5.1 The Corpora

The Italian corpora Both parsers were trained on
ISST–TANL2, a dependency annotated corpus used
in Evalita’093, an evaluation campaign carried out
for Italian (Bosco et al., 2009). ISST–TANL in-
cludes 3,109 sentences (71,285 tokens) and consists
of articles from newspapers and periodicals.

Two different target corpora were used for the
in–domain and out–of–domain experiments. For
the former, we used a corpus of 1,104,237 sen-
tences (22,830,739 word–tokens) of newspapers
texts which was extracted from the CLIC-ILC Cor-
pus (Marinelli et al., 2003); for the legal domain,
we used a collection of Italian legal texts (2,697,262
word–tokens; 97,564 sentences) regulating a vari-
ety of domains, ranging from environment, human
rights, disability rights, freedom of expression to pri-
vacy, age disclaimer, etc. In the two experiments,
the test sets were represented respectively by: a) the
test set used in the Evalita’09 evaluation campaign,
constituted by 260 sentences and 5,011 tokens from
newpapers text; b) a set of 102 sentences (corre-
sponding to 5,691 tokens) from legal texts.

The English corpora For the training of parsers
we used the dependency–based version of Sections
2–11 of the Wall Street Journal partition of the
Penn Treebank (Marcus et al., 2003), which was de-
veloped for the CoNLL 2007 Shared Task on De-
pendency Parsing (Nivre et al., 2007): it includes
447,000 word tokens and about 18,600 sentences.

As target data we took a corpus of news, specif-
ically the whole Wall Street Journal Section of the

2http://medialab.di.unipi.it/wiki/SemaWiki
3http://evalita.fbk.eu/index.html

119

Penn Treebank4, from which the portion of text cor-
responding to the training corpus was removed; the
English target corpus thus includes 39,285,425 to-
kens (1,625,606 sentences). For testing we used
the test set of the CoNLL 2007 Shared Task, cor-
responding to a subset of Section 23 of the Wall
Street Journal partition of the Penn Treebank (5,003
tokens, 214 sentences).

5.2 Evaluation Methodology
Performances of the ULISSE algorithm have been
evaluated i) with respect to the accuracy of ranked
parses and ii) in terms of Precision and Recall. First,
for each experiment we evaluated how the ULISSE
algorithm and the baselines classify the sentences in
the test set with respect to the “Labelled Attachment
Score” (LAS) obtained by the parsers, i.e. the per-
centage of tokens for which it has predicted the cor-
rect head and dependency relation. In particular, we
computed the LAS score of increasingly wider top
lists of k tokens, where k ranges from 500 word to-
kens to the whole size of the test set (with a step size
of 500 word tokens, i.e. k=500, k=1000, k=1500,
etc.).

As regards ii), we focused on the set of ranked
sentences showing a LAS ≥ α. Since imposing
a 100% LAS was too restrictive, for each experi-
ment we defined a different α threshold taking into
account the performance of each parser across the
different languages and domains. In particular, we
took the top 25% and 50% of the list of ranked sen-
tences and calculated Precision and Recall for each
of them. To this specific end, a parse tree showing
a LAS ≥ α is considered as a trustworthy analysis.
Precision has been computed as the ratio of the num-
ber of trustworthy analyses over the total number of
sentences in each top list. Recall has been computed
as the ratio of the number of trustworthy analyses
which have been retrieved over the total number of
trustworthy analyses in the whole test set.

In order to test how the ULISSE algorithm is able
to select reliable parses by relying on parse fea-
tures rather than on raw text features, we computed
the accuracy score (LAS) of a subset of the top list
of sentences parsed by both parsers and ranked by

4This corpus represents to the unlabelled data set distributed
for the CoNLL 2007 Shared Task on Dependency Parsing, do-
main adaptation track.

ULISSE: in particular, we focused on those sen-
tences which were not shared by the MST and DeSR
top lists.

5.3 Results

We will refer to the performed experiments as fol-
lows: “IT in–domain” and “IT out–of–domain” for
the Italian experiments using respectively the ISST–
TANL test set (henceforth ISST TS) and the Legal-
Corpus test set (henceforth Legal TS); “EN in–
domain” for the English experiment using the PTB
test set (PTB TS).

As a starting point let us consider the accuracy
of DeSR and MST parsers on the whole test sets,
reported in Table 1. The accuracy has been com-
puted in terms of LAS and of Unlabelled Attach-
ment Score (UAS), i.e. the percentage of tokens with
a correctly identified syntactic head. It can be no-
ticed that the performance of the two parsers is quite
similar for Italian (i.e. wrt ISST TS and Legal TS),
whereas there is a 2.3% difference between the MST
and DeSR accuracy as far as English is concerned.

ISST TS Legal TS PTB TS
Parser LAS UAS LAS UAS LAS UAS
DeSR 80.22 84.96 73.40 76.12 85.95 87.25
MST 79.52 85.43 73.99 78.72 88.25 89.55

Table 1: Overall accuracy of DeSR and MST parsers.

The plots in Figure 2 show the LAS of parses
ranked by ULISSE and the baselines across the dif-
ferent experiments. Each plot reports the results of a
single experiment: plots in the same row report the
LAS of DeSR and MST parsers with respect to the
same test set. In all experiments, ULISSE turned out
to be the best ranking algorithm since it appears to
select top lists characterised by higher LAS scores
than the baselines. As Figure 2 shows, all ranking
algorithms perform better than Random Selection
(RS), i.e. all top lists (for each k value) show a LAS
higher than the accuracy of DeSR and MST parsers
on the whole test sets. In the EN in–domain experi-
ment, the difference between the results of ULISSE
and the other ranking algorithms is smaller than in
the corresponding Italian experiment, a fact result-
ing from the higher accuracy of DeSR and MST
parsers (i.e. LAS 85.95% and 88.25% respectively)
on the PTB TS. It follows that, for example, the
first top list (with k=500) of the SL baseline has a

120

1000 2000 3000 4000 5000

80

82

84

86

88

90

 ULISSE
 LS
 dPUPA
 RS

(a) IT in–domain experiment (DeSR).

1000 2000 3000 4000 5000

79

80

81

82

83

84

85

86

 ULISSE
 LS
 dPUPA
 RS

(b) IT in–domain experiment (MST).

1000 2000 3000 4000 5000

74

76

78

80

82

 ULISSE
 LS
 dPUPA
 RS

(c) IT out–of–domain experiment (DeSR).

1000 2000 3000 4000 5000

66

68

70

72

74

76

78

80

82

84

 ULISSE
 LS
 dPUPA
 RS

(d) IT out–of–domain experiment (MST).

1000 2000 3000 4000 5000

86

88

90

92

94

 ULISSE
 LS
 dPUPA
 RS

(e) EN in–domain experiment (DeSR).

1000 2000 3000 4000 5000

88

89

90

91

92

93

94

 ULISSE
 LS
 dPUPA
 RS

(f) EN in–domain experiment (MST).

Figure 2: LAS of parses ranked by ULISSE algorithm and by the three baselines.

LAS accuracy of 93.36% and 93.96% respectively
for DeSR and MST: even in this case, ULISSE out-
performs all baselines. This is also the case in the
IT out–of–domain experiment. As reported in Table
1, parsing legal texts is a quite challenging task due
to a number of domain–specific peculiarities at the
level of syntax: this is testified by the average sen-
tence length which in the Legal TS is 56 word to-
kens. Nevertheless, ULISSE is able also in this case
to highly rank long sentences showing a high LAS.
For example, while in the first top list of 500 word
tokens the sentences parsed by DeSR and ordered by
SL have an average sentence length of 24 words and
a LAS of 79.37%, ULISSE includes in the same top
list longer sentences (with average sentence length =

29) with a higher LAS (82.72%). Also dPUPA ranks
in the same top list quite long sentences (with 27 av-
erage sentence length), but compared to ULISSE it
shows a lower LAS (i.e. 73.56%).

IT in–domain IT out–of–domain EN in–domain
DeSR MST DeSR MST DeSR MST

MST top–list 80.93 80.27 68.84 74.58 83.37 90.39
DeSR top–list 82.46 77.82 75.47 74.88 86.50 86.74

Table 3: LAS of not–shared sentences in the DeSR and
MST top–lists.

Results in Table 2 show that in the top 25% of
the ranked sentences with a LAS ≥ α ULISSE has
the highest Precision and Recall in all experiments.
We believe that the low performance of dPUPA with
respect to all other ranking algorithms can be due to

121

DeSR MST
25% 50% 25% 50%

Prec Rec LAS AvgSL Prec Rec LAS AvgSL Prec Rec LAS AvgSL Prec Rec LAS AvgSL
IT in–domain: LAS≥ 85% (DeSR: 120 sentences; MST: 112 sentences)

ULISSE 66.15 35.83 88.25 5.25 59.23 64.17 84.30 14.60 60 34.82 86.16 5.68 55.38 64.29 83.39 15.27
LS 63.08 34.17 84.54 4.15 53.08 57.50 82.07 11.90 58.46 33.93 82.73 4.45 53.08 61.61 82.14 12.75
dPUPA 61.54 33.33 86.89 6.68 59.23 64.17 84.36 14.82 53.85 31.25 82.26 8.61 50.00 58.04 79.94 17.04

IT out–of–domain: LAS≥ 75% (DeSR: 51 sentences; MST: 57 sentences)
ULISSE 73.08 37.25 80.75 16.71 69.23 70.59 79.17 41.80 69.23 31.58 81.47 13.63 67.31 61.40 78.36 36
LS 53.85 27.45 76.71 12.63 67.31 68.63 78.34 34.14 61.54 28.07 78.42 11.30 69.23 63.16 79.78 30.54
dPUPA 57.69 29.41 73.97 15.67 61.54 62.74 75.24 40.39 46.15 21.05 72.08 22.56 57.69 52.63 74.86 42.91

EN in–domain: LAS≥ 90% (DeSR: 118 sentences; MST: 120 sentences)
ULISSE 81.48 37.29 94.50 6.31 69.44 63.56 90.93 16.36 77.78 35 93.74 5.82 69.44 62.5 91.20 16.48
LS 77.78 35.59 93.39 4.87 65.74 60.17 91.01 13.67 75.92 34.17 93.55 4.79 68.52 61.67 90.84 13.44
dPUPA 74.07 33.90 89.76 7.95 65.74 60.17 88.37 18.14 77.78 35 93.43 5.08 68.52 61.67 91.03 14.49

Table 2: In all Tables: the number of sentences with a LAS≥ α parsed by DeSr and MST parsers (first row); Precision
(Prec), Recall (Rec), the corresponding parser accuracy (LAS) of the top 25% and 50% of the list of sentences and
ranked by the ULISSE algorithm, Length of Sentence (LS) and dependency PUPA (dPUPA) and the corresponding
average length in tokens of ranked sentence (AvgSL).

the fact that PUPA is based on constituency–specific
features that once translated in terms of dependency
structures may be not so effective.

In order to show that the ranking of sentences
does not follow from raw text features but rather
from parse features, we evaluated the accuracy of
parsed sentences that are not–shared by MST and
DeSR top–lists selected by ULISSE. For each test
set we selected a different top list: a set of 100
sentences in the IT and EN in–domain experiments
and of 50 sentences in the IT out–of–domain exper-
iment. For each of them we have a different number
of not–shared sentences: 24, 15 and 16 in the IT
in–domain, IT out–of–domain and EN in–domain
experiments respectively. Table 3 reports the LAS
of DeSR and MST for these sentences: it can be
observed that the LAS of not–shared sentences in
the DeSR top list is always higher than the LAS
assigned by the same parser to the not–shared sen-
tences in the MST top list, and viceversa. For in-
stance, in the English experiment the LAS achieved
by DeSR on the not–shared top list is higher (86.50)
than the LAS of DeSR on the not–shared MST top
list (83.37); viceversa, the LAS of MST on the not–
shared DeSR top list is higher (86.74) than the LAS
of MST on the not–shared MST top list (90.39). The
unique exception is MST in the IT out–of–domain
experiment, but the difference in terms of LAS be-
tween the parses is not statistically relevant (p–value
< 0.05). These results demonstrate that ULISSE is
able to select parsed sentences on the basis of the
reliability of the analysis produced by each parser.

6 Conclusion

ULISSE is an unsupervised linguistically–driven
method to select reliable parses from the output of
dependency parsers. To our knowledge, it repre-
sents the first unsupervised ranking algorithm oper-
ating on dependency representations which are more
and more gaining in popularity and are arguably
more useful for some applications than constituency
parsers. ULISSE shows a promising performance
against the output of two supervised parsers se-
lected for their behavioral differences. In all experi-
ments, ULISSE outperforms all baselines, including
dPUPA and Sentence Length (SL), the latter repre-
senting a very strong baseline selection method in a
supervised scenario, where parsers have a very high
performance with short sentences. The fact of car-
rying out the task of reliable parse selection in a su-
pervised scenario represents an important novelty:
however, the unsupervised nature of ULISSE could
also be used in an unsupervised scenario (Reichart
and Rappoport, 2010). Current direction of research
include a careful study of a) the quality score func-
tion, in particular for what concerns the combination
of individual feature weights, and b) the role and ef-
fectivess of the set of linguistic features. This study
is being carried out with a specific view to NLP tasks
which might benefit from the ULISSE algorithm.
This is the case, for instance, of the domain adap-
tation task in a self–training scenario (McClosky et
al., 2006), of the treebank construction process by
minimizing the human annotators’ efforts (Reichart
and Rappoport, 2009b), of n–best ranking methods
for machine translation (Zhang, 2006).

122

References

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Proceed-
ings of the Tenth Conference on Computational Nat-
ural Language Learning (CoNLL-X ’06), New York
City, New York, pp. 166–170.

Cristina Bosco, Simonetta Montemagni, Alessandro
Mazzei, Vincenzo Lombardo, Felice Dell’Orletta and
Alessandro Lenci. 2009. Parsing Task: comparing
dependency parsers and treebanks. In Proceedings of
Evalita’09, Reggio Emilia.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL.

Felice Dell’Orletta. 2009. Ensemble system for Part-of-
Speech tagging. In Proceedings of Evalita’09, Eval-
uation of NLP and Speech Tools for Italian, Reggio
Emilia, December.

Lyn Frazier. 1985. Syntactic complexity. In D.R.
Dowty, L. Karttunen and A.M. Zwicky (eds.), Natural
Language Parsing, Cambridge University Press, Cam-
bridge, UK.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. In Cognition, 68(1), pp. 1-
76.

Daisuke Kawahara and Kiyotaka Uchimoto. 2008.
Learning Reliability of Parses for Domain Adaptation
of Dependency Parsing. In Proceedings of IJCNLP
2008, pp. 709–714.

Dekan Lin. 1996. On the structural complexity of nat-
ural language sentences. In Proceedings of COLING
1996, pp. 729–733.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of CoNLL
2006.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Parsing
Models. In Proceedings of EMNLP-CoNLL, 2007, pp.
122-131.

Mitchell P. Marcus, Mary Ann Marcinkiewicz and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: the penn treebank. In Comput. Lin-
guist.,vol. 19, issue 2, MIT Press, pp. 313–330.

Rita Marinelli, et al. 2003. The Italian PAROLE cor-
pus: an overview. In A. Zampolli et al. (eds.), Compu-
tational Linguistics in Pisa, XVI–XVII, Pisa–Roma,
IEPI., I, 401–421.

David McClosky, Eugene Charniak and Mark Johnson.
2006. Reranking and self–training for parser adap-
tation. In Proceedings of ICCL–ACL 2006, pp. 337–
344.

David McClosky, Eugene Charniak and Mark Johnson.
2008. When is Self–Trainig Effective for parsing?. In
Proceedings of COLING 2008, pp. 561–568.

Jim Miller and Regina Weinert. 1998. Spontaneous spo-
ken language. Syntax and discourse. Oxford, Claren-
don Press.

Ani Nenkova, Jieun Chae, Annie Louis, and Emily Pitler.
2010. Structural Features for Predicting the Linguistic
Quality of Text Applications to Machine Translation,
Automatic Summarization and Human–Authored Text.
In E. Krahmer, M. Theune (eds.), Empirical Methods
in NLG, LNAI 5790, Springer-Verlag Berlin Heidel-
berg, pp. 222241.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, Deniz Yuret.
2007. The CoNLL 2007 Shared Task on Dependency
Parsing. In Proceedings of the EMNLP-CoNLL, pp.
915–932.

Sujith Ravi, Kevin Knight and Radu Soricut. 2008. Auto-
matic Prediction of Parser Accuracy. In Proceedings
of the EMNLP 2008, pp. 887–896.

Roi Reichart and Ari Rappoport. 2007a. An ensemble
method for selection of high quality parses. In Pro-
ceedings of ACL 2007, pp. 408–415.

Roi Reichart and Ari Rappoport. 2007b. Self–Training
for Enhancement and Domain Adaptation of Statisti-
cal Parsers Trained on Small Datasets. In Proceedings
of ACL 2007, pp. 616–623.

Roi Reichart and Ari Rappoport. 2009a. Automatic Se-
lection of High Quality Parses Created By a Fully Un-
supervised Parser. In Proceedings of CoNLL 2009,
pp. 156–164.

Roi Reichart and Ari Rappoport. 2009b. Sample Selec-
tion for Statistical Parsers: Cognitively Driven Algo-
rithms and Evaluation Measures. In Proceedings of
CoNLL 2009, pp. 3–11.

Roi Reichart and Ari Rappoport. 2010. Improved Fully
Unsupervised Parsing with Zoomed Learning. In Pro-
ceedings of EMNLP 2010.

Brian Roark, Margaret Mitchell and Kristy Hollingshead.
2007. Syntactic complexity measures for detecting
Mild Cognitive Impairment. In Proceedings of ACL
Workshop on Biological, Translational, and Clinical
Language Processing (BioNLP’07), pp. 1–8.

Kenji Sagae and Junichi Tsujii. 2007. Dependency
Parsing and Domain Adaptation with LR Models and
Parser Ensemble. In Proceedings of the EMNLP–
CoNLL 2007, pp. 1044–1050.

Giulia Venturi. 2010. Legal Language and Legal Knowl-
edge Management Applications. In E. Francesconi, S.
Montemagni, W. Peters and D. Tiscornia (eds.), Se-
mantic Processing of Legal Texts, Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, vol.
6036, pp. 3-26.

123

Alexander Yates, Stefan Schoenmackers and Oren Et-
zioni. 2006. Detecting Parser Errors Using Web–
based Semantic Filters. In Proceedings of the EMNLP
2006, pp. 27–34.

Victor H.A. Yngve. 1960. A model and an hypothesis for
language structure. In Proceedings of the American
Philosophical Society, pp. 444-466.

Ying Zhang, Almut Hildebrand and Stephan Vogel.
2006. Distributed language modeling for N-best list
re-ranking. In Proceedings of the EMNLP 2006, pp.
216–223.

124

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 125–134,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Language Models as Representations for Weakly-Supervised NLP Tasks

Fei Huang and Alexander Yates
Temple University

Broad St. and Montgomery Ave.
Philadelphia, PA 19122

fei.huang@temple.edu
yates@temple.edu

Arun Ahuja and Doug Downey
Northwestern University

2133 Sheridan Road
Evanston, IL 60208

a-ahuja@northwestern.edu
ddowney@eecs.northwestern.edu

Abstract

Finding the right representation for words is
critical for building accurate NLP systems
when domain-specific labeled data for the
task is scarce. This paper investigates lan-
guage model representations, in which lan-
guage models trained on unlabeled corpora
are used to generate real-valued feature vec-
tors for words. We investigate ngram mod-
els and probabilistic graphical models, includ-
ing a novel lattice-structured Markov Random
Field. Experiments indicate that language
model representations outperform traditional
representations, and that graphical model rep-
resentations outperform ngram models, espe-
cially on sparse and polysemous words.

1 Introduction

NLP systems often rely on hand-crafted, carefully
engineered sets of features to achieve strong perfor-
mance. Thus, a part-of-speech (POS) tagger would
traditionally use a feature like, “the previous token
is the” to help classify a given token as a noun or
adjective. For supervised NLP tasks with sufficient
domain-specific training data, these traditional fea-
tures yield state-of-the-art results. However, NLP
systems are increasingly being applied to texts like
the Web, scientific domains, and personal commu-
nications like emails, all of which have very differ-
ent characteristics from traditional training corpora.
Collecting labeled training data for each new target
domain is typically prohibitively expensive. We in-
vestigate representations that can be applied when
domain-specific labeled training data is scarce.

An increasing body of theoretical and empirical
evidence suggests that traditional, manually-crafted

features limit systems’ performance in this setting
for two reasons. First, featuresparsityprevents sys-
tems from generalizing accurately to words and fea-
tures not seen during training. Because word fre-
quencies are Zipf distributed, this often means that
there is little relevant training data for a substantial
fraction of parameters (Bikel, 2004), especially in
new domains (Huang and Yates, 2009). For exam-
ple, word-type features form the backbone of most
POS-tagging systems, but types like “gene” and
“pathway” show up frequently in biomedical liter-
ature, and rarely in newswire text. Thus, a classifier
trained on newswire data and tested on biomedical
data will have seen few training examples related to
sentences with features “gene” and “pathway” (Ben-
David et al., 2009; Blitzer et al., 2006).

Further, because words arepolysemous, word-
type features prevent systems from generalizing to
situations in which words have different meanings.
For instance, the word type “signaling” appears pri-
marily as a present participle (VBG) in Wall Street
Journal (WSJ) text, as in, “Interest rates rose, sig-
naling that . . . ” (Marcus et al., 1993). In biomedical
text, however, “signaling” appears primarily in the
phrase “signaling pathway,” where it is considered
a noun (NN) (PennBioIE, 2005); this phrase never
appears in the WSJ portion of the Penn Treebank
(Huang and Yates, 2010a).

Our response to these problems with traditional
NLP representations is to seek new representations
that allow systems to generalize more accurately to
previously unseen examples. Our approach depends
on the well-knowndistributional hypothesis, which
states that a word’s meaning is identified with the
contexts in which it appears (Harris, 1954; Hin-
dle, 1990). Our goal is to develop probabilistic lan-

125

guage models that describe the contexts of individ-
ual words accurately. We then constructrepresen-
tations, or mappings from word tokens and types
to real-valued vectors, from these language models.
Since the language models are designed to model
words’ contexts, the features they produce can be
used to combat problems with polysemy. And by
careful design of the language models, we can limit
the number of features that they produce, controlling
how sparse those features are in training data.

In this paper, we analyze the performance
of language-model-based representations on tasks
where domain-specific training data is scarce. Our
contributions are as follows:
1. We introduce a novel factorial graphical model
representation, a Partial-Lattice Markov Random
Field (PL-MRF), which is a tractable variation of
a Factorial Hidden Markov Model (HMM) for lan-
guage modeling.
2. In experiments on POS tagging in a domain adap-
tation setting and on weakly-supervised informa-
tion extraction (IE), we quantify the performance of
representations derived from language models. We
show that graphical models outperform ngram rep-
resentations. The PL-MRF representation achieves a
state-of-the-art 93.8% accuracy on the POS tagging
task, while the HMM representation improves over
the ngram model by 10% on the IE task.
3. We analyze how the performance of the different
representations varies due to the fundamental chal-
lenges of sparsity and polysemy.

The next section discusses previous work. Sec-
tions 3 and 4 present the existing representations we
investigate and the new PL-MRF, respectively. Sec-
tions 5 and 6 describe our two tasks and the results
of using our representations on each of them. Sec-
tion 7 concludes.

2 Previous Work

There is a long tradition of NLP research on rep-
resentations, mostly falling into one of four cate-
gories: 1) vector space models of meaning based
on document-level lexical cooccurrence statistics
(Salton and McGill, 1983; Turney and Pantel, 2010;
Sahlgren, 2006); 2) dimensionality reduction tech-
niques for vector space models (Deerwester et al.,
1990; Honkela, 1997; Kaski, 1998; Sahlgren, 2005;
Blei et al., 2003; V̈ayrynen et al., 2007); 3) using
clusters that are induced from distributional similar-
ity (Brown et al., 1992; Pereira et al., 1993; Mar-

tin et al., 1998) as non-sparse features (Lin and Wu,
2009; Candito and Crabbe, 2009; Koo et al., 2008;
Zhao et al., 2009); 4) and recently, language models
(Bengio, 2008; Mnih and Hinton, 2009) as represen-
tations (Weston et al., 2008; Collobert and Weston,
2008; Bengio et al., 2009), some of which have al-
ready yielded state of the art performance on domain
adaptation tasks (Huang and Yates, 2009; Huang and
Yates, 2010a; Huang and Yates, 2010b; Turian et al.,
2010) and IE (Ahuja and Downey, 2010; Downey et
al., 2007b). In contrast to this previous work, we de-
velop a novel Partial Lattice MRF language model
that incorporates a factorial representation of latent
states, and demonstrate that it outperforms the pre-
vious state-of-the-art in POS tagging in a domain
adaptation setting. We also analyze the novel PL-
MRF representation on an IE task, and several repre-
sentations along the key dimensions of sparsity and
polysemy.

Most previous work on domain adaptation has fo-
cused on the case where some labeled data is avail-
able in both the source and target domains (Daumé
III, 2007; Jiang and Zhai, 2007; Daumé III and
Marcu, 2006; Finkel and Manning, 2009; Dredze
et al., 2010; Dredze and Crammer, 2008). Learn-
ing bounds are known (Blitzer et al., 2007; Man-
sour et al., 2009). Dauḿe III et al. (2010) use semi-
supervised learning to incorporate labeled and unla-
beled data from the target domain. In contrast, we
investigate a domain adaptation setting where no la-
beled data is available for the target domain.

3 Representations

A representationis a set of features that describe
instances for a classifier. Formally, letX be an
instance set, and letZ be the set of labels for a
classification task. A representation is a function
R : X → Y for some suitable feature spaceY (such
asR

d). We refer to dimensions ofY asfeatures, and
for an instancex ∈ X we refer to values for partic-
ular dimensions ofR(x) as features ofx.

3.1 Traditional POS-Tagging Representations

As a baseline for POS tagging experiments and an
example of our terminology, we describe a repre-
sentation used in traditional supervised POS taggers.
The instance setX is the set of English sentences,
andZ is the set of POS tag sequences. A traditional
representation TRAD-R maps a sentencex ∈ X to a
sequence of boolean-valued vectors, one vector per

126

Representation Feature

TRAD-R ∀w1[xi = w]
∀s∈Suffixes1[xi ends withs]
1[xi contains a digit]

NGRAM-R ∀w′,w′′P (w′ww′′)/P (w)

HMM -TOKEN-R ∀k1[yi∗ = k]
HMM -TYPE-R ∀kP (y = k|x = w)
I-HMM -TOKEN-R ∀j,k1[yi,j∗ = k]
BROWN-TOKEN-R ∀j∈{−2,−1,0,1,2}

∀p∈{4,6,10,20} prefix(yi+j , p)
BROWN-TYPE-R ∀p prefix(y, p)

LATTICE-TOKEN-R ∀j,k1[yi,j∗ = k]
LATTICE-TYPE-R ∀kP (y = k|x = w)

Table 1: Summary of features provided by our repre-
sentations. ∀a1[g(a)] represents a set of boolean fea-
tures, one for each value ofa, where the feature is
true iff g(a) is true. xi represents a token at position
i in sentencex, w represents a word type, Suffixes=
{-ing,-ogy,-ed,-s,-ly,-ion,-tion,-ity}, k (andk) represents
a value for a latent state (set of latent states) in a latent-
variable model,y∗ represents the optimal setting of latent
statesy for x, yi is the latent variable forxi, andyi,j is
the latent variable forxi at layerj. prefix(y,p) is thep-
length prefix of the Brown clustery.

wordxi in the sentence. Dimensions for each latent
vector include indicators for the word type ofxi and
various orthographic features. Table 1 presents the
full list of features in TRAD-R. Since our IE task
classifies word types rather than tokens, this base-
line is not appropriate for that task. Below, we de-
scribe how we can learn representationsR by using
a variety of language models, for use in both our IE
and POS tagging tasks. All representations for POS
tagging inherit the features from TRAD-R; all repre-
sentations for IE do not.

3.2 Ngram Representations

N-gram representations model a word typew in
terms of the n-gram contexts in whichw appears
in a corpus. Specifically, for wordw we generate
the vectorP (w′ww′′)/P (w), the conditional prob-
ability of observing the word sequencew′ to the left
andw′′ to the right ofw. The experimental section
describes the particular corpora and language mod-
eling methods used for estimating probabilities.

3.3 HMM-based Representations

In previous work, we have implemented several
representations based on HMMs (Rabiner, 1989),
which we used for both POS tagging (Huang and
Yates, 2009) and IE (Downey et al., 2007b). An
HMM is a generative probabilistic model that gen-
erates each wordxi in the corpus conditioned on a
latent variableyi. Eachyi in the model takes on in-
tegral values from1 to K, and each one is generated
by the latent variable for the preceding word,yi−1.
The joint distribution for a corpusx = (x1, . . . , xN)
and a set of state vectorsy = (y1, . . . , yN) is
given by: P (x,y) =

∏
i P (xi|yi)P (yi|yi−1). Us-

ing Expectation-Maximization (EM) (Dempster et
al., 1977), it is possible to estimate the distributions
for P (xi|yi) andP (yi|yi−1) from unlabeled data.

We construct two different representations from
HMMs, one for POS tagging and one for IE. For
POS tagging, we use the Viterbi algorithm to pro-
duce the optimal settingy∗ of the latent states for a
given sentencex, or y∗ = arg maxy P (x,y). We
use the value ofyi∗ as a new feature forxi that repre-
sents a cluster of distributionally-similar words. For
IE, we require features for word typesw, rather than
tokensxi. We use theK-dimensional vector that
represents the distributionP (y|x = w) as the fea-
ture vector for word typew. This set of features
represents a “soft clustering” ofw into K different
clusters. We refer to these representations as HMM -
TOKEN-R and HMM -TYPE-R, respectively.

Because HMM-based representations offer a
small number of discrete states as features, they have
a much greater potential to combat feature sparsity
than do ngram models. Furthermore, for token-
based representations, these models can potentially
handle polysemy better than ngram language models
by providing different features in different contexts.

We also compare against a variation of the HMM
from our previous work (Huang and Yates, 2010a),
henceforth HY10. This model independently trains
M separate HMM models on the same corpus, ini-
tializing each one randomly. We can then use the
Viterbi-optimal decoded latent state of each inde-
pendent HMM model as a separate feature for a to-
ken. We refer to this language model as an I-HMM,
and the representation as I-HMM -TOKEN-R.

Finally, we compare against Brown clusters
(Brown et al., 1992) as learned features. Although
not traditionally described as such, Brown cluster-
ing involves constructing an HMM model in which

127

each type is restricted to having exactly one latent
state that may generate it. Brownet al. describe a
greedy agglomerative clustering algorithm for train-
ing this model on unlabeled text. Following Turian
et al. (2010), we use Percy Liang’s implementation
of this algorithm for our comparison, and we test
runs with 100, 320, and 1000 clusters. We use fea-
tures from these clusters identical to Turianet al.’s.1

Turianet al. have shown that Brown clusters match
or exceed the performance of neural network-based
language models in domain adaptation experiments
for named-entity recognition, as well as in-domain
experiments for NER and chunking.

4 A Novel Lattice Language Model
Representation

Our final language model is a novel latent-variable
language model with rich latent structure, shown in
Figure 1. The model contains a lattice ofM ×N la-
tent states, whereN is the number of words in a sen-
tence andM is the number of layers in the model.
We can justify the choice of this model from a lin-
guistic perspective as a way to capture the multi-
dimensional nature of words. Linguists have long
argued that words have many different features in a
high dimensional space: they can be separately de-
scribed by part of speech, gender, number, case, per-
son, tense, voice, aspect, mass vs. count, and a host
of semantic categories (agency, animate vs. inani-
mate, physical vs. abstract, etc.), to name a few (Sag
et al., 2003). Our model seeks to capture a multi-
dimensional representation of words by creating a
separate layer of latent variables for each dimension.
The values of theM layers of latent variables for a
single word can be used asM distinct features in
our representation. The I-HMM attempts to model
the same intuition, but unlike a lattice model the I-
HMM layers are entirely independent, and as a re-
sult there is no mechanism to enforce that the layers
model different dimensions. Duh (2005) previously
used a 2-layer lattice for tagging and chunking, but
in a supervised setting rather than for representation
learning.

Let Cliq(x,y) represent the set of all maximal
cliques in the graph of the MRF model forx andy.

1Percy Liang’s implementation is available at
http://metaoptimize.com/projects/wordreprs/. Turian et al.
also tested a run with 3200 clusters in their experiments, which
we have been training for months, but which has not finished in
time for publication.

y4,1

y3,1

y

y4,2

y3,2

y

y4,3

y3,3

y

y4,4

y3,4

y

y4,5

y3,5

y

x1

y2,1

y1,1

x2

y2,2

y1,2

x3

y2,3

y1,3

x4

y2,4

y1,4

x5

y2,5

y1,5

Figure 1: The Partial Lattice MRF (PL-MRF) Model for a
5-word sentence and a 4-layer lattice. Dashed gray edges
are part of a full lattice, but not the PL-MRF.

Expressing the lattice model in log-linear form, we
can write the marginal probabilityP (x) of a given
sentencex as:

∑

y

∏
c∈Cliq(x,y) score(c,x,y)

∑
x′,y′

∏
c∈Cliq(x′,y′) score(c,x′,y′)

where score(c,x,y) = exp(θc · fc(xc,yc)). Our
model includes parameters for transitions between
two adjacent latent variables on layerj: θtrans

i,s,i+1,s′,j

for yi,j = s andyi+1,j = s′. It also includes obser-
vation parameters for latent variables and tokens, as
well as for pairs of adjacent latent variables in differ-
ent layers and their tokens:θobs

i,j,s,w andθobs
i,j,s,j+1,s′,w

for yi,j = s, yi,j+1 = s′, andxi = w.
Computationally, the lattice MRF is preferable to

a näıve Factorial HMM (Ghahramani and Jordan,
1997) representation, which would requireO(2M)
parameters for anM -layer model. However, ex-
act training and inference in supervised settings are
still intractable for this model (Sutton et al., 2007),
and thus it has not yet been explored as a language
model, which requires even more difficult, unsuper-
vised training. Training is intractable in part because
of the difficulty in enumerating and summing over
the exponentially-many configurationsy for a given
x. We address this difficulty in two ways: by modi-
fying the model, and by modifying the training pro-
cedure.

4.1 Partial Lattice MRF

Instead of the full lattice model, we construct a
Partial Lattice MRF (PL-MRF) model by deleting

128

certain edges between latent layers of the model
(dashed gray edges in Figure 1). Letc = bN

2 c,
whereN is the length of the sentence. Ifi < c
and j is odd, or if j is even andi > c, we delete
edges betweenyi,j andyi,j+1. The same lattice of
nodes remains, but fewer edges and paths. A cen-
tral “trunk” at i = c connects all layers of the lat-
tice, and branches from this trunk connect either to
the branches in the layer above or the layer below
(but not both). The result is a model that retains
most2 of the edges of the full model. Additionally,
the pruned model makes the branches conditionally
independent from one another, except through the
trunk. For instance, the right branch at layers 1
and 2 in Figure 1 (y1,4, y1,5, y2,4, andy2,5) are dis-
connected from the right branch at layers 3 and 4
(y3,4, y3,5, y4,4, andy4,5), except through the trunk
and the observed nodes. As a result, excluding the
observed nodes, this model has a lowtree-widthof
2 (excluding observed nodes), and a variety of ef-
ficient dynamic programming and message-passing
algorithms for training and inference can be readily
applied (Bodlaender, 1988).3 Our inference algo-
rithm passes information from the branches inwards
to the trunk, and then upward along the trunk, in
timeO(K4MN).

As with our HMM models, we create two repre-
sentations from PL-MRFs, one for tokens and one
for types. For tokens, we decode the model to com-
putey∗, the matrix of optimal latent state values for
sentencex. For each layerj and and each possi-
ble latent state valuek, we add a boolean feature
for tokenxi that is true iffy∗i,j = k. For types,
we compute distributions over the latent state space.
Let y be the column vector of latent variables for
wordx. For each possible configuration of valuesk

of the latent variablesy, we add a real-valued fea-
tures forx given byP (y = k|x = w). We refer
to these two representations as LATTICE-TOKEN-R
and LATTICE-TYPE-R, respectively.

4.2 Parameter Estimation

We train the PL-MRF using contrastive estimation,
which iteratively optimizes the following objective
function on a corpusX:

∑

x∈X

log

∑
y

∏
c∈Cliq(x,y) score(c,x,y)

∑
x′∈N (x),y′

∏
c∈Cliq(x′,y′) score(c,x′,y′)

2As M, N →∞, 5 out of every 6 edges are kept.
3c.f. a tree-width of min(M ,N) for the unpruned model

whereN (x), the neighborhood ofx, indicates a
set of perturbed variations of the original sentence
x. Contrastive estimation seeks to move probability
mass away from the perturbed neighborhood sen-
tences and onto the original sentence. We use a
neighborhood function that includes all sentences
which can be obtained from the original sentence by
swapping the order of a consecutive pair of words.
Training uses gradient descent over this non-convex
objective function with a standard software package
(Liu and Nocedal, 1989) and converges to a local
maximum (Smith and Eisner, 2005).

For tractability, we modify the training procedure
to train the PL-MRF one layer at a time. Letθi rep-
resent the set of parameters relating to features of
layer i, and letθ¬i represent all other parameters.
We fix θ¬0 = 0, and optimizeθ0 using contrastive
estimation. After convergence, we fixθ¬1, and opti-
mizeθ1, and so on. We use a convergence threshold
of 10−6, and each layer typically converges in under
100 iterations.

5 Domain Adaptation for a POS Tagger

We evaluate the representations described above on
a POS tagging task in a domain adaptation setting.

5.1 Experimental Setup

We use the same experimental setup as in HY10:
the Penn Treebank (Marcus et al., 1993) Wall Street
Journal portion for our labeled training data; 561
MEDLINE sentences (9576 types, 14554 tokens,
23% OOV tokens) from the Penn BioIE project
(PennBioIE, 2005) for our labeled test set; and all of
the unlabeled text from the Penn Treebank WSJ por-
tion plus a MEDLINE corpus of 71,306 unlabeled
sentences to train our language models. The two
texts come from two very different domains, mak-
ing this data a tough test for domain adaptation.

We use an open source Conditional Random Field
(CRF) (Lafferty et al., 2001) software package4 de-
signed by Sunita Sarawagi and William W. Cohen
to implement our supervised models. LetX be a
training corpus,Z the corresponding labels, andR
a representation function. For each tokenxi in X,
we include a parameter in our CRF model for all
featuresR(xi) and all possible labels inZ. Further-
more, we include transition parameters for pairs of
consecutive labelszi, zi+1.

4Available fromhttp://sourceforge.net/projects/crf/

129

For representations, we tested TRAD-R,
NGRAM-R, HMM -TOKEN-R, I-HMM -TOKEN-R
(between 2 and 8 layers), and LATTICE-TOKEN-R
(8, 12, 16, and 20 layers). Following HY10, each
latent node in the I-HMMs have 80 possible values,
creating808 ≈ 1015 possible configurations of the
8-layer I-HMM for a single word. Each node in
the PL-MRF is binary, creating a much smaller
number (220 ≈ 106) of possible configurations for
each word in a 20-layer representation. NGRAM-R
was trained using an unsmoothed trigram model on
the Web 1Tgram corpus. To keep the feature set
manageable, we included the top 500 most common
ngrams for each word type, and then used mutual
information on the training data to select the top
10,000 most relevant ngram features for all word
types. We incorporated ngram features as binary
values indicating whetherxi appeared with the
ngram or not. We also report on the performance
of Brown clusters and Blitzeret al.’s Structural
Correspondence Learning (SCL) (2006) technique,
which uses manually-selected “pivot” words (like
“of”, “the”) to learn domain-independent features.
Finally, we compare against the self-training CRF
technique from HY10.

5.2 Results and Discussion

For each representation, we measured the accuracy
of the POS tagger on the biomedical test text. Ta-
ble 2 shows the results for the best variation of each
kind of model — 20 layers for the PL-MRF, 7 lay-
ers for the I-HMM, and 1000 clusters for the Brown
clustering. All language model representations sig-
nificantly outperform the SCL model and the TRAD-
R baseline. The novel PL-MRF model outperforms
the previous state of the art, the I-HMM model, and
much of the performance increase comes from a
11.3% relative reduction in error on words that ap-
pear in biomedical texts but not in newswire texts.
Both graphical model representations significantly
outperform the ngram model, which is trained on far
more text. For comparison, our best model, the PL-
MRF, achieved a 96.8% in-domain accuracy on sec-
tions 22-24 of the Penn Treebank, about 0.5% shy
of a state-of-the-art in-domain system (Shen et al.,
2007) with more sophisticated supervised learning.

We expected that language model representations
perform well in part because they provide meaning-
ful features for sparse and polysemous words. To
test this, we selected 109 polysemous word types

model % error OOV % error

TRAD-R 11.7 32.7
TRAD-R+self-training 11.5 29.6
SCL 11.1 -
BROWN-TOKEN-R 10.8 25.4
HMM -TOKEN-R 9.5 24.8
NGRAM-R 6.9 24.4
I-HMM -TOKEN-R 6.7 24
LATTICE-TOKEN-R 6.2 21.3

SCL+500bio 3.9 -

Table 2: PL-MRF representations reduce error by 7.5%
relative to the previous state-of-the-art I-HMM, and ap-
proach within 2.3% absolute error a SCL+500bio model
with access to 500 labeled sentences from the target do-
main. 1.8% of the tags in the test set are new tags that
do not occur in the WSJ training data, so an error rate of
3.9+1.8 = 5.7% error is a reasonable bound for the best
possible performance of a model that has seen no exam-
ples from the target domain.

from our test data, along with 296 non-polysemous
word types, chosen based on POS tags and manual
inspection. We further define sparse word types as
those that appear 5 times or fewer in all of our unla-
beled data, and non-sparse word types as those that
appear at least 50 times in our unlabeled data. Table
3 shows results on these subsets of the data.

As expected, all of our language models outper-
form the baseline by a larger margin on polysemous
words than on non-polysemous words. The mar-
gin between graphical model representations and the
ngram model also increases on polysemous words,
presumably because the Viterbi decoding of these
models takes into account the tokens in the sur-
rounding sentence. The same behavior is evident for
sparsity: all of the language model representations
outperform the baseline by a larger margin on sparse
words than not-sparse words, and all of the graphical
models perform better relative to the ngram model
on sparse words as well. Thus representations based
on graphical models address two key issues in build-
ing representations for POS tagging.

6 Information Extraction Experiments

In this section, we evaluate our learned representa-
tions on a different task that investigates the abil-
ity of each representation to capture semantic, rather
than syntactic, information. Specifically, we inves-

130

POS Tagging Information Extraction
polys. not polys. sparse not sparse polys. not polys. sparse not sparse

tokens/types 159 4321 463 12194 222 210 266 166
categories - - - - 12 4 13 3
TRAD-R 59.5 78.5 52.5 89.6 - - - -
Ngram 68.2 85.3 61.8 94.0 0.07 0.17 0.06 0.25
HMM 67.9 83.4 60.2 91.6 0.14 0.26 0.15 0.32
(-Ngram) (-0.3) (-1.9) (-1.6) (-2.4) (+0.07) (+0.09) (+0.09) (+0.07)

I-HMM 75.6 85.2 62.9 94.5 - - - -
(-Ngram) (+7.4) (-0.1) (+1.1) (+0.5) - - - -

PL-MRF 70.5 86.9 65.2 94.6 0.09 0.15 0.1 0.19
(-Ngram) (+2.3) (+1.6) (+3.4) (+0.6) (+0.02) (-0.02) (+0.04) (-0.06)

Table 3: Graphical models consistently outperform ngram models by a larger margin on sparse words than not-sparse
words. On polysemous words, the difference between graphical model performance and ngram performance grows
for POS tagging, where the context surrounding polysemous words is available to the language model, but not for
information extraction. For tagging, we show number of tokens and accuracies. For IE, we show number of types,
categories, and AUCs.

tigate aset-expansiontask in which we’re given a
corpus and a few “seed” noun phrases from a se-
mantic category (e.g. Superheroes), and our goal is
to identify other examples of the category in the cor-
pus. This is aweakly-supervisedtask because we are
given only a handful of examples of the category,
rather than a large sample of positively and nega-
tively labeled training examples.

Existing set-expansion techniques utilize the dis-
tributional hypothesis: candidate noun phrases for a
given semantic class are ranked based on how sim-
ilar their contextual distributions are to those of the
seeds. Here, we measure how performance on the
set-expansion task varies when we employ different
representations for the contextual distributions.

6.1 Methods

The set-expansion task we address is formalized as
follows: given a corpus, a set of seeds from some
semantic categoryC, and a separate set of candidate
phrasesP , output a ranking of the phrases inP in
decreasing order of likelihood of membership inC.

For any given representationR, the set-expansion
algorithm we investigate is straightforward: we cre-
ate a prototypical “seed representation vector” equal
to the mean of the representation vectors for each
of the seeds. Then, we rank candidate phrases in
increasing order of the distance between the candi-
date phrase representation and the seed representa-
tion vector. As a measure of distance between rep-
resentations, we compute the average of five stan-

dard distance measures, including KL and Jensen-
Shannon divergence, and cosine, Euclidean, and L1
distance. In experiments, we found that improving
upon this simple averaging was not easy—in fact,
tuning a weighted average of the distance measures
for each representation did not improve results sig-
nificantly on held-out data.

Because set expansion is performed at the level
of word types rather than tokens, it requires type-
based representations. We compare HMM -TYPE-
R, NGRAM-R, LATTICE-TYPE-R, and BROWN-
TYPE-R in this experiment. We used a 25-state
HMM, and the same PL-MRF as in the previous
section. Following previous set-expansion experi-
ments with n-grams (Ahuja and Downey, 2010), we
employ a trigram model with Kneser-Ney smooth-
ing for NGRAM-R. For Brown clusters, instead of
distance metrics like KL divergence (which assume
distributions), we rank extractions by the number
of matches between a word’s BROWN-TYPE-R fea-
tures and seed features.

6.2 Data Sets

We utilized a set of approximately 100,000 sen-
tences of Web text, joining multi-word named enti-
ties in the corpus into single tokens using the Lex
algorithm (Downey et al., 2007a). This process
enables each named entity (the focus of the set-
expansion experiments) to be treated as a single to-
ken, with a single representation vector for compar-
ison. We developed all word type representations

131

model AUC
HMM -TYPE-R 0.18
BROWN-TYPE-R 0.16
LATTICE-TYPE-R 0.11
NGRAM-R 0.10
Random baseline 0.10

Table 4: HMM -TYPE-R outperforms the other methods,
improving performance by 12.5% over Brown clusters,
and by 80% over the traditional NGRAM-R.

using this corpus.
To obtain examples of multiple semantic cat-

egories, we utilized selected Wikipedia “listOf”
pages from (Pantel et al., 2009) and augmented these
with our own manually defined categories, such that
each list contained at least ten distinct examples oc-
curring in our corpus. In all, we had 432 exam-
ples across 16 distinct categories such as Countries,
Greek Islands, and Police TV Dramas.

6.3 Results

For each semantic category, we tested five differ-
ent random selections of five seed examples, treating
the unselected members of the category as positive
examples, and all other candidate phrases as nega-
tive examples. We evaluate using the area under the
precision-recall curve (AUC) metric.

The results are shown in Table 4. All represen-
tations improve performance over a random base-
line, equal to the average AUC over five random or-
derings for each category, and the graphical models
outperform the ngram representation. HMM -TYPE-
R performs the best overall, and Brown clustering
with 1000 clusters is comparable (320 and 100 clus-
ter perform slightly worse).

As with POS tagging, we expect that language
model representations improve performance on the
IE task by providing informative features for sparse
word types. However, because the IE task classifies
word types rather than tokens, we expect the rep-
resentations to provide less benefit for polysemous
word types. To test these hypotheses, we measured
how IE performance changed in sparse or polyse-
mous settings. We identified polysemous categories
as those for which fewer than 90% of the category
members had the category as a clear dominant sense
(estimated manually); other categories were consid-
ered non-polysemous. Categories whose members

had a median number of occurrences in the cor-
pus less than 30 were deemed sparse, and others
non-sparse. IE performance on these subsets of the
data are shown in Table 3. Both graphical model
representations outperform the ngram representation
more on sparse words, as expected. For polysemy,
the picture is mixed: the PL-MRF outperform n-
grams on polysemous categories, whereas HMM’s
performance advantage over n-grams decreases.

One surprise on the IE task is that the LATTICE-
TYPE-R performs significantly less well than the
HMM -TYPE-R, whereas the reverse is true on POS
tagging. We suspect that the difference is due to the
issue of classifying types vs. tokens. Because of
their more complex structure, PL-MRFs tend to de-
pend more on transition parameters than do HMMs.
Furthermore, our decision to train the PL-MRFs
using contrastive estimation with a neighborhood
that swaps consecutive pairs of words also tends to
emphasize transition parameters. As a result, we
believe the posterior distribution over latent states
given a word type is more informative in our HMM
model than the PL-MRF model. We measured the
entropy of these distributions for the two models,
and found thatH(PPL-MRF(y|x = w)) = 9.95 bits,
compared withH(PHMM (y|x = w)) = 2.74 bits,
which supports the hypothesis that the drop in the
PL-MRF’s performance on IE is due to its depen-
dence on transition parameters. Further experiments
are warranted to investigate this issue.

7 Conclusion and Future Work

Our investigation into language models as represen-
tations shows that graphical models can be used to
combat polysemy and, especially, sparsity in rep-
resentations for weakly-supervised classifiers. Our
novel factorial graphical model yields a state-of-the-
art POS tagger for domain adaptation, and HMMs
improve significantly over all other representations
in an information extraction task. Important direc-
tions for future research include models for han-
dling polysemy in IE, and richer language models
that incorporate more linguistic intuitions about how
words interact with their contexts.

Acknowledgments

This research was supported in part by NSF grant
IIS-1065397 and a Microsoft New Faculty Fellow-
ship.

132

References

Arun Ahuja and Doug Downey. 2010. Improved extrac-
tion assessment through better language models. In
Proceedings of the Annual Meeting of the North Amer-
ican Chapter of the Association of Computational Lin-
guistics (NAACL-HLT).

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jenn Wortman. 2009.
A theory of learning from different domains.Machine
Learning, (to appear).

Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
2009. Curriculum learning. InInternational Confer-
ence on Machine Learning (ICML).

Yoshua Bengio. 2008. Neural net language models.
Scholarpedia, 3(1):3881.

Daniel M. Bikel. 2004. Intricacies of Collins Parsing
Model. Computational Linguistics, 30(4):479–511.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation.Journal of Machine
Learning Research, 3:993–1022, January.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. InEMNLP.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jenn Wortman. 2007. Learning bounds
for domain adaptation. InAdvances in Neural Infor-
mation Processing Systems.

Hans L. Bodlaender. 1988. Dynamic programming on
graphs with bounded treewidth. InProc. 15th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, pages 105–118.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra,
and J. C. Lai. 1992. Class-based n-gram models of
natural language.Computational Linguistics, pages
467–479.

M. Candito and B. Crabbe. 2009. Improving generative
statistical parsing with semi-supervised word cluster-
ing. In IWPT, pages 138–141.

R. Collobert and J. Weston. 2008. A unified architecture
for natural language processing: Deep neural networks
with multitask learning. InInternational Conference
on Machine Learning (ICML).

Hal Dauḿe III and Daniel Marcu. 2006. Domain adap-
tation for statistical classifiers.Journal of Artificial
Intelligence Research, 26.

Hal Dauḿe III, Abhishek Kumar, and Avishek Saha.
2010. Frustratingly easy semi-supervised domain
adaptation. InProceedings of the ACL Workshop on
Domain Adaptation (DANLP).

Hal Dauḿe III. 2007. Frustratingly easy domain adapta-
tion. In ACL.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. 1990. Indexing by latent
semantic analysis.Journal of the American Society of
Information Science, 41(6):391–407.

Arthur Dempster, Nan Laird, and Donald Rubin. 1977.
Likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, Series
B, 39(1):1–38.

D. Downey, M. Broadhead, and O. Etzioni. 2007a. Lo-
cating complex named entities in web text. InProcs.
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007).

Doug Downey, Stefan Schoenmackers, and Oren Etzioni.
2007b. Sparse information extraction: Unsupervised
language models to the rescue. InACL.

Mark Dredze and Koby Crammer. 2008. Online methods
for multi-domain learning and adaptation. InProceed-
ings of EMNLP, pages 689–697.

Mark Dredze, Alex Kulesza, and Koby Crammer. 2010.
Multi-domain learning by confidence weighted param-
eter combination.Machine Learning, 79.

Kevin Duh. 2005. Jointly labeling multiple sequences: A
Factorial HMM approach. In43rd Annual Meeting of
the Assoc. for Computational Linguistics (ACL 2005),
Student Research Workshop.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Hierarchical bayesian domain adaptation. InProceed-
ings of HLT-NAACL, pages 602–610.

Zoubin Ghahramani and Michael I. Jordan. 1997. Facto-
rial hidden markov models.Machine Learning, 29(2-
3):245–273.

Z. Harris. 1954. Distributional structure. Word,
10(23):146–162.

D. Hindle. 1990. Noun classification from predicage-
argument structures. InACL.

T. Honkela. 1997. Self-organizing maps of words for
natural language processing applications. InProceed-
ings of the International ICSC Symposium on Soft
Computing.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised se-
quence labeling. InProceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Fei Huang and Alexander Yates. 2010a. Exploring
representation-learning approaches to domain adapta-
tion. In Proceedings of the ACL 2010 Workshop on
Domain Adaptation for Natural Language Processing
(DANLP).

Fei Huang and Alexander Yates. 2010b. Open-domain
semantic role labeling by modeling word spans. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

133

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in NLP. InACL.

S. Kaski. 1998. Dimensionality reduction by random
mapping: Fast similarity computation for clustering.
In IJCNN, pages 413–418.

T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-
supervised dependency parsing. InProceedings of the
Annual Meeting of the Association of Computational
Linguistics (ACL), pages 595–603.

J. Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. InPro-
ceedings of the International Conference on Machine
Learning.

D. Lin and X Wu. 2009. Phrase clustering for discrimi-
native learning. InACL-IJCNLP, pages 1030–1038.

D.C. Liu and J. Nocedal. 1989. On the limited mem-
ory method for large scale optimization.Mathemati-
cal Programming B, 45(3):503–528.

Y. Mansour, M. Mohri, and A. Rostamizadeh. 2009. Do-
main adaptation with multiple sources. InAdvances in
Neural Information Processing Systems.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: the Penn Treebank.Computational
Linguistics, 19(2):313–330.

S. Martin, J. Liermann, and H. Ney. 1998. Algorithms
for bigram and trigram word clustering.Speech Com-
munication, 24:19–37.

A. Mnih and G. E. Hinton. 2009. A scalable hierarchi-
cal distributed language model. InNeural Information
Processing Systems (NIPS), pages 1081–1088.

P. Pantel, E. Crestan, A. Borkovsky, A. M. Popescu, and
V. Vyas. 2009. Web-scale distributional similarity and
entity set expansion. InProc. of EMNLP.

PennBioIE. 2005. Mining the bibliome project.
http://bioie.ldc.upenn.edu/.

F. Pereira, N. Tishby, and L. Lee. 1993. Distributional
clustering of English words. InProceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 183–190.

Lawrence R. Rabiner. 1989. A tutorial on hidden
Markov models and selected applications in speech
recognition.Proceedings of the IEEE, 77(2):257–285.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
2003.Synactic Theory: A Formal Introduction. CSLI,
Stanford, CA, second edition.

M. Sahlgren. 2005. An introduction to random index-
ing. In Methods and Applications of Semantic Index-
ing Workshop at the 7th International Conference on
Terminology and Knowledge Engineering (TKE).

M. Sahlgren. 2006. The word-space model: Us-
ing distributional analysis to represent syntagmatic

and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm
University.

G. Salton and M.J. McGill. 1983.Introduction to Mod-
ern Information Retrieval. McGraw-Hill.

L. Shen, G. Satta, and A. Joshi. 2007. Guided learn-
ing for bidirectional sequence classification. InPro-
ceedings of the 45th Annual Meeting of the Associa-
tion of Computational Linguistics (ACL 2007), pages
760–767.

Noah A. Smith and Jason Eisner. 2005. Contrastive esti-
mation: Training log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
354–362, Ann Arbor, Michigan, June.

Charles Sutton, Andrew McCallum, and Khashayar Ro-
hanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data.J. Mach. Learn. Res.,
8:693–723.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. InProceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 384–394.

P. D. Turney and P. Pantel. 2010. From frequency to
meaning: Vector space models of semantics.Journal
of Artificial Intelligence Research, 37:141–188.

J. J. V̈ayrynen, T. Honkela, and L. Lindqvist. 2007.
Towards explicit semantic features using independent
component analysis. InProceedings of the Work-
shop Semantic Content Acquisition and Representa-
tion (SCAR).

Jason Weston, Frederic Ratle, and Ronan Collobert.
2008. Deep learning via semi-supervised embedding.
In Proceedings of the 25th International Conference
on Machine Learning.

Hai Zhao, Wenliang Chen, Chunyu Kit, and Guodong
Zhou. 2009. Multilingual dependency learning: A
huge feature engineering method to semantic depen-
dency parsing. InCoNLL 2009 Shared Task.

134

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 135–144,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Automatic Keyphrase Extraction by Bridging Vocabulary Gap ∗

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, Maosong Sun
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology

Tsinghua University, Beijing 100084, China
{lzy.thu, cxx.thu, yabin.zheng}@gmail.com, sms@tsinghua.edu.cn

Abstract

Keyphrase extraction aims to select a set of
terms from a document as a short summary
of the document. Most methods extract
keyphrases according to their statistical prop-
erties in the given document. Appropriate
keyphrases, however, are not always statis-
tically significant or even do not appear in
the given document. This makes a large
vocabulary gap between a document and its
keyphrases. In this paper, we consider that
a document and its keyphrases both describe
the same object but are written in two different
languages. By regarding keyphrase extraction
as a problem of translating from the language
of documents to the language of keyphrases,
we use word alignment models in statistical
machine translation to learn translation proba-
bilities between the words in documents and
the words in keyphrases. According to the
translation model, we suggest keyphrases giv-
en a new document. The suggested keyphrases
are not necessarily statistically frequent in the
document, which indicates that our method
is more flexible and reliable. Experiments
on news articles demonstrate that our method
outperforms existing unsupervised methods
on precision, recall and F-measure.

1 Introduction

Information on the Web is emerging with the
development of Internet. It is becoming more and
more important to effectively search and manage
information. Keyphrases, as a brief summary of a
document, provide a solution to help organize and

∗Zhiyuan Liu and Xinxiong Chen have equal contribution
to this work.

retrieve documents, which have been widely used
in digital libraries and information retrieval (Turney,
2000; Nguyen and Kan, 2007). Due to the explosion
of information, it is ineffective for professional
human indexers to manually annotate documents
with keyphrases. How to automatically extract
keyphrases from documents becomes an important
research problem, which is usually referred to as
keyphrase extraction.

Most methods for keyphrase extraction try to
extract keyphrases according to their statistical prop-
erties. These methods are susceptible to low perfor-
mance because many appropriate keyphrases may
not be statistically frequent or even not appear in the
document, especially for short documents. We name
the phenomenon as the vocabulary gap between
documents and keyphrases. For example, a research
paper talking about “machine transliteration” may
less or even not mention the phrase “machine
translation”. However, since “machine transliter-
ation” is a sub-field of “machine translation”, the
phrase “machine translation” is also reasonable to
be suggested as a keyphrase to indicate the topics
of this paper. Let us take another example: in a
news article talking about “iPad” and “iPhone”, the
word “Apple” may rarely ever come up. However,
it is known that both “iPad” and “iPhone” are the
products of “Apple”, and the word “Apple” may thus
be a proper keyphrase of this article.

We can see that, the essential challenge of
keyphrase extraction is the vocabulary gap between
documents and keyphrases. Therefore, the task of
keyphrase extraction is how to capture the semantic
relations between the words in documents and in
keyphrases so as to bridge the vocabulary gap.
In this paper, we provide a new perspective to

135

documents and their keyphrases: each document
and its keyphrases are descriptions to the same
object, but the document is written using one lan-
guage, while keyphrases are written using another
language. Therefore, keyphrase extraction can be
regarded as a translation problem from the language
of documents into the language of keyphrases.

Based on the idea of translation, we use word
alignment models (WAM) (Brown et al., 1993) in
statistical machine translation (SMT) (Koehn, 2010)
and propose a unified framework for keyphrase
extraction: (1) From a collection of translation pairs
of two languages, WAM learns translation probabil-
ities between the words in the two languages. (2)
According to the translation model, we are able to
bridge the vocabulary gap and succeed in suggesting
appropriate keyphrases, which may not necessarily
frequent in their corresponding documents.

As a promising approach to solve the problem
of vocabulary gap, SMT has been widely ex-
ploited in many applications such as information
retrieval (Berger and Lafferty, 1999; Karimzade-
hgan and Zhai, 2010), image and video anno-
tation (Duygulu et al., 2002), question answer-
ing (Berger et al., 2000; Echihabi and Marcu, 2003;
Murdock and Croft, 2004; Soricut and Brill, 2006;
Xue et al., 2008), query expansion and rewrit-
ing (Riezler et al., 2007; Riezler et al., 2008; Riezler
and Liu, 2010), summarization (Banko et al., 2000),
collocation extraction (Liu et al., 2009b; Liu et al.,
2010b) and paraphrasing (Quirk et al., 2004; Zhao
et al., 2010). Although SMT is a widely adopted
solution to vocabulary gap, for various applications
using SMT, the crucial and non-trivial problem is
to find appropriate and enough translation pairs for
SMT.

The most straightforward translation pairs for
keyphrase extraction is document-keyphrase pairs.
In practice, however, it is time-consuming to anno-
tate a large collection of documents with keyphrases
for sufficient WAM training. In order to solve
the problem, we use titles and summaries to build
translation pairs with documents. Titles and sum-
maries are usually accompanying with the corre-
sponding documents. In some special cases, titles
or summaries may be unavailable. We are also able
to extract one or more important sentences from
the corresponding documents to construct sufficient

translation pairs.

2 State of the Art

Some researchers (Frank et al., 1999; Witten et al.,
1999; Turney, 2000) regarded keyphrase extraction
as a binary classification problem (is-keyphrase or
non-keyphrase) and learned models for classifica-
tion using training data. These supervised methods
need manually annotated training set, which is time-
consuming. In this paper, we focus on unsupervised
methods for keyphrase extraction.

The most simple unsupervised method for
keyphrase extraction is using TFIDF (Salton and
Buckley, 1988) to rank the candidate keyphrases and
select the top-ranked ones as keyphrases. TFIDF
ranks candidate keyphrases only according to their
statistical frequencies, which thus fails to suggest
keyphrases with low frequencies.

Starting with TextRank (Mihalcea and Tarau,
2004), graph-based ranking methods are becoming
the state-of-the-art methods for keyphrase extrac-
tion (Liu et al., 2009a; Liu et al., 2010a). Given
a document, TextRank first builds a word graph,
in which the links between words indicate their
semantic relatedness, which are estimated by the
word co-occurrences in the document. By executing
PageRank (Page et al., 1998) on the graph, we obtain
the PageRank score for each word to rank candidate
keyphrases.

In TextRank, a low-frequency word will benefit
from its high-frequency neighbor words and thus be
ranked higher as compared to using TFIDF. This
alleviates the problem of vocabulary gap to some
extent. TextRank, however, still tends to extract
high-frequency words as keyphrases because these
words have more opportunities to get linked with
other words and obtain higher PageRank scores.
Moreover, TextRank usually constructs a word
graph simply according to word co-occurrences as
an approximation of the semantic relations between
words. This will introduce much noise because of
connecting semantically unrelated words and highly
influence extraction performance.

Some methods have been proposed to improve
TextRank, of which ExpandRank (Wan and Xi-
ao, 2008b; Wan and Xiao, 2008a) uses a smal-
l number, namely k, of neighbor documents to

136

provide more information of word relatedness for
the construction of word graphs. Compared to
TextRank, ExpandRank performs better when facing
the vocabulary gap by borrowing the information on
document level. However, the finding of neighbor
documents are usually arbitrary. This process may
introduce much noise and result in topic drift when
the document and its so-called neighbor documents
are not exactly talking about the same topics.

Another potential approach to alleviate vocabu-
lary gap is latent topic models (Landauer et al.,
1998; Hofmann, 1999; Blei et al., 2003), of which
latent Dirichlet allocation (LDA) (Blei et al., 2003)
is most popular. Latent topic models learn topics
from a collection of documents. Using a topic
model, we can represent both documents and words
as the distributions over latent topics. The semantic
relatedness between a word and a document can be
computed using the cosine similarities of their topic
distributions. The similarity scores can be used as
the ranking criterion for keyphrase extraction (Hein-
rich, 2005; Blei and Lafferty, 2009). On one hand,
latent topic models use topics instead of statistical
properties of words for ranking, which abates the
vocabulary gap problem on topic level. On the other
hand, the learned topics are usually very coarse, and
topic models tend to suggest general words for a
given document. Therefore, the method usually fails
to capture the specific topics of the document.

In contract to the above-mentioned methods, our
method addresses vocabulary gap on word level,
which prevents from topic drift and works out better
performance. In experiments, we will show our
method can better solve the problem of vocab-
ulary gap by comparing with TFIDF, TextRank,
ExpandRank and LDA.

3 Keyphrase Extraction by Bridging
Vocabulary Gap Using WAM

First, we give a formal definition of keyphrase
extraction: given a collection of documents D, for
each document d ∈ D, keyphrase extraction aims
to rank candidate keyphrases according to their
likelihood given the document d, i.e., Pr(p|d) for all
p ∈ P, where P is the candidate keyphrase set. Then
we select top-Md ones as keyphrases, where Md can
be fixed or automatically determined by the system.

The document d can be regarded as a sequence of
words wd = {wi}Nd

1 , where Nd is the length of d.
In Fig. 1, we demonstrate the framework of

keyphrase extraction using WAM. We divide the
algorithm into three steps: preparing translation
pairs, training translation models and extracting
keyphrases for a given document. We will introduce
the three steps in details from Section 3.1 to
Section 3.3.

Input: A large collection of documents D for keyphrase
extraction.
Step 1: Prepare Translation Pairs. For each d ∈ D, we
may prepare two types of translation pairs:

• Title-based Pairs. Use the title td of each document
d and prepare translation pairs, denote as ⟨D,T ⟩.

• Summary-based Pairs. Use the summary sd of
each document d and prepare translation pairs,
denote as ⟨D,S⟩.

Step 2: Train Translation Model. Given translation
pairs, e.g., ⟨D,T ⟩, train word-word translation model
Pr⟨D,T ⟩(t|w) using WAM, where w is the word in docu-
ment language and t is the word in title language.
Step 3: Keyphrase Extraction. For a document d,
extract keyphrases according to a trained translation
model, e.g., Pr⟨D,T ⟩(t|w).

1. Measure the importance score Pr(w|d) of each word
w in document d.

2. Compute the ranking score of candidate keyphrase
p by

Pr(p|d) = ∑t∈p ∑w∈d Pr⟨D,T ⟩(t|w)Pr(w|d) (1)

3. Select top-Md ranked candidate keyphrases accord-
ing to Pr(p|d) as the keyphrases of document d.

Figure 1: WAM for keyphrase extraction.

3.1 Preparing Translation Pairs

Training dataset for WAM consists of a number
of translation pairs written in two languages. In
keyphrase extraction task, we have to construct
sufficient translation pairs to capture the semantic
relations between documents and keyphrases. Here
we propose to construct two types of translation
pairs: title-based pairs and summary-based pairs.

137

3.1.1 Title-based Pairs
Title is usually a short summary of the given doc-

ument. In most cases, documents such as research
papers and news articles have corresponding titles.
Therefore, we can use title to construct translation
pairs for a document.

WAM assumes each translation pair should be of
comparable length. However, a document is usually
much longer than title. It will hurt the performance
if we fill the length-unbalanced pairs for WAM
training. We propose two methods to address the
problem: sampling method and split method.

In sampling method, we perform word sampling
for each document to make it comparable to the
length of its title. Suppose the lengths of a document
and its title are Nd and Nt , respectively. For
document d, we first build a bag of words bd =
{(wi,ei)}Wd

i=1, where Wd is the number of unique
words in d, and ei is the weights of word wi in d.

In this paper, we use TFIDF scores as the weights
of words. Using bd , we sample words for Nt

times with replacement according to the weights of
words, and finally form a new bag with Nt words
to represent document d. In the sampling result,
we keep the most important words in document d.
We can thus construct a document-title pair with
balanced length.

In split method, we split each document into
sentences which are of comparable length to its
title. For each sentence, we compute its semantic
similarity with the title. There are various methods
to measure semantic similarities. In this paper, we
use vector space model to represent sentences and
titles, and use cosine scores to compute similarities.
If the similarity is smaller than a threshold δ , we
will discard the sentence; otherwise, we will regard
the sentence and title as a translation pair.

Sampling method and split method have their
own characteristics. Compared to split method,
sampling method loses the order information of
words in documents. While split method generates
much more translation pairs, which leads to longer
training time of WAM. In experiment section, we
will investigate the performance of the two methods.

3.1.2 Summary-based Pairs
For most research articles, authors usually pro-

vide abstracts to summarize the articles. Many news

articles also have short summaries. Suppose each
document itself has a short summary, we can use
the summary and document to construct translation
pairs using either sampling method or split method.
Because each summary usually consists of multiple
sentences, split method for constructing summary-
based pairs has to split both the document and
summary into sentences, and the sentence pairs with
similarity scores above the threshold are filled in
training dataset for WAM.

3.2 Training Translation Models
Without loss of generality, we take title-based pairs
as the example to introduce the training process
of translation models, and suppose documents are
written in one language and titles are written in
another language. In this paper, we use IBM Model-
1 (Brown et al., 1993) for WAM training. IBM
Model-1 is a widely used word alignment algorithm
which does not require linguistic knowledge for two
languages 1.

In IBM Model-1, for each translation pair
⟨wd ,wt⟩, the relationship of the document language
wd = {wi}Ld

i=0 and the title language wt = {ti}Lt
i=0

is connected via a hidden variable a = {ai}Ld
i=1

describing an alignment mapping from words of
documents to words of titles,

Pr(wd |wt) = ∑a Pr(wd ,a|wt) (2)

For example, a j = i indicates word w j in wd at
position j is aligned to word ti in wt at position i.
The alignment a also contains empty-word align-
ments a j = 0 which align words of documents to
an empty word. IBM Model-1 can be trained using
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) in an unsupervised fashion. Using
IBM Model-1, we can obtain the translation prob-
abilities of two language-vocabularies, i.e., Pr(t|w)
and Pr(w|t), where w is a word in document
vocabulary and t is a word in title vocabulary.

IBM Model-1 will produce one-to-many align-
ments from one language to another language, and
the trained model is thus asymmetric. Hence, we can

1We have also employed more sophisticated WAM al-
gorithms such as IBM Model-3 for keyphrase extraction.
However, these methods did not achieve better performance
than the simple IBM Model-1. Therefore, in this paper we only
demonstrate the experimental results using IBM Model-1.

138

train two different translation models by assigning
translation pairs in two directions, i.e., (document→
title) and (title → document). We denote the former
model as Prd2t and the latter as Prt2d. We define
Pr⟨D,T ⟩(t|w) in Eq.(1) as the harmonic mean of the
two models:

Pr⟨D,T ⟩(t|w) ∝
(

λ
Prd2t(t|w) + (1−λ)

Prt2d(t|w)

)−1
(3)

where λ is the harmonic factor to combine the two
models. When λ = 1.0 or λ = 0.0, it simply uses
model Prd2t or Prt2d, correspondingly. Using the
translation probabilities Pr(t|w) we can bridge the
vocabulary gap between documents and keyphrases.

3.3 Keyphrase Extraction
Given a document d, we rank candidate keyphrases
by computing their likelihood Pr(p|d). Each can-
didate keyphrase p may be composed of multiple
words. As shown in (Hulth, 2003), most keyphrases
are noun phrases. Following (Mihalcea and Tarau,
2004; Wan and Xiao, 2008b), we simply select
noun phrases from the given document as candidate
keyphrases with the help of POS tags. For each
word t, we compute its likelihood given d, Pr(t|d) =

∑w∈d Pr(t|w)Pr(w|d), where Pr(w|d) is the weight
of the word w in d, which is measured using
normalized TFIDF scores. Pr(t|w) is the translation
probabilities obtained from WAM training.

Using the scores of all words in candidate
keyphrases, we compute the ranking score of each
candidate keyphrase by summing up the scores
of each word in the candidate keyphrase, i.e.,
Pr(p|d) = ∑t∈p Pr(t|d). In all, the ranking scores
of candidate keyphrases is formalized in Eq. (1)
of Fig. 1. According to the ranking scores, we can
suggest top-Md ranked candidates as the keyphrases,
where Md is the number of suggested keyphrases to
the document d pre-specified by users or systems.
We can also consider the number of words in the
candidate keyphrase as a normalization factor to Eq.
(1), which will be our future work.

4 Experiments

To perform experiments, we crawled a collection of
13,702 Chinese news articles 2 from www.163.

2The dataset can be obtained from http://nlp.csai.
tsinghua.edu.cn/˜lzy/datasets/ke_wam.html.

com, one of the most popular news websites in Chi-
na. The news articles are composed of various topics
including science, technology, politics, sports, arts,
society and military. All news articles are manually
annotated with keyphrases by website editors, and
all these keyphrases come from the corresponding
documents. Each news article is also provided with
a title and a short summary.

In this dataset, there are 72,900 unique words in
documents, and 12,405 unique words in keyphrases.
The average lengths of documents, titles and sum-
maries are 971.7 words, 11.6 words, and 45.8 words,
respectively. The average number of keyphrases
for each document is 2.4. In experiments, we
use the annotated titles and summaries to construct
translation pairs.

In experiments, we select GIZA++ 3 (Och and
Ney, 2003) to train IBM Model-1 using translation
pairs. GIZA++, widely used in various applications
of statistical machine translation, implements IBM
Models 1-5 and an HMM word alignment model.

To evaluate methods, we use the annotated
keyphrases by www.163.com as the standard
keyphrases. If one suggested keyphrase exact-
ly matches one of the standard keyphrases, it
is a correct keyphrase. We use precision p =
ccorrect/cmethod , recall r = ccorrect/cstandard and F-
measure f = 2pr/(p + r) for evaluation, where
ccorrect is the number of keyphrases correctly sug-
gested by the given method, cmethod is the number
of suggested keyphrases, and cstandard is the number
of standard keyphrases. The following experiment
results are obtained by 5-fold cross validation.

4.1 Evaluation on Keyphrase Extraction

4.1.1 Performance Comparison and Analysis
We use four representative unsupervised methods

as baselines for comparison: TFIDF, TextRank (Mi-
halcea and Tarau, 2004), ExpandRank (Wan and
Xiao, 2008b) and LDA (Blei et al., 2003). We
denote our method as WAM for short.

In Fig. 2, we demonstrate the precision-recall
curves of various methods for keyphrase extraction
including TFIDF, TextRank, ExpandRank, LDA
and WAM with title-based pairs prepared using

3The website for GIZA++ package is http://code.
google.com/p/giza-pp/.

139

sampling method (Title-Sa) and split method (Title-
Sp), and WAM with summary-based pairs prepared
using sampling method (Summ-Sa) and split method
(Summ-Sp). For WAM, we set the harmonic factor
λ = 1.0 and threshold δ = 0.1, which is the optimal
setting as shown in the later analysis on parameter
influence. For TextRank, LDA and ExpandRank, we
report their best results after parameter tuning, e.g.,
the number of topics for LDA is set to 400, and the
number of neighbor documents for ExpandRank is
set to 5 .

The points on a precision-recall curve represent
different numbers of suggested keyphrases from
Md = 1 (bottom right) to Md = 10 (upper left),
respectively. The closer the curve is to the upper
right, the better the overall performance of the
method is. In Table 1, we further demonstrate the
precision, recall and F-measure scores of various
methods when Md = 2 4. In Table 1, we also show
the statistical variances after ±. From Fig. 2 and
Table 1, we have the following observations:

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
ec

al
l

Precision

TFIDF
TextRank

LDA
ExpandRank

Title-Sa
Title-Sp

Summ-Sa
Summ-Sp

Figure 2: The precision-recall curves of various
methods for keyphrase extraction.

First, our method outperforms all baselines. It
indicates that the translation perspective is valid
for keyphrase extraction. When facing vocabu-
lary gap, TFIDF and TextRank have no solutions,
ExpandRank adopts the external information on
document level which may introduce noise, and
LDA adopts the external information on topic level
which may be too coarse. In contrast to these
baselines, WAM aims to bridge the vocabulary gap
on word level, which avoids topic drift effectively.

4We select Md = 2 because WAM gains the best F-measure
score when Md = 2, which is close to the average number of
annotated keyphrases for each document 2.4.

Method Precision Recall F-measure
TFIDF 0.187 0.256 0.208±0.005

TextRank 0.217 0.301 0.243±0.008
LDA 0.181 0.253 0.203±0.002

ExpandRank 0.228 0.316 0.255±0.007
Title-Sa 0.299 0.424 0.337±0.008
Title-Sp 0.300 0.425 0.339±0.010

Summ-Sa 0.258 0.361 0.289±0.009
Summ-Sp 0.273 0.384 0.307±0.008

Table 1: Precision, recall and F-measure of various
methods for keyphrase extraction when Md = 2.

Therefore, our method can better solve the problem
of vocabulary gap in keyphrase extraction.

Second, WAM with title-based pairs performs
better than summary-based pairs consistently, no
matter prepared using sampling method or split
method. This indicates the titles are closer to
the keyphrase language as compared to summaries.
This is also consistent with the intuition that titles
are more important than summaries. Meanwhile, we
can save training efforts using title-based pairs.

Last but not least, split method achieves better or
comparable performance as compared to sampling
method on both title-based pairs and summary-
based pairs. The reasons are: (1) the split method
generates more translation pairs for adequate train-
ing than sampling method; and (2) split method
also keeps the context of words, which helps to
obtain better word alignment, unlike bag-of-words
in sampling method.

4.1.2 Influence of Parameters
We also investigate the influence of parameters

to WAM with title-based pairs prepared using split
method, which achieves the best performance as
shown in Fig. 2. The parameters include: harmonic
factor λ (described in Eq. 3) and threshold factor
δ . Harmonic factor λ controls the weights of the
translation models trained in two directions, i.e.,
Prd2t(t|w) and Prt2d(t|w) as shown in Eq. (3). As
described in Section 3.1.1, using threshold factor δ
we filter out the pairs with similarities lower than δ .

In Fig. 3, we show the precision-recall curves
of WAM for keyphrase extraction when harmonic
factor λ ranges from 0.0 to 1.0 stepped by 0.2. From
the figure, we observe that the translation model
Prd2t(t|w) (i.e., when λ = 1.0) performs better than

140

Prt2d(t|w) (i.e., when λ = 0.0). This indicates that
it is sufficient to simply train a translation model
in one direction (i.e., Prd2t(t|w)) for keyphrase
extraction.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
ec

al
l

Precision

λ = 0.0
λ = 0.2
λ = 0.4
λ = 0.6
λ = 0.8
λ = 1.0

Figure 3: Precision-recall curves of WAM when
harmonic factor λ ranges from 0.0 to 1.0.

In Fig. 4, we show the precision-recall curves
of WAM for keyphrase extraction when threshold
factor δ ranges from 0.01 to 0.90. In title-
based pairs using split method, the total number
of pairs without filtering any pairs (i.e., δ = 0)
is 347,188. When δ = 0.01, 0.10 and 0.90, the
numbers of retained translation pairs are 165,023,
148,605 and 41,203, respectively. From Fig. 4,
we find that more translation pairs result in better
performance. However, more translation pairs also
indicate more training time of WAM. Fortunately,
we can see that the performance does not drop much
when discarding more translation pairs with low
similarities. Even when δ = 0.9, our method can
still achieve performance with precision p = 0.277,
recall r = 0.391 and F-measure f = 0.312 when
Md = 2. Meanwhile, we reduce the training efforts
by about 50% as compared to δ = 0.01.

In all, based on the above analysis on two
parameters, we demonstrate the effectiveness and
robustness of our method for keyphrase extraction.

4.1.3 When Titles/Summaries Are Unavailable
Suppose in some special cases, the titles or sum-

maries are unavailable, how can we construct trans-
lation pairs? Inspired by extraction-based document
summarization (Goldstein et al., 2000; Mihalcea and
Tarau, 2004), we can extract one or more important
sentences from the given document to construct
translation pairs. Unsupervised sentence extraction

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
ec

al
l

Precision

δ = 0.01
δ = 0.05
δ = 0.10
δ = 0.30
δ = 0.50
δ = 0.70
δ = 0.90

Figure 4: Precision-recall curves of WAM when
threshold δ ranges from 0.01 to 0.90.

for document summarization is a well-studied task
in natural language processing. As shown in Table 2,
we only perform two simple sentence extraction
methods to demonstrate the effectiveness: (1) Select
the first sentence of a document (denoted as “First”);
and (2) Compute the cosine similarities between
each sentence and the whole document represented
as two bags-of-words (denoted as “Importance”).

It is interesting to find that the method of using
the first sentence performs similar to using titles.
This profits from the characteristic of news articles
which tend to give a good summary for the whole
article using the first sentence. Although the second
method drops much on performance as compared to
using titles, it still outperforms than other existing
methods. Moreover, the second method will im-
prove much if we use more effective measures to
identify the most important sentence.

Method Precision Recall F-measure
First 0.290 0.410 0.327±0.013

Importance 0.260 0.367 0.293±0.010

Table 2: Precision, recall and F-measure of
keyphrase extraction when Md = 2 by extracting one
sentence to construct translation pairs.

4.2 Beyond Extraction: Keyphrase Generation

In Section 4.1, we evaluate our method on keyphrase
extraction by suggesting keyphrases from docu-
ments. In fact, our method is also able to suggest
keyphrases that have not appeared in the content of
given document. The ability is important especially
when the length of each document is short, which

141

itself may not contain appropriate keyphrases. We
name the new task keyphrase generation. To
evaluate these methods on keyphrase generation,
we perform keyphrase generation for the titles of
documents, which are usually much shorter than
their corresponding documents. The experiment
setting is as follows: the training phase is the
same to the previous experiment, but in the test
phase we suggest keyphrases only using the titles.
LDA and ExpandRank, similar to our method, are
also able to select candidate keyphrases beyond the
titles. We still use the annotated keyphrases of the
corresponding documents as standard answers. In
this case, about 59% standard keyphrases do not
appear in titles.

In Table 3 we show the evaluation results of vari-
ous methods for keyphrase generation when Md = 2.
For WAM, we only show the results using title-based
pairs prepared with split method. From the table,
we have three observations: (1) WAM outperforms
other methods on keyphrase generation. Moreover,
there are about 10% correctly suggested keyphrases
by WAM do not appear in titles, which indicates the
effectiveness of WAM for keyphrase generation. (2)
The performance of TFIDF and TextRank is much
lower as compared to Table 1, because the titles are
so short that they do not provide enough candidate
keyphrases and even the statistical information to
rank candidate keyphrases. (3) LDA, ExpandRank
and WAM roughly keep comparable performance as
in Table 1 (The performance of ExpandRank drops
a bit). This indicates the three methods are able to
perform keyphrase generation, and verifies again the
effectiveness of our method.

Method Precision Recall F-measure
TFIDF 0.105 0.141 0.115±0.004

TextRank 0.107 0.144 0.118±0.005
LDA 0.180 0.256 0.204±0.008

ExpandRank 0.194 0.268 0.216±0.012
WAM 0.296 0.420 0.334±0.009

Table 3: Precision, recall and F-measure of various
methods for keyphrase generation when Md = 2.

To demonstrate the features of our method for
keyphrase generation, in Table 4 we list top-5
keyphrases suggested by LDA, ExpandRank and
WAM for a news article entitled Israeli Military

Claims Iran Can Produce Nuclear Bombs and
Considering Military Action against Iran (We trans-
late the original Chinese title and keyphrases into
English for comprehension.). We have the following
observations: (1) LDA suggests general words like
“negotiation” and “sanction” as keyphrases because
the coarse-granularity of topics. (2) ExpandRank
suggests some irrelevant words like “Lebanon” as
keyphrases, which are introduced by neighbor doc-
uments talking about other affairs related to Israel.
(3) Our method can generate appropriate keyphrases
with less topic-drift. Moreover, our method can find
good keyphrases like “nuclear weapon” which even
do not appear in the title.

LDA: Iran, U.S.A., negotiation, Israel, sanction
ExpandRank: Iran, Israel, Lebanon, U.S.A., Israeli
Military
WAM: Iran, military action, Israeli Military, Israel,
nuclear weapon

Table 4: Top-5 keyphrases suggested by LDA,
ExpandRank and WAM.

5 Conclusion and Future Work

In this paper, we provide a new perspective to
keyphrase extraction: regarding a document and its
keyphrases as descriptions to the same object written
in two languages. We use IBM Model-1 to bridge
the vocabulary gap between the two languages for
keyphrase generation. We explore various methods
to construct translation pairs. Experiments show
that our method can capture the semantic relations
between words in documents and keyphrases. Our
method is also language-independent, which can be
performed on documents in any languages.

We will explore the following two future work:
(1) Explore our method on other types of articles
and on other languages. (2) Explore more com-
plicated methods to extract important sentences for
constructing translation pairs.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (NSFC) under Grant
No. 60873174. The authors would like to thank
Peng Li and Xiance Si for their suggestions.

142

References

M. Banko, V.O. Mittal, and M.J. Witbrock. 2000.
Headline generation based on statistical translation. In
Proceedings of ACL, pages 318–325.

A. Berger and J. Lafferty. 1999. Information retrieval as
statistical translation. In Proceedings of SIGIR, pages
222–229.

A. Berger, R. Caruana, D. Cohn, D. Freitag, and
V. Mittal. 2000. Bridging the lexical chasm: statistical
approaches to answer-finding. In Proceedings of
SIGIR, pages 192–199.

D.M. Blei and J.D. Lafferty, 2009. Text mining:
Classification, Clustering, and Applications, chapter
Topic models. Chapman & Hall.

D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, January.

P.F. Brown, V.J.D. Pietra, S.A.D. Pietra, and R.L.
Mercer. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational
linguistics, 19(2):263–311.

A.P. Dempster, N.M. Laird, D.B. Rubin, et al. 1977.
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38.

P. Duygulu, Kobus Barnard, J. F. G. de Freitas, and
David A. Forsyth. 2002. Object recognition as
machine translation: Learning a lexicon for a fixed
image vocabulary. In Proceedings of ECCV, pages
97–112.

A. Echihabi and D. Marcu. 2003. A noisy-channel
approach to question answering. In Proceedings of
ACL, pages 16–23.

E. Frank, G.W. Paynter, I.H. Witten, C. Gutwin, and C.G.
Nevill-Manning. 1999. Domain-specific keyphrase
extraction. In Proceedings of IJCAI, pages 668–673.

J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz.
2000. Multi-document summarization by sentence
extraction. In Proceedings of NAACL-ANLP 2000
Workshop on Automatic summarization, pages 40–48.

G. Heinrich. 2005. Parameter estimation for text anal-
ysis. Web: http://www. arbylon. net/publications/text-
est.

T. Hofmann. 1999. Probabilistic latent semantic
indexing. In Proceedings of SIGIR, pages 50–57.

A. Hulth. 2003. Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of
EMNLP, pages 216–223.

M. Karimzadehgan and C.X. Zhai. 2010. Estimation of
statistical translation models based on mutual informa-
tion for ad hoc information retrieval. In Proceedings
of SIGIR, pages 323–330.

P. Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

T.K. Landauer, P.W. Foltz, and D. Laham. 1998. An
introduction to latent semantic analysis. Discourse
Processes, 25:259–284.

Z. Liu, P. Li, Y. Zheng, and M. Sun. 2009a. Clustering
to find exemplar terms for keyphrase extraction. In
Proceedings of EMNLP, pages 257–266.

Z. Liu, H. Wang, H. Wu, and S. Li. 2009b. Collocation
extraction using monolingual word alignment method.
In Proceedings of EMNLP, pages 487–495.

Z. Liu, W. Huang, Y. Zheng, and M. Sun. 2010a. Au-
tomatic keyphrase extraction via topic decomposition.
In Proceedings of EMNLP, pages 366–376.

Z. Liu, H. Wang, H. Wu, and S. Li. 2010b. Improving
statistical machine translation with monolingual collo-
cation. In Proceedings of ACL, pages 825–833.

R. Mihalcea and P. Tarau. 2004. Textrank: Bringing
order into texts. In Proceedings of EMNLP, pages
404–411.

V. Murdock and W.B. Croft. 2004. Simple translation
models for sentence retrieval in factoid question an-
swering. In Proceedings of SIGIR.

T. Nguyen and M.Y. Kan. 2007. Keyphrase extraction
in scientific publications. In Proceedings of the 10th
International Conference on Asian Digital Libraries,
pages 317–326.

F.J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
linguistics, 29(1):19–51.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The pagerank citation ranking: Bringing order to
the web. Technical report, Stanford Digital Library
Technologies Project, 1998.

C. Quirk, C. Brockett, and W. Dolan. 2004. Monolingual
machine translation for paraphrase generation. In
Proceedings of EMNLP, volume 149.

S. Riezler and Y. Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569–582.

S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and
Y. Liu. 2007. Statistical machine translation for query
expansion in answer retrieval. In Proccedings of ACL,
pages 464–471.

S. Riezler, Y. Liu, and A. Vasserman. 2008. Translating
queries into snippets for improved query expansion. In
Proceedings of COLING, pages 737–744.

G. Salton and C. Buckley. 1988. Term-weighting
approaches in automatic text retrieval. Information
processing and management, 24(5):513–523.

R. Soricut and E. Brill. 2006. Automatic question
answering using the web: Beyond the factoid. Infor-
mation Retrieval, 9(2):191–206.

143

P.D. Turney. 2000. Learning algorithms for keyphrase
extraction. Information Retrieval, 2(4):303–336.

X. Wan and J. Xiao. 2008a. Collabrank: towards a
collaborative approach to single-document keyphrase
extraction. In Proceedings of COLING, pages 969–
976.

X. Wan and J. Xiao. 2008b. Single document
keyphrase extraction using neighborhood knowledge.
In Proceedings of AAAI, pages 855–860.

I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin, and
C.G. Nevill-Manning. 1999. Kea: Practical automatic
keyphrase extraction. In Proceedings of DL, pages
254–255.

X. Xue, J. Jeon, and W.B. Croft. 2008. Retrieval models
for question and answer archives. In Proceedings of
SIGIR, pages 475–482.

S. Zhao, H. Wang, and T. Liu. 2010. Paraphrasing with
search engine query logs. In Proceedings of COLING,
pages 1317–1325.

144

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 145–153,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Using Second-order Vectors in a
Knowledge-based Method for Acronym Disambiguation

Bridget T. McInnes∗

College of Pharmacy
University of Minnesota
Minneapolis, MN 55455

Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812

Ying Liu
College of Pharmacy

University of Minnesota
Minneapolis, MN 55455

Serguei V. Pakhomov
College of Pharmacy

University of Minnesota
Minneapolis, MN 55455

Genevieve B. Melton
Institute for Health Informatics

University of Minnesota
Minneapolis, MN 55455

Abstract

In this paper, we introduce a knowledge-based
method to disambiguate biomedical acronyms
using second-order co-occurrence vectors. We
create these vectors using information about a
long-form obtained from the Unified Medical
Language System and Medline. We evaluate
this method on a dataset of 18 acronyms found
in biomedical text. Our method achieves an
overall accuracy of 89%. The results show
that using second-order features provide a dis-
tinct representation of the long-form and po-
tentially enhances automated disambiguation.

1 Introduction

Word Sense Disambiguation (WSD) is the task
of automatically identifying the appropriate sense of
a word with multiple senses. For example, the word
culture could refer toanthropological culture

(e.g., the culture of the Mayan civilization), or a
laboratory culture (e.g., cell culture).

Acronym disambiguation is the task of automat-
ically identifying the contextually appropriate long-
form of an ambiguous acronym. For example, the
acronymMScould refer to the diseaseMultiple Scle-
rosis, the drugMorphine Sulfate, or the stateMissis-
sippi, among others. Acronym disambiguation can
be viewed as a special case of WSD, although, un-
like terms, acronyms tend to be complete phrases
or expressions, therefore collocation features are
not as easily identified. For example, the feature
rate when disambiguating the terminterest, as in

∗Contact author : bthomson@umn.edu.

interest rate, may not be available. Acronyms also
tend to be noun phrases, therefore syntactic features
do not provide relevant information for the purposes
of disambiguation.

Identifying the correct long-form of an acronym
is important not only for the retrieval of information
but the understanding of the information by the re-
cipient. In general English, Park and Byrd (2001)
note that acronym disambiguation is not widely
studied because acronyms are not as prevalent in lit-
erature and newspaper articles as they are in specific
domains such as government, law, and biomedicine.

In the biomedical sublanguage domain, acronym
disambiguation is an extensively studied problem.
Pakhomov (2002) note acronyms in biomedical lit-
erature tend to be used much more frequently than in
news media or general English literature, and tend
to be highly ambiguous. For example, the Uni-
fied Medical Language System (UMLS), which in-
cludes one of the largest terminology resources in
the biomedical domain, contains 11 possible long-
forms of the acronymMS in addition to the four
examples used above. Liu et al. (2001) show that
33% of acronyms are ambiguous in the UMLS. In a
subsequent study, Liu et al. (2002a) found that 80%
of all acronyms found in Medline, a large repository
of abstracts from biomedical journals, are ambigu-
ous. Wren and Garner (2002) found that there exist
174,000 unique acronyms in the Medline abstracts
in which 36% of them are ambiguous. The authors
also estimated that the number of unique acronyms
is increasing at a rate of 11,000 per year.

Supervised and semi-supervised methods have
been used successfully for acronym disambiguation

145

but are limited in scope due to the need for sufficient
training data. Liu et al. (2004) state that an acronym
could have approximately 16 possible long-forms in
Medline but could not obtain a sufficient number of
instances for each of the acronym-long-form pairs
for their experiments. Stevenson et al. (2009) cite
a similar problem indicating that acronym disam-
biguation methods that do not require training data,
regardless if it is created manually or automatically,
are needed.

In this paper, we introduce a novel knowledge-
based method to disambiguate acronyms using
second-order co-occurrence vectors. This method
does not rely on training data, and therefore, is not
limited to disambiguating only commonly occurring
possible long-forms. These vectors are created us-
ing the first-order features obtained from the UMLS
about the acronym’s long-forms and second-order
features obtained from Medline. We show that us-
ing second-order features provide a distinct repre-
sentation of the long-form for the purposes of dis-
ambiguation and obtains a significantly higher dis-
ambiguation accuracy than using first order features.

2 Unified Medical Language System

The Unified Medical Language System (UMLS) is
a data warehouse that stores a number of distinct
biomedical and clinical resources. One such re-
source, used in this work, is the Metathesaurus.
The Metathesaurus contains biomedical and clin-
ical concepts from over 100 disparate terminol-
ogy sources that have been semi-automatically in-
tegrated into a single resource containing a wide
range of biomedical and clinical information. For
example, it contains the Systematized Nomencla-
ture of Medicine–Clinical Terms (SNOMED CT),
which is a comprehensive clinical terminology cre-
ated for the electronic exchange of clinical health
information, the Foundational Model of Anatomy
(FMA), which is an ontology of anatomical concepts
created specifically for biomedical and clinical re-
search, and MEDLINEPLUS, which is a terminol-
ogy source containing health related concepts cre-
ated specifically for consumers of health services.

The concepts in these sources can overlap. For
example, the conceptAutonomic nerveexists in both
SNOMED CT and FMA. The Metathesaurus assigns

the synonymous concepts from the various sources
a Concept Unique Identifiers (CUIs). Thus both
theAutonomic nerveconcepts in SNOMED CT and
FMA are assigned the same CUI (C0206250). This
allows multiple sources in the Metathesaurus to be
treated as a single resource.

Some sources in the Metathesaurus contain ad-
ditional information about the concept such as a
concept’s synonyms, its definition and its related
concepts. There are two main types of relations
in the Metathesaurus that we use: the parent/child
and broader/narrower relations. A parent/child re-
lation is a hierarchical relation between two con-
cepts that has been explicitly defined in one of the
sources. For example, the conceptSplanchnic nerve
has anis-a relation with the conceptAutonomic
nerve in FMA. This relation is carried forward to
the CUI level creating a parent/child relations be-
tween the CUIs C0037991 (Splanchnic nerve) and
C0206250 (Autonomic nerve) in the Metathesaurus.
A broader/narrower relation is a hierarchical relation
that does not explicitly come from a source but is
created by the UMLS editors. We use the entire
UMLS including the RB/RN and PAR/CHD rela-
tions in this work.

3 Medline

Medline (Medical Literature Analysis and Retrieval
System Online) is a bibliographic database contain-
ing over 18.5 million citations to journal articles
in the biomedical domain which is maintained by
the National Library of Medicine (NLM). The 2010
Medline Baseline, used in this study, encompasses
approximately 5,200 journals starting from 1948 and
is 73 Gigabytes; containing 2,612,767 unique uni-
grams and 55,286,187 unique bigrams. The majority
of the publications are scholarly journals but a small
number of newspapers, and magazines are included.

4 Acronym Disambiguation

Existing acronym disambiguation methods can be
classified into two categories: form-based and
context-based methods. Form-based methods, such
as the methods proposed by Taghva and Gilbreth
(1999), Pustejovsky et al. (2001), Schwartz and
Hearst (2003) and Nadeau and Turney (2005), dis-
ambiguate the acronym by comparing its letters di-

146

rectly to the initial letters in the possible long-forms
and, therefore, would have difficulties in distin-
guishing between acronyms with similar long-forms
(e.g., RA referring to Refractory anemia or Rheuma-
toid arthritis).

In contrast, context-based methods disambiguate
between acronyms based on the context in which the
acronym is used with the assumption that the context
surrounding the acronym would be different for each
of the possible long-forms. In the remainder of this
section, we discuss these types of methods in more
detail.

4.1 Context-based Acronym Disambiguation
Methods

Liu et al. (2001) and Liu et al. (2002b) introduce
a semi-supervised method in which training and
test data are automatically created by extracting ab-
stracts from Medline that contain the acronym’s
long-forms. The authors use collocations and a bag-
of-words approach to train a Naive Bayes algorithm
and report an accuracy of 97%. This method be-
gins to treat acronym disambiguation as more of a
WSD problem by looking at the context in which
the acronym exists to determine its long-form, rather
than the long-form itself. In a subsequent study, Liu
et al. (2004) explore using additional features and
machine learning algorithms and report an accuracy
of 99% using the Naive Bayes.

Joshi (2006) expands on Liu, et al’s work. They
evaluate additional machine learning algorithms us-
ing unigrams, bigrams and trigrams as features.
They found that given their feature set, SVMs ob-
tain the highest accuracy (97%).

Stevenson et al. (2009) re-recreate this dataset us-
ing the method described in Liu et al. (2001) to auto-
matically create training data for their method which
uses a mixture of linguistics features (e.g., colloca-
tions, unigrams, bigrams and trigrams) in combina-
tion with the biomedical features CUIs and Medi-
cal Subject Headings, which are terms manually as-
signed to Medline abstracts for indexing purposes.
The authors evaluate the Naive Bayes, SVM and
Vector Space Model (VSM) described by Agirre and
Martinez (2004), and report that VSM obtained the
highest accuracy (99%).

Pakhomov (2002) also developed a semi-
supervised method in which training data was

automatically created by first identifying the long-
form found in the text of clinical reports, replacing
the long-form with the acronym to use as training
data. A maximum entropy model trained and tested
on a corpus of 10,000 clinical notes achieved an
accuracy of 89%. In a subsequent study, Pakhomov
et al. (2005) evaluate obtaining training data from
three sources: Medline, clinical records and the
world wide web finding using a combination of
instances from clinical records and the web obtained
the highest accuracy.

Joshi et al. (2006) compare using the Naive
Bayes, Decision trees and SVM on ambiguous
acronyms found in clinical reports. The authors
use the part-of-speech, the unigrams and the bi-
grams of the context surrounding the acronym as
features. They evaluate their method on 7,738
manually disambiguated instances of 15 ambiguous
acronyms obtaining an accuracy of over 90% for
each acronym.

5 Word Sense Disambiguation

Many knowledge-based WSD methods have been
developed to disambiguate terms which are closely
related to the work presented in this paper. Lesk
(1986) proposes a definition overlap method in
which the appropriate sense of an ambiguous term
was determined based on the overlap between its
definition in a machine readable dictionary (MRD).
Ide and Véronis (1998) note that this work provided
a basis for most future MRD disambiguation meth-
ods; including the one presented in this paper.

Banerjee and Pedersen (2002) use the Lesk’s
overlap method to determine the relatedness be-
tween two concepts (synsets) in WordNet. They ex-
tend the method to not only include the definition
(gloss) of the two synsets in the overlap but also the
glosses of related synsets.

Wilks et al. (1990) expand upon Lesk’s method by
calculating the number of times the words in the def-
inition co-occur with the ambiguous words. In their
method, a vector is created using the co-occurrence
information for the ambiguous word and each of its
possible senses. The similarity is then calculated be-
tween the ambiguous word’s vector and each of the
sense vectors. The sense whose vector is most simi-
lar is assigned to the ambiguous word.

147

0

.3

0
 0
 0
 0
 0
 0
disphosphoric

g
lu

co
se

fru
cto

se

p
h

o
sp

h
o

ric

esters

ch
an

g
ed

effect

0
 0
 0
 0
 0

g
lyco

lyte

en
zym

es

co
m

b
in

ed

d
ecreases

in
ten

sity

acid

0

m
etab

o
lites

FEATURES

0
 0
 0
 0
 .2
 0
acid
 0
 0
 0
 .1
 0
 0

0
 0
 0
 0
 .5
 0
 0
esters
 0
 0
 0
 0
 0
 0

0
 .1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0

fructose

0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0

diphosphate

0
 0
 0
 0
 0
 0
isomer

0
 0
 0
 0
 0
 0
 0
prevalent
 0
 0
 0
 0
 0
 0

0
 .1
 0
 .3
 .5
 .2
 0
2nd order vector for

Fructose Diphosphate

0
 0
 0
 .1
 0
 0

E
xt

en
d

ed
 D

ef
in

it
io

n

fo
r

F
ru

ct
o

se
 D

ip
h

o
sp

h
at

e

Figure 1: 2nd Order Vector for Fructose Diphosphate (FDP)

Patwardhan and Pedersen (2006) introduce a vec-
tor measure to determine the relatedness between
pairs of concepts. In this measure, a second order
co-occurrence vector is created for each concept us-
ing the words in each of the concepts definition and
calculating the cosine between the two vectors. This
method has been used in the task of WSD by calcu-
lating the relatedness between each possible sense
of the ambiguous word and its surrounding context.
The context whose sum is the most similar is as-
signed to the ambiguous word.

Second-order co-occurrence vectors were first in-
troduced by Schütze (1992) for the task of word
sensediscrimination and later extended by Puran-
dare and Pedersen (2004). As noted by Pedersen
(2010), disambiguation requires a sense-inventory
in which the long-forms are known ahead of time,
where as in discrimination this information is not
known a priori.

6 Method

In our method, a second-order co-occurrence vec-
tor is created for each possible long-form of the

acronym, and the acronym itself. The appropriate
long-form of the acronym is then determined by
computing a cosine between the vector represent-
ing the ambiguous acronym and each of the vectors
representing the long-forms. The long-form whose
vector has the smallest angle between it and the
acronym vector is chosen as the most likely long-
form of the acronym.

To create a second-order vector for a long-form,
we first obtain a textual description of the long-form
in the UMLS, which we refer to as theextended defi-
nition. Each long-form, from our evaluation set, was
mapped to a concept in the UMLS, therefore, we use
the long-form’s definition plus the definition of its
parent/children and narrow/broader relations and the
terms in the long-form.

We include the definition of the related concepts
because not all concepts in the UMLS have a defini-
tion. In our evaluation dataset, not a single acronym
has a definition for each possible long-form. On
average, each extended definition contains approx-
imately 453 words. A short example of the extended
definition for the acronym FDP when referring to

148

fructose diphosphateis: “ Diphosphoric acid esters
of fructose. The fructose diphosphate isomer is most
prevalent. fructose diphosphate.”

After the extended definition is obtained, we cre-
ate the second-order vector by first creating a word
by word co-occurrence matrix in which the rows
represent the content words in the long-forms, ex-
tended definition, and the columns represent words
that co-occur in Medline abstracts with the words in
the definition. Each cell in this matrix contains the
Log Likelihood Ratio (Dunning (1993)) of the word
found in the row and the word in the column. Sec-
ond, each word in the long-forms, extended defini-
tion is replaced by its corresponding vector, as given
in the co-occurrence matrix. The centroid of these
vectors constitutes the second order co-occurrence
vector used to represent the long-form.

For example, given theexample corpuscontain-
ing two instances: 1) The metabolites, glucose fruc-
tose and their phosphoric acid esters are changed
due to the effect of glycolytic enzymes, and 2)
The phosphoric acid combined with metabolites de-
creases the intensity. Figure 1 shows how the
second-order co-occurrence vector is created for the
long-form fructose diphosphateusing the extended
definition and features from our given corpus above.

The second-order co-occurrence vector for the
ambiguous acronym is created in a similar fashion,
only rather than using words in the extended defini-
tion, we use the words surrounding the acronym in
the instance.

Vector methods are subject to noise introduced by
features that do not distinguish between the differ-
ent long-forms of the acronym. To reduce this type
of noise, we select the features to use in the second
order co-occurrence vectors based on the following
criteria: 1) second order feature cannot be a stop-
word, and 2) second order feature must occur at least
twice in the feature extraction dataset and not occur
more than 150 times. We also experiment with the
location of the second-order feature with respect to
the first-order feature by varying the window size of
zero, four, six and ten words to the right and the left
of the first-order feature. The experiments in this
paper were conducted using CuiTools v0.15.1

Our method is different from other context-based

1http://cuitools.sourceforge.net

acronym disambiguation methods discussed in the
related work because it does not require annotated
training data for each acronym that needs to be dis-
ambiguated. Our method differs from the method
proposed by Wilks et al. (1990) in two fundamen-
tal aspects: 1) using theextended definition of
the possible long-forms of an acronym, and 2) using
second-order vectors to represent the instance con-
taining the acronym and each of the acronym’s pos-
sible long-forms.

7 Data

7.1 Acronym Dataset

We evaluated our method on the “Abbrev” dataset2

made available by Stevenson et al. (2009). The
acronyms and long-forms in the data were initially
presented by Liu et al. (2001). Stevenson et al.
(2009) automatically re-created this dataset by iden-
tifying the acronyms and long-forms in Medline ab-
stracts and replacing the long-form in the abstract
with its acronym. Each abstract contains approxi-
mately 216 words. The dataset consists of three sub-
sets containing 100 instances, 200 instances and 300
instances of the ambiguous acronym referred to as
Abbrev.100, Abbrev.200, Abbrev.300, respectively.
The acronyms long-forms were manually mapped to
concepts in the UMLS by Stevenson, et al.

A sufficient number of instances were not found
for each of the 21 ambiguous acronyms by Steven-
son et al. (2009). For example, “ASP” only con-
tained 71 instances and therefore not included in any
of the subsets. “ANA” and “FDP” only contained
just over 100 instances and therefore, are only in-
cluded in the Abbrev.100 subset. “ACE”, “ASP”
and “CSF” were also excluded because several of
the acronyms’ long-forms did not occur frequently
enough in Medline to create a balanced dataset.

We evaluate our method on the same subsets that
Stevenson et al. (2009) used to evaluate their super-
vised method. The average number of long-forms
per acronym is 2.6 and the average majority sense
across all subsets is 70%.

7.2 Feature Extraction Dataset

We use abstracts from Medline, containing ambigu-
ous acronym or long-form, to create the second-

2http://nlp.shef.ac.uk/BioWSD/downloads/corpora

149

order co-occurrence vectors for our method as de-
scribed in Section 6. Table 1 shows the number of
Medline abstracts extracted for the acronyms.

Acronyms # Abstracts Acronym # Abstracts
ANA 3,267 APC 11,192
BPD 3,260 BSA 10,500
CAT 44,703 CML 8,777
CMV 13,733 DIP 2,912
EMG 16,779 FDP 1,677
LAM 1,572 MAC 6,528
MCP 2,826 PCA 11,044
PCP 5,996 PEG 10,416
PVC 2,780 RSV 5,091

Table 1: Feature Extraction Data for Acronyms

8 Results

Table 2 compares the majority sense baseline and the
first-order baseline with the results obtained using
our method on the Acronym Datasets (Abbrev.100,
Abbrev.200 and Abbrev.300) using a window size
of zero, four, six and ten. Differences between the
means of disambiguation accuracy produced by var-
ious approaches were tested for statistical signifi-
cance using the pair-wise Student’s t-tests with the
significance threshold set to 0.01.

Window Abbrev
Size 100 200 300

Maj. Sense Baseline 0.70 0.70 0.70
1-order Baseline 0.57 0.61 0.61

Our Method

0 0.83 0.83 0.81
4 0.86 0.87 0.86
6 0.88 0.90 0.89
10 0.88 0.90 0.89

Table 2: Overall Disambiguation Results

The majority sense baseline is often used to evalu-
ate supervised learning algorithms and indicates the
accuracy that would be achieved by assigning the
most frequent sense (long-form) to every instance.
The results in Table 2 demonstrate that our method is
significantly more accurate than the majority sense
baseline(p ≤ 0.01).

We compare the results using second-order vec-
tors to first-order vectors. Table 2 shows that ac-
curacy of the second-order results is significantly
higher than the first-order results(p ≤ 0.01).

The results in Table 2 also show that, as the win-
dow size grows from zero to six, the accuracy of the

system increases and plateaus at a window size of
ten. There is no statistically significant difference
between using a window size of six and ten but there
is a significant difference between a window size of
zero and six, as well as four and six (p ≤ 0.01).

Acronym# LongAbbrev Abbrev Abbrev
forms 100 200 300

ANA 3 0.84
APC 3 0.88 0.87 0.87
BPD 3 0.96 0.95 0.95
BSA 2 0.95 0.93 0.92
CAT 2 0.88 0.87 0.87
CML 2 0.81 0.84 0.83
CMV 2 0.98 0.98 0.98
DIP 2 0.98 0.98
EMG 2 0.88 0.89 0.88
FDP 4 0.65
LAM 2 0.86 0.87 0.88
MAC 4 0.94 0.95 0.95
MCP 4 0.73 0.67 0.68
PCA 4 0.78 0.79 0.79
PCP 2 0.97 0.96 0.96
PEG 2 0.89 0.89 0.88
PVC 2 0.95 0.95
RSV 2 0.97 0.98 0.98

Table 3: Individual Results using a Window Size of 6.

9 Error Analysis

Table 3 shows the results obtained by our method for
the individual acronyms using a window size of six,
and the number of possible long-forms per acronym.
Of the 18 acronyms, three obtain an accuracy below
80 percent: FDP, MCP and PCA.

FPD has four possible long-forms: Fructose
Diphosphate (E1), Formycin Diphosphate (E2), Fib-
rinogen Degradation Product (E3) and Flexor Dig-
itorum Profundus (E4). The confusion matrix in
Table 4 shows that the method was unable to dis-
tinguish between the two long-forms, E1 and E2,
which are both diphosphates, nor E2 and E3.

Long-Form E1 E2 E3 E4
E1: Fructose Diphosphate
E2: Formycin Diphosphate 5 2 11 19
E3: Fibrinogen Degradation Product 4
E4: Flexor Digitorum Profundus 59

Table 4: FDP Confusion Matrix

MCP also has four possible long-forms: Multicat-
alytic Protease (E1), Metoclopramide (E2), Mono-
cyte Chemoattractant Protein (E3) and Membrane

150

Cofactor Protein (E4). The confusion matrix in Ta-
ble 5 shows that the method was not able to distin-
guish between E3 and E4, which are both proteins,
and E1, which is a protease (an enzyme that breaks
down a protein).

Long-Form E1 E2 E3 E4
E1: Multicatalytic Protease 1 5 6 1
E2: Metoclopramide 15
E3: Monocyte Chemoattractant Protein1 3 44 11
E4: Membrane Cofactor Protein 13

Table 5: MCP Confusion Matrix

PCA has four possible long-forms: Passive Cu-
taneous Anaphylaxis (E1), Patient Controlled Anal-
gesia (E2), Principal Component Analysis (E3), and
Posterior Cerebral Artery (E4). The confusion ma-
trix in Table 6 shows that the method was not able
to distinguish between E2 and E3. Analyzing the
extended definitions of the concepts showed that E2
includes the definition to the concept Pain Manage-
ment. The words in this definition overlap with
many of the words used in E3s extended definition.

Long-Form E1 E2 E3 E4
E1:Passive Cutaneous Anaphylaxis18 6 1
E2:Patient Controlled Analgesia 5 15
E3:Principal Component Analysis 48
E4:Posterior Cerebral Artery 7

Table 6: PCA Confusion Matrix

10 Comparison with Previous Work

Of the previously developed methods, Liu et al.
(2004) and Stevenson et al. (2009) evaluated their
semi-supervised methods on the same dataset as we
used for the current study. A direct comparison
can not be made between our method and Liu et al.
(2004) because we do not have an exact duplication
of the dataset that they use. Their results are com-
parable to Stevenson et al. (2009) with both report-
ing results in the high 90s. Our results are directly
comparable to Stevenson et al. (2009) who report
an overall accuracy of 98%, 98% and 99% on the
Abbrev.100, Abbrev.200 and Abbrev.300 datasets
respectively. This is approximately 10 percentage
points higher than our results.

The advantage of the methods proposed by
Stevenson et al. (2009) and Liu et al. (2004) is that

they are semi-supervised which have been shown to
obtain higher accuracies than methods that do not
use statistical machine learning algorithms. The dis-
advantage is that sufficient training data are required
for each possible acronym-long-form pair. Liu et
al. (2004) state that an acronym could have approxi-
mately 16 possible long-forms in Medline but a suf-
ficient number of instances for each of the acronym-
long-form pairs were not found in Medline and,
therefore, evaluated their method on 15 out of the
original 34 acronyms. Stevenson et al. (2009) cite
a similar problem in re-creating this dataset. This
shows the limitation to these methods is that a suffi-
cient number of training examples can not be ob-
tained for each acronym that needs to be disam-
biguated. The method proposed in the paper does
not have this limitation and can be used to disam-
biguate any acronym in Medline.

11 Discussion

In this paper, we presented a novel method to disam-
biguate acronyms in biomedical text using second-
order features extracted from the UMLS and Med-
line. The results show that using second-order fea-
tures provide a distinct representation of the long-
form that is useful for disambiguation.

We believe that this is because biomedical text
contains technical terminology that has a rich source
of co-occurrence information associated with them
due to their compositionality. Using second-order
information works reasonably well because when
the terms in the extended definition are broken up
into their individual words, information is not being
lost. For example, the term Patient Controlled Anal-
gesia can be understood by taking the union of the
meanings of the three terms and coming up with an
appropriate definition of the term (patient has con-
trol over their analgesia).

We evaluated various window sizes to extract the
second-order co-occurrence information from, and
found using locally occurring words obtains a higher
accuracy. This is consistent with the finding reported
by Choueka and Lusignan (1985) who conducted an
experiment to determine what size window is needed
for humans to determine the appropriate sense of an
ambiguous word.

The amount of data used to extract the second-

151

order features for each ambiguous acronym varied
depending on its occurrence in Medline. Table 1 in
Section 7.2 shows the number of abstracts in Med-
line used for each acronym. We compared the accu-
racy obtained by our method using a window size of
six on the Abbrev.100 dataset with the number of ab-
stracts in the feature extraction data. We found that
the accuracy was not correlated with the amount of
data used (r = 0.07). This confirms that it is not the
quantity but the content of the contextual informa-
tion that determines the accuracy of disambiguation.

We compared using second-order features and
first-order features showing that the second-order re-
sults obtained a significantly higher accuracy. We
believe that this is because the definitions of the pos-
sible concepts are too sparse to provide enough in-
formation to distinguish between them. This find-
ing coincides to that of Purandare and Pedersen
(2004) and Pedersen (2010) who found that with
large amounts of data, first-order vectors perform
better than second-order vectors, but second-order
vectors are a good option when large amounts of
data are not available.

The results of the error analysis indicate that
for some acronyms using the extended definition
does not provide sufficient information to make
finer grained distinctions between the long-forms.
This result also indicates that, although many long-
forms of acronyms can be considered coarse-grained
senses, this is not always the case. For example, the
analysis ofMCP showed that two of its possible
long-forms are proteins which are difficult to differ-
entiate from given the context.

The results of the error analysis also show that
indicative collocation features for acronyms are not
easily identified because acronyms tend to be com-
plete phrases. For example, two of the possible
long-forms ofDF are Fructose Diphosphateand
Formycin Diphosphate.

Two main limitations of this work must be men-
tioned to facilitate the interpretation of the results.
The first is the small number of acronyms and the
small number of long-forms per acronym in the
dataset; however, the acronyms in this dataset are
representative of the kinds of acronyms one would
expect to see in biomedical text. The second limita-
tion is that the dataset contains only those acronyms
whose long-forms were found in Medline abstracts.

The main goal of this paper was to determine if the
context found in the long-forms, extended definition
was distinct enough to distinguish between them us-
ing second-order vectors. For this purpose, we feel
that the dataset was sufficient although a more ex-
tensive dataset may be needed in the future for im-
proved coverage.

12 Future Work

In the future, we plan to explore three different
avenues. The first avenue is to look at obtaining
contextual descriptions of the possible long-forms
from resources other than the UMLS such as the
MetaMapped Medline baseline and WordNet. The
second avenue is limiting the features that are used
in the instance vectors. The first-order features in
the instance vector contain the words from the entire
abstract. As previously mentioned, vector methods
are subject to noise, therefore, in the future we plan
to explore using only those words that are co-located
next to the ambiguous acronym. The third avenue is
expanding the vector to allow for terms. Currently,
we use word vectors, in the future, we plan to extend
the method to use terms, as identified by the UMLS,
as features rather than single words.

We also plan to test our approach in the clinical
domain. We believe that acronym disambiguation
may be more difficult in this domain due to the in-
crease amount of long-forms as seen in the datasets
used by Joshi et al. (2006) and Pakhomov (2002).

13 Conclusions

Our study constitutes a significant step forward in
the area of automatic acronym ambiguity resolu-
tion, as it will enable the incorporation of scalable
acronym disambiguation into NLP systems used for
indexing and retrieval of documents in specialized
domains such as medicine. The advantage of our
method over previous methods is that it does not re-
quire manually annotated training for each acronym
to be disambiguated while still obtaining an overall
accuracy of 89%.

Acknowledgments

This work was supported by the National Insti-
tute of Health, National Library of Medicine Grant
#R01LM009623-01.

152

References

E. Agirre and D. Martinez. 2004. The Basque Country
University system: English and Basque tasks. InPro-
ceedings of the 3rd ACL workshop on the Evaluation
of Systems for the Semantic Analysis of Text (SENSE-
VAL), pages 44–48.

S. Banerjee and T. Pedersen. 2002. An adapted lesk al-
gorithm for word sense disambiguation using Word-
Net. In Proceedings of the 3rd International Confer-
ence on Intelligent Text Processing and Computational
Linguistics, pages 136–145.

Y. Choueka and S. Lusignan. 1985. Disambiguation
by short contexts. Computers and the Humanities,
19(3):147–157.

T. Dunning. 1993. Accurate methods for the statistics of
surprise and coincidence.Computational Linguistics,
19(1):61–74.

N. Ide and J. Véronis. 1998. Introduction to the special
issue on word sense disambiguation: the state of the
art. Computational Linguistics, 24(1):2–40.

M. Joshi, S. Pakhomov, T. Pedersen, and C.G. Chute.
2006. A comparative study of supervised learning as
applied to acronym expansion in clinical reports. In
Proceedings of the Annual Symposium of AMIA, pages
399–403.

M. Joshi. 2006. Kernel Methods for Word Sense Disam-
biguation and Abbreviation Expansion. Master’s the-
sis, University of Minnesota.

M. Lesk. 1986. Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone
from an ice cream cone.Proceedings of the 5th Annual
International Conference on Systems Documentation,
pages 24–26.

H. Liu, YA. Lussier, and C. Friedman. 2001. Disam-
biguating ambiguous biomedical terms in biomedical
narrative text: an unsupervised method.Journal of
Biomedical Informatics, 34(4):249–261.

H. Liu, A.R. Aronson, and C. Friedman. 2002a. A study
of abbreviations in MEDLINE abstracts. InProceed-
ings of the Annual Symposium of AMIA, pages 464–
468.

H. Liu, S.B. Johnson, and C. Friedman. 2002b. Au-
tomatic resolution of ambiguous terms based on ma-
chine learning and conceptual relations in the UMLS.
JAMIA, 9(6):621–636.

H. Liu, V. Teller, and C. Friedman. 2004. A multi-
aspect comparison study of supervised word sense dis-
ambiguation.JAMIA, 11(4):320–331.

D. Nadeau and P. Turney. 2005. A supervised learning
approach to acronym identification. InProceedings
of the 18th Canadian Conference on Artificial Intelli-
gence, pages 319–329.

S. Pakhomov, T. Pedersen, and C.G. Chute. 2005. Ab-
breviation and acronym disambiguation in clinical dis-
course. InProceedings of the Annual Symposium of
AMIA, pages 589–593.

S. Pakhomov. 2002. Semi-supervised maximum en-
tropy based approach to acronym and abbreviation
normalization in medical texts. InProceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics, pages 160–167.

Y. Park and R.J. Byrd. 2001. Hybrid text mining for find-
ing abbreviations and their definitions. InProceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 126–133.

S. Patwardhan and T. Pedersen. 2006. Using WordNet-
based context vectors to estimate the semantic related-
ness of concepts. InProceedings of the EACL 2006
Workshop Making Sense of Sense - Bringing Com-
putational Linguistics and Psycholinguistics Together,
pages 1–8.

T. Pedersen. 2010. The effect of different context repre-
sentations on word sense discrimination in biomedical
texts. InProceedings of the 1st ACM International IHI
Symposium, pages 56–65.

A. Purandare and T. Pedersen. 2004. Word sense dis-
crimination by clustering contexts in vector and sim-
ilarity spaces. InProceedings of the Conference on
Computational Natural Language Learning (CoNLL),
pages 41–48.

J. Pustejovsky, J. Castano, B. Cochran, M. Kotecki,
M. Morrell, and A. Rumshisky. 2001. Extraction and
disambiguation of acronym-meaning pairs in medline.
Unpublished manuscript.

H. Schütze. 1992. Dimensions of meaning. InProceed-
ings of the 1992 ACM/IEEE Conference on Supercom-
puting, pages 787–796.

A.S. Schwartz and M.A. Hearst. 2003. A simple
algorithm for identifying abbreviation definitions in
biomedical text. InProceedings of the Pacific Sym-
posium on Biocomputing (PSB), pages 451–462.

M. Stevenson, Y. Guo, A. Al Amri, and R. Gaizauskas.
2009. Disambiguation of biomedical abbreviations.
In Proceedings of the ACL BioNLP Workshop, pages
71–79.

K. Taghva and J. Gilbreth. 1999. Recognizing acronyms
and their definitions.ISRI UNLV, 1:191–198.

Y. Wilks, D. Fass, C.M. Guo, J.E. McDonald, T. Plate,
and B.M. Slator. 1990. Providing machine tractable
dictionary tools.Machine Translation, 5(2):99–154.

J.D. Wren and H.R. Garner. 2002. Heuristics for iden-
tification of acronym-definition patterns within text:
towards an automated construction of comprehensive
acronym-definition dictionaries.Methods of Informa-
tion in Medicine, 41(5):426–434.

153

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 154–162,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Using the Mutual k-Nearest Neighbor Graphs
for Semi-supervised Classification of Natural Language Data

Kohei Ozaki and Masashi Shimbo and Mamoru Komachi and Yuji Matsumoto
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{kohei-o,shimbo,komachi,matsu}@is.naist.jp

Abstract

The first step in graph-based semi-supervised
classification is to construct a graph from in-
put data. While the k-nearest neighbor graphs
have been the de facto standard method of
graph construction, this paper advocates using
the less well-known mutual k-nearest neigh-
bor graphs for high-dimensional natural lan-
guage data. To compare the performance
of these two graph construction methods, we
run semi-supervised classification methods on
both graphs in word sense disambiguation and
document classification tasks. The experi-
mental results show that the mutual k-nearest
neighbor graphs, if combined with maximum
spanning trees, consistently outperform the k-
nearest neighbor graphs. We attribute better
performance of the mutual k-nearest neigh-
bor graph to its being more resistive to mak-
ing hub vertices. The mutual k-nearest neigh-
bor graphs also perform equally well or even
better in comparison to the state-of-the-art
b-matching graph construction, despite their
lower computational complexity.

1 Introduction

Semi-supervised classification try to take advan-
tage of a large amount of unlabeled data in addi-
tion to a small amount of labeled data, in order to
achieve good classification accuracy while reducing
the cost of manually annotating data. In particular,
graph-based techniques for semi-supervised classi-
fication (Zhou et al., 2004; Zhu et al., 2003; Cal-
lut et al., 2008; Wang et al., 2008) are recognized
as a promising approach. Some of these techniques

have been successfully applied for NLP tasks: word
sense disambiguation (Alexandrescu and Kirchhoff,
2007; Niu et al., 2005), sentiment analysis (Gold-
berg and Zhu, 2006), and statistical machine trans-
lation (Alexandrescu and Kirchhoff, 2009), to name
but a few.

However, the focus of these studies is how to as-
sign accurate labels to vertices in a given graph. By
contrast, there has not been much work on how such
a graph should be built, and graph construction re-
mains “more of an art than a science” (Zhu, 2005).
Yet, it is an essential step for graph-based semi-
supervised classification and (unsupervised) cluster-
ing, and the input graph affects the quality of final
classification/clustering results.

Both for semi-supervised classification and for
clustering, the k-nearest neighbor (k-NN) graph
construction has been used almost exclusively in the
literature. However, k-NN graphs often produce
hubs, or vertices with extremely high degree (i.e.,
the number of edges incident to a vertex). This ten-
dency is obvious especially if the original data is
high-dimensional—a characteristic typical of natu-
ral language data. In a later section, we demonstrate
that such hub vertices indeed deteriorate the accu-
racy of semi-supervised classification.

While not in the context of graph construction,
Radovanović et al. (2010) made an insightful obser-
vation into the nature of hubs in high-dimensional
space; in their context, a hub is a sample close to
many other samples in the (high-dimensional) sam-
ple space. They state that such hubs inherently
emerge in high-dimensional data as a side effect of
the “curse of dimensionality,” and argue that this is a

154

reason nearest neighbor classification does not work
well in high-dimensional space.

Their observation is insightful for graph con-
struction as well. Most of the graph-based semi-
supervised classification methods work by gradu-
ally propagating label information of a vertex to-
wards neighboring vertices in a graph, but the neigh-
borhood structure in the graph is basically deter-
mined by the proximity of data in the original high-
dimensional sample space. Hence, it is very likely
that a hub in the sample space also makes a hub
in the k-NN graph, since k-NN graph construction
greedily connects a pair of vertices if the sample cor-
responding to one vertex is among the k closest sam-
ples of the other sample in the original space. It is
therefore desirable to have an efficient graph con-
struction method for high-dimensional data that can
produce a graph with reduced hub effects.

To this end, we propose to use the mutual k-
nearest neighbor graphs (mutual k-NN graphs),
a less well-known variant of the standard k-NN
graphs. All vertices in a mutual k-NN graph have
a degree upper-bounded by k, which is not usually
the case with standard k-NN graphs. This property
helps not to produce vertices with extremely high
degree (hub vertices) in the graph. A mutual k-NN
graph is easy to build, at a time complexity identical
to that of the k-NN graph construction.

We first evaluated the quality of the graphs apart
from specific classification algorithms using the φ-
edge ratio of graphs. Our experimental results show
that the mutual k-NN graphs have a smaller num-
ber of edges connecting vertices with different la-
bels than the k-NN graphs, thus reducing the possi-
bility of wrong label information to be propagated.
We also compare the classification accuracy of two
standard semi-supervised classification algorithms
on the mutual k-NN graphs and the k-NN graphs.
The results show that the mutual k-NN graphs con-
sistently outperorm the k-NN graphs. Moreover, the
mutual k-NN graphs achieve equally well or bet-
ter classification accuracy than the state-of-the-art
graph construction method called b-matching (Je-
bara et al., 2009), while taking much less time to
construct.

2 Problem Statement

2.1 Semi-supervised Classification

The problem of semi-supervised classification can
be stated as follows. We are given a set of n ex-
amples, X = {x1, . . . ,xn}, but only the labels
of the first l examples are at hand; the remaining
u = n − l examples are unlabeled examples. Let
S = {1, . . . , c} be the set of possible labels, and
yi ∈ S the label of xi, for i = 1, . . . , n. Since
we only know the labels of the first l examples, we
do not have access to yl+1, . . . , yn. For later conve-
nience, further let y = (y1, . . . , yn).

The goal of a semi-supervised classification al-
gorithm is to predict the hidden labels yl+1, . . . , yn

of u unlabeled examples xl+1, . . . ,xn, given
these unlabeled examples and l labeled data
(x1, y1), . . . , (xl, yl). A measure of similarity be-
tween examples is also provided to the algorithm.
Stated differently, the classifier has access to an all-
pair similarity matrix W ′ of size n × n, with its
(i, j)-element W ′ij holding the similarity of exam-
ples xi and xj . It is assumed that W ′ is a symmetric
matrix, and the more similar two examples are (with
respect to the similarity measure), more likely they
are to have the same label. This last assumption is
the premise of many semi-supervised classification
algorithms and is often called the cluster assumption
(Zhou et al., 2004).

2.2 Graph-based Semi-supervised
Classification

Graph-based approaches to semi-supervised classi-
fication are applicable if examples X are graph ver-
tices. Otherwise, X must first be converted into a
graph. This latter case is the focus of this paper.
That is, we are interested in how to construct a graph
from the examples, so that the subsequent classifica-
tion works well.

Let G denote the graph constructed from the ex-
amples. Naturally, G has n vertices, since vertices
are identified with examples. Instead of graph G it-
self, let us consider its real-valued (weighted) adja-
cency matrix W , of size n × n. The task of graph
construction then reduces to computing W from all-
pairs similarity matrix W ′.

The simplest way to compute W from W ′ is to
let W = W ′, which boils down to using a dense,

155

complete graph G with the unmodified all-pairs sim-
ilarity as its edge weights. However, it has been ob-
served that a sparseW not only save time needed for
classification, but also results in better classification
accuracy1 than the full similarity matrix W ′ (Zhu,
2008). Thus, we are concerned with how to sparsify
W ′ to obtain a sparseW ; i.e., the strategy of zeroing
out some elements of W ′.

Let the set of binary values be B = {0, 1}. A spar-
sification strategy can be represented by a binary-
valued matrix P ∈ Bn×n, where Pij = 1 if W ′ij
must be retained as Wij , and Pij = 0 if Wij = 0.
Then, the weighted adjacency matrix W of G is
given by Wij = PijW

′
ij . The n × n matrices W

and P are symmetric, reflecting the fact that most
graph-based algorithms require the input graph to be
undirected.

3 k-Nearest Neighbor Graphs and the
Effect of Hubs

The standard approach to making a sparse graph G
(or equivalently, matrix W) is to construct a k-NN
graph from the data (Szummer and Jaakkola, 2002;
Niu et al., 2005; Goldberg and Zhu, 2006).

3.1 The k-Nearest Neighbor Graphs

The k-NN graph is a weighted undirected graph con-
necting each vertex to its k-nearest neighbors in the
original sample space. Building a k-NN graph is a
two step process. First we solve the following opti-
mization problem.

max
P̂∈Bn×n

∑
i,j

P̂ijW
′
ij (1)

s.t.
∑

j

P̂ij = k, P̂ii = 0, ∀i, j ∈ {1, . . . , n}

Note that we are trying to find P̂ , and not P . This
is an easy problem and we can solve it by greedily
assigning P̂ij = 1 only if W ′ij is among the top k
elements in the ith row of W ′ (in terms of the mag-
nitude of the elements). After P̂ is determined, we
let Pij = max(P̂ij , P̂ji). Thus P is a symmetric
matrix, i.e., Pij = Pji for all i and j, while P̂ may

1See also the experimental results of Section 6.3.2 in which
the full similarity matrix W ′ is used as the baseline.

d 1 2 ≥ 3 total

of vertices 1610 1947 164 3721

original 65.9 65.7 69.8 66.0
hub-removed 66.6 66.0 69.8 66.4

Table 1: Classification accuracy of vertices around hubs
in a k-NN graph, before (“original”) and after (“hub-
removed”) hubs are removed. The value d represents the
shortest distance (number of hops) from a vertex to its
nearest hub vertex in the graph.

not. Finally, weighted adjacency matrix W is deter-
mined byWij = PijW

′
ij . MatrixW is also symmet-

ric since P and W ′ are symmetric.
This process is equivalent to retaining all edges

from each vertex to its k-nearest neighbor vertices,
and then making all edges undirected.

Note the above symmetrization step is necessary
because the k-nearest neighbor relation is not sym-
metric; even if a vertex vi is a k-nearest neighbor of
another vertex vj , vj may or may not be a k-nearest
neighbor of vi. Thus, symmetrizing P and W as
above makes the graph irregular; i.e., the degree of
some vertices may be larger than k, which opens the
possibility of hubs to emerge.

3.2 Effect of Hubs on Classification

In this section, we demonstrate that hubs in k-NN
graphs are indeed harmful to semi-supervised clas-
sification as we claimed earlier. To this end, we
eliminate such high degree vertices from the graph,
and compare the classification accuracy of other ver-
tices before and after the elimination. For this pre-
liminary experiment, we used the “line” dataset of
a word sense disambiguation task (Leacock et al.,
1993). For details of the dataset and the task, see
Section 6.

In this experiment, we randomly selected 10 per-
cent of examples as labeled examples. The remain-
ing 90 percent makes the set of unlabeled examples,
and the goal is to predict the label (word sense) of
these unlabeled examples.

We first built a k-NN graph (with k = 3)
from the dataset, and ran Gaussian Random Fields
(GRF) (Zhu et al., 2003), one of the most widely-
used graph-based semi-supervised classification al-
gorithms. Then we removed vertices with degree

156

greater than or equal to 30 from the k-NN graph,
and ran GRF again on this “hub-removed” graph.

Table 1 shows the classification accuracy of GRF
on the two graphs. The table shows both the over-
all classification accuracy, and the classification ac-
curacy on the subsets of vertices, stratified by their
distance d from the nearest hub vertices (which were
eliminated in the “hub-removed” graph). Obvi-
ously, overall classification accuracy has improved
after hub removal. Also notice that the increase in
the classification accuracy on the vertices nearest to
hubs (d = 1, 2). These results suggest that the pres-
ence of hubs in the graph is deteriorating classifica-
tion accuracy.

4 Mutual k-Nearest Neighbor Graphs for
Semi-supervised Classification

As demonstrated in Section 3.2, removing hub ver-
tices in k-NN graphs is an easy way of improv-
ing the accuracy of semi-supervised classification.
However, this method adds another parameter to the
graph construction method, namely, the threshold on
the degree of vertices to be removed. The method
also does not tell us how to assign labels to the re-
moved (hub) vertices. Hence, it is more desirable
to have a graph construction method which has only
one parameter just like the k-NN graphs, but is at the
same time less prone to produce hub vertices.

In this section, we propose to use mutual k-NN
graphs for this purpose.

4.1 Mutual k-Nearest Neighbor Graphs

The mutual k-NN graph is not a new concept and
it has been used sometimes in clustering. Even in
clustering, however, they are not at all as popular as
the ordinary k-NN graphs. A mutual k-NN graph
is defined as a graph in which there is an edge be-
tween vertices vi and vj if each of them belongs to
the k-nearest neighbors (in terms of the original sim-
ilarity metric W) of the other vertex. By contrast, a
k-NN graph has an edge between vertices vi and vj

if one of them belongs to the k-nearest neighbors of
the other. Hence, the mutual k-NN graph is a sub-
graph of the k-NN graph computed from the same
data with the same value of k. The mutual k-NN
graph first optimizes the same formula as (1), but in
mutual k-NN graphs, the binary-valued symmetric

matrix P is defined as Pij = min(P̂ij , P̂ji). Since
mutual k-NN graph construction guarantees that all
vertices in the resulting graph have degree at most
k, it is less likely to produce extremely high degree
vertices in comparison with k-NN graphs, provided
that the value of k is kept adequately small.

4.2 Fixing Weak Connectivity

Because the mutual k-NN graph construction is
more selective of edges than the standard k-NN
graphs, the resulting graphs often contain many
small disconnected components. Disconnected
components are not much of a problem for clus-
tering (since its objective is to divide a graph into
discrete components eventually), but can be a prob-
lem for semi-supervised classification algorithms; if
a connected component does not contain a labeled
node, the algorithms cannot reliably predict the la-
bels of the vertices in the component; recall that
these algorithms infer labels by propagating label in-
formation along edges in the graph.

As a simple method for overcoming this problem,
we combine the mutual k-NN graph and the max-
imum spanning tree. To be precise, the minimum
number of edges from the maximum spanning tree
are added to the mutual k-NN graph to ensure that
only one connected component exists in a graph.

4.3 Computational Efficiency

Using a Fibonacci heap-based implementation
(Fredman and Tarjan, 1987), one can construct
the standard k-NN graph in (amortized) O(n2 +
kn log n) time. A mutual k-NN graph can also be
constructed in the same time complexity as the k-
NN graphs. The procedure below transforms a stan-
dard k-NN graph into a mutual k-NN graph. It uses
Fibonacci heaps once again and assumes that the in-
put k-NN graph is represented as an adjacency ma-
trix in sparse matrix representation.

1. Each vertex is associated with its own heap.
For each edge e connecting vertices u and v,
insert e to the heaps associated with u and v.

2. Fetch maximum weighted edges from each
heap k times, keeping globally the record of
the number of times each edge is fetched. No-
tice that an edge can be fetched at most twice,

157

once at an end vertex of the edge and once at
the other end.

3. A mutual k-NN graph can be constructed by
only keeping edges fetched twice in the previ-
ous step.

The complexity of this procedure is O(kn). Hence
the overall complexity of building a mutual k-NN
graph is dominated by the time needed to build
the standard k-NN graph input to the system; i.e.,
O(n2 + kn log n).

If we call the above procedure on an approximate
k-NN graph which can be computed more efficiently
(Beygelzimer et al., 2006; Chen et al., 2009; Ram
et al., 2010; Tabei et al., 2010), it yields an ap-
proximate mutual k-NN graphs. In this case, the
overall complexity is identical to that of the ap-
proximate k-NN graph construction algorithm, since
these approximate algorithms have a complexity at
least O(kn).

5 Related Work

5.1 b-Matching Graphs

Recently, Jebara et al. (2009) proposed a new
graph construction method called b-matching. A b-
matching graph is a b-regular graph, meaning that
every vertex has the degree b uniformly. It can be ob-
tained by solving the following optimization prob-
lem.

max
P∈Bn×n

∑
ij

PijW
′
ij

s.t.
∑

j

Pij = b, ∀i ∈ {1, . . . , n} (2)

Pii = 0, ∀i ∈ {1, . . . , n} (3)

Pij = Pji, ∀i, j ∈ {1, . . . , n} (4)

After P is computed, the weighted adjacency matrix
W is determined by Wij = PijW

′
ij The constraint

(4) makes the binary matrix P symmetric, and (3) is
to ignore self-similarity (loops). Also, the constraint
(2) ensures that the graph is regular. Note that k-NN
graphs are in general not regular. The regularity re-
quirement of the b-matching graphs can be regarded
as an effort to avoid the hubness phenomenon dis-
cussed by Radovanović et al. (2010).

Figure 1: Two extreme cases of φ-edge ratio. Vertex
shapes (and colors) denote the class labels. The φ-edge
ratio of the graph on the left is 1, meaning that all edges
connect vertices with different labels. The φ-edge ratio
of the one on the right is 0, because all edges connect
vertices of the same class.

Jebara et al. (2009) reported that b-matching
graphs achieve semi-supervised classification accu-
racy higher than k-NN graphs. However, with-
out approximation, building a b-matching graph
is prohibitive in terms of computational complex-
ity. Huang and Jebara (2007) developed a fast im-
plementation based on belief propagation, but the
guaranteed running time of the implementation is
O(bn3), which is still not practical for large scale
graphs. Notice that the k-NN graphs and mutual k-
NN graphs can be constructed with much smaller
time complexity, as we mentioned in Section 4.3.
In Section exp, we empirically compare the per-
formance of mutual k-NN graphs with that of b-
matching graphs.

5.2 Mutual Nearest Neighbor in Clustering

In the clustering context, mutual k-NN graphs have
been theoretically analyzed by Maier et al. (2009)
with Random Geometric Graph Theory. Their study
suggests that if one is interested in identifying the
most significant clusters only, the mutual k-NN
graphs give a better clustering result. However, it is
not clear what their results imply in semi-supervised
classification settings.

6 Experiments

We compare the k-NN, mutual k-NN, and b-
matching graphs in word sense disambiguation and
document classification tasks. All of these tasks are
multi-class classification problems.

6.1 Datasets

We used two word sense disambiguation datasets in
our experiment: “interest” and “line.” The “inter-
est” data is originally taken from the POS-tagged

158

interest dataset

number of edges (x 103)

ph
i−

ed
ge

 r
at

io

0.10

0.15

0.20

0.25

●
●
●●●

●
●●

●●
●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25 30 35

● bMG
kNNG
MkNNG

line dataset

number of edges (x 103)

ph
i−

ed
ge

 r
at

io

0.15

0.20

0.25

0.30

0.35

●
●●

●
●●●●●●●●●●●●●●●●●●

0 10 20 30 40

● bMG
kNNG
MkNNG

Reuters dataset

number of edges (x 103)

ph
i−

ed
ge

 r
at

io

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

●

●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

● bMG
kNNG
MkNNG

20 newsgroups dataset

number of edges (x 103)

ph
i−

ed
ge

 r
at

io

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250

kNNG
MkNNG

Figure 2: φ-edge ratios of the k-NN graph, mutual k-NN graph, and b-matching graphs. The φ-edge ratio of a graph
is a measure of how much the cluster assumption is violated; hence, smaller the φ-edge ratio, the better. The plot for
b-matching graph is missing for the 20 newsgroups dataset, because its construction did not finish after one week for
this dataset.

dataset examples features labels

interest 2,368 3,689 6
line 4,146 8,009 6

Reuters 4,028 17,143 4
20 newsgroups 19,928 62,061 20

Table 2: Datasets used in experiments.

portion of the Wall Street Journal Corpus. Each in-
stance of the polysemous word “interest” has been
tagged with one of the six senses in Longman Dic-
tionary of Contemporary English. The details of the
dataset are described in Bruce and Wiebe (1994).
The “line” data is originally used in numerous com-
parative studies of word sense disambiguation. Each
instance of the word “line” has been tagged with one
of the six senses on the WordNet thesaurus. Further
details can be found in the Leacock et al. (1993).
Following Niu et al. (2005), we used the following
context features in the word sense disambiguation
tasks: part-of-speech of neighboring words, single
words in the surrounding context, and local colloca-
tion. Details of these context features can be found
in Lee and Ng (2002).

The Reuters dataset is extracted from RCV1-
v2/LYRL2004, a text categorization test collection
(Lewis et al., 2004). In the same manner as Cram-
mer et al. (2009), we produced the classification
dataset by selecting approximately 4,000 documents
from 4 general topics (corporate, economic, gov-
ernment and markets) at random. The features de-
scribed in Lewis et al. (2004) are used with this
dataset.

The 20 newsgroups dataset is a popular dataset
frequently used for document classification and
clustering. The dataset consists of approximately
20,000 messages on newsgroups and is originally
distributed by Lang (1995). Each message is as-
signed one of the 20 possible labels indicating which
newsgroup it has been posted to, and represented as
binary bag-of-words features as described in Rennie
(2001).

Table 2 summarizes the characteristics of the
datasets used in our experiments.

6.2 Experimental Setup

Our focus in this paper is a semi-supervised classi-
fication setting in which the dataset contains a small
amount of labeled examples and a large amount of
unlabeled examples. To simulate such settings, we
create 10 sets of labeled examples, with each set
consisting of randomly selected l examples from the
original dataset, where l is 10 percent of the total
number of examples. For each set, the remaining
90 percent constitute the unlabeled examples whose
labels must be inferred.

After we build a graph from the data using one
of the graph construction methods discussed earlier,
a graph-based semi-supervised classification algo-
rithm must be run on the resulting graph to infer la-
bels to the unlabeled examples (vertices). We use
two most frequently used classification algorithms:
Gaussian Random Fields (GRF) (Zhu et al., 2003)
and the Local/Global Consistency algorithm (LGC)
(Zhou et al., 2004). Averaged classification accuracy
is used as the evaluation metric. For all datasets, co-

159

interest dataset (GRF)

number of edges (x 103)

av
er

ag
ed

 a
cc

ur
ac

y

0.79

0.80

0.81

0.82

0.83
●
●

●
●
●●

●
●
●●

●
●
●
●
●
●●

●
●
●

●

●
●
●●●

0 5 10 15 20 25 30 35

● bMG

kNNG

MkNNG

interest dataset (LGC)

number of edges (x 103)

av
er

ag
ed

 a
cc

ur
ac

y

0.79

0.80

0.81

0.82

0.83
●●

●
●
●
●●

●
●●

●●
●
●●

●
●
●
●
●●

●

●
●
●●

●

0 5 10 15 20 25 30 35

● bMG

kNNG

MkNNG

line dataset (GRF)

number of edges (x 103)

av
er

ag
ed

 a
cc

ur
ac

y

0.62

0.64

0.66

0.68

0.70

●
●

●
●

●
●

●
●●

●
●●

●

●

●●●
●

●
●

0 10 20 30 40

● bMG

kNNG

MkNNG

line dataset (LGC)

number of edges (x 103)

av
er

ag
ed

 a
cc

ur
ac

y

0.62

0.64

0.66

0.68

0.70

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●●
●

●
●

0 10 20 30 40

● bMG

kNNG

MkNNG

Figure 3: Averaged classification accuracies for k-NN graphs, b-matching graphs and mutual k-NN graphs (+ maxi-
mum spanning trees) in the interest and line datasets.

sine similarity is used as the similarity measure be-
tween examples.

In “interest” and “line” datasets, we compare the
performance of the graph construction methods over
the broad range of their parameters; i.e., b in b-
matching graphs and k in (mutual) k-NN graphs.

In Reuters and the 20 newsgroups datasets, 2-fold
cross validation is used to determine the hyperpa-
rameters (k and b) of the graph construction meth-
ods; i.e., we split the labeled data into two folds, and
used one fold for training and the other for develop-
ment, and then switch the folds in order to find the
optimal hyperparameter among k, b ∈ {2, . . . , 50}.
The smoothing parameter µ of LGC is fixed at µ =
0.9.

6.3 Results

6.3.1 Comparison of φ-Edge Ratio
We first compared the φ-edge ratios of k-NN

graphs, mutual k-NN graphs, and b-matching graphs
to evaluate the quality of the graphs apart from spe-
cific classification algorithms.

For this purpose, we define the φ-edge ratio as the
yardstick to measure the quality of a graph. Here, a
φ-edge of a labeled graph (G,y) is any edge (vi, vj)
for which yi 6= yj (Cesa-Bianchi et al., 2010), and
we define the φ-edge ratio of a graph as the number
of φ-edges divided by the total number of edges in
the graph. Since most graph-based semi-supervised
classification methods propagate label information
along edges, edges connecting vertices with differ-
ent labels may lead to misclassification. Hence, a
graph with a smaller φ-edge ratio is more desirable.
Figure 1 illustrates two toy graphs with extreme val-

ues of φ-edge ratio.
Figure 2 shows the plots of φ-edge ratios of the

compared graph construction methods when the val-
ues of parameters k (for k-NN and mutual k-NN
graphs) and b (for b-matching graphs) are varied. In
these plots, the y-axes denote the φ-edge ratio of the
constructed graphs. The x-axes denote the number
of edges in the constructed graphs, and not the val-
ues of parameters k or b, because setting parameters
b and k to an equal value does not achieve the same
level of sparsity (number of edges) in the resulting
graphs.

As mentioned earlier, the smaller the φ-edge ra-
tio, the more desirable. As the figure shows, mu-
tual k-NN graphs achieve smaller φ-edge ratio than
other graphs if they are compared at the same level
of graph sparsity.

The plot for b-matching graph is missing for the
20 newsgroups data, because we were unable to
complete its construction in one week2. Meanwhile,
a k-NN graph and a mutual k-NN graph for the same
dataset can be constructed in less than 15 minutes on
the same computer.

6.3.2 Classification Results
Figure 3 shows the classification accuracy of GRF

and LGC on the different types of graphs con-
structed for the interest and line datasets. As in Fig-
ure 2, the x-axes represent the sparsity of the con-
structed graphs measured by the number of edges in
the graph, which can change as the hyperparameter
(b or k) of the compared graph construction methods

2All experiments were run on a machine with 2.3 GHz AMD
Opteron 8356 processors and 256 GB RAM.

160

kNN graph b-matching graph mutual kNN graph

dataset algorithm Dense MST original +MST original +MST original +MST

Reuters GRF 43.65 72.74 81.70 80.89 84.04 84.04 85.01 84.72
Reuters LGC 43.66 71.78 82.60 82.60 84.42 84.42 84.81 84.85

20 newsgroups GRF 10.18 66.96 75.47 75.47 —– —– 76.31 76.46
20 newsgroups LGC 14.51 65.82 75.19 75.19 —– —– 75.27 75.41

Table 3: Document classification accuracies for k-NN graphs, b-matching graphs, and mutual k-NN graphs. The col-
umn for ’Dense’ is the result for the graph with the original similarity matrix W ′ as the adjacency matrix; i.e., without
using any graph construction (sparsification) methods. The column for ’MST’ is the result the for the maximum span-
ning tree. b-matching graph construction did not complete after one week on the 20 newsgroups data, and hence no
results are shown.

vs. kNNG vs. bMG

dataset (algo) orig +MST orig +MST

Reuters (GRF) � � > ∼
Reuters (LGC) � � ∼ ∼

20 newsgroups (GRF) � � —– —–
20 newsgroups (LGC) ∼ > —– —–

Table 4: One-sided paired t-test results of averaged ac-
curacies between using mutual k-NN graphs and other
graphs. “�”, “>”, and “∼” correspond to p-value <
0.01, (0.01, 0.05], and > 0.05 respectively.

are varied.
As shown in the figure, the combination of mu-

tual k-NN graphs and the maximum spanning trees
achieves better accuracy than other graph construc-
tion methods in most cases, when they are com-
pared at the same levels of graph sparsity (number
of edges).

Table 3 summarizes the classification accuracy on
the document classification datasets. As a baseline,
the table also shows the results (‘Dense’) on the
dense complete graph with the original all-pairs sim-
ilarity matrix W ′ as the adjacency matrix (i.e., no
graph sparsification), as well as the results for us-
ing the maximum spanning tree alone as the graph
construction method.

In all cases, mutual k-NN graphs achieve better
classification accuracy than other graphs.

Table 4 reports the one-sided paired t-test results
of averaged accuracies with k-NN graphs and b-
matching graphs against our proposed approach, the
combination of mutual k-NN graphs and maximum
spanning trees. From Table 4, we see that mutual

k-NN graphs perform significantly better than k-
NN graphs. On the other hand, theere is no signifi-
cant difference in the accuracy of the mutual k-NN
graphs and b-matching graphs. However, mutual
k-NN graphs achieves the same level of accuracy
with b-matching graphs, at much less computation
time and are applicable to large datasets. As men-
tioned earlier, mutual k-NN graphs can be computed
with less than 15 minutes in the 20 newsgroups data,
while b-matching graphs cannot be computed in one
week.

7 Conclusion

In this paper, we have proposed to use mutual k-
NN graphs instead of the standard k-NN graphs for
graph-based semi-supervised learning. In mutual k-
NN graphs, all vertices have degree upper bounded
by k. We have demonstrated that this type of
graph construction alleviates the hub effects stated
in Radovanović et al. (2010), which also makes the
graph more consistent with the cluster assumption.
In addition, we have shown that the weak connectiv-
ity of mutual k-NN graphs is not a serious problem
if we augment the graph with maximum spanning
trees. Experimental results on various natural lan-
guage processing datasets show that mutual k-NN
graphs lead to higher classification accuracy than the
standard k-NN graphs, when two popular label in-
ference methods are run on these graphs.

References
Andrei Alexandrescu and Katrin Kirchhoff. 2007. Data-

driven graph construction for semi-supervised graph-
based learning in NLP. In Proc. of HLT-NAACL.

161

Andrei Alexandrescu and Katrin Kirchhoff. 2009.
Graph-based learning for statistical machine transla-
tion. In Proc. of NAACL-HLT.

Alina Beygelzimer, Sham Kakade, and John Langford.
2006. Cover trees for nearest neighbor. In Proc. of
ICML.

Rebecca Bruce and Janyce Wiebe. 1994. Word-sense
disambiguation using decomposable models. In Proc.
of ACL.

Jérôme Callut, Kevin Françoisse, Marco Saerens, and
Pierre Dupont. 2008. Semi-supervised classification
from discriminative random walks. In Proc. of ECML-
PKDD.

Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and
Giovanni Zappella. 2010. Random spanning trees and
the prediction of weighted graphs. In Proc. of ICML.

Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast
approximate kNN graph construction for high dimen-
sional data via recursive lanczos bisection. Journal of
Machine Learning Research, 10.

Koby Crammer, Mark Dredze, and Alex Kulesza. 2009.
Multi-class confidence weighted algorithms. In Proc.
of EMNLP.

Michael L. Fredman and Robert Endre Tarjan. 1987. Fi-
bonacci heaps and their uses in improved network op-
timization algorithms. J. ACM, 34:596–615, July.

Andrew B. Goldberg and Xiaojin Zhu. 2006. Seeing
stars when there aren’t many stars: graph-based semi-
supervised learning for sentiment categorization. In
Proc. of TextGraphs Workshop on HLT-NAACL.

Bert Huang and Tony Jebara. 2007. Loopy belief prop-
agation for bipartite maximum weight b-matching. In
Proc. of AISTATS.

Tony Jebara, Jun Wang, and Shih-Fu Chang. 2009.
Graph construction and b-matching for semi-
supervised learning. In Proc. of ICML.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proc. of ICML.

Claudia Leacock, Geoffrey Towell, and Ellen Voorhees.
1993. Corpus-based statistical sense resolution. In
Proc. of ARPA Workshop on HLT.

Yoong Keok Lee and Hwee Tou Ng. 2002. An empir-
ical evaluation of knowledge sources and learning al-
gorithms for word sense disambiguation. In Proc. of
EMNLP.

David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li,
G. Dietterich, and Fan Li. 2004. RCV1: A new bench-
mark collection for text categorization research. Jour-
nal of Machine Learning Research, 5.

Markus Maier, Matthias Hein, and Ulrike von Luxburg.
2009. Optimal construction of k-nearest-neighbor
graphs for identifying noisy clusters. Journal of Theo-
retical Computer Science, 410.

Zheng-Yu Niu, Dong-Hong Ji, and Chew Lim Tan. 2005.
Word sense disambiguation using label propagation
based semi-supervised learning. In Proc. of ACL.

Miloš Radovanović, Alexandros Nanopoulos, and Mir-
jana Ivanović. 2010. Hub in space: popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11.

Parikshit Ram, Dongryeol Lee, William March, and
Alexander Gray. 2010. Linear-time algorithms for
pairwise statistical problems. In Proc. of NIPS.

Jason D. M. Rennie. 2001. Improving multi-class text
classification with naive bayes. Master’s thesis, Mas-
sachusetts Institute of Technology. AITR-2001-004.

Martin Szummer and Tommi Jaakkola. 2002. Partially
labeled classification with markov random walks. In
Proc. of NIPS.

Yasuo Tabei, Takeaki Uno, Masashi Sugiyama, and Koji
Tsuda. 2010. Single versus multiple sorting in all
pairs similarity search. In Proc. of ACML.

Jun Wang, Tony Jebara, and Shih-Fu. Chang. 2008.
Graph transduction via alternating minimization. In
Proc. of ICML.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal,
Jason Weston, and Bernhard Schölkopf. 2004. Learn-
ing with local and global consistency. In Proc. of
NIPS.

Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty.
2003. Semi-supervised learning using gaussian fields
and harmonic functions. In Proc. of ICML.

Xiaojin Zhu. 2005. Semi-Supervised Learning with
Graphs. Ph.D. thesis, Carnegie Mellon University.
CMU-LTI-05-192.

Xiaojin Zhu. 2008. Semi-supervised learning literature
survey. Technical Report 1530, Computer Sciences,
University of Wisconsin-Madison.

162

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 163–171,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Automatically Building Training Examples for Entity Extraction

Marco Pennacchiotti
Yahoo! Labs

Sunnyvale, CA, USA
pennac@yahoo-inc.com

Patrick Pantel
Microsoft Research

Redmond, WA, USA
ppantel@microsoft.com

Abstract

In this paper we present methods for automat-
ically acquiring training examples for the task
of entity extraction. Experimental evidence
show that: (1) our methods compete with a
current heavily supervised state-of-the-art sys-
tem, within 0.04 absolute mean average pre-
cision; and (2) our model significantly out-
performs other supervised and unsupervised
baselines by between 0.15 and 0.30 in abso-
lute mean average precision.

1 Introduction

Entity extraction is a fundamental task in NLP and
related applications. It is broadly defined as the task
of extracting entities of a given semantic class from
texts (e.g., lists of actors, musicians, cities). Search
engines such as Bing, Yahoo, and Google collect
large sets of entities to better interpret queries (Tan
and Peng, 2006), to improve query suggestions (Cao
et al., 2008) and to understand query intents (Hu et
al., 2009). In response, automated techniques for
entity extraction have been proposed (Paşca, 2007;
Wang and Cohen, 2008; Chaudhuri et al., 2009; Pan-
tel et al., 2009).

There is mounting evidence that combining
knowledge sources and information extraction sys-
tems yield significant improvements over applying
each in isolation (Paşca et al., 2006; Mirkin et al.,
2006). This intuition is explored by the Ensem-
ble Semantics (ES) framework proposed by Pennac-
chiotti and Pantel (2009), which outperforms pre-
vious state-of-the-art systems. A severe limitation
of this type of extraction system is its reliance on

editorial judgments for building large training sets
for each semantic class to be extracted. This is
particularly troublesome for applications such as
web search that require large numbers of semantic
classes in order to have a sufficient coverage of facts
and objects (Tan and Peng, 2006). Hand-crafting
training sets across international markets is often in-
feasible. In an exploratory study we estimated that
a pool of editors would need roughly 300 working
days to complete a basic set of 100 English classes
using the ES framework. Critically needed are meth-
ods for automatically building training sets that pre-
serve the extraction quality.

In this paper, we propose simple and intuitively
appealing solutions to automatically build training
sets. Positive and negative training sets for a tar-
get semantic class are acquired by leveraging: i)
‘trusted’ sources such as structured databases (e.g.,
IMDB or Wikipedia for acquiring a list of Actors);
ii) automatically constructed semantic lexicons; and
iii) instances of semantic classes other than the tar-
get class. Our models focus on extracting training
sets that are large, balanced, and representative of
the unlabeled data. These models can be used in any
extraction setting, where ‘trusted’ sources of knowl-
edge are available: Today, the popularity of struc-
tured and semi-structured sources such as Wikipedia
and internet databases, makes this approach widely
applicable. As an example, in this paper we show
that our methods can be successfully adapted and
used in the ES framework. This gives us the possi-
bility to test the methods on a large-scale entity ex-
traction task. We replace the manually built training
data in the the ES model with the training data built

163

by our algorithms. We show by means of a large em-
pirical study that our algorithms perform nearly as
good as the fully supervised ES model, within 4% in
absolute mean average precision. Further, we com-
pare the performance of our method against both
Paşca et al. (2006) and Mirkin et al. (2006), show-
ing 17% and 15% improvements in absolute mean
average precision, respectively.

The main contributions of this paper are:
• We propose several general methods for

automatically acquiring labeled training data;
we show that they can be used in a large-scale
extraction framework, namely ES; and
• We show empirical evidence on a large-scale

entity extraction task that our system using
automatically labeled training data performs
nearly as well as the fully-supervised ES
model, and that it significantly outperforms
state-of-the-art systems.

2 Automatic Acquisition of Training Data

Supervised machine learning algorithms require
training data that is: (1) balanced and large enough
to correctly model the problem at hand (Kubat and
Matwin, 1997; Japkowicz and Stephen, 2002); and
(2) representative of the unlabeled data to decode,
i.e., training and unlabeled instances should be ide-
ally drawn from the same distribution (Blumer et al.,
1989; Blum and Langley, 1997). If these two prop-
erties are not met, various learning problems, such
as overfitting, can drastically impair predictive ac-
curacy. To address the above properties, a common
approach is to select a subset of the unlabeled data
(i.e., the instances to be decoded), and manually la-
bel them to build the training set.

In this section we propose methods to automate
this task by leveraging the multitude of structured
knowledge bases available on the Web.

Formally, given a target class c, our goal is
to implement methods to automatically build a
training set T (c), composed of both positive and
negative examples, respectively P (c) and N(c);
and to apply T (c) to classify (or rank) a set
of unlabeled data U(c), by using a learning
algorithm. For example, in entity extraction,
given the class Actors, we might have P (c) =
{Brad Pitt, Robert De Niro} and N(c) =
{Serena Williams, Rome, Robert Demiro}.

Below, we define the components of a typical
knowledge acquisition system as in the ES frame-
work, where our methods can be applied :

Sources. Textual repositories of information, ei-
ther structured (e.g., Freebase), semi-structured
(e.g., HTML tables) or unstructured (e.g., a we-
bcrawl). Information sources serve as inputs to the
extraction system, either for the Knowledge Extrac-
tors to generate candidate instances, or for the Fea-
ture Generators to generate features (see below).

Knowledge Extractors (KE). Algorithms re-
sponsible for extracting candidate instances such as
entities or facts. Extractors fall into two categories:
trusted and untrusted. Trusted extractors execute on
structured sources where the contents are deemed to
be highly accurate. Untrusted extractors execute on
unstructured or semi-structured sources and gener-
ally generate high coverage but noisy knowledge.

Feature Generators. Methods that extract evi-
dence (features) of knowledge in order to decide
which extracted candidate instances are correct.

Ranker. A module for ranking the extracted in-
stances using the features generated by the feature
generators. In supervised ML-based rankers, labeled
training instances are required to train the model.
Our goal here is to automatically label training in-
stances thus avoiding the editorial costs.

2.1 Acquiring Positive Examples
Trusted positives: Candidate instances for a class
c that are extracted by a trusted Knowledge Extrac-
tor (e.g., a wrapper induction system over IMDB),
tend to be mostly positive examples. A basic ap-
proach to acquiring a set of positive examples is then
to sample from the unlabeled set U(c) as follows:

P (c) = {i ∈ U(c) : (∃KEi|KEi is trusted} (1)

where KEi is a knowledge extractor that extracted
instance i.

The main advantage of this method is that P (c) is
guaranteed to be highly accurate, i.e., most instances
are true positives. On the downside, instances in
P (c) are not necessarily representative of the un-
trusted KEs. This can highly impact the perfor-
mance of the learning algorithm, which could over-
fit the training data on properties that are specific to

164

the trusted KEs, but that are not representative of the
true population to be decoded (which is largely com-
ing from untrusted KEs).

We therefore enforce that the instances in P (c)
are extracted not only from a trusted KE, but also
from any of the untrusted extractors:

P (c) = {i ∈ U(c) :∃KEi|KEi is trusted ∧
∃KEj |KEj is untrusted}

(2)

External positives: This method selects the set of
positive examples P (c) from an external repository,
such as an ontology, a database, or an automati-
cally harvested source. The main advantage of this
method is that such resources are widely available
for many knowledge extraction tasks. Yet, the risk
is that P (c) is not representative of the unlabeled in-
stances U(c), as they are drawn from different pop-
ulations.

2.1.1 Acquiring Negative Examples
Acquiring negative training examples is a much

more daunting task (Fagni and Sebastiani, 2007).
The main challenge is to select a set which is a good
representative of the unlabeled negatives in U(c).
Various strategies can be adopted, ranging from
selecting near-miss examples to acquiring generic
ones, each having its own pros and cons. Below
we propose our methods, some building on previous
work described in Section 5.

Near-class negatives: This method selects N(c)
from the population U(C) of the set of classes C
which are semantically similar to c. For example, in
entity extraction, the classes Athletes, Directors
and Musicians are semantically similar to the class
Actors, while Manufacturers and Products are
dissimilar. Similar classes allow us to select negative
examples that are semantic near-misses for the class
c. The hypothesis is the following:

A positive instance extracted for a class similar
to the target class c, is likely to be a near-miss
incorrect instance for c.

To model this hypothesis, we acquire N(c) from
the set of instances having the following two restric-
tions:

1. The instance is most likely correct for C

2. The instance is most likely incorrect for c

Note that restriction (1) alone is not sufficient, as an
instance of C can be at the same time also instance
of c. For example, given the target class Actors, the
instance ‘Woody Allen’ ∈ Directors, is not a good
negative example for Actors, since Woody Allen is
both a director and an actor.

In order to enforce restriction (1), we select only
instances that have been extracted by a trusted KE
of C, i.e., the confidence of them being positive is
very high. To enforce (2), we select instances that
have never been extracted by any KE of c. More
formally, we define N(c) as follows:

N(c) =
⋃

ci∈C

P (ci) \ U(c) (3)

The main advantage of this method is that it acquires
negatives that are semantic near-misses of the tar-
get class, thus allowing the learning algorithm to fo-
cus on these borderline cases (Fagni and Sebastiani,
2007). This is a very important property, as most
incorrect instances extracted by unsupervised KEs
are indeed semantic near-misses. On the downside,
the extracted examples are not representative of the
negative examples of the target class c, since they
are drawn from two different distributions.

Generic negatives: This method selects N(c)
from the population U(C) of all classes C different
from the target class c, i.e., both classes semantically
similar and dissimilar to c. The method is very sim-
ilar to the one above, apart from the selection of C,
which now includes any class different from c. The
underlying hypothesis is the following:

A positive instance extracted for a class different
from the target class c, is likely to be an incorrect
instance for c.

This method acquires negatives that are both seman-
tic near-misses and far-misses of the target class.
The learning algorithm is then able to focus both on
borderline cases and on clear-cut incorrect cases, i.e.
the hypothesis space is potentially larger than for the
near-class method. On the downside, the distribu-
tion of c and C are very different. By enlarging the
potential hypothesis space, the risk is then again to
capture hypotheses that overfit the training data on
properties which are not representative of the true
population to be decoded.

165

Same-class negatives: This method selects the
set of negative examples N(c) from the population
U(c). The driving hypothesis is the following:

If a candidate instance for a class c has been ex-
tracted by only one KE and this KE is untrusted,
then the instance is likely to be incorrect, i.e., a
negative example for c.

The above hypothesis stems from an intuitive obser-
vation common to many ensemble-based paradigms
(e.g., ensemble learning in Machine Learning): the
more evidence you have of a given fact, the higher is
the probability of it being actually true. In our case,
the fact that an instance has been extracted by only
one untrusted KE, provides weak evidence that the
instance is correct. N(c) is defined as follows:

N(c) = {i ∈ U(c) : ∃! KEi ∧KEi is untrusted}
(4)

The main advantage of this method is that the ac-
quired instances in N(c) are good representatives of
the negatives that will have to be decoded, i.e., they
are drawn from the same distribution U(c). This al-
lows the learning algorithm to focus on the typical
properties of the incorrect examples extracted by the
pool of KEs.

A drawback of this method is that instances in
N(c) are not guaranteed to be true negatives. It fol-
lows that the final training set may be noisy. Two
main strategies can be applied to mitigate this prob-
lem: (1) Use a learning algorithm which is robust to
noise in the training data; and (2) Adopt techniques
to automatically reduce or eliminate noise. We here
adopt the first solution, and leave the second as a
possible avenue for future work, as described in Sec-
tion 6. In Section 4 we demonstrate the amount of
noise in our training data, and show that its impact
is not detrimental for the overall performance of the
system.

3 A Use Case: Entity Extraction

Entity extraction is a fundamental task in NLP
(Cimiano and Staab, 2004; McCarthy and Lehnert,
2005) and web search (Chaudhuri et al., 2009; Hu
et al., 2009; Tan and Peng, 2006), responsible for
extracting instances of semantic classes (e.g., ‘Brad
Pitt’ and ‘Tom Hanks’ are instances of the class Ac-
tors). In this section we apply our methods for auto-

matically acquiring training data to the ES entity ex-
traction system described in Pennacchiotti and Pan-
tel (2009).1

The system relies on the following three knowl-
edge extractors. KEtrs: a ‘trusted’ database
wrapper extractor acquiring entities from sources
such as Yahoo! Movies, Yahoo! Music and Yahoo!
Sports, for extracting respectively Actors, Musicians
and Athletes. KEpat: an ‘untrusted’ pattern-based
extractor reimplementing Paşca et al.’s (2006) state-
of-the-art web-scale fact extractor. KEdis: an ‘un-
trusted’ distributional extractor implementing a vari-
ant of Pantel et al.’s (2009).

The system includes four feature generators,
which compute a total of 402 features of various
types extracted from the following sources: (1) a
body of 600 million documents crawled from the
Web at Yahoo! in 2008; (2) one year of web search
queries issued to Yahoo! Search; (3) all HTML inner
tables extracted from the above web crawl; (4) an
official Wikipedia dump from February 2008, con-
sisting of about 2 million articles.

The system adopts as a ranker a supervised
Gradient Boosted Decision Tree regression model
(GBDT) (Friedman, 2001). GBDT is generally con-
sidered robust to noisy training data, and hence is a
good choice given the errors introduced by our auto-
matic training set construction algorithms.

3.1 Training Data Acquisition

The positive and negative components of the training
set for GBDT are built using the methods presented
in Section 2, as follows:

Trusted positives (Ptrs and Pcls): According to
Eq. 2, we acquire a set of positive instances Pcls

as a random sample of the instances extracted by
both KEtrs and either: KEdis, KEpat or both of
them. As a basic variant, we also experiment with
the simpler definition in Eq. 1, i.e. we acquire a set
of positive instances Ptrs as a random sample of the
instances extracted by the trusted extractor KEtrs,
irrespective of KEdis and KEpat.

External positives (Pcbc): Any external repository
of positive examples would serve here. In our spe-

1We here give a summary description of our implementation
of that system. Refer to the original paper for more details.

166

cific implementation, we select a set of positive ex-
amples from the CBC repository (Pantel and Lin,
2002). CBC is a word clustering algorithm that
groups instances appearing in similar textual con-
texts. By manually analyzing the cluster members
in the repository created by CBC, it is easy to pick-
up the cluster(s) representing a target class.

Same-class negatives (Ncls): We select a set of
negative instances as a random sample of the in-
stances extracted by only one extractor, which can
be either of the two untrusted ones, KEdis or
KEpat.

Near-class negatives (Noth): We select a set of
negative instances, as a random sample of the in-
stances extracted by any of our three extractors for a
class different than the one at hand. We also enforce
the condition that instances in Noth must not have
been extracted for the class at hand.

Generic negatives (Ncbc): We automatically se-
lect as generic negatives a random sample of in-
stances appearing in any CBC cluster, except those
containing at least one member of the class at hand
(i.e., containing at least one instance extracted by
one of our KEs for the given class).

4 Experimental Evaluation

In this section, we report experiments comparing
the ranking performance of our different methods
for acquiring training data presented in Section 3,
to three different baselines and a fully supervised
upper-bound.

4.1 Experimental Setup
We evaluate over three semantic classes: Actors
(movie, tv and stage actors); Athletes (profes-
sional and amateur); Musicians (singers, musicians,
composers, bands, and orchestras), so to compare
with (Pennacchiotti and Pantel, 2009). Ranking per-
formance is tested over the test set described in the
above paper, composed of 500 instances, randomly
selected from the instances extracted by KEpat and
KEdis for each of the classes2.

We experiment with various instantiations of the
ES system, each trained on a different training set

2We do not test over instances extracted by KEtrs, as they
do not go though the decoding phase

obtained from our methods. The different system in-
stantiations (i.e., different training sets) are reported
in Table 1 (Columns 1-3). Each training set consists
of 500 positive examples, and 500 negative exam-
ples.

As an upper bound, we use the ES system, where
the training consists of 500 manually annotated in-
stances (Pman and Nman), randomly selected from
those extracted by the KEs. This allows us to di-
rectly check if our automatically acquired training
sets can compete to the human upper-bound. We
also compare to the following baselines.

Baseline 1: An unsupervised rule-based ES sys-
tem, assigning the lowest score to instances ex-
tracted by only one KE, when the KE is untrusted;
and assigning the highest score to any other instance.

Baseline 2: An unsupervised rule-based ES sys-
tem, adopting as KEs the two untrusted extractors
KEpat and KEdis, and a rule-based Ranker that as-
signs scores to instances according to the sum of
their normalized confidence scores.

Baseline 3: An instantiation of our ES system,
trained on Pman and Nman. The only differ-
ence with the upper-bound is that it uses only two
features, namely the confidence score returned by
KEdis and KEpat. This instantiation implements
the system presented in (Mirkin et al., 2006).

For evaluation, we use average precision (AP), a
standard information retrieval measure for evaluat-
ing ranking algorithms:

AP (L) =

∑|L|
i=1 P (i) · corr(i)∑|L|

i=1 corr(i)
(5)

where L is a ranked list produced by a system, P (i)
is the precision of L at rank i, and corr(i) is 1 if the
instance at rank i is correct, and 0 otherwise.

In order to accurately compute statistical signifi-
cance, we divide the test set in 10-folds, and com-
pute the AP mean and variance obtained over the
10-folds. For each configuration, we perform the
random sampling of the training set five times, re-
building the model each time, to estimate the vari-
ance when varying the training sampling.

4.2 Experimental Results
Table 1 reports average precision (AP) results for
different ES instantiations, separately on the three

167

System Training Set AP MAP
Positives Negatives Actors Athletes Musicians

Baseline1 (unsup.) - - 0.562 0.535 0.437 0.511
Baseline2 (unsup.) - - 0.676 0.664 0.576 0.639
Baseline3 (sup.) Pman Nman 0.715 0.697 0.576 0.664
Upper-bound (full-sup.) Pman Nman 0.860§ 0.901§ 0.786§ 0.849§

S1. Pcls Noth 0.751† 0.880§ 0.642 0.758§

S2. Pcls Ncbc 0.734† 0.854§ 0.644 0.744‡

S3. Pcls Ncls 0.842§ 0.806§ 0.770§ 0.806§

S4. Pcls Noth + Ncbc 0.756‡ 0.853§ 0.693‡ 0.767§

S5. Pcls Ncls + Noth 0.835§ 0.807§ 0.763§ 0.802§

S6. Pcls Ncls + Ncbc 0.838§ 0.822§ 0.768§ 0.809§
S7. Pcls Ncls + Noth + Ncbc 0.838§ 0.818§ 0.764§ 0.807§

Table 1: Average precision (AP) results of systems using different training sets, compared to two usupervised Base-
lines, a supervised Baseline, and a fully supervised upper-bound system. § indicates statistical significance at the 0.95
level wrt all Baselines. ‡ indicates statistical significance at the 0.95 level wrt Baseline1 and Baseline 2. † indicates
statistical significance at the 0.95 level wrt Baseline1.

classes; and the mean average precision (MAP)
computed across the classes. We report results us-
ing Pcls as positive training, and varying the neg-
ative training composition3. Systems S1-S3 use a
single method to build the negatives. Systems S4-
S6 combine two methods (250 examples from one
method, 250 from the other), and S7 combines all
three methods. Table 3 reports additional basic re-
sults when varying the positive training set compo-
sition, and fixing the best performing negative set
(namely Ncls).

Table 1 shows that all systems outperform the
baselines in MAP, with 0.95 statistical significance,
but S2 which is not significant wrt Baseline 3. S6 is
the best performing system, achieving 0.809 MAP,
only 4% below the supervised upper-bound (statis-
tically insignificant at the 0.95 level). These results
indicate that our methods for automatically acquir-
ing training data are highly effective and competitive
with manually crafted training sets.

A class-by-class analysis reveals similar behav-
ior for Actors and Musicians. For these two classes,
the best negative set is Ncls (system S3), achieving
alone the best AP (respectively 0.842 and 0.770 for
Actors and Musicians, 2.1% and 1.6% points below
the upper-bound). Noth and Ncbc show a lower ac-
curacy, more than 10% below Ncls. This suggest
that the most promising strategy for automatically

3For space limitation we cannot report exhaustively all com-
binations.

Negative set False Negatives
Actors Athletes Musicians

Ncls 5% 45% 30%
Noth 0% 10% 10%
Ncbc 0% 0% 15%

Table 2: Percentage of false negatives in different types of
negative sets, across the three experimented classes (esti-
mations over a random sample of 20 examples per class).

acquiring negative training data is to collect exam-
ples from the target class, as they guarantee to be
drawn from the same distribution as the instances to
be decoded. The use of near- and far-misses is still
valuable (AP results are still better than the base-
lines), but less effective.

Results for Athletes give different evidence: the
best performing negative set is Noth, performing
significantly better than Ncls. To investigate this
contrasting result, we manually picked 20 exam-
ples from Ncls, Noth and Ncbc for each class, and
checked their degree of noise, i.e., how many false
negatives they contain. Table 2 reports the results:
these numbers indicate that the Ncls is very noisy
for the Athletes class, while it is more clean for the
other two classes. This suggests that the learning
algorithm, while being robust enough to cope with
the small noise in Ncls for Actors and Musicians, it
starts to diverge when too many false negatives are
presented for training, as it happens for Athletes.

False negatives in Ncls are correct instances ex-
tracted by one untrusted KE alone. The results in

168

Table 2 indicates that our untrusted KEs are more
accurate in extracting instances for Athletes than for
the other classes: accurate enough to make our train-
ing set too noisy, thus decreasing the performance
of S3 wrt S1 and S2. This indicates that the effec-
tiveness of Ncls decreases when the accuracy of the
untrusted KEs is higher.

A good strategy to avoid the above problem is to
pair Ncls with another negative set, either Ncbc or
Noth, as in S5 and S6, respectively. Then, when
the above problem is presented, the learning algo-
rithm can rely on the other negative set to com-
pensate some for the noise. Indeed, when adding
Ncbc to Ncls (system S6) the accuracy over Athletes
improves, while the overall performance across all
classes (MAP) is kept constant wrt the system using
Ncls (S3).

It is interesting that in Table 2, Ncbc and Noth also
have a few false negatives. An intrinsic analysis re-
veals that these are either: (1) Incorrect instances
of the other classes that are actual instances of the
target class; (2) Correct instances of other classes
that are also instances of the target class. Case (1) is
caused by errors of KEs for the other classes (e.g.,
erroneously extracting ‘Matthew Flynt’ as a Musi-
cian). Case (2) covers cases in which instances are
ambiguous across classes, for example ‘Kerry Tay-
lor’ is both an Actor and a Musician. This observa-
tion is still surprising, since Eq. 3 explicitly removes
from Ncbc and Noth any correct instance of the tar-
get class extracted by the KEs. The presence of false
negatives is then due to the low coverage of the KEs
for the target class, e.g. the KEs were not able to ex-
tract ‘Matthew Flynt’ and ‘Kerry Taylor’ as actors.

Correlations. We computed the Spearman corre-
lation coefficient r among the rankings produced
by the different system instantiations, to verify
how complementary the information enclosed in the
training sets are for building the learning model.
Among the basic systems S1− S3, the highest cor-
relation is between S1 and S2 (r = 0.66 in aver-
age across all classes), which is expected, since they
both apply the principle of acquiring negative ex-
amples from classes other than the target one. S3
exhibits lower correlation with both S1 and S2, re-
spectively r = 0.57 and r = 0.53, suggesting that it
is complementary to them. Also, the best system S6

System Training Set AP MAP
Pos. Neg. Act. Ath. Mus.

S3. Pcls Ncls 0.842 0.806 0.770 0.806
S8. Ptrs Ncls 0.556 0.779 0.557 0.631
S9. Pcbc Ncls 0.633 0.521 0.561 0.571

Table 3: Comparative average precision (AP) results for
systems using different positive sets as training data.

Figure 1: Average precision of system S6 with different
training sizes.

has higher correlation with S3 (r = 0.94) than with
S2 (r = 0.62), indicating that in the combination of
Ncls and Ncbc, most of the model is built on Ncls.

Varying the positive training. Table 3 reports re-
sults when fixing the negative set to the best per-
forming Ncls, and exploring the use of other posi-
tive sets. As expected Pcls largely outperforms Ptrs,
confirming that removing the constraint in Eq. 2 and
using the simpler Eq. 1 makes the training set unrep-
resentative of the unlabeled population. A similar
observation stands for Pcbc. These results indicate
that having a good trusted KE, or even an external
resource of positives, is effective only when select-
ing from the training set examples that are also ex-
tracted by the untrusted KEs.

Varying the training size. In Figure 1 we report
an analysis of the AP achieved by the best perform-
ing System (S6), when varying the training size, i.e.,
changing the cardinality of Pcls and Ncls + Ncbc.
The results show that a relatively small-sized train-
ing set offers good performance, the plateau being
reached already with 500 training examples. This
is an encouraging result, showing that our methods
can potentially be applied also in cases where few
examples are available, e.g., for rare or not well-
represented classes.

169

5 Related Work

Most relevant are efforts in semi-supervised learn-
ing. Semi-supervised systems use both labeled and
unlabeled data to train a machine learning system.
Most common techniques are based on co-training
and self-training. Co-training uses a small set of la-
beled examples to train two classifiers at the same
time. The classifiers use independent views (i.e.
‘conditionally independent’ feature sets) to repre-
sent the labeled examples. After the learning phase,
the most confident predictions of each classifier
on the unlabeled data are used to increase the la-
beled set of the other. These two phases are re-
peated until a stop condition is met. Co-training
has been successfully applied to various applica-
tions, such as statistical parsing (Sarkar, 2001) and
web pages classification (Yarowsky, 1998). Self-
training techniques (or bootsrapping) (Yarowsky,
1995) start with a small set of labeled data, and it-
eratively classify unlabeled data, selecting the most
confident predictions as additional training. Self-
training has been applied in many NLP tasks, such
as word sense disambiguation (Yarowsky, 1995) and
relation extraction (Hearst, 1992). Unlike typical
semi-supervised approaches, our approach reduces
the needed amount of labeled data not by acting on
the learning algorithm itself (any algorithm can be
used in our approach), but on the method to acquire
the labeled training data.

Our work also relates to the automatic acquisi-
tion of labeled negative training data. Yangarber et
al. (2002) propose a pattern-based bootstrapping ap-
proach for harvesting generalized names (e.g., dis-
eases, locations), where labeled negative examples
for a given class are taken from positive seed exam-
ples of ‘competing’ classes (e.g. examples of dis-
eases are used as negatives for locations). The ap-
proach is semi-supervised, in that it requires some
manually annotated seeds. The study shows that
using competing categories improves the accuracy
of the system, by avoiding sematic drift, which is
a common cause of divergence in boostrapping ap-
proaches. Similar approaches are used among others
in (Thelen and Riloff, 2002) for learning semantic
lexicons, in (Collins and Singer, 1999) for named-
entity recognition, and in (Fagni and Sebastiani,
2007) for hierarchical text categorization. Some of

our methods rely on the same intuition described
above, i.e., using instances of other classes as nega-
tive training examples. Yet, the ES framework al-
lows us to add further restrictions to improve the
quality of the data.

6 Conclusion

We presented simple and general techniques for au-
tomatically acquiring training data, and then tested
them in the context of the Ensemble Semantics
framework. Experimental results show that our
methods can compete with supervised systems us-
ing manually crafted training data. It is our hope that
these simple and easy-to-implement methods can al-
leviate some of the cost of building machine learn-
ing architectures for supporting open-domain infor-
mation extraction, where the potentially very large
number of classes to be extracted makes infeasible
the use of manually labeled training data.

There are many avenues for future work. Al-
though our reliance on high-quality knowledge
sources is not an issue for many head classes, it
poses a challenge for tail classes such as ‘wine con-
noisseurs’, where finding alternative sources of high
precision samples is important. We also plan to ex-
plore techniques to automatically identify and elim-
inate mislabeled examples in the training data as
in (Rebbapragada and Brodley, 2007), and relax the
boolean assumption of trusted/untrusted extractors
into a graded one. Another important issue regards
the discovery of ‘near-classes’ for collecting near-
classes negatives: we plan to automate this step by
adapting existing techniques as in (McIntosh, 2010).
Finally, we plan to experiment on a larger set of
classes, to show the generalizability of the approach.

Our current work focuses on leveraging auto-
learning to create an extensive taxonomy of classes,
which will constitute the foundation of a very large
knowledge-base for supporting web search.

References
Avrim L. Blum and Pat Langley. 1997. Selection of rel-

evant features and examples in machine learning. Ar-
tificial Intelligence, 97:245–271.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. War-
muth. 1989. Proceedings of ltc-07. Journal of ACM,
36:929–965.

170

Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao,
Enhong Chen, and Hang Li. 2008. Context-aware
query suggestion by mining click-through and session
data. In Proceedings of KDD-08, pages 875–883.

Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin.
2009. Exploiting web search to generate synonyms for
entities. In Proceedings of WWW-09, pages 151–160.

Philipp Cimiano and Steffen Staab. 2004. Learning by
googling. SIGKDD Explorations, 6(2):24–34.

M. Collins and Y. Singer. 1999. Unsupervised mod-
els for named entity classification. In Proceedings of
WVLC/EMNLP-99, pages 100–110.

Tiziano Fagni and Fabrizio Sebastiani. 2007. On the se-
lection of negative examples for hierarchical text cate-
gorization. In Proceedings of LTC-07, pages 24–28.

Jerome H. Friedman. 2001. Greedy function approxima-
tion: A gradient boosting machine. Annals of Statis-
tics, 29(5):1189–1232.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
COLING-92, pages 539–545.

Jian Hu, Gang Wang, Fred Lochovsky, Jian tao Sun, and
Zheng Chen. 2009. Understanding user’s query intent
with Wikipedia. In Proceedings of WWW-09, pages
471–480.

N. Japkowicz and S. Stephen. 2002. The class imbalance
problem: A systematic study. Intelligent Data Analy-
sis, 6(5).

M. Kubat and S. Matwin. 1997. Addressing the curse
of inbalanced data sets: One-side sampleing. In Pro-
ceedings of the ICML-1997, pages 179–186. Morgan
Kaufmann.

Joseph F. McCarthy and Wendy G Lehnert. 2005. Using
decision trees for coreference resolution. In Proceed-
ings of IJCAI-1995, pages 1050–1055.

Tara McIntosh. 2010. Unsupervised discovery of nega-
tive categories in lexicon bootstrapping. In Proceed-
ings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 356–365, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Shachar Mirkin, Ido Dagan, and Maayan Geffet. 2006.
Integrating pattern-based and distributional similarity
methods for lexical entailment acquisition. In Pro-
ceedings of ACL/COLING-06, pages 579–586.

Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei Lif-
chits, and Alpa Jain. 2006. Organizing and search-
ing the world wide web of facts - step one: The one-
million fact extraction challenge. In Proceedings of
AAAI-06, pages 1400–1405.

Marius Paşca. 2007. Weakly-supervised discovery of
named entities using web search queries. In Proceed-
ings of CIKM-07, pages 683–690, New York, NY,
USA.

Patrick Pantel and Dekang Lin. 2002. Discovering word
senses from text. In Proceedings of KDD-02, pages
613–619.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
Proceedings of EMNLP-09.

Marco Pennacchiotti and Patrick Pantel. 2009. Entity
extraction via ensemble semantics. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing, pages 238–247, Singapore.
Association for Computational Linguistics.

Umaa Rebbapragada and Carla E. Brodley. 2007. Class
noise mitigation through instance weighting. In Pro-
ceedings of the 18th European Conference on Machine
Learning.

Anoop Sarkar. 2001. Applying co-training methods to
statistical parsing. In NAACL-2001.

Bin Tan and Fuchun Peng. 2006. Unsupervised query
segmentation using generative language models and
wikipedia. In Proceedings of WWW-06, pages 1400–
1405.

Michael Thelen and Ellen Riloff. 2002. A bootstrapping
method for learning semantic lexicons using extraction
pattern contexts. In Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 214–221, Philadelphia, PA, USA. As-
sociation for Computational Linguistics.

Richard C. Wang and William W. Cohen. 2008. Itera-
tive set expansion of named entities using the web. In
ICDM ’08: Proceedings of the 2008 Eighth IEEE In-
ternational Conference on Data Mining, pages 1091–
1096, Washington, DC, USA. IEEE Computer Society.

Roman Yangarber, Winston Lin, and Ralph Grishman.
2002. Unsupervised learning of generalized names.
In COLING-2002.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proceed-
ings of ACL-1996, pages 189–196.

David Yarowsky. 1998. Combining labeled and unla-
beled data with co-training. In Proceedings of the
Workshop on Computational Learning Theory, pages
92–100.

171

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 172–180,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Probabilistic Word Alignment under the L0-norm

Thomas Schoenemann
Center for Mathematical Sciences

Lund University, Sweden

Abstract

This paper makes two contributions to the
area of single-word based word alignment for
bilingual sentence pairs. Firstly, it integrates
the – seemingly rather different – works of
(Bodrumlu et al., 2009) and the standard prob-
abilistic ones into a single framework.

Secondly, we present two algorithms to opti-
mize the arising task. The first is an iterative
scheme similar to Viterbi training, able to han-
dle large tasks. The second is based on the in-
exact solution of an integer program. While it
can handle only small corpora, it allows more
insight into the quality of the model and the
performance of the iterative scheme.

Finally, we present an alternative way to
handle prior dictionary knowledge and dis-
cuss connections to computing IBM-3 Viterbi
alignments.

1 Introduction

The training of single word based translation mod-
els (Brown et al., 1993b; Vogel et al., 1996) is an es-
sential building block for most state-of-the-art trans-
lation systems. Indeed, even more refined transla-
tion models (Wang and Waibel, 1998; Sumita et al.,
2004; Deng and Byrne, 2005; Fraser and Marcu,
2007a) are initialized by the parameters of single
word based ones. The exception is here the joint
approach of Marcu and Wong (2002), but its refine-
ment by Birch et al. (2006) again relies on the well-
known IBM models.

Traditionally (Brown et al., 1993b; Al-Onaizan
et al., 1999) single word based models are trained

by the EM-algorithm, which has the advantageous
property that the collection of counts can be de-
composed over the sentences. Refinements that also
allow symmetrized models are based on bipartite
graph matching (Matusov et al., 2004; Taskar et al.,
2005) or quadratic assignment problems (Lacoste-
Julien et al., 2006). Recently, Bodrumlu et al.
(2009) proposed the first method that treats a non-
decomposable problem by handling all sentence
pairs at once and via integer linear programming.
Their (non-probabilistic) approach finds dictionaries
with a minimal number of entries. However, the ap-
proach does not include a position model.

In this work we combine the two strategies into
a single framework. That is, the dictionary sparsity
objective of Bodrumlu et al. will become a regu-
larity term in our framework. It is combined with
the maximal alignment probability of every sentence
pair, where we consider the models IBM-1, IBM-2
and HMM. This allows us to write dictionary spar-
sity as the (non-convex) L0 norm of the dictionary
parameters of the respective models.

For supervised training, regularity terms are quite
common, e.g. (Taskar et al., 2005; Lacoste-Julien et
al., 2006). For the unsupervised problem addressed
in this paper they have recently been introduced in
the form of posterior constraints (Ganchev et al.,
2010). In related fields of NLP lately Dirichlet pri-
ors have been investigated, e.g. (Johnson, 2007).

We present two strategies to handle the objec-
tive function addressed in this paper. One of these
schemes relies, like (Germann et al., 2004; Lacoste-
Julien et al., 2006; DeNero and Klein, 2008; Bo-
drumlu et al., 2009), on integer linear programming

172

(see e.g. (Schrijver, 1986; Achterberg, 2007)), but
due to the large-scale nature of our problem we
solve only the LP-relaxation, followed by successive
strengthening. For the latter, we develop our own,
exponentially large set of cuts and show that it can
be handled as a polynomially sized system, though
in practice this is too inefficient.

2 The Models

Before we introduce our objective function we give
a brief description of the (standard) models we con-
sider. In all cases, one is given a set of bilin-
gual sentence pairs containing a foreign language
and English. The models formalize the probabil-
ity of obtaining the foreign sentence from a given
English sentence, by considering hidden variables
called alignments:

pd,l(fs|es) =
∑
as

pd,l(fs,as|es) .

Here, the subscripts d and l denote two sets of pa-
rameters: whereas the set l defines the probability of
an alignment without knowing any of the sentences,
d describes the translational probability given an
alignment and a source sentence.

For a source (English) sentence of length I and a
target (foreign) sentence of length J , the set of ad-
missible alignments is generally the set of subsets
of {1, . . . , I} × {1, . . . , J}. However, for compu-
tational reasons the considered models only allow
restricted alignments, where each target word may
align to at most one source word. Any such align-
ment is expressed as a vector aJ

1 ∈ {0, . . . , I}J .

2.1 Considered models
For a source sentence es = eI1 and a target sentence
f s = fJ

1 , the considered models all factor as follows:

pd,l(f s,as|es) = (1)
J∏

j=1

pd(fj |eaj) · pl(aj |aj−1, j, I)

In all cases, the translational probability is non-
parametric, i.e. d contains one parameter for every
co-occurring pair of source and target words. Since
the model is probabilistic, the parameters of all f for
a given e have to sum up to one.

With respect to the alignment probability, the
models differ. For the IBM-1 the set l is actually
empty, so pl(aj |aj−1, j, I) = 1/(I+1). The IBM-2
models1 p(aj |j, I), with a respective set of parame-
ters. Finally, the HMM models p(aj |aj−1, I).

It is common to further reduce the alignment pa-
rameters. In this paper we consider a nonparametric
distribution for the IBM-2, but both a nonparamet-
ric and a parametric one for the HMM. In contrast
to GIZA++, we have a parameter for every possible
difference, i.e. we do not group differences with ab-
solutes greater than 5. Also, commonly one uses a
distribution p(i|i′, I) = r(i− i′)/

∑I
i′′=1 r(i

′′ − i′),
but for technical reasons, we drop the denominator
and instead constrain the r(·)-parameters to sum to
1. In future work we hope to implement both the
normalization and the grouping of bins.

2.2 Word Alignment
Originally the considered models were used for the
actual translation problem. Hence, the parameters
d and l had to be inferred from a training corpus,
which was based on maximizing the probability

max
d,l

∏
s

∑
a

pd,l(f s,as|es) . (2)

Today the major application of the models lies in
word alignment. Instead of estimating continuous
parameters, one is now faced with the discrete opti-
mization problem of assigning a single alignment to
every sentence pair in the corpus. This lead to the
recent innovative work of (Bodrumlu et al., 2009)
where the alignments are the only unknown quanti-
ties.

Nevertheless, the use of probabilistic models re-
mains attractive, in particular since they contribute
statistics of likely alignments. In this work, we com-
bine the two concepts into the criterion

min
d,l
− log

[∏
s

max
as

pd,l(f s,as|es)

]
+ λ ‖d‖0 ,

where λ ≥ 0 is a weighting parameter and we now
estimate a single alignment for every sentence.

The second term denotes the L0-norm of the
translational parameters, i.e. the number of non-zero

1The original work considered a dependence on I and J , but
it is common to drop J .

173

parameters. Since we only consider a single align-
ment per sentence, this term is equivalent to Bo-
drumlu et al.’s objective function. Minimizing the
first term is closely related to the common criterion
(2). For parameter estimation it is known as the max-
imum approximation, but for word alignment it is a
perfectly valid model.

For the IBM-1 model the first term alone results in
a convex, but not strictly convex minimization prob-
lem2. However, EM-like iterative methods generally
do not reach the minimum: they are doing block co-
ordinate descent (Bertsekas, 1999, chap. 2.7) which
generally gives the optimum only for strictly convex
functions. Indeed, our experiments showed a strong
dependence on initialization and lead to heavily lo-
cal solutions.

In the following we present two strategies to min-
imize the new objective. We start with an iterative
method that also handles the regularity term.

3 An Iterative Scheme

To derive our algorithms, we first switch the mini-
mum and maximum in the objective and obtain

min
{as}

min
d,l
−
∑

s

log
[
pd,l(f s,as|es)

]
+ λ ‖d‖0 ,

where the notation{as} denotes the alignments of
all sentence pairs. Ignoring the L0-term for the mo-
ment, we now make use of a result of (Vicente et al.,
2009) in their recent work on histogram-based im-
age segmentation: for any given set of alignments,
the inner minimization over the parameters is solved
by relative frequencies. When plugging this solution
into the functional, one gets a model that does not
decompose over the sentences, but one that is still
reasonably easy to handle.

Before we get into details, we observe that this
minimizer is valid even when including the L0 term:
if two words are never linked, both terms will set the
respective parameter to 0. If they are linked, how-
ever, then setting this parameter to 0 would make
the first term infinite. All non-zero parameters are
treated equally by the L0 term, so the restriction
to relative frequencies does not change the optimal
value. In fact, this can be extended to weighted L0

2This is due to taking the maximizing alignment. Summing
over all alignments is strictly convex.

terms, and later on we exploit this to derive an al-
ternative way to handle a dictionary prior. Note that
the same principle could also be applied to the work
of (Bodrumlu et al., 2009).

3.1 Mathematical Formulation

We detail our scheme for the IBM-1 model, the ex-
tension to other models is easy. For given align-
ments we introduce the counts

Nf,e({as}) =
∑

s

∑
j

δ(f, fj) · δ(e, eaj)

Ne({as}) =
∑

s

∑
j

δ(e, eaj) ,

where δ(·, ·) is the Kronecker-delta. The op-
timal translation parameters are then given by
Nf,e({as})/Ne({as}), and plugging this into the
first term in the objective gives (up to a constant)

min
{as}

∑
f,e

−Nf,e({as}) log
(
Nf,e({as})
Ne({as})

)
.

The second term is simply λ
∑

f,e ‖Nf,e({as})‖0,
and since N(e) =

∑
f N(f, e), in total we get

min
{as}

∑
f,e

−Nf,e({as}) log (Nf,e({as}))

+
∑

e

Ne({as}) log (Ne({as})) .

+ λ
∑
f,e

‖Nf,e({as})‖0 (3)

In essence we are now dealing with the function
x log(x), where its value for 0 is defined as 0.

3.2 Algorithm

For the new objective, we were able to entirely get
rid of the model parameters, leaving only alignment
variables. Nevertheless, the algorithm we present
maintains these parameters, and it requires an initial
choice. While we initialize the alignment parame-
ters uniformly, for the translation parameters we use
co-occurrence counts. This performed much better
than a uniform initialization. The algorithm, called
AM (for alternating minimization), now iterates two
steps:

174

1. Starting from the current setting of d and
l, derive Viterbi alignments for all sentence
pairs. E.g. for the IBM-1 we set as

j =
arg max

i
d(fj |ei). For the IBM-2 the term is

similar, while for the HMM one can use dy-
namic programming.

Note that this step does not consider the L0-
term. This term can however not increase.

2. Run the Iterated Conditional Modes (Besag,
1986), i.e. go sequentially over all alignment
variables and set them to their optimal value
when keeping the others fixed.

Here, we need to keep track of the current
alignment counts. In every step we need to
compute the objective cost associated to a count
that increases by 1, and (another) one that
decreases by 1. For the IBM-2 we need to
consider the alignment counts, too, and for
the HMM usually two alignment terms are af-
fected. In case of 0-alignments there can be
more than two. We presently do not consider
these cases and hence do not find the exact op-
timum there.

Afterwards, reestimate the parameters d and l
from the final counts.

4 Integer Linear Programming

The above algorithm is fast and can handle large cor-
pora. However, it still gets stuck in local minima,
and there is no way of telling how close to the opti-
mum one got.

This motivates the second algorithm where we
cast the objective function as an integer linear pro-
gram (ILP). In practice it is too large to be solved
exactly, so we solve its linear programming relax-
ation, followed by successive strengthening. Here
we derive our own set of cuts. Now we also get a
lower bound on the problem and obtain lower en-
ergy solutions in practice. But we can handle only
small corpora.

We limit this method to the models IBM-1 and
IBM-2. Handling an HMM would be possible,
but its first order alignment model would introduce
many more variables. Handling the IBM-3, based on
(Ravi and Knight, 2010; Schoenemann, 2010) seems
a more promising direction.

4.1 An ILP for the Regularized IBM-1
The basis of our ILP is the fact that the counts Nf,e

and Ne can only assume a finite, a-priori known set
of integral values, including 0. We introduce a bi-
nary variable nc

f,e ∈ {0, 1} for each possible value
c, where we want nc

f,e = 1 if Nf,e(as) = c, oth-
erwise nc

f,e = 0. This is analogous for the vari-
ables nc

e and Ne(as). Finally, since the counts de-
pend on the alignments, we also need binary vari-
ables xs

i,j ∈ {0, 1} that we want to be 1 if and only
if as

j = i.
The cost function of (3) can now be written as a

linear function in terms of the integer variables nc
f,e

and nc
e, with coefficients

wc
e,f = −c log(c) + λ‖c‖0 , wc

e = c log(c) .

However, we need additional constraints. In particu-
lar we need to ensure that for a given f and e exactly
one variable nc

f,e is 1. Equivalently we can postulate
that the sum of these variables is one. We proceed
analogous for each e and the variables nc

e.
Then, we need to ensure that for each source word

in each sentence f s an alignment is specified, i.e.
that for each given s and j the variables xs

i,j sum
to 1. Finally, the count variables have to reflect the
counts induced by the alignment variables. For the
counts Nf,e this is expressed by∑

s,i,j:fs
j =f,es

i =e

xs
i,j =

∑
c

c · nc
f,e ∀f, e ,

and likewise for the counts Ne.
Altogether, we arrive at the following system:

min
{xs

i,j},{nc
f,e},{nc

e}

∑
e,c

wc
e n

c
e +

∑
f,e,c

wc
f,e n

c
f,e

s.t.
∑

i

xs
i,j = 1 ∀s, j∑

c

nc
f,e = 1 ∀f, e∑

c

nc
e = 1 ∀e∑

s,i,j:fj=f,ei=e

xs
i,j =

∑
c

c · nc
f,e ∀f, e∑

s,i,j:ei=e

xs
i,j =

∑
c

c · nc
e ∀e

xs
i,j ∈ {0, 1}, nc

e ∈ {0, 1}, nc
e,f ∈ {0, 1} .

175

4.2 Handling the IBM-2

The above mentioned system can be easily adapted
to the IBM-2 model. To this end, we introduce vari-
ables nc

i,j,I ∈ {0, 1} to express how often source
word j is aligned to target word i given that there
are I words in the target sentence. Note that the
number of times source word j is aligned given that
the target sentence has I words is known a-priori
and does not depend on the alignment to be opti-
mized. We denote it Cj,I . The cost function of
the ILP is augmented by

∑
i,j,I,cw

c
i,j,I n

c
i,j,I , with

wc
i,j,I = c log(c/Cj,I). In addition we add the fol-

lowing constraints to the system:∑
s:Is=I

xs
i,j =

∑
c

c · nc
i,j,I ∀i, j, I .

5 Cutting Planes

Integer linear programming is an NP-hard problem
(see e.g. (Schrijver, 1986)). While for problems
with a few thousand variables it can often be solved
exactly via the branch and cut method, in our setting
none of the solvers we tried terminated. Already
solving the linear programming relaxation requires
up to 4 GB of memory for corpora with roughly
3000 sentence pairs.

So instead of looking for an exact solution, we
make use of a few iterations of the cutting planes
method (Gomory, 1958), where repeatedly an LP-
relaxation is solved, then additionally valid inequal-
ities, called cuts, are added to the system. Every
round gives a tighter relaxation, i.e. a better lower
bound on the optimal integral value.

After solving each LP-relaxation we derive an in-
tegral solution by starting the iterative method from
section 3 from the fractional LP-solution. In the end
we output the best found integral solution.

For deriving cuts we tried all the methods imple-
mented in the COIN Cut Generation Library CGL3,
based on the solver Clp from the same project line.
However, either the methods were very slow in pro-
ducing cuts or they produced very few cuts only. So
eventually we derived our own set of cuts that will
now be presented. Note that they alone do not give
an integral solution.

3http://www.coin-or.org/projects/Cgl.xml

5.1 A Set of Count-based Cuts

The derived ILP contains several constraints of the
form ∑

i

yi =
∑

c

c · zc , (4)

where all variables are binary. Expressions of this
kind arise wherever we need to ensure consistency
between alignment variables and count variables.
Our cuts aim at strengthening each of these equa-
tions individually.

Assume that equation (4) involves the variables
y1, . . . , yK and hence also the variables z0, . . . , zK .
The trouble with the equation is that even if the
left hand side is integral, the right-hand side is usu-
ally not. As an example, consider the case where∑K

i=1 yi = 3. Then the fractional assignment z0 =
1−3/K, zK = 3/K and zc = 0 for all other c satis-
fies (4). Indeed, if the cost function for zc is concave
in c, as is the function−c log(c) we use, this will be
the optimal solution for the given left hand side.

Hence we want to enforce that for an integral
value k of the left hand side, all variables zc for
0 ≤ c < k are zero. This is ensured by the fol-
lowing system of inequalities that is exponentially
large in k: ∑

i∈K
yi +

k−1∑
c=0

zc ≤ k (5)

∀K ⊆ {1, . . . ,K} : |K| = k .

It turns out that this system can be formulated quite
compactly.

5.2 Polynomial Formulation

We now formalize the result for the compact formu-
lation of (5).

Proposition 1 The union of the systems (5) for all k
can be represented by polynomially many variables
and linear constraints.

Proof: we first observe that it suffices to enforce[
max
K:|K|=k

∑
i∈K

yi

]
+

k−1∑
c=0

zc ≤ k

for all k. These are polynomially many equations
(one for each k), but each involves a maximization

176

over exponentially many sets. However, this maxi-
mization can be expressed by the auxiliary variables

τk
l := max

K⊆{1,...,l}:|K|≤k

∑
i∈K

yi

= max{τk−1
l−1 + yl , τ

k
l−1}

Now we only have to maximize over two linear ex-
pressions for each of the new, polynomially many,
variables. We can enforce τk

l to be an upper bound
on the maximum by postulating τk

l ≥ τ
k−1
l−1 + yl and

τk
l ≥ τk

l−1. Since the original maximum occurred on
the left hand side of a less-than constraint, this upper
bound will be tight wherever this is necessary. 2

In practice the arising system is numerically hard
to solve. Since usually only polynomially many cuts
of the form (5) are actually violated during the cut-
ting planes process, we add them in passes and get
significantly lower running times. Moreover, each
round of cuts gives a new opportunity to derive a
heuristic integral solution.

5.3 Backward Cuts

We call the cuts we have derived above forward cuts
as they focus on variables that are smaller than k. If
we could be sure that the left-hand side of (4) was
always integral, they should indeed suffice. In prac-
tice this is not the case, so we now also derive back-
ward cuts where we focus on all variables that are
larger than k, with the following reasoning: once we
know that at least K − k variables yi are inactive
(i.e. yi = 0), we can conclude that all zc with c > k
must be zero, too. This can be expressed by the set
of inequalities∑

i∈K
(1− yi) +

K∑
c=k+1

zc ≤ K − k

∀K ⊆ {1, . . . ,K} : |K| = K − k ,

or equivalently∑
i∈K
−yi +

K∑
c=k+1

zc ≤ 0 ∀K : |K| = K − k .

5.4 Other Applications

A related constraint system arises in recent work
(Ravi and Knight, 2010; Schoenemann, 2010) on

computing IBM-3 Viterbi alignments. We imple-
mented4 the polynomial formulation of the above
forward cuts for this system, and got mild speed-ups
(224 instead of 237 minutes for the Hansards task
reported in the second paper). With an additionally
improved fertility exclusion stage5 this is reduced to
176 minutes.

6 Experiments

We evaluate the proposed strategies on both small
scale and (where applicable) large scale tasks. We
compare to standard EM with sums over alignments,
where for the IBM-1 and the HMM we use GIZA++.
In addition, we evaluate several variants (our imple-
mentations) of the HMM, with non-parametric and
parametric alignment models. Note that for the non-
parametric variant we estimate distributions for the
first aligned position, for the parametric all initial
positions are equally likely. For the IBM-2 we con-
sider the non-parametric variant and hence our im-
plementation. We also evaluate our schemes on the
task without regularization.

All experiments in this work were executed on a
3 GHz Core 2 Duo machine with 8 GB of memory,
where up to 4 GB were actually used. The itera-
tive scheme was run for 15 iterations, where it was
nearly converged. This setting was also used for our
own EM-implementations. Solely for GIZA++ we
used the standard setting of 5 iterations, and the im-
plemented smoothing process. For the IBM-2 and
HMM we follow the standard strategy to first train
an IBM-1 with the same objective function.

6.1 Large Scale Tasks

We consider two well-known corpora with publicly
available gold alignments, and run both translation
directions for each of them. The first task is the
Canadian Hansards task (French and English) with
roughly 1 million sentences. The second task is
Europarl Spanish-English, where we take the first
500000 sentences. Our iterative scheme runs in

4based on code available at www.maths.lth.se/
matematiklth/personal/tosch/download.html.

5In (Schoenemann, 2010) we stated that the difference be-
tween cy

if and the contribution of i to the bound has to exceed
u − l3. This can be tightened if one additionally adds the cost
of the best f alignments to i to the cost cy

if .

177

Canadian Hansards
Fr→ En En→ Fr

HMM (Giza++) 0.918 0.918
par. HMM (our EM) 0.887 0.896
par. HMM (Viterbi) 0.873 0.897
par. HMM + L0 0.891 0.907
nonpar. HMM (our EM) 0.873 0.911
nonpar. HMM (Viterbi) 0.881 0.909
nonpar. HMM + L0 0.902 0.917

Europarl
Es→ En En→ Es

HMM (Giza++) 0.764 0.754
nonpar. HMM (our EM) 0.738 0.733
nonpar. HMM (Viterbi) 0.726 0.716
nonpar. HMM + L0 0.729 0.73

Table 1: For large corpora, the proposed scheme outper-
forms Viterbi training and sometimes even our EM.

roughly 5 hours (with room for improvements), us-
ing 2.5 GB memory. We found that an L0-weight of
λ = 5.0 performs very well. Hence, we will use this
for all our experiments.

We compare to the standard GIZA++ implemen-
tation and our own HMM implementations with EM.
Here we ran 15 iterations for IBM-1 and HMM each.

As shown in Table 1 adding the L0 term improves
the standard Viterbi training. Our method also some-
times beats the simple EM implementation but not
GIZA++. This may be due to the special paramet-
ric model of GIZA++, its smoothing process or the
lower number of iterations. Our deficient paramet-
ric model is inferior for the Hansards task, so we did
not run it for Europarl.

6.2 Small Scale Tasks

To evaluate the ILP strategy we consider four small
scale tasks released by the European Corpus Ini-
tiative6. See (Schoenemann, 2010) for the corpus
statistics. We report weighted f-measures (Fraser
and Marcu, 2007b) on gold alignments (sure and
possible) specified by one annotator, for 144 and 110
sentences respectively. The number of cut rounds
was selected so that the execution times remained
below 2 days for all tasks. This was 50 rounds for
the IBM-1 and 2 rounds for the IBM-2. In fact, with

6http://www.elsnet.org/eci.html

these numbers the Avalanche task is processed in lit-
tle less than a day.

We tested a number of LP solvers and found that
most of them need several hours to solve the root re-
laxation. This is different for the commercial solver
FICO Xpress, which only needs around 15 minutes.
However, it is slower in processing the subsequent
cut iterations. Hence, for the IBM-1 we use the open
source Clp7.

The resulting f-measures for the tested strategies
are given in Table 2. In all cases, adding the L0

term greatly improves the standard Viterbi training.
Moreover, for the small scale tasks, the parametric
HMM is clearly the best choice when using the L0

penalty. In the majority of cases the ILP strategy
performs better than the iterative scheme. In fact, it
always found the lower energy solution. The most
extreme difference we observed for the IBM-2 on
the UBS English to German task: here AM finds an
energy of 318147, where the ILP gives 303674.

Finally, Table 3 evaluates the effectiveness of
the cut strategy exemplarily on one of the tasks.
Clearly, the gaps are reduced significantly compared
to the LP-relaxation. However, except for the IBM-
1 (which is convex for λ = 0) the lower bounds are
still quite loose.

6.3 Handling Dictionary Knowledge

The presented L0 regularity is easily modified to in-
clude dictionary knowledge8. To this end, we intro-
duce a weighted L0-norm: whenever a pair of source
and target words is listed in the dictionary, the entry
is not penalized. All remaining entries are penalized
by λ.

Note that this is different from the standard way
(Brown et al., 1993a) of handling dictionary knowl-
edge, which appends the dictionary to the corpus
(with a proper weighting factor). We tried both
schemes with several weighting factors, then chose
the best-performing for the UBS task. For the UBS
German to English task we get an accuracy of 0.445,
which beats GIZA++ both with (0.438) and without
(0.398) dictionary knowledge. In the reverse direc-
tion both schemes profit from the extra knowledge,

7http://www.coin-or.org/projects/Clp.xml
8Our data are based on www.dict.info/uddl.php

and www.ilovelanguages.com/idp and the stemming
algorithms at snowball.tartarus.org.

178

Avalanche French→ German
Model EM AM ILP
IBM-1 0.603 0.619 0.591
IBM-1 + L0 – 0.64 0.625
IBM-2 0.568 0.632 0.60
IBM-2 + L0 – 0.680 0.636
par. HMM 0.752 0.621 –
par. HMM + L0 – 0.779 –
nonpar. HMM 0.752 0.655 –
nonpar. HMM + L0 – 0.714 –

Avalanche German→ French
Model EM AM ILP
IBM-1 0.494 0.485 0.507
IBM-1 + L0 – 0.497 0.488
IBM-2 0.428 0.459 0.526
IBM-2 + L0 – 0.483 0.55
par. HMM 0.606 0.49 –
par. HMM + L0 – 0.592 –
nonpar. HMM 0.582 0.501 –
nonpar. HMM + L0 – 0.537 –

UBS German→ English
Model EM AM ILP
IBM-1 0.381 0.359 0.335
IBM-1 + L0 – 0.350 0.442
IBM-2 0.315 0.324 0.340
IBM-2 + L0 – 0.383 0.462
par. HMM 0.398 0.229 –
par. HMM + L0 – 0.383 –
nonpar. HMM 0.421 0.29 –
nonpar. HMM + L0 – 0.371 –

UBS English→ German
Model EM AM ILP
IBM-1 0.515 0.435 0.489
IBM-1 + L0 – 0.444 0.504
IBM-2 0.417 0.40 0.435
IBM-2 + L0 – 0.52 0.571
par. HMM 0.625 0.404 –
par. HMM + L0 – 0.537 –
nonpar. HMM 0.623 0.436 –
nonpar. HMM + L0 – 0.524 –

Table 2: Alignment accuracy (weighted f-measure) for
different algorithms. We use a dictionary penalty of
λ = 5 and the standard EM (GIZA++ for IBM-1 and
parametric HMM, our implementation otherwise) train-
ing scheme with 5 iterations for each model.

UBS English→ German
L0-weight IBM-1 IBM-2

root relaxation 0.0 1.098 7.697
after cut rounds 0.0 1.081 5.67
root relaxation 5.0 1.16 2.76
after cut rounds 5.0 1.107 2.36

Table 3: Ratios of the best known integer solution and the
best known lower bounds for all considered tasks.

but GIZA++ remains the clear winner. Applying
the same weights to the above mentioned Hansards
task slightly improved GIZA++, whereas it slightly
worsened the performance of our scheme in the one
direction and slightly improved it in the other. We
intend to investigate this more thoroughly in the fu-
ture.

7 Discussion

In this paper we have shown that an L0 prior on
the dictionary parameters greatly improves Viterbi
training. A simple iterative scheme often nearly
matches our EM-implementation of the HMM.

We have also derived two algorithms to deal with
the new objective. A simple iterative scheme gives
quite accurate results on large scale tasks. On small
scale tasks our inexact ILP strategy shows that the
iterative scheme does not find the optimum in prac-
tice, a point that may well carry over to other mod-
els trained with the maximum approximation. This
strategy also provides lower bounds, but at present
they are quite loose.

Moreover, we have presented an alternative way
of handling dictionary knowledge. Finally, we have
discussed connections to computing IBM-3 Viterbi
alignments, where we got mild speed-ups.

In future work we intend to investigate the effect
of the generated alignments on the translation qual-
ity of phrase-based approaches. We also want to ex-
plore strategies to determine the regularity weight.
Finally, we want to handle a non-deficient paramet-
ric HMM.

Acknowledgements. We thank Ben Taskar and
João Graça for helpful discussions. This work was
funded by the European Research Council (Glob-
alVision grant no. 209480).

179

References
T. Achterberg. 2007. Constraint Integer Programming.

Ph.D. thesis, Zuse Institut, TU Berlin, Germany, July.
Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Laf-

ferty, I. D. Melamed, F. J. Och, D. Purdy, N. A.
Smith, and D. Yarowsky. 1999. Statistical
machine translation, Final report, JHU workshop.
http://www.clsp.jhu.edu/ws99/.

D.P. Bertsekas. 1999. Nonlinear Programming, 2nd edi-
tion. Athena Scientific.

J. Besag. 1986. On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society, Series
B, 48(3):259–302.

A. Birch, C. Callison-Burch, and M. Osborne. 2006.
Constraining the phrase-based, joint probability statis-
tical translation model. In Conference of the Associa-
tion for Machine Translation in the Americas (AMTA),
Cambridge, Massachusetts, August.

T. Bodrumlu, K. Knight, and S. Ravi. 2009. A new ob-
jective function for word alignment. In Proceedings of
the Workshop on Integer Linear Programming for Nat-
ural Language Processing (ILP), Boulder, Colorado,
June.

P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, M.J.
Goldsmith, J. Hajic, R.L. Mercer, and S. Mohanty.
1993a. But dictionaries are data too. In HLT work-
shop on Human Language Technology.

P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L.
Mercer. 1993b. The mathematics of statistical ma-
chine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263–311, June.

J. DeNero and D. Klein. 2008. The complexity of phrase
alignment problems. In Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Columbus,
Ohio, June.

Y. Deng and W. Byrne. 2005. HMM word and phrase
alignment for statistical machine translation. In HLT-
EMNLP, Vancouver, Canada, October.

A. Fraser and D. Marcu. 2007a. Getting the structure
right for word alignment: LEAF. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Prague, Czech Republic, June.

A. Fraser and D. Marcu. 2007b. Measuring word align-
ment quality for statistical machine translation. Com-
putational Linguistics, 33(3):293–303, September.

K. Ganchev, J. Graça, J. Gillenwater, and B. Taskar.
2010. Posterior regularization for structured latent
variable models. Journal of Machine Learning Re-
search, 11:2001–2049, July.

U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Ya-
mada. 2004. Fast decoding and optimal decoding for
machine translation. Artificial Intelligence, 154(1–2),
April.

R.E. Gomory. 1958. Outline of an algorithm for integer
solutions to linear programs. Bulletin of the American
Mathematical Society, 64:275–278.

M. Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers? In Conference on Empirical Methods
in Natural Language Processing (EMNLP), Prague,
Czech Republic, June.

S. Lacoste-Julien, B. Taskar, D. Klein, and M. Jordan.
2006. Word alignment via quadratic assignment. In
Human Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, New York, New York, June.

D. Marcu and W. Wong. 2002. A phrase-based, joint
probability model for statistical machine translation.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Philadelphia, Pennsylva-
nia, July.

E. Matusov, R. Zens, and H. Ney. 2004. Symmetric word
alignments for statistical machine translation. In In-
ternational Conference on Computational Linguistics
(COLING), Geneva, Switzerland, August.

S. Ravi and K. Knight. 2010. Does GIZA++ make search
errors? Computational Linguistics, 36(3).

T. Schoenemann. 2010. Computing optimal alignments
for the IBM-3 translation model. In Conference on
Computational Natural Language Learning (CoNLL),
Uppsala, Sweden, July.

A. Schrijver. 1986. Theory of Linear and Integer
Programming. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons.

E. Sumita, Y. Akiba, T. Doi, A. Finch, K. Imamura,
H. Okuma, M. Paul, M. Shimohata, and T. Watanabe.
2004. EBMT, SMT, Hybrid and more: ATR spoken
language translation system. In International Work-
shop on Spoken Language Translation (IWSLT), Ky-
oto, Japan, September.

B. Taskar, S. Lacoste-Julien, and D. Klein. 2005. A
discriminative matching approach to word alignment.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Vancouver, Canada, Oc-
tober.

S. Vicente, V.N. Kolmogorov, and C. Rother. 2009. Joint
optimization of segmentation and appearance models.
In IEEE International Conference on Computer Vision
(ICCV), Kyoto, Japan, September.

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM-
based word alignment in statistical translation. In In-
ternational Conference on Computational Linguistics
(COLING), pages 836–841, Copenhagen, Denmark,
August.

Y.-Y. Wang and A. Waibel. 1998. Modeling with
structures in statistical machine translation. In In-
ternational Conference on Computational Linguistics
(COLING), Montreal, Canada, August.

180

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 181–189,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Authorship Attribution with Latent Dirichlet Allocation

Yanir Seroussi Ingrid Zukerman
Faculty of Information Technology, Monash University

Clayton, Victoria 3800, Australia
firstname.lastname@monash.edu

Fabian Bohnert

Abstract

The problem of authorship attribution – at-
tributing texts to their original authors – has
been an active research area since the end of
the 19th century, attracting increased interest
in the last decade. Most of the work on au-
thorship attribution focuses on scenarios with
only a few candidate authors, but recently con-
sidered cases with tens to thousands of can-
didate authors were found to be much more
challenging. In this paper, we propose ways
of employing Latent Dirichlet Allocation in
authorship attribution. We show that our ap-
proach yields state-of-the-art performance for
both a few and many candidate authors, in
cases where these authors wrote enough texts
to be modelled effectively.

1 Introduction

The problem of authorship attribution – attributing
texts to their original authors – has received con-
siderable attention in the last decade (Juola, 2006;
Stamatatos, 2009). Most of the work in this field fo-
cuses on cases where texts must be attributed to one
of a few candidate authors, e.g., (Mosteller and Wal-
lace, 1964; Gamon, 2004). Recently, researchers
have turned their attention to scenarios with tens to
thousands of candidate authors (Koppel et al., 2011).
In this paper, we study authorship attribution with
few to many candidate authors, and introduce a new
method that achieves state-of-the-art performance in
the latter case.

Our approach to authorship attribution consists of
building models of authors and their texts using La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).
We compare these models to models built from texts

with unknown authors to find the most likely authors
of these texts (Section 3.2). Our evaluation shows
that our approach yields a higher accuracy than the
method recently introduced by Koppel et al. (2011)
in several cases where prolific authors are consid-
ered, while requiring less runtime (Section 4).

This paper is structured as follows. Related work
is surveyed in Section 2. Our LDA-based approach
to authorship attribution is described in Section 3,
together with the baselines we considered in our
evaluation. Section 4 presents and discusses the re-
sults of our evaluation, and Section 5 discusses our
conclusions and plans for future work.

2 Related Work

The field of authorship attribution predates modern
computing. For example, in the late 19th century,
Mendenhall (1887) suggested that word length can
be used to distinguish works by different authors. In
recent years, increased interest in authorship attribu-
tion was fuelled by advances in machine learning,
information retrieval, and natural language process-
ing (Juola, 2006; Stamatatos, 2009).

Commonly used features in authorship attribu-
tion range from “shallow” features, such as token
and character n-gram frequencies, to features that
require deeper analysis, such as part-of-speech and
rewrite rule frequencies (Stamatatos, 2009). As in
other text classification tasks, Support Vector Ma-
chines (SVMs) have delivered high accuracy, as
they are designed to handle feature vectors of high
dimensionality (Juola, 2006). For example, one-
vs.-all (OVA) is an effective approach to using bi-
nary SVMs for multi-class (i.e., multi-author) prob-
lems (Rifkin and Klautau, 2004). Given A authors,

181

OVA trains A binary classifiers, where each classi-
fier is trained on texts by one author as positive ex-
amples and all the other texts as negative examples.
However, ifA is large, each classifier has many more
negative than positive examples, often yielding poor
results due to class imbalance (Raskutti and Kowal-
czyk, 2004). Other setups, such as one-vs.-one or
directed acyclic graph, require training O(A2) clas-
sifiers, making them impractical where thousands of
authors exist. Multi-class SVMs have also been sug-
gested, but they generally perform comparably to
OVA while taking longer to train (Rifkin and Klau-
tau, 2004). Hence, using SVMs for scenarios with
many candidate authors is problematic (Koppel et
al., 2011). Recent approaches to employing binary
SVMs consider class similarity to improve perfor-
mance (Bickerstaffe and Zukerman, 2010; Cheng
et al., 2007). We leave experiments with such ap-
proaches for future work (Section 5).

In this paper, we focus on authorship attribution
with many candidate authors. This problem was pre-
viously addressed by Madigan et al. (2005) and Luy-
ckx and Daelemans (2008), who worked on datasets
with texts by 114 and 145 authors respectively. In
both cases, the reported results were much poorer
than those reported in the binary case. More re-
cently, Koppel et al. (2011) considered author sim-
ilarity to handle cases with thousands of candidate
authors. Their method, which we use as our base-
line, is described in Section 3.1.

Our approach to authorship attribution utilises La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
to build models of authors from their texts. LDA
is a generative probabilistic model that is tradition-
ally used to find topics in textual data. The main
idea behind LDA is that each document in a cor-
pus is generated from a distribution of topics, and
each word in the document is generated according
to the per-topic word distribution. Blei et al. (2003)
showed that using LDA for dimensionality reduction
can improve performance for supervised text clas-
sification. We know of only one case where LDA
was used in authorship attribution: Rajkumar et al.
(2009) reported preliminary results on using LDA
topic distributions as feature vectors for SVMs, but
they did not compare the results obtained with LDA-
based SVMs to those obtained with SVMs trained
on tokens directly. Our comparison shows that both

methods perform comparably (Section 4.3).
Nonetheless, the main focus of our work is

on authorship attribution with many candidate au-
thors, where it is problematic to use SVMs. Our
LDA+Hellinger approach employs LDA without
SVM training (Section 3.2), yielding state-of-the-art
performance in several scenarios (Section 4).

3 Authorship Attribution Methods

This section describes the authorship attribution
methods considered in this paper. While all these
methods can employ various representations of doc-
uments, e.g., token frequencies or part-of-speech n-
gram frequencies, we only experimented with token
frequencies.1 This is because they are simple to ex-
tract, and can achieve good performance (Section 4).
Further, the focus of this paper is on comparing the
performance of our methods to that of the baseline
methods. Thus, we leave experiments on other fea-
ture types for future work (Section 5).

3.1 Baselines

We consider two baseline methods, depending on
whether there are two or many candidate authors.
If there are only two, we use Support Vector Ma-
chines (SVMs), which have been shown to de-
liver state-of-the-art performance on this task (Juola,
2006). If there are many, we follow Koppel et
al.’s (2011) approach, which we denote KOP.

The main idea behind KOP is that different pairs
of authors may be distinguished by different sub-
sets of the feature space. Hence, KOP randomly
chooses k1 subsets of size k2F (k2 < 1) from a set
of F features; for each of the k1 subsets, it calcu-
lates the cosine similarity between a test document
and all the documents by one author (each author is
represented by one feature vector); it then outputs
the author who had most of the top matches. KOP
also includes a threshold σ∗ to handle cases where
a higher level of precision is required, at the cost
of lower recall. If the top-matching author was the
top match less than σ∗ times, then KOP outputs “un-
known author”. In our experiments we set σ∗ = 0 to
obtain full coverage, as this makes it easier to inter-
pret the results using a single measure of accuracy.

1Token frequency is the token count divided by the total
number of tokens.

182

3.2 Authorship Attribution with LDA

In this work, we follow the extended LDA model de-
fined by Griffiths and Steyvers (2004). Under the as-
sumptions of the extended model, given a corpus of
M documents, a document iwithN tokens is gener-
ated by choosing a document topic distribution θi ∼
Dir(α), where Dir(α) is a T -dimensional symmet-
ric Dirichlet distribution, and α and T are parame-
ters of the model. Then, each token in the document
wij is generated by choosing a topic from the docu-
ment topic distribution zij ∼ Multinomial(θi), and
choosing a token from the token topic distribution
wij ∼ Multinomial(φzij), where φzij ∼ Dir(β), and
β is a parameter of the model. The model can be
inferred from the data using Gibbs sampling, as out-
lined in (Griffiths and Steyvers, 2004) – an approach
we follow in our experiments.

Note that the topics obtained by LDA do not have
to correspond to actual, human-interpretable topics.
A more appropriate name may be “latent factors”,
but we adopt the convention of calling these fac-
tors “topics” throughout this paper. The meaning of
the factors depends on the type of tokens that are
used as input to the LDA inference process. For
example, if stopwords are removed from the cor-
pus, the resulting factors often, but not necessarily,
correspond to topics. However, if only stopwords
are retained, as is commonly done in authorship at-
tribution studies, the resulting factors lose their in-
terpretability as topics; rather, they can be seen as
stylistic markers. Note that even if stopwords are
discarded, nothing forces the factors to stand for ac-
tual topics. Indeed, in a preliminary experiment on a
corpus of movie reviews and message board posts,
we found that some factors correspond to topics,
with words such as “noir” and “detective” consid-
ered to be highly probable for one topic. However,
other factors seemed to correspond to authorship
style as reflected by authors’ vocabulary, with net-
speak words such as “wanna”, “alot” and “haha” as-
signed to one topic, and words such as “compelling”
and “beautifully” assigned to a different topic.

We consider two ways of using LDA in authorship
attribution: (1) Topic SVM, and (2) LDA+Hellinger.
The LDA part of both approaches consists of apply-
ing a frequency filter to the features in the training

documents,2 and then using LDA to reduce the di-
mensionality of each document to a topic distribu-
tion of dimensionality T .

Topic SVM. The topic distributions are used as
features for a binary SVM classifier that discrimi-
nates between authors. This approach has been em-
ployed in the past for document classification, e.g.,
in (Blei et al., 2003), but it has been applied to au-
thorship attribution only in a limited study that con-
sidered just stopwords (Rajkumar et al., 2009). In
Section 4.3, we present the results of more thorough
experiments in applying this approach to binary au-
thorship attribution. Our results show that the per-
formance of this approach is comparable to that ob-
tained without using LDA. This indicates that we
do not lose authorship-related information when em-
ploying LDA, even though the dimensionality of the
document representations is greatly reduced.

LDA+Hellinger. This method is our main contri-
bution, as it achieves state-of-the-art performance in
authorship attribution with many candidate authors,
where it is problematic to use SVMs (Section 2).

The main idea of our approach is to use the
Hellinger distance between document topic distribu-
tions to find the most likely author of a document:3

D(θ1, θ2) =

√
1
2

∑T
t=1

(√
θ1,t −

√
θ2,t

)2 where θi

is a T -dimensional multinomial topic distribution,
and θi,t is the probability of the t-th topic.

We propose two representations of an author’s
documents: multi-document and single-document.

• Multi-document (LDAH-M). The LDA model
is built based on all the training documents.
Given a test document, we measure the
Hellinger distance between its topic distribu-
tion and the topic distributions of the training
documents. The author with the lowest mean
distance for all of his/her documents is returned
as the most likely author of the test document.

2We employed frequency filtering because it has been shown
to be a scalable and effective feature selection method for au-
thorship attribution tasks (Stamatatos, 2009). We leave experi-
ments with other feature selection methods for future work.

3We considered other measures for comparing topic dis-
tributions, including Kullback-Leibler divergence and Bhat-
tacharyya distance. From these measures, only Hellinger dis-
tance satisfies all required properties of a distance metric.
Hence, we used Hellinger distance.

183

• Single-document (LDAH-S). Each author’s
documents are concatenated into a single doc-
ument (the profile document), and the LDA
model is learned from the profile documents.4

Given a test document, the Hellinger distance
between the topic distributions of the test docu-
ment and all the profile documents is measured,
and the author of the profile document with the
shortest distance is returned.

The time it takes to learn the LDA model de-
pends on the number of Gibbs samples S, the num-
ber of tokens in the training corpusW , and the num-
ber of topics T . For each Gibbs sample, the al-
gorithm iterates through all the tokens in the cor-
pus, and for each token it iterates through all the
topics. Thus, the time complexity of learning the
model is O(SWT). Once the model is learned, in-
ferring the topic distribution of a test document of
length N takes O(SNT). Therefore, the time it
takes to classify a document when using LDAH-S
isO(SNT+AT), whereA is the number of authors,
and O(T) is the time complexity of calculating the
Hellinger distance between two T -dimensional dis-
tributions. The time it takes to classify a docu-
ment when using LDAH-M is O(SNT + MT),
where M is the total number of training documents,
and M ≥ A, because every candidate author has
written at least one document.

An advantage of LDAH-S over LDAH-M is that
LDAH-S requires much less time to classify a test
document when many documents per author are
available. However, this improvement in runtime
may come at the price of accuracy, as authorship
markers that are present only in a few short doc-
uments by one author may lose their prominence
if these documents are concatenated to longer doc-
uments. In our evaluation we found that LDAH-
M outperforms LDAH-S when applied to one of
the datasets (Section 4.3), while LDAH-S yields
a higher accuracy when applied to the other two
datasets (Sections 4.4 and 4.5). Hence, we present
the results obtained with both variants.

4Concatenating all the author documents into one document
has been named the profile-based approach in previous studies,
in contrast to the instance-based approach, where each docu-
ment is considered separately (Stamatatos, 2009).

4 Evaluation

In this section, we describe the experimental setup
and datasets used in our experiments, followed
by the evaluation of our methods. We evaluate
Topic SVM for binary authorship attribution, and
LDA+Hellinger on a binary dataset, a dataset with
tens of authors, and a dataset with thousands of au-
thors. Our results show that LDA+Hellinger yields
a higher accuracy than Koppel et al.’s (2011) base-
line method in several cases where prolific authors
are considered, while requiring less runtime.

4.1 Experimental Setup
In all the experiments, we perform ten-fold cross
validation, employing stratified sampling where pos-
sible. The results are evaluated using classification
accuracy, i.e., the percentage of test documents that
were correctly assigned to their author. Note that
we use different accuracy ranges in the figures that
present our results for clarity of presentation. Sta-
tistically significant differences are reported when
p < 0.05 according to a paired two-tailed t-test.

We used the LDA implementation from Ling-
Pipe (alias-i.com/lingpipe) and the SVM im-
plementation from Weka (www.cs.waikato.ac.
nz/ml/weka). Since our focus is on testing the
impact of LDA, we used a linear SVM kernel and
the default SVM settings. For the LDA param-
eters, we followed Griffiths and Steyvers (2004)
and the recommendations in LingPipe’s documenta-
tion, and set the Dirichlet hyperparameters to α =
min(0.1, 50/T) and β = 0.01, varying only the
number of topics T . We ran the Gibbs sampling
process for S = 1000 iterations, and based the doc-
ument representations on the last sample. While
taking more than one sample is generally consid-
ered good practice (Steyvers and Griffiths, 2007),
we found that the impact of taking several samples
on accuracy is minimal, but it substantially increases
the runtime. Hence, we decided to use only one sam-
ple in our experiments.

4.2 Datasets
We considered three datasets that cover different
writing styles and settings: Judgement, IMDb62 and
Blog. Table 1 shows a summary of these datasets.

The Judgement dataset contains judgements by
three judges who served on the Australian High

184

Judgement IMDb62 Blog

Authors 3 62 19,320

Texts 1,342 62,000 678,161

Texts per
Author

Dixon: 902
McTiernan: 253

Rich: 187
1,000 Mean: 35.10

Stddev.: 104.99

Table 1: Dataset Statistics

Court from 1913 to 1975: Dixon, McTiernan and
Rich (available for download from www.csse.

monash.edu.au/research/umnl/data). In
this paper, we considered the Dixon/McTiernan and
the Dixon/Rich binary classification cases, using
judgements from non-overlapping periods (Dixon’s
1929–1964 judgements, McTiernan’s 1965–1975,
and Rich’s 1913–1928). We removed numbers from
the texts to ensure that dates could not be used to dis-
criminate between judges. We also removed quotes
to ensure that the classifiers take into account only
the actual author’s language use.5 Employing this
dataset in our experiments allows us to test our meth-
ods on formal texts with a minimal amount of noise.

The IMDb62 dataset contains 62,000 movie re-
views by 62 prolific users of the Internet Movie
database (IMDb, www.imdb.com, available upon
request from the authors of (Seroussi et al., 2010)).
Each user wrote 1,000 reviews. This dataset is nois-
ier than the Judgement dataset, since it may con-
tain spelling and grammatical errors, and the reviews
are not as professionally edited as judgements. This
dataset allows us to test our approach in a setting
where all the texts have similar themes, and the num-
ber of authors is relatively small, but is already much
larger than the number of authors considered in tra-
ditional authorship attribution settings.

The Blog dataset is the largest dataset we consid-
ered, containing 678,161 blog posts by 19,320 au-
thors (Schler et al., 2006) (available for download
from u.cs.biu.ac.il/˜koppel). In contrast to
IMDb reviews, blog posts can be about any topic,
but the large number of authors ensures that every
topic is likely to interest at least some authors. Kop-
pel et al. (2011) used a different blog dataset con-
sisting of 10,240 authors in their work on authorship

5We removed numbers and quotes by matching regular ex-
pressions for numbers and text in quotation marks, respectively.

attribution with many candidate authors. Unfortu-
nately, their dataset is not publicly available. How-
ever, authorship attribution is more challenging on
the dataset we used, because they imposed some re-
strictions on their dataset, such as setting a minimal
number of words per author, and truncating the train-
ing and testing texts so that they all have the same
length. The dataset we use has no such restrictions.

4.3 LDA in Binary Authorship Attribution
In this section, we present the results of our experi-
ments with the Judgement dataset (Section 4.2), test-
ing the use of LDA in producing feature vectors for
SVMs and the performance of our LDA+Hellinger
methods (Section 3.2).

In all the experiments, we employed a classifier
ensemble to address the class imbalance problem
present in the Judgement dataset, which contains 5
times more texts by Dixon than by Rich, and over 3
times more texts by Dixon than by McTiernan (Ta-
ble 1). Dixon’s texts are randomly split into 5 or
3 subsets, depending on the other author (Rich or
McTiernan respectively), and the base classifiers are
trained on each subset of Dixon’s texts together with
all the texts by the other judge. Given a text by an
unknown author, the classifier outputs are combined
using majority voting. We found that the accuracies
obtained with an ensemble are higher than those ob-
tained with a single classifier. We did not require
the vote to be unanimous, even though this increases
precision, because we wanted to ensure full cover-
age of the test dataset. This enables us to compare
different methods using only an accuracy measure.6

Experiment 1. Figure 1 shows the results of an
experiment that compares the accuracy obtained us-
ing SVMs with token frequencies as features (Token
SVMs) with that obtained using LDA topic distribu-
tions as features (Topic SVMs). We experimented
with several filters on token frequency, and differ-
ent numbers of LDA topics (5, 10, 25, 50, . . ., 250).
The x-axis labels describe the frequency filters: the
minimum and maximum token frequencies, and the
approximate number of unique tokens left after fil-
tering (in thousands). We present only the results
obtained with 10, 25, 100 and 200 topics, as the re-

6For all our experiments, the results for the Dixon/McTier-
nan case are comparable to those for Dixon/Rich. Therefore,
we omit the Dixon/McTiernan results to conserve space.

185

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

0
1E-5
9.2

0
5E-5
12.2

0
1E-4
13

0
5E-4
13.8

0
1
14

1E-5
5E-5

3

1E-5
1E-4
3.8

1E-5
5E-4
4.6

1E-5
1

4.8

5E-5
1E-4
0.7

5E-5
5E-4
1.5

5E-5
1

1.7

1E-4
5E-4
0.8

1E-4
1
1

5E-4
1

0.2

A
cc

u
ra

cy

Token Frequency Filter

Min
Max
Tokens (K)

Token SVM
Majority Baseline

10 Topic SVM

25 Topic SVM
100 Topic SVM
200 Topic SVM

Figure 1: LDA Features for SVMs in Binary Authorship
Attribution (Judgement dataset, Dixon/Rich)

sults obtained with other topic numbers are consis-
tent with the presented results, and the results ob-
tained with 225 and 250 topics are comparable to
the results obtained with 200 topics.

Our results show that setting a maximum bound
on token frequency filters out important authorship
markers, regardless of whether LDA is used or
not (performance drops). This shows that it is un-
likely that discriminative LDA topics correspond to
actual topics, as the most frequent tokens are mostly
non-topical (e.g., punctuation and function words).

An additional conclusion is that using LDA for
feature reduction yields results that are comparable
to those obtained using tokens directly. While Topic
SVMs seem to perform slightly better than Token
SVMs, the differences between the best results ob-
tained with the two approaches are not statistically
significant. However, the number of features that
the SVMs consider when topics are used is usually
much smaller than when tokens are used directly, es-
pecially when no token filters are used (i.e., when
the minimum frequency is 0 and the maximum fre-
quency is 1). This makes it easy to apply LDA to dif-
ferent datasets, since the token filtering parameters
may be domain-dependent, and LDA yields good re-
sults without filtering tokens.
Experiment 2. Figure 2 shows the results of
an experiment that compares the performance of
the single profile document (LDAH-S) and multi-
ple author documents (LDAH-M) variants of our
LDA+Hellinger approach to the results obtained
with Token SVMs and Topic SVMs. As in Exper-
iment 1, we employ classifier ensembles, where the

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 25 50 75 100 125 150 175 200

A
cc

u
ra

cy

Number of Topics

Token SVM
Majority Baseline

Topic SVM

LDAH-S
LDAH-M

Figure 2: LDA+Hellinger in Binary Authorship Attribu-
tion (Judgement dataset, Dixon/Rich)

base classifiers are either SVMs or LDA+Hellinger
classifiers. We did not filter tokens, since Experi-
ment 1 indicates that filtering has no advantage over
not filtering tokens. Instead, Figure 2 presents the
accuracy as a function of the number of topics.

Note that we did not expect LDA+Hellinger to
outperform SVMs, since LDA+Hellinger does not
consider inter-class relationships. Indeed, Figure 2
shows that this is the case (the differences between
the best Topic SVM results and the best LDAH-
M results are statistically significant). However,
LDA+Hellinger still delivers results that are much
better than the majority baseline (the differences be-
tween LDA+Hellinger and the majority baseline are
statistically significant). This leads us to hypothe-
sise that LDA+Hellinger will perform well in cases
where it is problematic to use SVMs due to the large
number of candidate authors. We verify this hypoth-
esis in the following sections.

One notable result is that LDAH-S delivers high
accuracy even when only a few topics are used,
while LDAH-M requires about 50 topics to outper-
form LDAH-S (all the differences between LDAH-S
and LDAH-M are statistically significant). This may
be because there are only two authors, so LDAH-
S builds the LDA model based only on two profile
documents. Hence, even 5 topics are enough to ob-
tain two topic distributions that are sufficiently dif-
ferent to discriminate the authors’ test documents.
The reason LDAH-M outperforms LDAH-S when
more topics are considered may be that some impor-
tant authorship markers lose their prominence in the
profile documents created by LDAH-S.

186

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

A
cc

u
ra

cy

Number of Topics

KOP: k1 = 400, k2 = 0.2
LDAH-S

LDAH-M

Figure 3: LDA+Hellinger with Tens of Authors (IMDb62
dataset)

4.4 LDA+Hellinger with Tens of Authors

In this section, we apply our LDA+Hellinger ap-
proaches to the IMDb62 dataset (Section 4.2), and
compare the obtained results to those obtained with
Koppel et al.’s (2011) method (KOP). To this effect,
we first established a KOP best-performance base-
line by performing parameter tuning experiments for
KOP. Figure 3 shows the results of the comparison
of the accuracies obtained with our LDA+Hellinger
methods to the best accuracy yielded by KOP (ob-
tained in the parameter tuning experiment).

For this experiment, we ran our LDA+Hellinger
variants with 5, 10, 25, 50, . . ., 300, 350 and 400
topics. The highest LDAH-M accuracy was ob-
tained with 300 topics (Figure 3). However, LDAH-
S yielded a much higher accuracy than LDAH-M.
This may be because the large number of training
texts per author (900) may be too noisy for LDAH-
M. That is, the differences between individual texts
by each author may be too large to yield a meaning-
ful representation of the author if they are considered
separately. Finally, LDAH-S requires only 50 topics
to outperform KOP, and outperforms KOP by about
15% for 150 topics. All the differences between the
methods are statistically significant.

This experiment shows that LDAH-S models the
authors in IMDb62 more accurately than KOP. The
large improvement in accuracy shows that the com-
pact author representation employed by LDAH-S,
which requires only 150 topics to obtain the highest
accuracy, has more power to discriminate between
authors than KOP’s much heavier representation, of

400 subsets with more than 30,000 features each. In
addition, the per-fold runtime of the KOP baseline
was 93 hours, while LDAH-S required only 15 hours
per fold to obtain the highest accuracy.

4.5 LDA+Hellinger with Thousands of Authors

In this section, we compare the performance of our
LDA+Hellinger variants to the performance of KOP
on several subsets of the Blog dataset (Section 4.2).
For this purpose, we split the dataset according to
the prolificness of the authors, i.e., we ordered the
authors by the number of blog posts, and considered
subsets that contain all the posts by the 1000, 2000,
5000 and 19320 most prolific authors.7 Due to the
large number of posts, we could not run KOP for
more than k1 = 10 iterations on the smallest subset
of the dataset and 5 iterations on the other subsets,
as the runtime was prohibitive for more iterations.
For example, 10 iterations on the smallest subset re-
quired about 90 hours per fold (the LDA+Hellinger
runtimes were substantially shorter, with maximum
runtimes of 56 hours for LDAH-S and 77 hours for
LDAH-M, when 200 topics were considered). Inter-
estingly, running KOP for 5 iterations on the larger
subsets decreased performance compared to running
it for 1 iteration. Thus, on the larger subsets, the
most accurate KOP results took less time to obtain
than those of our LDA+Hellinger variants.

Figure 4 shows the results of this experiment.
For each author subset, it compares the results ob-
tained by LDAH-S and LDAH-M to the best re-
sult obtained by KOP. All the differences between
the methods are statistically significant. For up to
2000 prolific authors (Figures 4(a), 4(b)), LDAH-S
outperforms KOP by up to 50%. For 5000 prolific
users (figure omitted due to space limitations), the
methods perform comparably, and KOP outperforms
LDAH-S by a small margin. However, with all the
authors (Figure 4(c)), KOP yields a higher accuracy
than both LDA+Hellinger variants. This may be
because considering non-prolific authors introduces
noise that results in an LDA model that does not cap-
ture the differences between authors. However, it is
encouraging that LDAH-S outperforms KOP when
less than 5000 prolific authors are considered.

7These authors make up about 5%, 10%, 25% and exactly
100% of the authors, but they wrote about 50%, 65%, 80% and
exactly 100% of the texts, respectively.

187

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 25 50 75 100 125 150 175 200

A
cc

u
ra

cy

Number of Topics

KOP: k1 = 10, k2 = 0.6
LDAH-S

LDAH-M

(a) 1,000 Prolific Authors

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 25 50 75 100 125 150 175 200

A
cc

u
ra

cy

Number of Topics

KOP: k1 = 1, k2 = 1.0
LDAH-S

LDAH-M

(b) 2,000 Prolific Authors

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 25 50 75 100 125 150 175 200

A
cc

u
ra

cy

Number of Topics

KOP: k1 = 1, k2 = 1.0
LDAH-S

LDAH-M

(c) 19,320 (all) Authors

Figure 4: LDA+Hellinger with Thousands of Authors (Blog dataset)

The accuracies obtained in this section are rather
low compared to those obtained in the previous
sections. This is not surprising, since the author-
ship attribution problem is much more challenging
with thousands of candidate authors. This chal-
lenge motivated the introduction of the σ∗ thresh-
old in KOP (Section 3.1). Our LDA+Hellinger vari-
ants can also be extended to include a threshold: if
the Hellinger distance of the best-matching author is
greater than the threshold, the LDA+Hellinger algo-
rithm would return “unknown author”. We leave ex-
periments with this extension to future work, as our
focus in this paper is on comparing LDA+Hellinger
to KOP, and we believe that this comparison is
clearer when no thresholds are used.

5 Conclusions and Future Work

In this paper, we introduced an approach to author-
ship attribution that models texts and authors using
Latent Dirichlet Allocation (LDA), and considers
the distance between the LDA-based representations
of the training and test texts when classifying test
texts. We showed that our approach yields state-of-
the-art performance in terms of classification accu-
racy when tens or a few thousand authors are consid-
ered, and prolific authors exist in the training data.
This accuracy improvement was achieved together
with a substantial reduction in runtime compared to
Koppel et al.’s (2011) baseline method.

While we found that our approach performs well
on texts by prolific authors, there is still room for
improvement on authors who have not written many
texts – an issue that we will address in the future.
One approach that may improve performance on
such authors involves considering other types of fea-
tures than tokens, such as parts of speech and char-

acter n-grams. Since our approach is based on LDA,
it can easily employ different feature types, which
makes this a straightforward extension to the work
presented in this paper.

In the future, we also plan to explore ways of ex-
tending LDA to model authors directly, rather than
using it as a black box. Authors were considered by
Rosen-Zvi et al. (2004; 2010), who extended LDA
to form an author-topic model. However, this model
was not used for authorship attribution, and was
mostly aimed at topic modelling of multi-authored
texts, such as research papers.

Another possible research direction is to improve
the scalability of our methods. Our approach, like
Koppel et al.’s (2011) baseline, requires linear time
in the number of possible authors to classify a single
document. One possible way of reducing the time
needed for prediction is by employing a hierarchi-
cal approach that builds a tree of classifiers based on
class similarity, as done by Bickerstaffe and Zuker-
man (2010) for the sentiment analysis task. Under
this framework, class similarity (in our case, author
similarity) can be measured using LDA, while small
groups of classes can be discriminated using SVMs.

In addition to authorship attribution, we plan to
employ text-based author models in user modelling
tasks such as rating prediction – a direction that we
already started working on by successfully applying
our LDA-based approach to model users for the rat-
ing prediction task (Seroussi et al., 2011).

Acknowledgements

This research was supported in part by grant
LP0883416 from the Australian Research Council.
The authors thank Russell Smyth for the collabora-
tion on initial results on the judgement dataset.

188

References
Adrian Bickerstaffe and Ingrid Zukerman. 2010. A hier-

archical classifier applied to multi-way sentiment de-
tection. In COLING 2010: Proceedings of the 23rd
International Conference on Computational Linguis-
tics, pages 62–70, Beijing, China.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3(Jan):993–1022.

Haibin Cheng, Pang-Ning Tan, and Rong Jin. 2007. Lo-
calized support vector machine and its efficient algo-
rithm. In SDM 2007: Proceedings of the 7th SIAM
International Conference on Data Mining, pages 461–
466, Minneapolis, MN, USA.

Michael Gamon. 2004. Linguistic correlates of style:
Authorship classification with deep linguistic analysis
features. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguis-
tics, pages 611–617, Geneva, Switzerland.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(Suppl. 1):5228–5235.

Patrick Juola. 2006. Authorship attribution. Founda-
tions and Trends in Information Retrieval, 1(3):233–
334.

Moshe Koppel, Jonathan Schler, and Shlomo Argamon.
2011. Authorship attribution in the wild. Language
Resources and Evaluation, 45(1):83–94.

Kim Luyckx and Walter Daelemans. 2008. Authorship
attribution and verification with many authors and lim-
ited data. In COLING 2008: Proceedings of the 22nd
International Conference on Computational Linguis-
tics, pages 513–520, Manchester, UK.

David Madigan, Alexander Genkin, David D. Lewis,
Shlomo Argamon, Dmitriy Fradkin, and Li Ye. 2005.
Author identification on the large scale. In Proceed-
ings of the Joint Annual Meeting of the Interface and
the Classification Society of North America, St. Louis,
MO, USA.

Thomas C. Mendenhall. 1887. The characteristic curves
of composition. Science, 9(214S):237–246.

Frederick Mosteller and David L. Wallace. 1964. In-
ference and Disputed Authorship: The Federalist.
Addison-Wesley.

Arun Rajkumar, Saradha Ravi, Venkatasubramanian
Suresh, M. Narasimha Murthy, and C. E. Veni Mad-
havan. 2009. Stopwords and stylometry: A latent
Dirichlet allocation approach. In Proceedings of the
NIPS 2009 Workshop on Applications for Topic Mod-
els: Text and Beyond (Poster Session), Whistler, BC,
Canada.

Bhavani Raskutti and Adam Kowalczyk. 2004. Extreme
re-balancing for SVMs: A case study. ACM SIGKDD
Explorations Newsletter, 6(1):60–69.

Ryan Rifkin and Aldebaro Klautau. 2004. In defense of
one-vs-all classification. Journal of Machine Learning
Research, 5(Jan):101–141.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and
Padhraic Smyth. 2004. The author-topic model for
authors and documents. In UAI 2004: Proceedings of
the 20th Conference on Uncertainty in Artificial Intel-
ligence, pages 487–494, Banff, AB, Canada.

Michal Rosen-Zvi, Chaitanya Chemudugunta, Thomas
Griffiths, Padhraic Smyth, and Mark Steyvers. 2010.
Learning author-topic models from text corpora. ACM
Transactions on Information Systems, 28(1):1–38.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and
James W. Pennebaker. 2006. Effects of age and gen-
der on blogging. In Proceedings of AAAI Spring Sym-
posium on Computational Approaches for Analyzing
Weblogs, pages 199–205, Stanford, CA, USA.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2010. Collaborative inference of sentiments from
texts. In UMAP 2010: Proceedings of the 18th In-
ternational Conference on User Modeling, Adaptation
and Personalization, pages 195–206, Waikoloa, HI,
USA.

Yanir Seroussi, Fabian Bohnert, and Ingrid Zukerman.
2011. Personalised rating prediction for new users us-
ing latent factor models. In Hypertext 2011: Proceed-
ings of the 22nd ACM Conference on Hypertext and
Hypermedia, Eindhoven, The Netherlands.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-
can Society for Information Science and Technology,
60(3):538–556.

Mark Steyvers and Tom Griffiths. 2007. Probabilistic
topic models. In Thomas K. Landauer, Danielle S.
McNamara, Simon Dennis, and Walter Kintsch, ed-
itors, Handbook of Latent Semantic Analysis, pages
427–448. Lawrence Erlbaum Associates.

189

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 190–199,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Evaluating a Semantic Network Automatically Constructed from Lexical

Co-occurrence on a Word Sense Disambiguation Task

Sean Szumlanski

Department of EECS

University of Central Florida

seansz@cs.ucf.edu

Fernando Gomez

Department of EECS

University of Central Florida

gomez@eecs.ucf.edu

Abstract

We describe the extension and objective eval-

uation of a network1 of semantically related

noun senses (or concepts) that has been au-

tomatically acquired by analyzing lexical co-

occurrence in Wikipedia. The acquisition pro-

cess makes no use of the metadata or links

that have been manually built into the ency-

clopedia, and nouns in the network are auto-

matically disambiguated to their correspond-

ing noun senses without supervision. For

this task, we use the noun sense inventory of

WordNet 3.0. Thus, this work can be con-

ceived of as augmenting the WordNet noun

ontology with unweighted, undirected related-

to edges between synsets. Our network con-

tains 208,832 such edges.

We evaluate our network’s performance on a

word sense disambiguation (WSD) task and

show: a) the network is competitive with

WordNet when used as a stand-alone knowl-

edge source for two WSD algorithms; b) com-

bining our network with WordNet achieves

disambiguation results that exceed the perfor-

mance of either resource individually; and c)

our network outperforms a similar resource

that has been automatically derived from se-

mantic annotations in the Wikipedia corpus.

1 Introduction

A growing interest in using semantic relatedness in

word sense disambiguation (WSD) tasks has spurred

investigations into the limitations of the WordNet

ontology (Fellbaum, 1998) for this purpose. Al-

though WordNet comprises a rich set of semantic

1
http://www.cs.ucf.edu/̃ seansz/sem

links between word senses (or concepts), indicat-

ing semantic similarity through subsumptive hyper-

nymic and hyponymic relations (among others), it

lacks a general indication of semantic relatedness.

We present a semantic network that is automat-

ically acquired from lexical co-occurrence in Wi-

kipedia, and indicates general semantic relatedness

between noun senses in WordNet 3.0. In this work,

the discovery of relatedness is a context-sparse affair

that takes place in absentia of the semantic annota-

tions of Wikipedia, such as inter-article links, entries

in disambiguation pages, the title of the article from

which a sentence is extracted, and so on.

We released an earlier version of such a network

that was limited by the fact that only relationships

involving at least one monosemous noun had been

included, and it was not evaluated on a WSD task

(Szumlanski and Gomez, 2010).

In contrast, the network we present here has relat-

edness data for over 4,500 polysemous noun targets

and 3,000 monosemous noun targets, each of which

are related to an average of 27.5 distinct noun senses.

It consists of 208,832 undirected edges – a 181% in-

crease in size over the previous network. The result

is a semantic network that has reached maturity and,

as we will show, can be successfully applied to a

WSD task.

This paper proceeds as follows. In the next sec-

tion (Section 2), we discuss related work. We then

give an overview of the method we use to con-

struct our network (Sections 3 and 4). The network

is evaluated through its application to a WSD task

(Sections 5–7), where we compare its performance

to WordNet and another automatically acquired se-

mantic network called WordNet++ (Ponzetto and

Navigli, 2010). A discussion follows (Section 8),

190

and we present our conclusions in Section 9.

2 Related Work

Our work bears strong relation to WordNet++

(henceforth WN++), which is constructed automat-

ically from the semantic annotations in Wikipedia

(Ponzetto and Navigli, 2010).2 Links in WN++ are

established between words whose articles link to one

another. For example, the article on astronomy in

Wikipedia links to the article on celestial naviga-

tion, so we find an edge from astronomy#n#1 to

celestial navigation#n#1 in WN++.3 The nouns re-

lated in WN++ are disambiguated automatically us-

ing further semantic annotation data from Wikipe-

dia, including sense labels, the titles of other pages

linked to by any two related nouns, and the folk-

sonomic categories to which articles belong. These

serve as context words that are compared with con-

text words from various WordNet relations in or-

der to map the nouns to their appropriate WordNet

senses. The resulting resource contains 1,902,859

unique edges between noun senses.

Augmenting the structure of Wikipedia itself has

been the subject of research as well, and involves

the discovery of relations between articles. Mihal-

cea and Csomai (2007), for example, added links

between Wikipedia pages after automatically iden-

tifying keywords in each article and disambiguating

those words to their appropriate Wikipedia concepts

(article titles), while Ponzetto and Navigli (2009)

used graph theoretic approaches to augment the tax-

onomic organization of Wikipedia articles.

In terms of automatically discovering semantic re-

lations, many pattern-based approaches have been

used to extract specific types of relations from large

corpora, e.g., hyponymy, meronymy, and synonymy

(Hearst, 1992; Pantel and Pennacchiotti, 2006).

Approaches based on distributional similarity have

been applied toward the same end (Harris, 1985;

Gorman and Curran, 2006), and there are sev-

eral approaches that rely on the underlying struc-

ture of WordNet or Wikipedia to measure the re-

latedness between two concepts or nouns quantita-

tively (Hughes and Ramage, 2007; Gabrilovich and

2
http://lcl.uniroma1.it/wordnetplusplus

3The notation astronomy#n#1 refers to sense 1 (#1) of the

noun (#n) “astronomy” in WordNet. Other parts of speech are

denoted by #v (verbs), #a (adjectives), or #r (adverbs).

Markovitch, 2007; Zaragoza et al., 2007; Patward-

han and Pedersen, 2006; Strube and Ponzetto, 2006;

Budanitsky and Hirst, 2006; Resnik, 1995).

Other quantitative approaches have leveraged the

large amounts of data available on the Web to dis-

cover relatedness. Notably, Agirre and de Lacalle

(2004) employed web queries to associate WordNet

synsets with representative context words, known as

topic signatures. Cuadros and Rigau (2008) have

used these data to construct four KnowNets, seman-

tic knowledge bases derived by disambiguating the

top 5, 10, 15, and 20 nouns, respectively, from the

topic signatures of Agirre and de Lacalle.

3 Automatic Acquisition of the Semantic

Network

The semantic network is automatically acquired in

three distinct stages (Szumlanski and Gomez, 2010):

(1) quantitative measurement of relatedness between

nouns that co-occur in a large corpus; (2) categori-

cal determination of whether the quantitative mea-

sure indicates strong and mutual semantic related-

ness between a given pair of nouns; and (3) unsuper-

vised disambiguation of all the nouns that are found

to be semantically related. We provide an overview

of each of these steps below (Sections 3.1–3.3), and

then discuss how we have expanded this method-

ology to create a more complete semantic network

(Section 4).

3.1 Quantitatively measuring relatedness from

lexical co-occurrence

We first measure the semantic relatedness, or re-

lational strength, of a target, t, to one of its co-

occurring nouns, or co-targets, c, with the following

asymmetric function:

Srel(t, c) = P (t|c)P (c|t)log
P (c|t)

P (c)

where P (c|t) is the relative frequency of c among all

nouns co-occurring with t, and vice versa for P (t|c).
P (c) is the relative frequency of c among all nouns

occurring in the corpus. For these values, we rely on

lexical co-occurrence data extracted from Wikipe-

dia. Co-occurrence is considered intra-sententially

(as opposed to co-occurrence in entire articles or

paragraphs, or co-occurrence within variable-sized

windows of context).

191

This function essentially measures the degree to

which an occurrence of t in a sentence predicts the

co-occurrence of c. It is an adaptation of Resnik’s

(1999) selectional association measure.

Table 1 shows the results of applying this function

to the co-targets of “yoga” and “meditation.”

Target (t): yoga Target (t): meditation

Co-target (c) Srel Co-target (c) Srel

hatha yoga .1801 yoga .0707

asana .0761 mindfulness .0415

meditation .0673 contemplation .0165

bhakti .0508 prayer .0139

raja .0410 practice .0068

tantra .0148 technique .0060

yogi .0132 mantra .0053

karma .0125 relaxation .0048

posture .0104 retreat .0047

aerobics .0093 enlightenment .0031

tai chi .0089 monk .0025

exercise .0036 posture .0024

practice .0032 breathing .0017

instructor .0031 - - - - - - - - - - - - -

- - - - - - - - - - - - - exercise .0015

guru .0027 teaching .0014

massage .0026 practitioner .0014

exercise .0019 ascetic .0014
...

...
...

...

Table 1: The most strongly related co-targets of “yoga”

and “meditation,” sorted by decreasing value of relational

strength (Srel). Nouns above dashed lines are the top 5%

of the target’s most strongly related co-targets.

3.2 Establishing categorical relatedness

We then use a mutual relatedness algorithm to as-

certain whether two nouns are semantically related

by determining whether the nouns under considera-

tion reciprocate a high degree of relatedness to one

another. It proceeds as follows:

For some target noun of interest, t, let Cx(t) be

the set of the top x% of t’s co-targets as sorted by

Srel(t, c). For each c ∈ Cx(t), if we have t ∈ Cx(c),
then we say that t and c are categorically related and

add the noun pair (t, c) to our semantic network. We

then increment x by one and repeat the process: for

every c ∈ Cx+1(t) such that (t, c) is not already in

our network, we look for t in Cx+1(c), and add (t, c)

to our network if we find it. This process continues

until we have incremented x some number of times

without adding any new relations to the semantic

network. We then take the symmetric closure of the

network, so that if (t, c) is in the network, (c, t) is, as

well. (That is, the relation is considered undirected.)

Consider, for example, the nouns in Table 1.

Given the target “yoga,” we might first examine the

top 5% of its most strongly related co-targets (an ar-

bitrary initial threshold chosen simply for illustra-

tive purposes). In this case, we have all the nouns

above the dashed line: C5(yoga) = {hatha yoga,

asana, meditation, bhakti, raja, tantra, yogi, karma,

posture, aerobics, tai chi, exercise, practice, instruc-

tor}. The algorithm then searches C5(hatha yoga),

C5(asana), and so on, for “yoga,” adding a new re-

lation to the network every time “yoga” is found.

Thus, we can see by the inclusion of “yoga” in

C5(meditation) (all nouns above the dashed line in

the second column of Table 1), that the pair (yoga,

meditation) will be included in the network.

This reliance on mutual relatedness ensures that

only noun pairs exhibiting strong semantic related-

ness are admitted to the network.

3.3 Disambiguation

Disambiguation of the resulting noun-noun pairs is

the product of majority-rules voting by the following

three algorithms.

Subsumption. The most frequently occurring

immediate hypernyms of all nouns related to our

target are permitted to disambiguate the polyse-

mous nouns. This is useful because of the semantic

clustering that tends to occur among related nouns.

(E.g., “astronomer” is related to several terms cat-

egorized as celestial bodies in WordNet, such as

“planet,” “star,” “minor planet,” and “quasar.”)

Glosses. Senses of polysemous co-targets with

occurrences of monosemous co-targets in their

glosses are preferentially taken as the intended

meanings of the polysemous nouns. Monosemous

co-targets are matched directly, or by suffix replace-

ment. (E.g., “biology” can be matched by the oc-

currence of “biologist” in a gloss, “engineering” by

“engineers,” and so on.)

Selectional Preferences. This method associates

a numerical score with all superordinate synsets

from the WordNet noun ontology that categorize

192

the monosemous nouns related to a target. For

example, the noun “unicorn” strongly predicts re-

lated nouns categorized as monsters (monster#1)4

and mythical beings (mythical being#1) in Word-

Net. These selectional preferences are applied to

polysemous co-targets in decreasing order of their

relational strength to the target noun. A polysemous

noun is disambiguated to the first sense or senses

subsumed by one of these selectional preferences.

For example, “phoenix,” as it relates to “unicorn,” is

disambiguated to phoenix#3 in WordNet (the fiery

bird that is reborn from its own ashes) by virtue of

its subsumption by mythical being#1.

4 Creating a More Complete Network

A shortcoming of our previously released network is

that it lacked concept-level relations between pairs

of polysemous nouns.

When humans encounter a pair of ambiguous but

closely related words, like bus–horn, we automat-

ically disambiguate to the automobile and the car

horn, as opposed to a computer’s front-side bus or

a rhinoceros’s horn. The human ability to perform

this disambiguation stems from the fact that human

semantic memory relates not just individual words,

but specific concepts denoted by those words. But if

our goal is to establish such a link in our computa-

tional model of semantic relatedness, then we can-

not rely on the link to perform that disambiguation

for us; another approach is called for.

One reasonable approach (the one taken in our

previous work) is to go where the problem no

longer exists – to relationships that involve at

least one monosemous noun. Monosemous-to-

monosemous noun relationships require no disam-

biguation. Monosemous-to-polysemous noun rela-

tionships, on the other hand, require that only one

noun be disambiguated. This ameliorates our prob-

lem tremendously, because the monosemous noun

in the pair anchors the polysemous noun in an un-

ambiguous context where disambiguation can more

readily take place. That context includes all the

nouns related to our monosemous noun, which,

through their transitive relatedness to the polyse-

mous noun in question, can assist in the act of disam-

4We sometimes drop the part of speech from our word sense

notation for brevity, but only in the case of noun senses.

biguation vis-à-vis the algorithms described in Sec-

tion 3.3.

Consider, in contrast, the polysemous “batter,”

which can refer to the baseball player or the cake

batter. The algorithm for discovering semantic relat-

edness yields several nouns related to each of these

senses of “batter” (see Table 2). If we wish to dis-

ambiguate the pair (batter, cake), we are left with the

question: which of the nouns in Table 2 should we

take as contextual anchors for the disambiguation?

baking fastball inning strike

ball flour outfielder strikeout

base glove pancake swing

baseball hitter pitch tempura

bat home plate pudding umpire

cake home run runner waffle

dugout infielder shortstop

Table 2: An excerpt of some of the nouns related to “bat-

ter” by the algorithm for automatic acquisition.

In considering this question, it is important to note

that although the ontological categories that sub-

sume the nouns related to “batter” exhibit greater

entropy than we usually observe among the terms

related to a monosemous noun, clear delineations

still exist. For example, Figure 1 shows the clusters

that form as we consider shared hypernymic rela-

tionships between all senses of the nouns related to

“batter” (gray nodes in the graph). We see that many

of the nouns related to “batter” have senses catego-

rized by food#1, cake#3, pitch#2, ballplayer#1, or

equipment#1 – the heads of five distinct clusters by

semantic similarity.

It is worth noting that some nouns related to “bat-

ter” (such as “baking,” “swing,” and “umpire”) do

not fall into any of these semantic clusters. In these

cases, the WordNet glosses serve as our primary

tool for disambiguation. (For example, the glosses

of both swing#8 and umpire#1 include mention of

“baseball,” which is also related to “batter.”)

Conversely, some of the polysemous nouns in our

example have senses that join semantic clusters un-

intendedly. For instance, cake#2 (“[a] small flat

mass of chopped food,” according to WordNet) falls

under the cluster headed by food#1. Although this is

potentially problematic, cake#2 is discarded in this

particular case in favor of cake#3 (the baked good),

193

which has a greater mass because of its subsump-

tion of waffle#1 and pancake#1, and is indeed the

intended meaning of “cake” as it relates to “batter.”

Another example of unintended cluster member-

ship comes from bat#4 (the cricket bat), which is

categorized by sports equipment#1. In contrast, the

baseball bat does not have its own entry in WordNet,

and the most reasonable sense choice, bat#5 (“a club

used for hitting a ball in various games”), is cate-

gorized as a stick (stick#1), and not as equipment,

sports equipment, or game equipment.

These unintended cluster memberships are bound

to cause minor errors in our disambiguation efforts.

However, our analysis reveals that we do not find

such high entropy among the relatives of a polyse-

mous noun that the semantic clustering effect (which

is necessary for the success of the disambiguation

algorithms described above in Section 3.3) is dimin-

ished. Thus, to construct our network, we apply the

disambiguation algorithms described above, with

the following modification: when confronted with

a pair of semantically related polysemous nouns,

we apply the disambiguation mechanism described

above in both directions, and then fuse the results to-

gether. So, in one direction, the various baked goods

related to “batter” help us to properly disambiguate

“cake” to cake#3 in WordNet, yielding the pair (bat-

ter, cake#3). A similar scenario yields the pair (cake,

batter#2) when disambiguating in the other direc-

tion, and we fuse the results together into the prop-

erly disambiguated pair (batter#2, cake#3).

Using this method, we have automatically created

a semantic network that has 208,832 pairs of related

noun senses – the most extensive semantic network

between WordNet noun senses to be derived auto-

matically from a simple lexical co-occurrence mea-

sure. For the remainder of this paper, we will refer

to our network as the Szumlanski-Gomez network

(SGN).

5 Coarse-Grained WSD Experiments

To evaluate our semantic network, and to provide

fair comparison to related work, we take our cue

from Ponzetto and Navigli (2010), who evaluated

the performance of WN++ on the SemEval-2007

(Navigli et al., 2007) coarse-grained all-words WSD

task using extended gloss overlaps (Banerjee and

entity#1

food#1

cake#2

equipment#1

ballplayer#1
pitch#2

cake#3

dessert#1

tempura#1
game_equipment#1

sports_equipment#1

runner#4

fielder#1

hitter#1

fastball#1

strike#5

waffle#1

pancake#1

pudding#2

pudding#3

ball#1

infielder#1

outfielder#1

baseball#2

bat#4

base#3

glove#1

glove#3

shortstop#1

centerfielder#1

Figure 1: A partial view of the WordNet graph, showing

senses of nouns related to “batter” (gray nodes) and inter-

mediary concepts (white nodes) that connect them to the

root of the taxonomy through hypernymic relationships.

Pedersen, 2003) and the graph-based degree central-

ity algorithm (Navigli and Lapata, 2010).

In this particular SemEval task, we are presented

with 237 sentences in which lemmatized target

words have been flagged for disambiguation. In our

experiments, we disambiguate nouns only (as did

Ponzetto and Navigli), since both SGN (our net-

work) and WN++ relate only concepts denoted by

nouns, and no other parts of speech. In our exper-

imental setup, each sentence is considered in isola-

tion from the rest, and all lemmatized content words

in a sentence are provided to the disambiguation

algorithms; the verbs, adjectives, and adverbs, al-

though we do not resolve their senses, lend addi-

tional context to the disambiguation algorithms.

The coarse-grained nature of the SemEval-2007

task provides that there may be more than one ac-

ceptable sense assignment for many of the targets. In

the coarse-grained setting, an algorithm’s sense as-

signment is considered correct when it appears in the

list of acceptable senses for the given target word.

The algorithms below both allow for multiple dis-

ambiguation results to be returned in the event of a

tie. In these cases (although they are rare), we adopt

the approach of Banerjee and Pedersen (2003), who

award partial credit and discredit proportionally for

all the senses returned by the algorithm.

194

6 Extended Gloss Overlaps (ExtLesk)

The first disambiguation algorithm we employ is

the extended gloss overlaps measure (henceforth

ExtLesk) of Banerjee and Pedersen (2003), which

is an extension of the Lesk (1986) gloss overlap

measure. Loosely speaking, the algorithm disam-

biguates a target noun by maximizing the overlap

(number of words in common) between the glosses

of word senses related5 to the target’s noun senses

and those related to all context words (all lemma-

tized targets in the sentence under consideration

other than the target itself). The sense with the great-

est overlap is selected as the intended meaning of a

target noun.

In the event of a tie, multiple senses may be se-

lected. ExtLesk does not attempt to perform sense

assignment if the score for every sense of a target

noun is zero, except when dealing with a monose-

mous noun, in which case we default to the only

sense possible.

6.1 Results

We have run ExtLesk on the SemEval-2007 task us-

ing five combinations of semantic resources: Word-

Net only, SGN (our semantic network) only, SGN

and WordNet combined (that is, the union of all

links contained in both networks), WN++ only, and

WN++ combined with WordNet. We include the tra-

ditional baselines of most frequent sense (MFS) as-

signment and random sense assignment for compari-

son, and measure precision (number of correct sense

assignments divided by the number of attempted

sense assignments), recall (number of correct sense

assignments divided by the number of target nouns

to be disambiguated), and the harmonic mean of the

two, F1, defined as:

F1 =
2 ∗ precision ∗ recall

precision + recall

We present our results in Table 3, and offer the

following observations. Firstly, SGN as a stand-

alone network rivals the performance of WordNet.

This is particularly impressive given the fact that

5We use all relations available in WordNet, as well as a

related-to relation derived from the links in our semantic net-

work.

Resource P R F1

WordNet 78.80 74.82 76.76

SGN 78.64 72.82 75.62

SGN and WordNet 82.35 78.11 80.18

WN++ 74.67 61.87 67.67

WN++ and WordNet 77.35 73.38 75.31

MFS Baseline 77.40 77.40 77.40

Random Baseline 63.50 63.50 63.50

Table 3: ExtLesk disambiguation results on the SemEval-

2007 all-words coarse-grained WSD task (nouns only).

the edges in SGN were derived automatically from

a simple lexical co-occurrence measure.

Equally impressive is the ability of SGN and

WordNet, when used in combination, to achieve re-

sults that exceed what either network is able to ac-

complish as a stand-alone knowledge source. When

combined, we see improvements of 3.42% and

4.56% over WordNet and SGN as stand-alone re-

sources, respectively. It is also only with these re-

sources combined that we are able to outperform the

MFS baseline, and we do so by 2.78%.6

In contrast, WN++ fails to perform as a stand-

alone resource, falling behind the MFS baseline by

9.73%.7 Of all the resources tested, WN++ yields

the lowest results. When combined with WordNet,

WN++ actually diminishes the ability of WordNet to

perform on this WSD task by 1.45%. We defer our

discussion of factors impacting the performance of

WN++ to Section 8 (Discussion).

7 WSD with Degree Centrality

Degree centrality is a graph-based measure of se-

mantic relatedness (Navigli and Lapata, 2010) in

which we search through a semantic network for

paths of length l ≤ maxLength between all sense

nodes for all lemmas in our context. The edges along

all such paths are added to a new graph, G′, and for

each target noun to be disambiguated, the sense node

with the greatest number of incident edges (highest

vertex degree) in G′ is taken as its intended sense.

6Other systems have obtained better results on the same

dataset, but we focus only on SGN and WN++ because our aim

is to compare the resources themselves.
7Ponzetto and Navigli (2010) report results of F1 = 68.3 and

72.0 for WN and WN++ as stand-alone resources. Space con-

siderations prevent us from discussing this disparity in detail.

195

In these graphs, nodes represent synsets, as op-

posed to instantiating separate nodes for different

members of the same synset and allowing edges to

be constructed between them. We include all lem-

mas from a sentence in our context, but only return

disambiguation results for the nouns.

With SGN and WN++, the implementation of this

algorithm is straightforward. We initiate a breadth-

first search (BFS)8 at each target sense node in the

network, and proceed through ⌊maxLength+1

2
⌋ itera-

tions of spreading activation. Whenever the tendrils

of this spreading activation from one target sense

node in the graph connect to those of another,9 we

add the path between the nodes to our new graph, G′,

potentially incrementing the degree of the involved

target sense nodes in G′ as we do so.

Because BFS is an admissible algorithm (guaran-

teed to find the shortest path from an initial state to

a goal), it provides a computationally efficient ap-

proach to finding all paths between all target nodes.

Also, because any node on a path of length l ≤
maxLength between two target nodes is at most

⌊ l
2
⌋ nodes removed from at least one of those tar-

get sense nodes, we only need to perform a BFS of

depth ⌊maxLength+1

2
⌋ from every target sense node

in order to guarantee that every such path between

them will be discovered. Since the time complexity

of BFS is exponential with respect to the depth of

the search, cutting this depth in half (in comparison

to performing a BFS of depth maxLength) greatly

reduces the running time of our algorithm.

We take the same approach in traversing the

WordNet noun graph, using all possible sense re-

lations as edges. In keeping with the approach of

Navigli and Lapata (2010), an edge is also induced

between synsets if the gloss of one synset contains a

monosemous content word. For example, the gloss

for leprechaun#n#1, “a mischievous elf in Irish folk-

lore,” contains the monosemous noun “folklore;”

thus, we have an edge between leprechaun#n#1 and

8This is in contrast to the DFS implementation of Navigli

and Lapata (2010), so for the sake of posterity, we expound

upon our approach in this section.
9When maxLength is odd, this requires an additional

check to ensure that the intersection is not taking place at a node

that is exactly ⌊maxLength+1

2
⌋ degrees removed from each of

the two target nodes it is connecting, as this would result in a

path with overall length maxLength + 1 between the target

nodes.

folklore#n#1 in the WordNet graph.

Once we have our new graph, G′, constructed in

this manner, the vertex degree is considered an in-

dication of the semantic relatedness of a particular

synset to all other lemmas in our context. For each

target noun, we use its sense node with the highest

degree in G′ for sense assignment.

7.1 Results

We have tested the degree centrality algorithm with

the following combinations of semantic resources:

WordNet, SGN, WN++, Refined WN++, SGN and

WordNet combined, and Refined WN++ and Word-

Net combined. (Refined WN++ consists of 79,422

of WN++’s strongest relations, and was created in an

unsupervised setting by Ponzetto and Navigli specif-

ically for use with degree centrality when they dis-

covered that WN++ had too many weak relations to

perform well with the algorithm.)

We have observed that the performance of de-

gree centrality rapidly levels off as maxLength

increases. Ponzetto and Lapata (2010) also re-

port this so-called “plateau” effect, and employ a

maxLength of 6 in their experiments, despite find-

ing that results level off around maxLength = 4.

We, too, find that performance levels off around

maxLength = 4 in almost all cases, and so only

continue up to maxLength = 5.

We find that, in all cases tested, degree centrality

is unable to outperform the MFS baseline (with re-

spect to F1) (see Table 4). SGN and WN++ exhibit

comparable performance with this algorithm, with

maximum F1 values of 68.4% (maxLength = 2)

and 67.3% (maxLength = 3–5), respectively. Nei-

ther achieves the performance of WordNet with de-

gree centrality (F1 = 74.0%), which underperforms

the MFS baseline (F1 = 77.4%) by 3.4%.10 Ponzetto

and Navigli (2010) reported that only performing

sense assignment when the max degree exceeded an

empirically derived but non-disclosed threshold im-

proved performance, but we have found that imple-

menting such a threshold universally lowers results

for all resources we tested with degree centrality.

10Although Ponzetto and Navigli (2010) reported similar re-

sults with WordNet (F1 = 74.5), we have been unable to repro-

duce their results using Refined WN++, either combined with

WordNet (F1 = 79.4) or as a stand-alone resource (F1 = 57.4).

196

The lowest performance using degree central-

ity comes from Refined WN++ as a stand-alone

resource. We attribute this to the fact that Re-

fined WN++ is so semantically sparse. On average,

noun senses in Refined WN++ are related to only

3.42 other noun senses, while those in WN++ and

SGN relate to an average of 44.59 and 10.92 noun

senses, respectively. Accordingly, the success of Re-

fined WN++ and WordNet combined is attributable

mostly to the success of WordNet as a stand-alone

resource; as maxLength increases, the contribu-

tions made by the sparse Refined WN++ network

rapidly become negligible in comparison to those

provided by the WordNet ontology.

l P R F1 P R F1

WordNet SGN

1 96.9 16.8 28.6 79.7 32.9 46.6

2 77.6 45.1 57.0 72.0 64.6 68.4

3 76.7 65.6 70.7 68.7 63.5 66.0

4 76.9 71.0 73.9 68.0 63.9 65.9

5 76.6 71.6 74.0 68.0 64.2 66.1

SGN & WN WN++

1 77.4 52.4 62.5 87.2 23.5 37.1

2 74.7 70.7 72.7 71.6 60.2 65.4

3 70.3 67.1 68.7 70.7 64.3 67.3

4 70.5 67.4 68.9 70.4 64.5 67.3

5 70.1 67.0 68.5 70.4 64.5 67.3

WN
++

refined
WN

++

refined
& WN

1 98.3 15.3 26.5 83.3 31.2 45.4

2 91.4 23.4 37.3 77.5 66.6 71.6

3 88.7 29.9 44.7 77.6 73.6 75.5

4 83.7 32.3 46.7 74.7 71.4 73.0

5 80.2 35.3 49.0 74.7 71.4 73.0

MFS Baseline Random Baseline

77.4 77.4 77.4 63.5 63.5 63.5

Table 4: Degree centrality disambiguation results on

the SemEval-2007 all-words coarse-grained WSD task

(nouns only). l is maximum path length.

8 Discussion

The fact that the performance of degree centrality

quickly plateaus hints at the root cause of its weak

performance compared to ExtLesk and the MFS

baseline. As the maximum path length is increased

in a dense semantic network, all possible edges from

our target sense nodes rapidly find themselves in-

volved with paths to other target sense nodes. This is

particularly true of WN++ (notice its rapid and sta-

ble convergence), where certain “sticky” nodes form

bridges between seemingly unrelated concepts. For

example, the frequent appearance of “United States”

in Wikipedia articles, and its tendency to be linked

to the United States Wikipage when it occurs, causes

the term to serve as a bridge between such diverse

concepts as automaton#2 and burrito#1, which one

would typically expect to be far removed from one

another in a model of semantic relatedness.

Nonetheless, the degree centrality algorithm has

no difficulty finding short paths between target sense

nodes when traversing any of the semantic networks

we tested. In fact, we have discovered that as the

results of degree centrality converge, they approach

the performance obtained by foregoing the algo-

rithm altogether and simply disambiguating each

noun to the sense with the most edges in the net-

work (regardless of whether those edges ultimately

connect two word senses from the disambiguation

context). The expected values of convergence at-

tained by defaulting to the most semantically well-

connected sense of each target noun in each network

are F1 = 66.3%, 67.5%, and 74.6% for SGN, WN++,

and WordNet, respectively – remarkably close to the

experimentally derived degree centrality results of

F1 = 66.1%, 67.3%, and 74.0%.

9 Conclusion

We have constructed a semantic network of related

noun senses automatically from intra-sentential lex-

ical co-occurrence data, and shown that on a WSD

task, it outperforms a similar resource, WN++,

which is derived from the rich set of semantic anno-

tations available in the Wikipedia corpus. Our net-

work has also shown competitive performance with

the WordNet ontology on WSD, and when combined

with WordNet, improves disambiguation results in

a coarse-grained setting using the ExtLesk disam-

biguation algorithm.

Acknowledgments

This research was supported in part by the

NASA Engineering and Safety Center under

Grant/Cooperative Agreement NNX08AJ98A.

197

References

Eneko Agirre and Oier Lopez de Lacalle. 2004. Pub-

licly available topic signatures for all WordNet nom-

inal senses. In Proceedings of the 4th International

Conference on Language Resources and Evaluations

(LREC ’04), pages 1123–1126, Lisbon, Portugal.

Satanjeev Banerjee and Ted Pedersen. 2003. Extended

gloss overlaps as a measure of semantic relatedness.

In Proceedings of the 18th International Joint Confer-

ence on Artificial Intelligence (IJCAI ’03), pages 805–

810, Acapulco, Mexico.

Alexander Budanitsky and Graeme Hirst. 2006. Evalu-

ating WordNet-based measures of lexical semantic re-

latedness. Computational Linguistics, 32(1):13–47.

Montse Cuadros and German Rigau. 2008. KnowNet:

building a large net of knowledge from the web. In

Proceedings of the 22nd International Conference on

Computational Linguistics (COLING ’08), pages 161–

168, Manchester, UK. Association for Computational

Linguistics.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-

tronic Lexical Database. MIT Press.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-

puting semantic relatedness using Wikipedia-based ex-

plicit semantic analysis. In Proceedings of the 20th In-

ternational Joint Conference on Artificial Intelligence

(IJCAI ’07), pages 1606–1611, Hyderabad, India.

James Gorman and James R. Curran. 2006. Scaling dis-

tributional similarity to large corpora. In Proceedings

of the 21st International Conference on Computational

Linguistics and the 44th Annual Meeting of the Asso-

ciation for Computational Linguistics (COLING-ACL

’06), pages 361–368, Sydney, Australia. Association

for Computational Linguistics.

Zellig S. Harris. 1985. Distributional structure. In J. J.

Katz, editor, The Philosophy of Linguistics, pages 26–

47. Oxford University Press.

Marti A. Hearst. 1992. Automatic acquisition of hy-

ponyms from large text corpora. In Proceedings of

the 14th International Conference on Computational

Linguistics (COLING ’92), pages 539–545, Nantes,

France.

Thad Hughes and Daniel Ramage. 2007. Lexical se-

mantic relatedness with random graph walks. In Pro-

ceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Compu-

tational Natural Language Learning (EMNLP-CoNLL

’07), pages 581–589, Prague, Czech Republic. Asso-

ciation for Computational Linguistics.

Michael Lesk. 1986. Automatic sense disambiguation

using machine readable dictionaries: how to tell a pine

cone from an ice cream cone. In Proceedings of the

5th Annual International Conference on Systems Doc-

umentation (SIGDOC ’86), pages 24–26, Toronto, On-

tario, Canada. ACM.

Rada Mihalcea and Andras Csomai. 2007. Wikify!: link-

ing documents to encyclopedic knowledge. In Pro-

ceedings of the 16th ACM Conference on Information

and Knowledge Management (CIKM ’07), pages 233–

242, Lisbon, Portugal. ACM.

Roberto Navigli and Mirella Lapata. 2010. An exper-

imental study of graph connectivity for unsupervised

word sense disambiguation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 32(4):678–

692.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-

graves. 2007. SemEval-2007 Task 07: coarse-grained

English all-words task. In Proceedings of the 4th In-

ternational Workshop on Semantic Evaluations (Sem-

Eval ’07), pages 30–35, Prague, Czech Republic. As-

sociation for Computational Linguistics.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:

leveraging generic patterns for automatically harvest-

ing semantic relations. In Proceedings of the 21st In-

ternational Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for

Computational Linguistics (COLING-ACL ’06), pages

113–120, Sydney, Australia. Association for Compu-

tational Linguistics.

Siddharth Patwardhan and Ted Pedersen. 2006. Using

WordNet-based context vectors to estimate the seman-

tic relatedness of concepts. In Proceedings of the 11th

Conference of the European Chapter of the Associa-

tion for Computational Linguistics Workshop on Mak-

ing Sense of Sense, pages 1–8, Trento, Italy.

Simone Paolo Ponzetto and Roberto Navigli. 2009.

Large-scale taxonomy mapping for restructuring and

integrating Wikipedia. In Proceedings of the 21st In-

ternational Joint Conference on Artifical Intelligence

(IJCAI ’09), pages 2083–2088, Pasadena, CA.

Simone Paolo Ponzetto and Roberto Navigli. 2010.

Knowledge-rich word sense disambiguation rivaling

supervised systems. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguis-

tics (ACL ’10), pages 1522–1531, Uppsala, Sweden.

Association for Computational Linguistics.

Philip Resnik. 1995. Using information content to eval-

uate semantic similarity in a taxonomy. In Proceed-

ings of the 14th International Joint Conference on Ar-

tificial Intelligence (IJCAI ’95), pages 448–453, Mon-

treal, QC.

Philip Resnik. 1999. Semantic similarity in a taxonomy:

an information-based measure and its application to

problems of ambiguity in natural language. Journal

of Artificial Intelligence Research, 11:95–130.

198

Michael Strube and Simone Paolo Ponzetto. 2006.

Wikirelate! computing semantic relatedness using wi-

kipedia. In Proceedings of the 21st National Confer-

ence on Artificial Intelligence (AAAI ’06), pages 1419–

1424, Boston, MA. AAAI Press.

Sean Szumlanski and Fernando Gomez. 2010. Auto-

matically acquiring a semantic network of related con-

cepts. In Proceedings of the 19th ACM Conference on

Information and Knowledge Management (CIKM ’10),

pages 19–28, Toronto, Ontario, Canada. ACM.

Hugo Zaragoza, Henning Rode, Peter Mika, Jordi Atse-

rias, Massimiliano Ciaramita, and Giuseppe Attardi.

2007. Ranking very many typed entities on Wikipe-

dia. In Proceedings of the 16th ACM Conference on

Information and Knowledge Management (CIKM ’07),

pages 1015–1018, Lisbon, Portugal. ACM.

199

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 200–209,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Filling the Gap:
Semi-Supervised Learning for Opinion Detection Across Domains

Ning Yu
Indiana University

nyu@indiana.edu

Sandra Kübler
Indiana University

skuebler@indiana.edu

Abstract

We investigate the use of Semi-Supervised
Learning (SSL) in opinion detection both in
sparse data situations and for domain adapta-
tion. We show that co-training reaches the best
results in an in-domain setting with small la-
beled data sets, with a maximum absolute gain
of 33.5%. For domain transfer, we show that
self-training gains an absolute improvement in
labeling accuracy for blog data of 16% over
the supervised approach with target domain
training data.

1 Introduction

Rich and free opinions published electronically and,
more recently, on the WWW offer ample opportuni-
ties to discover individual’s attitudes towards certain
topics, products, or services. To capitalize on this
enormous body of opinions, researchers have been
working in the area of opinion mining since the late
1990s. Opinion detection seeks to automatically de-
termine the presence or absence of opinions in a text,
and it is therefore a fundamental task for opinion
mining.

In order to capture subtle and creative opinions,
opinion detection systems generally assume that a
large body of opinion-labeled data are available.
However, collections of opinion-labeled data are of-
ten limited, especially at the granularity level of sen-
tences; and manual annotation is tedious, expensive
and error-prone. The shortage of opinion-labeled
data is less challenging in some data domains (e.g.,
reviews) than in others (e.g., blog posts). A sim-
ple method for improving accuracies in challenging
domains would be to borrow opinion-labeled data

from a non-target data domain; but this approach
often fails because opinion detection strategies de-
signed for one data domain generally do not perform
well in another domain. One reason for failure of
the simple transfer approach is that the information
used for opinion detection is typically lexical, and
lexical means of expressing opinions may vary not
only from domain to domain, but also from register
to register. For example, while the word ”awesome”
is a good indicator of an opinion in blogs, it is less
likely to occur in the same role in newspaper texts.

While it is difficult to obtain opinion-labeled data,
one can easily collect almost infinite unlabeled user-
generated data that contain opinions. The use of
Semi-Supervised Learning (SSL), motivated by lim-
ited labeled data and plentiful unlabeled data in the
real world, has achieved promising results in vari-
ous NLP studies (e.g., (Fürstenau and Lapata, 2009;
Talukdar and Pereira, 2010)), yet it has not been
fully investigated for use in opinion detection. Al-
though studies have shown that simple SSL meth-
ods are promising for extracting opinion features
or patterns using limited opinion-labeled data (e.g.,
(Wiebe and Riloff, 2005)), few efforts have been
made either to apply SSL directly to opinion detec-
tion or to examine more sophisticated SSL methods.
This research is intended to fill the gap regarding ap-
plication of SSL in opinion detection. We investi-
gate a range of SSL algorithms with a focus on self-
training and co-training in three types of electronic
documents: edited news articles, semi-structured
movie reviews, and the informal and unstructured
content of the blogosphere. We conclude that SSL
is a successful method for handling the shortage of
opinion labeled data and the domain transfer prob-
lem.

200

2 Background and Related Work

There is a wide range of literature on opinion detec-
tion. We concentrate here on supervised and semi-
supervised approaches.

2.1 Supervised Learning for Opinion Detection
Supervised learning algorithms that can automati-
cally learn important opinion-bearing features from
an annotated corpus have been adopted and inves-
tigated for opinion detection and yielded satisfying
results (Wiebe et al., 2004; Yu and Hatzivassiloglou,
2003; Zhang and Yu, 2007). With no classifica-
tion techniques developed specifically for opinion
detection, state-of-the-art topical supervised classifi-
cation algorithms can achieve performance compa-
rable to complex linguistic approaches when using
binary values (i.e., presence or absence) and incor-
porating different types of features. Commonly used
opinion-bearing features include bag-of-words, POS
tags, ngrams, low frequency words or unique words
(Wiebe et al., 2004; Yang et al., 2007), semantically
oriented adjectives (e.g., “great”, “poor”) and more
complex linguistic patterns. Both the scale and qual-
ity of the annotated corpus play an important role in
the supervised learning approach.

2.2 SSL for Opinion Detection
In contrast to supervised learning, SSL learns from
both labeled and unlabeled data. SSL assumes that,
although unlabeled data hold no information about
classes (e.g., “opinion” or “non-opinion”), they do
contain information about joint distribution over
classification features. Therefore, when a limited set
of labeled data is available in the target domain, us-
ing SSL with unlabeled data is expected to achieve
an improvement over supervised learning.

Self-training Self-training is the simplest and
most commonly adopted form of SSL for opinion
detection. Self-training was originally used to fa-
cilitate automatic identification of opinion-bearing
features. For example, Riloff and Wiebe (2003) pro-
posed a bootstrapping process to automatically iden-
tify subjective patterns. Self-training has also been
applied directly for identifying subjective sentences
by following a standard self-training procedure: (1)
train an initial supervised classifier on the labeled
data; (2) apply this classifier to unlabeled data and

select the most confidently labeled data, as deter-
mined by the classifier, to augment the labeled data
set; and (3) re-train the classifier by restarting the
whole process. Wiebe and Riloff (2005) used a self-
trained Naı̈ve Bayes classifier for classifying subjec-
tive sentences and achieved better recall with modest
precision over several rule-based classifiers.

One shortcoming of self-training is that the result-
ing data may be biased: That is, the final labeled data
may consist of examples that are easiest for this par-
ticular opinion detector to identify.

Co-training The core idea of co-training is to use
two classifiers and trade additional examples be-
tween them, assuming that the resulting union of
classified examples is more balanced than examples
resulting from using either classifier alone. When
labeling new examples, a final decision is made by
combining the predictions of the two updated learn-
ers. The original co-training algorithm assumes re-
dundancy in the training data and thus more than
one view can be used to represent and classify each
example independently and successfully (Blum and
Mitchell, 1998). For example, an image can be nat-
urally represented by its text description or by its
visual attributes. Even when a natural split in the
feature set is not available, studies have shown that
the key to co-training is the existence of two largely
different initial learners, regardless of whether they
are built by using two feature sets or two learning
algorithms (Wang and Zhou, 2007).

When there are different views for the target ex-
amples, co-training is conceptually clearer than self-
training, which simply mixes features. Since co-
training uses each labeled example twice, it requires
less labeled data and converges faster than self-
training. However, the lack of natural feature splits
has kept researchers from exploring co-training for
opinion detection. To the best of our knowledge,
the only co-training application for opinion detec-
tion was reported by Jin et al. (2009), who created
disjoint training sets for building two initial classi-
fiers and successfully identified opinion sentences in
camera reviews by selecting auto-labeled sentences
agreed upon by both classifiers.

EM-Based SSL Expectation-Maximization (EM)
refers to a class of iterative algorithms for
maximum-likelihood estimation when dealing with

201

incomplete data. Nigam et al. (1999) combined
EM with a Naı̈ve Bayes classifier to resolve the
problem of topical classification, where unlabeled
data were treated as incomplete data. The EM-NB
SSL algorithm yielded better performance than ei-
ther an unsupervised lexicon-based approach or a
supervised approach for sentiment classification in
different data domains, including blog data (Aue and
Gamon, 2005; Takamura et al., 2006). No opinion
detection applications of EM-based SSL have been
reported in the literature.

S3VMs Semi-Supervised Support Vector Ma-
chines (S3VMs) are a natural extension of SVMs in
the semi-supervised spectrum. They are designed to
find the maximal margin decision boundary in a vec-
tor space containing both labeled and unlabeled ex-
amples. Although SVMs are the most favored super-
vised learning method for opinion detection, S3VMs
have not been used in opinion detection. Graph-
based SSL learning has been successfully applied to
opinion detection (Pang and Lee, 2004) but is not
appropriate for dealing with large scale data sets.

2.3 Domain Adaptation for Opinion Detection

When there are few opinion-labeled data in the
target domain and/or when the characteristics of
the target domain make it challenging to detect
opinions, opinion detection systems usually borrow
opinion-labeled data from other data domains. This
is especially common in opinion detection in the bl-
ogosphere (Chesley et al., 2006). To evaluate this
shallow approach, Aue and Gamon (2005) com-
pared four strategies for utilizing opinion-labeled
data from one or more non-target domains and con-
cluded that using non-targeted labeled data without
an adaptation strategy is less efficient than using la-
beled data from the target domain, even when the
majority of labels are assigned automatically by a
self-training algorithm.

Blitzer et al. (2007) and Tan et al. (2009) imple-
mented domain adaptation strategies for sentiment
analysis. Although promising, their domain adapta-
tion strategies involved sophisticated and computa-
tionally expensive methods for selecting general fea-
tures to link target and non-target domains.

3 Motivation and Objective

While SSL is especially attractive for opinion de-
tection because it only requires a small number of
labeled examples, the studies described in the previ-
ous section have concentrated on simple SSL meth-
ods. We intend to fill this research gap by comparing
the feasibility and effectiveness of a range of SSL
approaches for opinion detection. Specifically, we
aim to achieve the following goals:

First, to gain a more comprehensive understand-
ing of the utility of SSL in opinion detection. We
examine four major SSL methods: self-training, co-
training, EM-NB, and S3VM. We focus on self-
training and co-training because they are both wrap-
per approaches that can be easily adopted by any ex-
isting opinion detection system.

Second, to design and evaluate co-training strate-
gies for opinion detection. Since recent work has
shown that co-training is not restricted by the orig-
inal multi-view assumption for target data and that
it is more robust than self-training, we evaluate new
co-training strategies for opinion detection.

Third, to approach domain transfer using SSL,
assuming that SSL can overcome the problem of
domain-specific features by gradually introducing
targeted data and thus diminishing bias from the
non-target data set.

4 SSL Experiments

Our research treats opinion detection as a binary
classification problem with two categories: subjec-
tive sentences and objective sentences. It is evalu-
ated in terms of classification accuracy.

Since a document is normally a mixture of facts
and opinions (Wiebe et al., 2001), sub-document
level opinion detection is more useful and meaning-
ful than document-level opinion detection. Thus, we
conduct all experiments on the sentence level.

The remainder of this section explains the data
sets and tools used in this study and presents the ex-
perimental design and parameter settings.

4.1 Data Sets

Three types of data sets have been explored in opin-
ion detection studies: news articles, online reviews,
and online discourse in blogs or discussion forums.
These three types of text differ from one another in

202

terms of structure, text genre (e.g., level of formal-
ity), and proportion of opinions found therein. We
selected a data set from each type in order to inves-
tigate the robustness and adaptability of SSL algo-
rithms for opinion detection and to test the feasibil-
ity of SSL for domain adaptation.

Movie Review One of the standard data sets in
opinion detection is the movie review data set cre-
ated by Pang and Lee (2004). It contains 5,000 sub-
jective sentences or snippets from the Rotten Toma-
toes pages and 5,000 objective sentences or snip-
pets from IMDB plot summaries, all in lowercase.
Sentences containing less than 10 tokens were ex-
cluded and the data set was labeled automatically
by assuming opinion inheritance: every sentence in
an opinion-bearing document expresses an opinion,
and every sentence in a factual document is factual.
Although this assumption appears to be acceptable
for movie review data, it is generally unreliable for
other domains.

News Article The Wall Street Journal part of the
Penn Treebank III has been manually augmented
with opinion related annotations. This set is widely
used as a gold-standard corpus in opinion detection
research. According to the coding manual (Wiebe
et al., 1999), subjective sentences are those express-
ing evaluations, opinions, emotions, and specula-
tions. For our research, 5,174 objective sentences
and 5,297 subjective sentences were selected based
on the absence or presence of manually labeled sub-
jective expressions.

JDPA Blog Post The JDPA corpus (Kessler et al.,
2010) is a new opinion corpus released in 2010. It
consists of blog posts that express opinions about
automobile and digital cameras with named entities
and sentiments expressed about them manually an-
notated. For our purpose, we extracted all sentences
containing sentiment-bearing expressions as subjec-
tive sentences and manually chose objective sen-
tences from the rest by eliminating subjective sen-
tences that were not targeted to any labeled entities.
After this process, we had approximately 10,000
subjective sentences and 4,348 objective sentences.
To balance the number of subjective and objective
sentences, we used 4,348 sentences from each cate-
gory.

4.2 Data Preparation
We removed a small number of stop words. No
stemming was conducted since the literature shows
no clear gain from stemming in opinion detection.
One reason for this may be that stemming actually
erases subtle opinion cues such as past tense verbs.
All words were converted to lowercase and numbers
were replaced by a placeholder #. Both unigrams
and bigrams were generated for each sentence.

Each data set was randomly split into three por-
tions: 5% of the sentences were selected as the eval-
uation set and were not available during SSL and
supervised learning (SL) runs; 90% were treated as
unlabeled data (U) for SSL runs and i% (1 ≤ i ≤ 5)
as labeled data (L) for both SL and SSL runs. For
each SSL run, a baseline SL run was designed with
the same number of labeled sentences (i%) and a
full SL run was designed with all available sentences
(90% + i%). If effective, an SSL run would signifi-
cantly outperform its corresponding baseline SL run
and approach the performance of a full SL run.

4.3 Experimental Design
We conducted three groups of experiments: 1) to in-
vestigate the effectiveness of the SSL approach for
opinion detection; 2) to explore different co-training
strategies; and 3) to evaluate the applicability of SSL
for domain adaptation.

4.3.1 General Settings for SSL
The Naı̈ve Bayes classifier was selected as the

initial classifier for self-training because of its abil-
ity to produce prediction scores and to work well
with small labeled data sets. We used binary values
for unigram and bigram features, motivated by the
brevity of the text unit at the sentence level as well
as by the characteristics of opinion detection, where
occurrence frequency has proven to be less influen-
tial. We implemented two feature selection options:
Chi square and Information Gain.

Parameters for SSL included: (1) Threshold k for
number of iterations. If k is set to 0, the stopping
criterion is convergence; (2) Number of unlabeled
sentences available in each iteration u (u << U);
(3) Number of opinion and non-opinion sentences,
p and n, to augment L during each iteration; and (4)
Weighting parameter λ for auto-labeled data. When
λ is set to 0, auto-labeled and labeled data are treated

203

equally; when λ is set to 1, feature values in an
auto-labeled sentence are multiplied by the predic-
tion score assigned to the sentence.

We used the WEKA data mining software (Hall
et al., 2009) for data processing and classifica-
tion of the self-training and co-training experi-
ments. EM implemented in LingPipe (Alias-i, 2008)
was used for the EM-NB runs. S3VMs imple-
mented in SVMlight (Joachims, 1999) and based
on local search were adopted for the S3VM runs.
Since hyper-parameter optimization for EM-NB and
S3VM is not the focus of this research and prelim-
inary explorations on parameter settings suggested
no significant benefit, default settings were applied
for EM-NB and S3VM.

4.3.2 Co-Training Strategies
For co-training, we investigated five strategies for

creating two initial classifiers following the criteria
that these two classifiers either capture different fea-
tures or based on different learning assumptions.

Two initial classifiers were generated: (1) Us-
ing unigrams and bigrams respectively to create two
classifiers based on the assumption that low-order
n-grams and high-order n-grams contain redundant
information and represent different views of an ex-
ample: content and context; (2) Randomly splitting
feature set into two; (3) Randomly splitting train-
ing set into two; (4) Applying two different learn-
ing algorithms (i.e., Naı̈ve Bayes and SVM) with
different biases; and (5) Applying a character-based
language model (CLM) and a bag-of-words (BOW)
model where the former takes into consideration the
sequence of words while the latter does not. In prac-
tice, for strategy (1), bigrams were used in combina-
tion with unigrams because bigrams alone are weak
features when extracted from limited labeled data at
sentence level.

Auto-labeled sentences were selected if they were
assigned a label that both classifiers agreed on with
highest confidence. Because our initial classifiers vi-
olated the original co-training assumptions, forcing
agreement between confident predictions improved
the maintenance of high precision.

4.3.3 Self-Training for Domain Adaptation
Based on the literature and our preliminary re-

sults (Yu and Kübler, 2010), movie reviews achieve

Labeled Examples
Type 100 200 300 400 500 all
Self-tr 85.2 86.6 87.0 87.2 86.6
SL 63.8 73.6 77.2 79.4 80.2 89.4
Co-tr. 92.2 93.8 92.6 93.2 91.4
SL 75.8 80.8 82.6 85.2 84.8 95.2
EM-NB 88.1 88.7 88.6 88.4 89.0
SL 73.5 78.7 81.3 82.8 83.9 91.6
S3VM 59.0 68.4 67.8 67.0 75.2
SL 70.0 72.8 75.6 76.2 80.0 90.0

Table 1: Classification accuracy(%) of SSL and SL on
movie reviews

the highest accuracy while news articles and blog
reviews are considerably more challenging. Thus,
we decided to use movie reviews as source data
and news articles and blog posts as target data do-
mains. While the data split for the target domain re-
mains the same as in section 4.2, all sentences in the
source domain, except for the 5% evaluation data,
were treated as labeled data. For example, in order
to identify opinion-bearing sentences from the blog
data set, all 9,500 movie review sentences and i%
of blog sentences were used as labeled data, 90% of
blog sentences were used as unlabeled data, and 5%
as evaluation data. We also applied a parameter to
gradually decrease the weight of the source domain
data, similar to the work done by Tan et al. (2009).

5 Results and Evaluation

Overall, our results suggest that SSL improves ac-
curacy for opinion detection although the contribu-
tion of SSL varies across data domains and different
strategies need to be applied to achieve optimized
performance. For the movie review data set, almost
all SSL runs outperformed their corresponding base-
line SL runs and approached full SL runs; for the
news article data set, SSL performance followed a
similar trend but with only a small rate of increase;
for the blog post data set, SSL runs using only blog
data showed no benefits over the SL baseline, but
with labeled movie review data, SSL runs produced
results comparable with full SL result.

5.1 SSL vs. SL
Table 1 reports the performance of SSL and SL runs
on movie review data based on different numbers

204

of initial labeled sentences. Both the self- and co-
training runs reported here used the same parame-
ter settings: k=0, u=20, p=2, n=2, λ =0, with no
feature selection. The co-training results in Table
1 used a CLM and a BOW model (see section 5.2).
SL runs for co-training classified sentences based on
the highest score generated by two classifiers; SL
runs for S3VM applied the default SVM setting in
SVMlight; and SL runs for EM-NB used the Naı̈ve
Bayes classifier in the EM-NB implementation in
LingPipe.

Table 1 shows that, except for S3VM, SSL al-
ways outperforms the corresponding SL baseline on
movie reviews: When SSL converges, it achieves
improvement in the range of 8% to 34% over the SL
baseline. The fewer initial labeled data, the more
benefits an SSL run gained from using unlabeled
data. For example, using 100 labeled sentences, self-
training achieved a classification accuracy of 85.2%
and outperformed the baseline SL by 33.5%. Al-
though this SSL run was surpassed by 4.9% by the
full SL run using all labeled data, a great amount
of effort was saved by labeling only 100 sentences
rather than 9,500. Co-training produced the best
SSL results. For example, with only 200 labeled
sentences, co-training yielded accuracy as high as
93.8%. Overall, SSL for opinion detection on movie
reviews shows similar trends to SSL for traditional
topical classification (Nigam and Ghani, 2000).

However, the advantages of SSL were not as sig-
nificant in other data domains. Figure 1 demon-
strates the performance of four types of SSL runs
relative to corresponding baseline and full SL runs
for all three data sets. All SSL runs reported here
used 5% data as labeled data. Lines with different
patterns indicate different data sets, green triangles
mark baseline SL runs, green dots mark full SL runs,
and red crosses mark SSL runs. Numbers next to
symbols indicate classification accuracy. For each
line, if the red cross is located above the triangle,
it indicates that the SSL run improved over the SL
baseline; and, the closer the red cross to the upper
dot, the more effective was the SSL run. Figure 1
shows that S3VM degrades in performance for all
three data sets and we exclude it from the follow-
ing discussion. From movie reviews to news articles
to blog posts, the classification accuracy of baseline
SL runs as well as the improvement gained by SSL

Figure 1: Classification accuracy(%) of SSL and SL on
three data sets (i=5)

runs decreased: With greater than 80% baseline ac-
curacy on movie reviews, SSL runs were most effec-
tive; with slightly above 70% baseline accuracy on
news articles, self-training actually decreased per-
formance of the corresponding SL baseline while
co-training and EM-NB outperformed the SL base-
line only slightly; and with 60% or so baseline accu-
racy on blog posts, none of the SSL methods showed
improvement. We assume that the lower the baseline
accuracy, the worse the quality of auto-labeled data,
and, therefore, the less advantages is application of
SSL. We also found that the average sentence length
in blog posts (17 words) is shorter than the average
sentence length in either movie reviews (23.5 words)
or news articles (22.5 words), which posed an addi-
tional challenge because there is less information for
the classifier in terms of numbers of features.

Overall, for movie reviews and news articles, co-
training proved to be most robust and effective and
EM-NB showed consistent improvement over the
SL baseline. For news articles, EM-NB increased
accuracy from 63.5% to 68.8% with only 100 la-
beled sentences. For movie reviews, a close look at
EM-NB iterations shows that, with only 32 labeled
sentences, EM-NB was able to achieve 88% clas-
sification accuracy, which is close to the best per-
formance of simple Naı̈ve Bayes self-training using
300 labeled sentences. This implies that the prob-

205

Figure 2: Performance of four co-training strategies on movie review data

lem space of opinion detection may be successfully
described by the mixture model assumption of EM.
As for blog posts, since the performance of the base-
line classifiers was only slightly better than chance
(50%), we needed to improve the baseline accuracy
in order for SSL to work. One solution was to intro-
duce high quality features. We augmented feature
set with domain independent opinion lexicons that
have been suggested as effective in creating high
precision opinion classifier, but improvement was
only minimal. An alternative solution was to bor-
row more labeled data from non-blog domains(s).
Section 5.3 discusses dealing with a ‘difficult’ data
domain using data from an ‘easy’ domain.

The preliminary exploration of different parame-
ter settings for both self- and co-training showed no
significant benefit gained by setting the weight pa-
rameter λ or applying feature selection; and using
a larger number of unlabeled sentences u available
for each iteration did not improve results. Further
investigation is needed for an in-depth explanation.

5.2 Co-training

The best co-training runs reported in Table 1 and
Figure 1 used an 8-grams CLM to train one clas-
sifier and a BOW model to train the other classifier.

These two classifiers differ both in feature represen-
tation (i.e., character vs. word) and in learning al-
gorithm (language model vs. pure statistical model).
To investigate whether the two different classifiers
improve each other’s performance during iterations,
we analyzed the CLM and BOW classifiers individ-
ually. When comparing the BOW classifier during
co-training iterations to the performance of corre-
sponding SL runs based on BOW, the former us-
ing both CLM and BOW classifiers always outper-
formed the latter, indicating that the BOW classi-
fier learned from CLM. Similarly, the CLM classi-
fier also gained from the BOW classifier during co-
training.

Figure 2 shows that for the movie review do-
main, other simple co-training configurations also
produced promising results by using different fea-
ture sets (e.g., unigrams and the union of unigrams
and bigrams, or randomly split feature sets) or differ-
ent training sets. In the news domain, we observed
similar trends. This shows the robustness and great
potential of co-training. Because even with the lo-
gistic model to output probabilistic scores for the
SVM classifier, the difference in probabilities was
too small to select a small number of top predic-
tions, adding an SVM classifier for co-training did

206

not improve accuracy and is not discussed here.
An observation of the performance of self-

training and co-training over iterations confirmed
that co-training used labeled data more effectively
for opinion detection than self-training, as sug-
gested for traditional topical classification. We
found that, overall, co-training produces better per-
formance than self-training and reaches optimal per-
formance faster. For instance, with 500 labeled sen-
tences, a self-training run reached an optimal classi-
fication accuracy of 88.2% after adding 4,828 auto-
matically annotated sentences for training, while the
co-training run reached an optimal performance of
89.4% after adding only 2,588 sentences.

5.3 Domain Transfer
Even without any explicit domain adaptation meth-
ods, results indicate that simple self-training alone
is promising for tackling domain transfer between
the source domain movie reviews and the target do-
mains news articles and blog posts.

Target domain news articles We used 9,500 la-
beled movie review sentences to train a Naı̈ve Bayes
classifier for news articles. Although this classi-
fier produced a fairly good classification accuracy
of 89.2% on movie review data, its accuracy was
poor (64.1%) on news data (i.e., domain-transfer
SL), demonstrating the severity of the domain trans-
fer problem. Self-training with Naı̈ve Bayes using
unlabeled data from the news domain (i.e., domain-
transfer SSL run) improved the situation somewhat:
it achieved a classification accuracy of 75.1% sur-
passing the domain-transfer SL run by more than
17%. To finvestigate how well SSL handles the do-
main transfer problem, a full in-domain SL run that
used all labeled news sentences was also performed.
This full SL run achieved 76.9% classification accu-
racy, only 1.8% higher than the domain-transfer SSL
run, which did not use any labeled news data.

Target domain blog posts Because blog data are
more challenging than news data, we kept 5% blog
data as labeled data. Both SSL runs with and without
out-of-domain data are depicted in Figure 3. Self-
training using only blog data decreases SL baseline
performance (dashed black line). Keeping the same
settings, we added additional labeled data from the
movie reviews, and self-training (gray line) came

Figure 3: Self-training for domain transfer between
movie reviews (source domain) and blogs (target domain)

closer to the performance of the full SL run (red
line), which used 90% of the labeled blog data. We
then added a control factor that reduced the impact
of movie review data gradually (i.e., a decrease of
0.001 in each iteration). Using this control, the self-
training run (solid black line) reached and occasion-
ally exceeded the performance of the full SL run.

6 Conclusion and Future Work

We investigated major SSL methods for identify-
ing opinionated sentences in three domains. For
movie review data, SSL methods attained state-of-
the-art results with a small number of labeled sen-
tences. Even without a natural feature split, dif-
ferent co-training strategies increased the baseline
SL performance and outperformed other SSL meth-
ods. Due to the nature of the movie review data, we
suspect that opinion detection on movie reviews is
an ‘easy’ problem because it relies, strictly speak-
ing, on distinguishing movie reviews from plot sum-
maries, which also involves genre classification. For
other manually created data sets that are expected
to reflect real opinion characteristics, the SSL ap-
proach was impeded by low baseline precision and
showed limited improvement. With the addition of
out-of-domain labeled data, however, self-training
exceeded full SL. This constitutes a successful new
approach to domain adaptation.

Future work will include integrating opinion lex-
icons to bootstrap baseline precision and exploring
co-training for domain adaptation.

207

References

Alias-i. 2008. LingPipe (version 4.0.1). Available from
http://alias-i.com/lingpipe.

Anthony Aue and Michel Gamon. 2005. Customizing
sentiment classifiers to new domains: A case study. In
Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP),
Borovets, Bulgaria.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics (ACL), pages 440–
447, Prague, Czech Republic.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proceed-
ings of the 11th Annual Conference on Computational
Learning Theory, pages 92–100, Madison, WI.

Paula Chesley, Bruce Vincent, Li Xu, and Rohini K. Sri-
hari. 2006. Using verbs and adjectives to automati-
cally classify blog sentiment. In Proceedings of AAAI-
CAAW-06, the Spring Symposia on Computational Ap-
proaches to Analyzing Weblogs, Menlo Park, CA.

Hagen Fürstenau and Mirella Lapata. 2009. Semi-
supervised semantic role labeling. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL), pages 220–228, Athens, Greece.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA data mining software: An update.
SIGKDD Explorations, 11(1).

Wei Jin, Hung Hay Ho, and Rohini K. Srihari. 2009.
OpinionMiner: A novel machine learning system for
web opinion mining. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Paris, France.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning. MIT-Press.

Jason S. Kessler, Miriam Eckert, Lyndsie Clark, and
Nicolas Nicolov. 2010. The ICWSM 2010 JDPA sen-
timent corpus for the automotive domain. In 4th Inter-
national AAAI Conference on Weblogs and Social Me-
dia Data Workshop Challenge (ICWSM-DWC), Wash-
ington, D.C.

Kamal Nigam and Rayid Ghani. 2000. Analyzing the
effectiveness and applicability of co-training. In Pro-
ceedings of the Ninth International Conference on In-
formation and Knowledge Management, McLean, VA.

Kamal Nigam, Andrew Kachites Mccallum, Sebastian
Thrun, and Tom Mitchell. 1999. Text classification

from labeled and unlabeled documents using EM. Ma-
chine Learning, 39:103–134.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting on Association for Compu-
tational Linguistics, Barcelona, Spain.

Ellen Riloff and Janyce Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), Sapporo, Japan.

Hiroya Takamura, Takashi Inui, and Manabu Okumura.
2006. Latent variable models for semantic orientations
of phrases. In Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL), Trento, Italy.

Partha Pratim Talukdar and Fernando Pereira. 2010.
Experiments in graph-based semi-supervised learning
methods for class-instance acquisition. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1473–1481,
Uppsala, Sweden.

Songbo Tan, Xueqi Cheng, Yufen Wang, and Hongbo Xu.
2009. Adapting naive Bayes to domain adaptation for
sentiment analysis. In Proceedings of the 31st Eu-
ropean Conference on Information Retrieval (ECIR),
Toulouse, France.

Wei Wang and Zhi-Hua Zhou. 2007. Analyzing co-
training style algorithms. In Proceedings of the 18th
European Conference on Machine Learning, Warsaw,
Poland.

Janyce Wiebe and Ellen Riloff. 2005. Creating sub-
jective and objective sentence classifiers from unan-
notated texts. In Proceedings of the 6th International
Conference on Intelligent Text Processing and Compu-
tational Linguistics (CICLing), Mexico City, Mexico.

Janyce Wiebe, Rebecca Bruce, and Thomas O’Hara.
1999. Development and use of a gold standard data
set for subjectivity classifications. In Proceedings of
the 37th Annual Meeting of the Association for Com-
putational Linguistics (ACL), College Park, MD.

Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie
Martin, and Theresa Wilson. 2001. A corpus study of
evaluative and speculative language. In Proceedings
of the 2nd ACL SIGdial Workshop on Discourse and
Dialogue, Aalborg, Denmark.

Janyce Wiebe, Theresa Wilson, Rebecca Bruce, Matthew
Bell, and Melanie Martin. 2004. Learning subjective
language. Computational Linguistics, 30(3):277–308.

Kiduk Yang, Ning Yu, and Hui Zhang. 2007. WIDIT
in TREC-2007 blog track: Combining lexicon-based
methods to detect opinionated blogs. In Proceed-
ings of the 16th Text Retrieval Conference (TREC),
Gaithersburg, MD.

208

Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards
answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sen-
tences. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
Sapporo, Japan.

Ning Yu and Sandra Kübler. 2010. Semi-supervised
learning for opinion detection. In Proceedings of the
IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology, volume 3,
pages 249–252, Toronto, Canada.

Wei Zhang and Clement Yu. 2007. UIC at TREC 2007
blog track. In Proceedings of the 16th Text Retrieval
Conference (TREC), Gaithersburg, MD.

209

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 210–218,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

A Normalized-Cut Alignment Model for Mapping Hierarchical Semantic
Structures onto Spoken Documents

Xiaodan Zhu
Institute for Information Technology
National Research Council Canada

Xiaodan.Zhu@nrc-cnrc.gc.ca

Abstract

We propose a normalized-cut model for the
problem of aligning a known hierarchical
browsing structure, e.g., electronic slides of
lecture recordings, with the sequential tran-
scripts of the corresponding spoken docu-
ments, with the aim to help index and access
the latter. This model optimizes a normalized-
cut graph-partitioning criterion and considers
local tree constraints at the same time. The ex-
perimental results show the advantage of this
model over Viterbi-like, sequential alignment,
under typical speech recognition errors.

1 Introduction

Learning semantic structures of written text has been
studied in a number of specific tasks, which include,
but not limited to, those finding semantic represen-
tations for individual sentences (Ge and Mooney,
2005; Zettlemoyer and Collins, 2005; Lu et al.,
2008), and those constructing hierarchical structures
among sentences or larger text blocks (Marcu, 2000;
Branavan et al., 2007). The inverse problem of the
latter kind, e.g., aligning certain form of already-
existing semantic hierarchies with the corresponding
text sequence, is not so much a prominent problem
for written text as it is for spoken documents. In this
paper, we study a specific type of such a problem, in
which a hierarchical browsing structure, i.e., elec-
tronic slides of oral presentations, have already ex-
isted, the goal being to impose such a structure onto
the transcripts of the corresponding speech, with the
aim to help index and access spoken documents as
such.

Navigating audio documents is often inherently
much more difficult than browsing text; an obvi-
ous solution, in relying on human beings’ ability to
read text, is to conduct a speech-to-text conversion
through automatic speech recognition (ASR). Im-
plicitly, solutions as such change the conventional
speaking-for-hearing construals: now speech can be
read through its transcripts, though, in most cases,
it was not intended for this purpose, which in turn
raises a new set of problems.

The convenience and efficiency of reading tran-
scripts (Stark et al., 2000; Munteanu et al., 2006)
are first affected by errors produced in transcrip-
tion channels for various reasons, though if the goal
is only to browse salient excerpts, recognition er-
rors on the extracts can be reduced by consider-
ing ASR confidence scores (Xie and Liu, 2010;
Hori and Furui, 2003; Zechner and Waibel, 2000):
trading off the expected salience of excerpts with
their recognition-error rate could actually result in
the improvement of excerpt quality in terms of the
amount of important content being correctly pre-
sented (Zechner and Waibel, 2000).

Even if transcription quality were not a problem,
browsing transcripts is not straightforward. When
intended to be read, written documents are almost
always presented as more than uninterrupted strings
of text. Consider that for many written docu-
ments, e.g., books, indicative structures such as sec-
tion/subsection headings and tables-of-contents are
standard constituents created manually to help read-
ers. Structures of this kind, even when existing, are
rarely aligned with spoken documents completely.

This paper studies the problem of imposing a

210

known hierarchical browsing structure, e.g., the
electronic slides of lecture recordings, onto the se-
quential transcripts of the corresponding spoken
document, with the aim to help index and hence ac-
cess the latter more effectively. Specifically, we pro-
pose a graph-partitioning approach that optimizes a
normalized-cut criterion globally, in traversing the
given hierarchical semantic structures. The exper-
imental results show the advantage of this model
over Viterbi-like, sequential alignment, under typi-
cal speech recognition errors.

2 Related work

Flat structures of spoken documents Much pre-
vious work, similar to its written-text counterpart,
has attempted to find certainflat structures of spoken
documents, such as topic and slide boundaries. For
example, the work of (Chen and Heng, 2003; Rud-
darraju, 2006; Zhu et al., 2008) aims to find slide
boundaries in the corresponding lecture transcripts.
Malioutov et al. (2007) developed an approach to
detecting topic boundaries of lecture recordings by
finding repeated acoustic patterns. None of this
work, however, has involved hierarchical structures
of a spoken document. Research has also resorted
to other multimedia channels, e.g., video (Liu et al.,
2002; Wang et al., 2003; Fan et al., 2006), to detect
slide transitions. This type of research, however, is
unlikely to recover semantic structures in more de-
tails than slide boundaries.

Hierarchical structures of spoken documents
Recently, research has started to align hierarchical
browsing structures with spoken documents, given
that inferring such structures directly from spoken
documents is still too challenging. Zhu et al. (2010)
investigates bullet-slide alignment by first sequen-
tializing bullet trees with a pre-order walk before
conducting alignment, through which the problem
is reduced to a string-to-string alignment problem
and an efficient Viterbi-like method can be naturally
applied. In this paper, we use such a sequential
alignment as our baseline, which takes a standard
dynamic-programming process to find the optimal
path on an M-by-N similarity matrix, whereM and
N denote the number of bullets and utterances in a
lecture, respectively. Specifically, we chose the path
that maps each bullet to an utterance to achieve the

highest total bullet-utterance similarity score; this
path can be found within a standardO(MN2) time
complexity.

A pre-order walk of the hierarchical tree is a natu-
ral choice, since speakers of presentations often fol-
low such a order in developing their talk; i.e., they
often talk about a bullet first and then each of its chil-
dren in sequence. A pre-order walk is also assumed
by Branavan et al. (2007) in their table-of-content
generation task, a problem in which a hierarchical
structure has already been assumed (aligned) with a
span of written text, but the title of each node needs
to be generated.

In principle, such a sequential-alignment ap-
proach allows a bullet to be only aligned to one ut-
terance in the end, which does not model the basic
properties of the problem well, where the content in
a bullet is often repeated not only when the speaker
talks about it but also, very likely, when he discusses
the descendant bullets. Second, we suspect that
speech recognition errors, when happening on the
critical anchoring words that bridging the alignment,
would make a sequential-alignment algorithm much
less robust, compared with methods based on many-
to-many alignment. This is very likely to happen,
considering that domain-specific words are likely to
be the critical words in deciding the alignment, but
they are also very likely to be mis-recognized by an
ASR system at the same time, e.g., due to out-of-
vocabulary issue or language-model sparseness. We
will further discuss this in more details later in our
result section. Third, the hierarchical structures are
lost in the sequentialization of bullets, though some
remedy could be applied, e.g., by propagating a par-
ent bullet’s information onto its children (Zhu et al.,
2010).

On the other hand, we should also note that the
benefit of formulating the problem as a sequential
alignment problem is its computational efficiency:
the solution can be calculated with conventional
Viterbi-like algorithms. This property is also impor-
tant for the task, since the length of a spoken docu-
ment, such as a lecture, is often long enough to make
inefficientalgorithms practically intractable.

An important question is therefore how to, in prin-
ciple, model the problem better. The second is how
time efficient the model is. Malioutov and Barzi-
lay (2006) describe a dynamic-programming version

211

of a normalized-cut-based model in solving a topic
segmentation problem for spoken documents. In-
spired by their work, we will propose a model based
on graph partitioning in finding the correspondence
between bullets and the regions of transcripts that
discuss them; the proposed model runs in polyno-
mial time. We will empirically show its benefit on
both improving the alignment performance over a
sequential alignment and its robustness to speech
recognition errors.

3 Problem

We are given a speech sequenceU = u1, u2, ..., uN ,
whereui is an utterance, and the corresponding hi-
erarchical structure, which, in our work here, is a
sequence of lecture slides containing a set of slide ti-
tles and bullets,B = {b1, b2, ..., bM}, organized in a
tree structureT (ℜ,ℵ,Ψ), whereℜ is the root of the
tree that concatenates all slides of a lecture; i.e., each
slide is a child of the rootℜ and each slide’s bullets
form a subtree. In the rest of this paper, the word
bullet means both the title of a slide (if any) and any
bullet in it, if not otherwise noted.ℵ is the set of
nodes of the tree (both terminal and non-terminals,
excluding the rootℜ), each corresponding to a bullet
bm in the slides.Ψ is the edge set. With the defini-
tions, our task is herein to find the triple(bi, uj , uk),
denoting that a bulletbi is mapped to a region of lec-
ture transcripts that starts from thejth utteranceuj

and ends at thekth, inclusively. Constrained by the
tree structure, the transcript region corresponding to
an ancestor bullet contains those corresponding to
its descendants; i.e., if a bulletbi is the ancestor of
another bulletbn in the tree, the acquired boundary
triples(bi, uj1 , uk1) and(bi, uj2 , uk2) should satisfy
j1 ≤ j2 andk1 ≥ k2. Figure 1 shows a slide, its
structure, and the correspondence between one of
its bullets and a region of transcribed utterances (the
root that concatenates all such slides of a lecture to-
gether is not shown here).

4 A graph-partitioning approach

The generative process of lecture speech, with re-
gard to a hierarchical structure (here, bullet trees),
is characterized in general by a speaker’s producing
detailed content for each bullet when discussing it,
during which sub-bullets, if any, are talked about re-

Figure 1: A slide, its tree structure, and the correspon-
dence between one of its bullets and a region of tran-
scribed utterances (uj, uj+1..., uk).

cursively. By its nature of the problem, words in a
bullet could be repeated multiple times, even when
the speaker traverses to talk about the descendant
bullets in the depth of the sub-trees. In principle,
a model would be desirable to consider such proper-
ties between a slide bullet, including all its descen-
dants, and utterance transcripts, as well as the con-
straints of bullet trees. We formulate the problem
of finding the correspondence between bullets and
transcripts as a graph-partitioning problem, as de-
tailed below.

The correspondence between bullets and tran-
scribed utterances is evidenced by the similarities
between them. In a graph that contains a set of bul-
lets and utterances as its vertices and similarities be-
tween them as its edges, our aim is to place bound-
aries to partition the graph into smaller ones in order
to obtain triples, e.g.,(bi, uj , uk), that optimize cer-
tain criterion. Inspired by the work of (Malioutov
and Barzilay, 2006; Shi and Malik, 2000), we op-
timize a normalized-cut score, in which the total
weight of edges being cut by the boundaries is mini-
mized, normalized by the similarity between the bul-
let bi and the entire vertices, as well as between the
transcript regionuj , ..., uk and the entire vertices,
respectively.

Consider a simple two-set case first, in which a
boundary is placed on a graphG = (V,E) to sepa-
rate its verticesV into two sets,A andB, with all the
edges between these two sets being removed. The
objective, as we have mentioned above, is to mini-
mize the following normalized-cut score:

212

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
(1)

where,

cut(A,B) =
∑

a∈A,b∈B

w(a, b)

assoc(A,V) =
∑

a∈A,v∈V

w(a, v)

assoc(B,V) =
∑

b∈B,v∈V

w(b, v)

In equation (1),cut(A,B) is the total weight of
the edges being cut, i.e., those connectingA with
B, whileassoc(A,V) andassoc(B,V) are the total
weights of the edges that connectA with all vertices
V , andB with V , respectively;w(a, b) is an edge
weight between a vertexa andb.

In general, minimizing such a normalized-cut
score has been shown to be NP-complete. In our
problem, however, the solution is constrained by
the linearity of segmentation on transcripts, simi-
lar to that in (Malioutov and Barzilay, 2006). In
such a situation, a polynomial-time algorithm exists.
Malioutov and Barzilay (2006) describe a dynamic-
programming algorithm to conduct topic segmenta-
tion for spoken documents. We modify the method
to solve our alignment problem here, which, how-
ever, needs to cope with the bipartite graphs between
bullets and transcribed sentences rather than sym-
metric similarity matrices among utterances them-
selves. We also need to integrate this in considering
the hierarchical structures of bullet trees.

We first consider a set of sibling bullets,b1, ..., bm,
that appear on the same level of a bullet tree and
share the same parentbp. For the time being, we
assume the corresponding region of transcripts has
already been identified forbp, sayu1, ..., un. We
connect each bullet inb1, ..., bm with utterances in
u1, ..., un by their similarity, which results in a bi-
partite graph. Our task here is to placem − 1
boundaries onto the bipartite graph to partition the
graph intom bipartite graphs and obtain triples, e.g.,
(bi, uj , uk), to align bi to uj, ..., uk , where bi ∈
{b1, ..., bm} anduj, uk ∈ {u1, ..., bn} andj <= k.
Since we have all descendant bullets to help the par-
titioning, when constructing the bipartite graph, we

actually include also all descendant bullets of each
bullet bi, but ignoring their orders within eachbi.
We will revisit this in more details later. We find
optimal normalized cuts in a dynamic-programming
process with the following recurrence relation:

C[i, k] = min
j≤k

{C[i− 1, j] + D[i, j + 1, k]} (2)

B[i, k] = arg min
j≤k

{C[i−1, j]+D[i, j +1, k]} (3)

In equation (2) and (3),C[i, k] is the opti-
mal/minimal normalized-cut value of aligning the
first i sibling bullets,b1, ..., bi, with the firstk ut-
terances,u1, ..., bk, while B[i, k] records the back-
tracking indices corresponding to the optimal path
yielding the currentC[i, k]. As shown in equation
(2), C[i, k] is computed by updatingC[i− 1, j] with
D[i, j + 1, k], for all possiblej s.t. j ≤ k, where
D[i, j + 1, k] is a normalized-cut score for the triple
(bi, uj+1, uk) and is defined as follows:

D[i, j + 1, k] =
cut(Ai,j+1,k, V \Ai,j+1,k)

assoc(Ai,j+1,k, V)
(4)

where Ai,j+1,k is the vertex set that contains the
bullet bi (including its descendant bullets, if any,
as discussed above) and the utterancesuj+1, ..., uk ;
V \ Ai,j+1,k is its complement set.

Different from the topic segmentation problem
(Malioutov et al., 2007), we need to remember the
normalized-cut values between any regionuj , ..., uk

and any bulletbi in our task, so we need to use
the additional subscripti in Ai,j+1,k, while in topic
segmentation, the computation of bothcut(.) and
assoc(.) is only dependant on the left boundaryj

and right boundaryk. Note that the similarity matrix
here is not symmetric as it is in topic segmentation,
butm by n, wherem is the number of bullets, while
n is the number of utterances.

For any triple(bi, uj+1, uk), there are two differ-

ent types of edges being cut: those betweenBin
def
=

{bi} (again, includingbi and all its descendant bul-

lets) andUout
def
= {u1, ..., uj , uk+1, ..., um}, as well

as those betweenBout
def
= {b1, ..., bi−1, bi+1, ..., bm}

and Uin
def
= {uj+1, ..., uk}. We discriminate

these two types of edges. Accordingly,cut(.) and

213

assoc(.) in equation (4) are calculated with equation
(5) and (6) below by linearly combining the weights
of these two types of edges withλ, whose value is
decided with a small held-out data.

cut(Ai,j+1,k, V \ Ai,j+1,k) =

λ
∑

b∈Bin,u∈Uout

w(b, u)

+(1− λ)
∑

b′∈Bout,u′∈Uin

w(b′, u′) (5)

assoc(Ai,j+1,k, V) = λ
∑

b∈Bin,u∈V

w(b, u)

+(1− λ)
∑

b′∈Uin,u′∈V

w(b′, u′) (6)

In addition, different form that in topic segmen-
tation, where a segment must not be empty, we
shall allow a bulletbi to be aligned to an empty
region, to model the situation that a bullet is not
discussed by the speaker. To do so, we madej in
equation (2) and (3) above to be able to equal to
k in the subscript, i.e.,j ≤ k. Specifically, when
j = k, the setAi,j+1,k has no internal edges, and
D[i, j + 1, k] is either equal to1, or often not de-
fined if assoc(Ai,j+1,k, V) = 0. For the latter, we
resetD[i, j + 1, k] to be1.

A visual example of partitioning sibling bullets
b1, b2, and b3 is shown in Figure 2, in which the
descendant bullets of them (here,b4, b5, andb6) are
also considered. Note that we only show direct chil-
dren of b1 here, while, as discussed above, all de-
scendant bullets, if any, will be considered.

Figure 2: A visual example of partitioning sibling bullets
b1, b2, and b3.

Up to now, we have only considered partition-
ing sibling bullets by assuming the boundaries of

their parent on lecture transcripts have already been
given, where the sibling bullets and the correspond-
ing transcripts form a bipartite graph. When parti-
tioning the entire bullet trees and all utterances for a
lecture, the graph contains not only a bipartite graph
but also the hierarchical trees themselves. We de-
couple this two parts of graph by a top-down traver-
sal of the bullet trees: starting from the root, for each
node on the bullet tree, we apply the normalized-cut
algorithm discussed above to find the corresponding
regions of transcripts for all its direct children, and
repeat this process recursively. In each visit to parti-
tion a group of sibling bullets, to allow the first child
to have a different starting point from its parent bul-
let (the speaker may spend some time on the parent
bullet itself before talking about each child bullet),
we inserted an extra child in front of the first child
and copy the text of the parent bullet to it. Note that
in each visit to partition a group of sibling bullets,
the solution found is optimal on that level, which,
again, results in a powerful model since all descen-
dant bullets, if any, are all considered. For exam-
ple, processing high-level bullets first is expected
to benefit from the richer information of using all
their descendants in helping find the boundaries on
transcripts accurately. Recall that we have discussed
above how to incorporate the descendant bullets into
this process. It would also dramatically reduce the
searching space of partitioning lower-level bullets.

As far as computational complexity is concerned,
the graph-partitioning method discussed above is
polynomial, O(MN2), with M and N denoting
the number of bullets and utterances in a lecture,
respectively. Note thatM is often much smaller
than N , M ≪ N . In more details, the loop ker-
nel of the algorithm is computingD[i, j, k]. This
in total needs to compute1

2
(MN2) values, which

can be pre-calculated and stored before dynamic-
programming decoding runs; the later, as normal, is
O(MN2), too.

5 Experiment set-up

5.1 Corpus

Our experiment uses a corpus of four 50-minute
third-year university lectures taught by the same in-
structor on the topics of human-computer interac-
tion (HCI), which contain 119 slides composed of

214

921 bullets prepared by the lecturer himself. The
automatic transcripts of the speech contain approxi-
mately 30,000 word tokens, roughly equal to a 120-
page double-spaced essay in length. The lecturer’s
voice was recorded with a head-mounted micro-
phone with a 16kHz sampling rate and 16-bit sam-
ples, while students’ comments and questions were
not recorded. The speech is split into utterances by
pauses longer than 200ms, resulting in around 4000
utterances. The slides and automatic transcripts of
one lecture were held out to decide the value ofλ in
differentiating the two different types of edges be-
ing cut, as discussed in Section 4. The boundaries
between adjacent slides were marked manually dur-
ing the lectures were recorded, by the person who
oversaw the recording process, while the boundaries
between bullets within a slide were annotated after-
wards by another human annotator.

5.2 Building the graphs

The lecture speech was first transcribed into text au-
tomatically with ASR models. The first ASR model
is a baseline with its acoustic model trained on the
WSJ0 and WSJ1 subsets of the 1992 development
set of the Wall Street Journal (WSJ) dictation cor-
pus, which contains 30 hours of data spoken by
283 speakers. The language model was trained on
the Switchboard corpus, which contains 2500 tele-
phone conversations involving about 500 English-
native speakers, which was suggested to be suit-
able for the conversational style of lectures, e.g.,
by (Munteanu et al., 2007; Park et al., 2005). The
whole model yielded a word error rate (WER) at
0.48. In the remainder of this paper, we call the
model as ASR Model 1.

The second model is an advanced one using the
same acoustic model. However, its language model
was trained on domain-related documents obtained
from the Web through searching the words appear-
ing on slides, as suggested by Munteanu et al.
(2007). This yielded a WER of 0.43, which is a
typical WER for lectures and conference presenta-
tions (Leeuwis et al., 2003; Hsu and Glass, 2006;
Munteanu et al., 2007), though a lower WER is
possible in a more ideal condition (Glass et al.,
2007), e.g., when the same course from the previous
semester by the same instructor is available. The 3-
gram language models were trained using the CMU-

CAM Language Modelling Toolkit (Clarkson and
Rosenfeld, 1997), and the transcripts were generated
with the SONIC toolkit (Pellom, 2001). The out-
of-vocabulary rates are 0.3% in the output of ASR
Model 1 and 0.1% in that of Model 2, respectively.

Both bullets and automatic transcripts were
stemmed and stop words in them were removed. We
then calculated the similarity between a bullet and
an utterance with the number of overlapping words
shared, normalized by their lengths. Note that using
several other typical metrics, e.g., cosine, resulted
in a similar trend of performance change—our con-
clusions below are consistent under these situations,
though the specific performance scores (i.e., word
offsets) are different. Finally, the similarities be-
tween bullets and utterances yielded a single M-by-
N similarity matrix for each lecture to be aligned,
with M and N denoting the number of bullets in
slides and utterances in transcripts, respectively.

5.3 Evaluation metric

The metric used in our evaluation is
straightforward—automatically acquired bound-
aries on transcripts for each slide bullet are
compared against the corresponding gold-standard
boundaries to calculate offsets measured in number
of words. The offset scores are averaged over all
boundaries to evaluate model performance. Though
one may consider that different bullets may be of
different importance, in this paper we do not use
any heuristics to judge this and we treat all bullets
equally in our evaluation.

Note that topic segmentation research often uses
metrics such asPk and WindowDiff (Malioutov
et al., 2007; Beeferman et al., 1999; Pevsner and
Hearst, 2002). Our problem here, as an alignment
problem, has an exact 1-to-1 correspondence be-
tween a gold and automatic boundary, in which we
can directly measure the exact offset of each bound-
ary.

6 Experimental results

Table 1 presents the experimental results obtained
on the automatic transcripts generated by the ASR
models discussed above, with WERs at 0.43 and
0.48, respectively, which are typical WERs for lec-
tures and conference presentations in realistic and

215

less controlled situations. SEQ-ALN in the table
stands for the Viterbi-like, sequential alignment dis-
cussed above in section 2, while G-CUT is the
graph-partitioning approach proposed in this paper.
The values in the table are the average word-offset
scores counted after stop-words having been re-
moved.

WER=0.43 WER=0.48
SEQ-ALN 15.22 20.38
G-CUT 13.41 16.77
Offs. Reduction 12% 18%

Table 1: The average word offsets of automatic bound-
aries from the gold-standard.

Table 1 shows that comparing these two
polynomial-time models, G-CUT reduces the aver-
age offsets of SEG-ALN under both WERs. On the
transcripts with 0.48 WER, the average word-offset
score is reduced by approximately 18% from 20.38
to 16.77, while for the transcripts with WER at 0.43,
the offset reduction is 12%, from 15.22 to 13.41.
Since both models use exactly the same input simi-
larity matrices, the differences between their results
confirm the advantage of the modeling principle be-
hind the proposed approach. Although the graph-
partitioning model could be extended further, e.g.,
with the approach in (Zhu et al., 2010), our primary
interest here is the principle modeling advantage of
this normalized-cut framework.

The results in Table 1 also suggest that the graph-
partitioning model is more robust to speech recog-
nition errors: when WERs increase from 0.43 to
0.48, the error of G-CUT increases by 25%, from
13.41 to 16.77, while that of SEQ-ALN increases by
44%, from 15.22 to 20.38. We due this to the fact
that the graph-partitioning model considers multiple
alignments between bullets, including their descen-
dants, and the transcribed utterances, where mis-
matching between bullet and transcript words, e.g.,
that caused by recognition errors, is less likely to
impact the graph-partitioning method, which bases
its optimization criterion on multiple alignments,
e.g., when calculatingcut(.) andassoc(.) in equa-
tion (5) and (6). Recall that the ASR Model 2 in-
cludes domain-specific Web data to train the lan-
guage models, which were acquired by using bul-

let words to search the Web. It is expected to in-
crease the recognition accuracy on domain words,
particularly those appearing on the slides. There-
fore, Model 2 is likely to particularly increase the
correct matching between bullets and transcript.

The results in Table 1 also show the usefulness
of better ASR modeling on the structure-imposing
task here. As discussed in the introduction sec-
tion earlier, browsing automatic transcripts of long
spoken documents, such as lectures, is affected by
both speech recognition errors and lack of browsing
structures. Table 1 shows that the improvement in
solving the first problem also helps the second.

Last, from a pragmatic viewpoint of system de-
velopment, the graph-partitioning algorithm is sim-
ple to implement: the essence of equation (2)-(6) is
to find the optimal normalized-cut score character-
ized by computingD[i, j + 1, k] and updating the
formulae with it, which is not much more compli-
cate to build than the baseline. Also, the practical
speed difference between these two types of models
is not obvious on our dataset.

7 Conclusion

This paper proposes a graph-partitioning approach
for aligning a known hierarchical structure with the
transcripts of the corresponding spoken document
through optimizing a normalized-cut criterion. This
approach models the basic properties of the prob-
lem and is quadratic-time. Experimental results
show both its advantage on improving the alignment
performance over a standard sequential-alignment
baseline and its robustness to speech recognition er-
rors, while both take as input exactly the same simi-
larity matrices. From a pragmatic viewpoint of sys-
tem development, this graph-partitioning-based al-
gorithm is simple to implement. We believe immedi-
ate further work such as combining the normalized-
cut model with CYK-like dynamic programing to
traverse the semantic trees in alignment could help
us further understand the problem, though such
models need much more memory in practice if not
properly optimized and have a higher time complex-
ity. Also, topic-segmentation (cohesion) models can
be naturally combined with the alignment model dis-
cussed here. We will study such problems as our
immediate future work.

216

References

D. Beeferman, A. Berger, and J. Lafferty. 1999. Statisti-
cal models for text segmentation.Machine Learning,
34(1-3):177–210.

S. Branavan, Deshpande P., and Barzilay R. 2007. Gen-
erating a table-of-contents: A hierarchical discrimina-
tive approach. InProc. of Annual Meeting of the As-
sociation for Computational Linguistics.

Y. Chen and W. J. Heng. 2003. Automatic synchroniza-
tion of speech transcript and slides in presentation. In
Proc. International Symposium on Circuits and Sys-
tems.

P. Clarkson and R. Rosenfeld. 1997. Statistical language
modeling using the cmu-cambridge toolkit. InProc. of
ISCA European Conf. on Speech Communication and
Technology, pages 2707–2710.

Q. Fan, K. Barnard, A. Amir, A. Efrat, and M. Lin. 2006.
Matching slides to presentation videos using sift and
scene background. InProc. of ACM International
Workshop on Multimedia Information Retrieval, pages
239–248.

R. Ge and R. J. Mooney. 2005. A statistical semantic
parser that integrates syntax and semantics. InProc.
of Computational Natural Language Learnine, pages
9–16.

J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh,
and R. Barzilay. 2007. Recent progress in the mit
spoken lecture processing project.Proc. of Annual
Conference of the International Speech Communica-
tion Association, pages 2553–2556.

C. Hori and S. Furui. 2003. A new approach to auto-
matic speech summarization.IEEE Transactions on
Multimedia, 5(3):368–378.

B. Hsu and J. Glass. 2006. Style and topic language
model adaptation using hmm-lda. InProc. of Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

E. Leeuwis, M. Federico, and M. Cettolo. 2003. Lan-
guage modeling and transcription of the ted corpus lec-
tures. InProc. of IEEE International Conference on
Acoustics, Speech and Signal Processing.

T. Liu, R. Hjelsvold, and J. R. Kender. 2002. Analysis
and enhancement of videos of electronic slide presen-
tations. InProc. IEEE International Conference on
Multimedia and Expo.

W. Lu, H. T. Ng, W. S. Lee, and L. S. Zettlemoyer. 2008.
A generative model for parsing natural language to
meaning representations. InProc. of Empirical Meth-
ods in Natural Language Processing, pages 783–792.

I. Malioutov and R. Barzilay. 2006. Minimum cut model
for spoken lecture segmentation. InProc. of Interna-
tional Conference on Computational Linguistics and

Annual Meeting of the Association for Computational
Linguistics.

I. Malioutov, A. Park, R. Barzilay, and J. Glass. 2007.
Making sense of sound: Unsupervised topic segmen-
tation over acoustic input. InProc. of Annual Meet-
ing of the Association for Computational Linguistics,
pages 504–511.

D. Marcu. 2000. The theory and practice of discourse
parsing and summarization. The MIT Press.

C. Munteanu, R. Baecker, G. Penn, E. Toms, and
E. James. 2006. Effect of speech recognition accu-
racy rates on the usefulness and usability of webcast
archives. InProc. of ACM Conference on Human Fac-
tors in Computing Systems, pages 493–502.

C. Munteanu, G. Penn, and R. Baecker. 2007. Web-
based language modelling for automatic lecture tran-
scription. InProc. of Annual Conference of the Inter-
national Speech Communication Association.

A. Park, T. Hazen, and J. Glass. 2005. Automatic pro-
cessing of audio lectures for information retrieval. In
Proc. of IEEE Conf. on Acoustics, Speech, and Signal
Processing, pages 497–500.

B. L. Pellom. 2001. Sonic: The university of colorado
continuous speech recognizer.Tech. Rep. TR-CSLR-
2001-01, University of Colorado.

L. Pevsner and M. Hearst. 2002. A critique and im-
provement of an evaluation metric for text segmenta-
tion. Computational Linguistics, 28:19–36.

R. Ruddarraju. 2006.Indexing Presentations Using Mul-
tiple Media Streams. Ph.D. thesis, Georgia Institute of
Technology. M.S. Thesis.

J. Shi and J. Malik. 2000. Normalized cuts and image
segmentation.IEEE Trans. Pattern Anal. Mach. In-
tell., 22.

L. Stark, S. Whittaker, and J. Hirschberg. 2000. Find-
ing information in audio: A new paradigm for audio
browsing and retrieval. InProc. of International Con-
ference on Spoken Language Processing.

F. Wang, C. W. Ngo, and T. C. Pong. 2003. Synchroniza-
tion of lecture videos and electronic slides by video
text analysis. InProc. of ACM International Confer-
ence on Multimedia.

S. Xie and Y. Liu. 2010. Using confusion networks for
speech summarization. InProc. of International Con-
ference on Human Language Technology and Annual
Meeting of North American Chapter of the Association
for Computational Linguistics.

K. Zechner and A. Waibel. 2000. Minimizing word er-
ror rate in textual summaries of spoken language. In
Proc. of Applied Natural Language Processing Con-
ference and Meeting of the North American Chapter of
the Association for Computational Linguistics, pages
186–193.

217

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. InProc.
of Uncertainty in Artificial Intelligence, pages 658–
666.

X. Zhu, X. He, C. Munteanu, and G. Penn. 2008. Us-
ing latent dirichlet allocation to incorporate domain
knowledge for topic transition detection. InProc. of
Annual Conference of the International Speech Com-
munication Association.

X. Zhu, C. Cherry, and G. Penn. 2010. Imposing hierar-
chical browsing structures onto spoken documents. In
Proc. of International Conference on Computational
Linguistics.

218

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, page 219,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Bayesian Tools for Natural Language Learning
Invited talk

Yee Whye Teh
Gatsby Computational Neuroscience Unit, UCL

ywteh@gatsby.ucl.ac.uk

In recent years Bayesian techniques have made good inroads in computational linguistics, due to their pro-
tection against overfitting and expressiveness of the Bayesian modeling language. However most Bayesian
models proposed so far have used pretty simple prior distributions, chosen more for computational conve-
nience than as reflections of real prior knowledge.

In this talk I will propose that prior distributions can be powerful ways to put computational linguis-
tics knowledge into your models, and give two examples from my own work. Firstly, hierarchical priors
can allow you to specify relationships among different components of your model so that the information
learned in one component can be shared with the rest, improving the estimation of parameters for all. Sec-
ondly, newer distributions like Pitman-Yor processes have interesting power-law characteristics that if used
as prior distributions can allow your linguistic models to express Zipf’s Law and Heap’s Law.

I will round up the talk with a discussion of the viability of the Bayesian approach, in a future where
we have too much data, making the natural language learning problem more a computational rather than a
statistical one.

219

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 220–228,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Composing Simple Image Descriptions using Web-scale N-grams

Siming Li, Girish Kulkarni, Tamara L Berg, Alexander C Berg, and Yejin Choi
Department of Computer Science

Stony Brook University
NY 11794, USA

{silli, gkulkarni, tlberg, aberg, ychoi}@cs.stonybrook.edu

Abstract

Studying natural language, and especially how
people describe the world around them can
help us better understand the visual world. In
turn, it can also help us in the quest to generate
natural language that describes this world in a
human manner. We present a simple yet effec-
tive approach to automatically compose im-
age descriptions given computer vision based
inputs and using web-scale n-grams. Unlike
most previous work that summarizes or re-
trieves pre-existing text relevant to an image,
our method composes sentences entirely from
scratch. Experimental results indicate that it is
viable to generate simple textual descriptions
that are pertinent to the specific content of an
image, while permitting creativity in the de-
scription – making for more human-like anno-
tations than previous approaches.

1 Introduction

Gaining a better understanding of natural language,
and especially natural language associated with im-
ages helps drive research in both computer vision
and natural language processing (e.g., Barnard et
al. (2003), Pastra et al. (2003), Feng and Lapata
(2010b)). In this paper, we look at how to exploit
the enormous amount of textual data electronically
available today, web-scale n-gram data in particular,
in a simple yet highly effective approach to com-
pose image descriptions in natural language. Auto-
matic generation of image descriptions differs from
automatic image tagging (e.g., Leong et al. (2010))
in that we aim to generate complex phrases or sen-
tences describing images rather than predicting in-

dividual words. These natural language descriptions
can be useful for a variety of applications, includ-
ing image retrieval, automatic video surveillance,
and providing image interpretations for visually im-
paired people.

Our work contrasts to most previous approaches
in four key aspects: first, we compose fresh sen-
tences from scratch, instead of retrieving (Farhadi et
al. (2010)), or summarizing existing text fragments
associated with an image (e.g., Aker and Gaizauskas
(2010), Feng and Lapata (2010a)). Second, we aim
to generate textual descriptions that are truthful to
the specific content of the image, whereas related
(but subtly different) work in automatic caption gen-
eration creates news-worthy text (Feng and Lapata
(2010a)) or encyclopedic text (Aker and Gaizauskas
(2010)) that is contextually relevant to the image, but
not closely pertinent to the specific content of the
image. Third, we aim to build a general image de-
scription method as compared to work that requires
domain specific hand-written grammar rules (Yao et
al. (2010)). Last, we allow for some creativity in
the generation process which produces more human-
like descriptions than a closely related, very recent
approach that drives annotation more directly from
computer vision inputs (Kulkarni et al., 2011).

In this work, we propose a novel surface realiza-
tion technique based on web-scale n-gram data. Our
approach consists of two steps: (n-gram) phrase se-
lection and (n-gram) phrase fusion. The first step
– phrase selection – collects candidate phrases that
may be potentially useful for generating the descrip-
tion of a given image. This step naturally accom-
modates uncertainty in image recognition inputs as

220

Hairy goat under a tree
Fluffy posturing sheep under a tree

<furry;gray;brown,sheep>,by;near,<rusty;gray;green,tree>

furry
gray
brown

rusty
gray
green

by
near

Figure 1: The big picture of our task to automatically
generate image description.

well as synonymous words and word re-ordering to
improve fluency. The second step – phrase fusion
– finds the optimal compatible set of phrases us-
ing dynamic programming to compose a new (and
more complex) phrase that describes the image. We
compare the performance of our proposed approach
to three baselines based on conventional techniques:
language models, parsers, and templates.

Despite its simplicity, our approach is highly ef-
fective for composing image descriptions: it gen-
erates mostly appealing and presentable language,
while permitting creative writing at times (see Fig-
ure 5 for example results). We conclude from our
exploration that (1) it is viable to generate simple
textual descriptions that are germane to the specific
image content, and that (2) world knowledge implic-
itly encoded in natural language (e.g., web-scale n-
gram data) can help enhance image content recogni-
tion.

2 Image Recognition

Figure 1 depicts our system flow: a) an image is in-
put into our system, b) image recognition techniques
are used to extract visual content information, c) vi-
sual content is encoded as a set of triples, d) natural

language descriptions are generated.
In this section, we briefly describe the image

recognition system that extracts visual information
and encodes it as a set of triples. For a given image,
the image recognizer extracts objects, attributes and
spatial relationships among objects as follows:

1. Objects: including things (e.g., bird, bus, car)
and stuff (e.g., grass, water, sky, road) are de-
tected.

2. Visual attributes (e.g., feathered, black) are pre-
dicted for each object.

3. Spatial relationships (e.g., on, near, under) be-
tween objects are estimated.

In particular, object detectors are trained using state
of the art mixtures of multi-scale deformable parts
models (Felzenszwalb et al., 2010). Our set of
objects encompasses the 20 PASCAL 2010 object
challenge 1 categories as well as 4 additional cate-
gories for flower, laptop, tiger, and window trained
on images with associated bounding boxes from
Imagenet (Deng et al., 2009). Stuff detectors are
trained to detect regions corresponding to non-part
based object categories (sky, road, building, tree,
water, and grass) using linear SVMs trained on
the low level region features of (Farhadi et al.,
2009). These are also trained on images with la-
beled bounding boxes from ImageNet and evaluated
at test time on a coarsely sampled grid of overlap-
ping square regions over whole images. Pixels in
any region with a classification probability above a
fixed threshold are treated as detections.

We select visual attribute characteristics that are
relevant to our object and stuff categories. Our at-
tribute terms include 21 visual modifiers – adjec-
tives – related to color (e.g. blue, gray), texture
(e.g. striped, furry), material (e.g. wooden, feath-
ered), general appearance (e.g. rusty, dirty, shiny),
and shape (e.g. rectangular) characteristics. The at-
tribute classifiers are trained on the low level fea-
tures of (Farhadi et al., 2009) using RBF kernel
SVMs. Preposition functions encoding spatial rela-
tionships between objects are hand designed to eval-
uate the spatial relationships between pairs of re-
gions in an image and provide a score for 16 prepo-
sitions (e.g., above, under, against, in etc).

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/

221

From these three types of visual output, we con-
struct a meaning representation of an image as a
set of triples (one triple for every pair of detected
objects). Each triple encodes a spatial relation be-
tween two objects in the following format: <<adj1,
obj1>, prep, <adj2, obj2>>. The generation pro-
cedure is elaborated in the following two sections.

3 Baseline Approaches to Surface
Realization

This section explores three baseline surface realiza-
tion approaches: language models (§3.1), random-
ized local search (§3.2), and template-based (§3.3).
Our best approach, phrase fusion using web-scale n-
grams follows in §4.

3.1 Language Model Based Approach
For each triple, as described in §2, we construct a
sentence. For instance, given the triple <<white,
cloud>, in, <blue, sky>>, we might generate
“There is a white cloud in the blue sky”.

We begin with a simple decoding scheme based
on language models. Let t be a triple, and let V t

be the set of words in t. We perform surface real-
ization by adding function words in-between words
in V t. As a concrete example, suppose we want to
determine whether to insert a function word x be-
tween a pair of words α ∈ V t and β ∈ V t. Then,
we need to compare the length-normalized probabil-
ity p̂(αxβ) with p̂(αβ), where p̂ takes the n’th root
of the probability p for n-word sequences. We in-
sert the new function word x if p̂(αxβ) ≥ p̂(αβ)
using the n-gram models, where the probability of
any given sequence w1, ..., wm is approximated by

p(w1, ..., wm) =
m∏

i=1

p(wi|wi−(n−1), ..., wi−1)

Note that if we wish to reorder words in V t based on
n-gram based language models, then the decoding
problem becomes an instance of asymmetric trav-
eler’s salesman problem (NP-hard). For brevity, we
retain the original order of words in the given triple.
We later lift this restriction using the web-scale n-
gram based phrase fusion method introduced in §4.

3.2 Randomized Local Search Approach
A much needed extension to the language model
based surface realization is incorporating parsers to

Begin Loop (until T iterations or convergence)
Choose a position i to revise at random
Choose an edit operation at random
If the edit yields a better score by LM and PCFG

Commit the edit
End Loop

Table 1: Pseudo code for a randomized local search ap-
proach. A possible edit operation includes insertion,
deletion, and replacement. The score of the current sen-
tence is determined by the multiplication LM-based prob-
ability and PCFG-based probability.

enforce long distance regularities for more gram-
matically correct generation. However, optimiz-
ing both language-model-based probabilities and
parser-based probabilities is intractable. Therefore,
we explore a randomized local search approach that
makes greedy revisions using both language models
and parsers. Randomized local search has been suc-
cessfully applied to intractable optimization prob-
lems in AI (e.g., Chisholm and Tadepalli (2002)) and
NLP (e.g., White and Cardie (2002)).

Table 1 shows the skeleton of the algorithm in our
study. Iterating through a loop, it chooses an edit
location and an edit operation (insert, delete, or re-
place) at random. If the edit yields a better score,
then we commit the edit, otherwise we jump to the
next iteration of the loop. We define the score as

score(X) = p̂LM (X)p̂PCFG(X)

where X is a given sentence (image description),
p̂LM (X) is the length normalized probability of X
based on the language model, and p̂PCFG(X) is the
length normalized probability of X based on the
probabilistic context free grammar (PCFG) model.
The loop is repeated until convergence or a fixed
number of iterations is reached. Note that this ap-
proach can be extended to simulated annealing to al-
low temporary downward steps to escape from local
maxima. We use the PCFG implementation of Klein
and Manning (2003).

3.3 Template Based Approach
The third approach is a template-based approach
with linguistic constraints, a technique that has of-
ten been used for various practical applications such
as summarization (Zhou and Hovy, 2004) and dia-

222

blue, bike [2669]
blue, bicycle [1365]
bike, blue [1184]
blue, cycle [324]
cycle, of, the, blue [172]
cycle, blue [158]
bicycle, blue [154]
bike, in, blue [98]
cycle, of, blue [64]
bike, with, blue [43]

< < blue , bicycle >, near, < shiny , person > >

bright, boy [8092]
bright, child [7840]
bright, girl [6191]
bright, kid [5873]
bright, person [5461]
bright, man [4936]
bright, woman [2726]
bright, women [1684]
lady, bright [1360]
bright, men [1050]

person, operating, a, bicycle [3409]
man, on, a, bicycle [2842]
cycle, of, child [2507]
bike, for, men [2485]
person, riding, a, bicycle [2118]
cycle, in, women [1853]
bike, for, women [1442]
boy, on, a, bicycle [1378]
cycle, of, women [1288]
man, on, a, bike [1283]

bright person operating a blue bicycle [25411589385]
bright man on a blue bicycle [19148372880]
bright man on a blue bike [16902478072]
bright person riding a blue bicycle [15788133270]
bright boy on a blue bicycle [15220809240]
blue bike for bright men [6964088250]
blue bike for bright women [6481207432]
blue cycle of bright child [6368181120]
blue cycle in bright women [1011026448]

Figure 2: Illustration of phrase fusion composition al-
gorithm using web-scale n-grams. Numbers in square
brackets are n-gram frequencies.

logue systems (Channarukul et al., 2003). Because
the meaning representation produced by the image
recognition system has a fixed pattern of <<adj1,
obj1>, prep, <adj2, obj2>>, it can be templated as
“There is a [adj1] [obj1] [prep] the [adj2] [obj2].”
We also include templates that encode basic dis-
course constraints. For instance, the template that
generated the first sentences in Figure 3 and 4 is:
[PREFIX] [#(x1)] [x1], [#(x2)] [x2], ... and [#(xk)]
[xk], where xi is the name of an object (e.g. “cow”),
#(xi) is the number of instances of xi (e.g. “one”),
and PREFIX ∈ {”This picture shows”, ”This is a pic-
ture of”, etc}.

Although this approach can produce good looking
sentences in a limited domain, there are many limita-
tions. First, a template-based approach does not al-
low creative writing and produces somewhat stilted
prose. In particular, it cannot add interesting new
words, or replace existing content words with better
ones. In addition, such an approach does not allow
any reordering of words which might be necessary to
create a fluent sentence. Finally, hand-written rules
are domain-specific, and do not generalize well to
new domains.

4 Surface Realization by Phrase Fusion
using Web-scale N-gram

We now introduce an entirely different approach
that addresses the limitations of the conventional ap-

proaches discussed in §3. This approach is based
on web-scale n-gram, also known as Google Web
1T data, which provides the frequency count of each
possible n-gram sequence for 1 ≤ n ≤ 5.

4.1 [Step I] – Candidate Phrase Selection
We first define three different sets of phrases for each
given triple <<adj1, obj1>, prep, <adj2, obj2>>:

• O1 = {(x, f) | x is an n-gram phrase describ-
ing the first object using the words adj1 and
obj1, and f is the frequency of x}

• O2 = {(x, f) | x is an n-gram phrase describ-
ing the second object using the words adj2 and
obj2, and f is the frequency of x}

• R = {(x, f) | x is an n-gram describing the re-
lation between the two objects using the words
obj1 and obj2, and f is the frequency of x}

We find n-gram phrases for O1, O2, andR from the
Google Web 1T data. The search patterns for O1 is:

• [adj1] [♣]n−2 [obj1]

• [obj1] [♣]n−2 [adj1]

where [♣] is a wildcard word, and [♣]n−2 denotes
a sequence of n-2 number of wildcard words in a n-
gram sequence. For wildcards, we only allow a lim-
ited set of function words, and verbs in the gerund
form2 for reasons that will become clearer in the
next step – phrase fusion in §4.2.

Note that it is the second pattern that allows
interesting re-ordering of words in the final sen-
tence generation. For instance, suppose adj1=green,
obj1=person. Then it is more natural to generate
a phrase using the reverse pattern such as, “person
in green” or “person wearing green” than simply
concatenating adj1 and obj1 to generate “green per-
son”. Similarly, given obj1=bicycle and obj2=man,
generating a phrase using the reverse pattern, e.g.,
“man with a bicycle” would be more natural than
“bicycle with a man”. Our hypothesis is that such
ordering preference is implicitly encoded in the
web-scale n-grams via frequencies.

It is worthwhile to note that our pattern matching
is case sensitive, and we only allow patterns that are

2We treat words with suffix “ing” as gerund for simplicity.

223

Phrase Fusion
Black bull eating fluffy grass

Bright apartment in the blue sky
Shaggy grass looking at the blue sky

Local Search
the black cow or even by the furry
grass. the shiny building up by the
same blue sky. the furry grass be

below over one blue sky.

Template This picture shows one
cow, one building, one grass and
one sky. The black cow is by the
shiny building, and by the furry
grass, and by the blue sky. The

shiny building is by the furry grass,
and by the blue sky. The furry

grass is below the blue sky.

Simple decoding
the black cow or by the furry grass. the
shiny building up by the blue sky. the
furry grass be below one blue sky.

Image Recognition Output as Tripes:
<black;yellow;rusty,cow>,by;near;by,<furry;green;brown,grass>
<shiny;colorful;yellow,building>,by;near;by,<blue;clear;colorful,sky>
<furry;green;brown,grass>,below;beneath;by,<blue;clear;colorful,sky>

Figure 3: Comparison of image descriptions

all lower-case. From our pilot study, we found that
n-grams with upper case characters are likely from
named entities, which distort the n-gram frequency
distribution that we rely on during the phrase fusion
phase. To further reduce noise, we also discard any
n-gram that contains a character that is not an alpha-
bet.

Accommodating Uncertainty We extend candi-
date phrase selection in order to cope with uncer-
tainty from the image recognition. In particular,
for each object detection obji, we include its top 3
predicted modifiers adji1, adji2, adji3 determined
by the attribute classifiers (see §2) to expand the
set O1 and O2 accordingly. For instance, given
adji =(shiny or white) and obji = sheep, we can
consider both <shiny,sheep> and <white,sheep>
pairs to predict more compatible pairs of words.

Accommodating Synonyms Additionally, we
augment each modifier adji and each object name
obji with synonyms to further expand our sets
O1, O2, and R. These expanded sets of phrases
enable resulting generations that are more fluent
and creative.

4.2 [Step II] – Phrase Fusion

Given the expanded sets of phrases O1, O2, and R
described above, we perform phrase fusion to gen-
erate simple image description. In this step, we find
the best combination of three phrases, (x̂1, f̂1) ∈

O1, (x̂2, f̂2) ∈ O2, and (x̂R, f̂R) ∈ R as follows:

(x̂1, x̂2, x̂R) = argmaxx1,x2,xR
score(x1, x2, xR) (1)

score(x1, x2, xR) = φ(x1)× φ(x2)× φ(xR) (2)

s.t. x̂1 and x̂R are compatible

& x̂2 and x̂R are compatible

Two phrases x̂i and x̂R are compatible if they share
the same object noun obji. We define the phrase-
level score function φ(·) as φ(xi) = fi using the
Google n-gram frequencies. The equation (2) can be
maximized using dynamic programming, by align-
ing the decision sequence as x̂1 − x̂R − x̂2.

Once the best combination – (x̂1, x̂2, x̂R) is de-
termined, we fuse the phrases by replacing the word
obj1 in the phrase x̂R with the corresponding phrase
x̂1. Similarly, we replace the word obj2 in the phrase
x̂R with the other corresponding phrase x̂2. Because
the wildcard words – [♣] in §4.1 allow only a lim-
ited set of function words and gerund, the resulting
phrase is highly likely to be grammatically correct.

Computational Efficiency One advantage of our
phrase fusion method is its efficiency. If we were
to attempt to re-order words with language mod-
els in a naive way, we would need to consider all
possible permutations of words – an NP-hard prob-
lem (§3.1). However, our phrase fusion method is
clever in that it probes reordering only on selected
pairs of words, where reordering is likely to be use-
ful. In other words, our approach naturally ignores
most word pairs that do not require reordering and
has a time complexity of only O(K2n), where K is
the maximum number of candidate phrases of any
phrase type, and n is the number of phrase types in
each sentence. K can be kept as a small constant by
selecting K-best candidate phrases of each phrase
type. We set K = 10 in this paper.

5 Experimental Results

To construct the training corpus for language mod-
els, we crawled Wikipedia pages that describe our
object set. For evaluation, we use the UIUC PAS-
CAL sentence dataset3 which contains upto five
human-generated sentences that describing 1000 im-
ages. Note that all of the approaches presented in

3http://vision.cs.uiuc.edu/pascal-sentences/

224

Phrase fusion
shiny motorcycle nearby shiny motorcycle.
black women operating a shiny motorcycle.

bright boy on a shiny motorcycle.
girl showing pink on a shiny motorcycle.

Local search
the shiny motorbike or

against the shiny
motorbike. the shiny

motorbike or by the black
person. the shiny motorbike
or by the shiny person. the
shiny motorbike or by the

pink person.

Simple Decoding
the shiny motorbike or

against the shiny
motorbike. the shiny

motorbike or by the black
person. the shinny

motorbike or by the shiny
boy. the shiny motorbike or

by the pink person.

Template This is a picture of two motorbikes, three persons, one building and one
tree. The first shiny motorbike is against the second shiny motorbike, and by the
first black person. The second shiny motorbike is by the first black person, and by

the second shiny person, and by the third pink person.

Image Recognition Output as Triples:
< < shiny; black; rusty , motorbike >, against; by; in , < shiny; black; rusty , motorbike > >
< < shiny; black; rusty , motorbike >, by; near; by , < black; shiny; rusty , person > >
< < shiny; black; rusty , motorbike >, by; near; by , < pink; rusty; striped , person > >

Figure 4: Comparison of image descriptions

Section 3 and 4 attempt to insert function words for
surface realization. In this work, we limit the choice
of function words to only those words that are likely
to be necessary in the final output.4 For instance, we
disallow function words such as “who” or “or”.

Before presenting evaluation results, we present
some samples of image descriptions generated by 4
different approaches in Figure 3 and 4. Notice that
only the PHRASE FUSION approach is able to in-
clude interesting and adequate verbs, such as “eat-
ing” or “looking” in Figure 3, and “operating” in
Figure 4. Note that the choice of these action verbs
is based only on the co-occurrence statistics encoded
in n-grams, without relying on the vision compo-
nent that specializes in action recognition. These ex-
amples therefore demonstrate that world knowledge
implicitly encoded in natural language can help en-
hance image content recognition.

Automatic Evaluation: BLEU (Papineni et al.,
2002) is a widely used metric for automatic eval-
uation of machine translation that measures the n-
gram precision of machine generated sentences with
respect to human generated sentences. Because our
task can be viewed as machine translation from im-
ages to text, BLEU (Papineni et al., 2002) may seem

4This limitation does not apply to TEMPLATE.

w/o w/ syn
LANGUAGE MODEL 0.094 0.106
TEMPLATE 0.087 0.096
LOCAL SEARCH 0.100 0.111
PHRASE FUSION (any best) 0.149 0.153
PHRASE FUSION (best w/ gerund) 0.146 0.149
Human 0.500 0.510

Table 2: Automatic Evaluation: BLEU measured at 1

Creativ. Fluency Relevan.

LANGUAGE MODEL 2.12 1.96 2.09
TEMPLATE 2.04 1.7 1.96
LOCAL SEARCH 2.21 1.96 2.04
PHRASE FUSION 1.86 1.97 2.11

Table 3: Human Evaluation: the scores range over 1 to 3,
where 1 is very good, 2 is ok, 3 is bad.

like a reasonable choice. However, there is larger
inherent variability in generating sentences from im-
ages than translating a sentence from one language
to another. In fact two people viewing the same pic-
ture may produce quite different descriptions. This
means BLEU could penalize many correctly gener-
ated sentences, and be poorly correlated with human
judgment of quality. Nevertheless we report BLEU
scores in absence of any other automatic evaluation
method that serves our needs perfectly.

The results are shown in Table 2 – first column
shows BLEU score considering exact matches, sec-
ond column shows BLEU with full credit for syn-
onyms. To give a sense of upper bound and to see
some limitations of the BLEU score, we also com-
pute the BLEU score between human-generated sen-
tences by computing the BLEU score of the first hu-
man sentence with respect to the others.

There is one important factor to consider when in-
terpreting Table 2. The four approaches explored
in this paper are purposefully prolific writers in that
they generate many more sentences than the num-
ber of sentences in the image descriptions written by
humans (available in the UIUC PASCAL dataset).
In this work, we do not perform sentence selection
to reduce the number of sentences in the final out-
put. Rather, we focus on the quality of each gener-
ated sentence. The consequence of producing many

225

Way rusty the golden cow
Golden cow in the golden sky

Tree snowing black train
Black train under the tree Rusty girl sitting at a white table

White table in the clear sky
Rusty girl living in the clear sky

Blue path up in the clear sky
Blue path to colored fishing boat
Blue path up in the clear
morning sky

rusty chair for rusty dog.
rusty dog under the rusty chair.
rusty dog sitting in a rusty chair.

Gray cat from a burning gray
building
Gray building with a gray cat.
Gray building in the white sky

Shaggy dog knotting hairy men
Pink flowering plant the hairy dog
Pink dog training shaggy dog
Shaggy dog relaxing on a colored sofa

black women hanging
from a black tree.
colored man in the tree.

1 2 3 4

5

6
7

8

Figure 5: Sample image descriptions using PHRASE FUSION: some of the unexpected or poetic descriptions are
highlighted in boldface, and some of the interesting incorrect descriptions are underlined.

more sentences in our output is overall lower BLEU
scores, because BLEU precision penalizes spurious
repetitions of the same word, which necessarily oc-
curs when generating more sentences. This is not an
issue for comparing different approaches however,
as we generate the same number of sentences for
each method.

From Table 2, we find that our final approach —
PHRASE FUSION based on web-scale n-grams per-
forms the best. Notice that there are two different
evaluations for PHRASE FUSION: the first one is
evaluated for the best combination of phrases (Equa-
tion (1)), while the second one is evaluated for the
best combination of phrases that contained at least
one gerund.

Human Evaluation: As mentioned earlier, BLEU
score has some drawbacks including obliviousness
to correctness of grammar and inability to evaluate
the creativity of a composition. To directly quantify
these aspects that could not be addressed by BLEU,
we perform human judgments on 120 instances for
the four proposed methods. Evaluators do not have
any computer vision or natural language generation
background.

We consider the following three aspects to eval-
uate the our image descriptions: creativity, fluency,

and relevance. For simplicity, human evaluators as-
sign one set of scores for each aspect per image. The
scores range from 1 to 3, where 1 is very good, 2 is
ok, and 3 is bad.5 The definition and guideline for
each aspect is:

[Creativity] How creative is the generated sen-
tence?

1 There is creativity either based on unexpected
words (in particular, verbs), or describing
things in a poetic way.

2 There is minor creativity based on re-ordering
words that appeared in the triple

3 None. Looks like a robot talking.

[Fluency] How grammatically correct is the gener-
ated sentence?

1 Mostly perfect English phrase or sentence.
2 There are some errors, but mostly comprehen-

sible.
3 Terrible.

[Relevance] How relevant is the generated descrip-
tion to the given image?

1 Very relevant.
2 Reasonably relevant.
3 Totally off.

5In our pilot study, human annotations on 160 instances
given by two evaluators were identical on 61% of the instances,
and close (difference ≤ 1) on 92%.

226

Table 3 shows the human evaluation results. In
terms of creativity, PHRASE FUSION achieves the
best score as expected. In terms of fluency and
relevance however, TEMPLATE achieves the best
scores, while PHRASE FUSION performs the second
best. Remember that TEMPLATE is based on hand-
engineered rules with discourse constraints, which
seems to appeal to evaluators more. It would be
straightforward to combine PHRASE FUSION with
TEMPLATE to improve the output of PHRASE FU-
SION with hand-engineered rules. However, our
goal in this paper is to investigate statistically moti-
vated approaches for generating image descriptions
that can address inherent limitations of hand-written
rules discussed in §3.3.

Notice that the relevance score of TEMPLATE is
better than that of LANGUAGE MODEL, even though
both approaches generate descriptions that consist of
an almost identical set of words. This is presum-
ably because the output from LANGUAGE MODEL

contains grammatically incorrect sentences that are
not comprehendable enough to the evaluators. The
relevance score of PHRASE FUSION is also slightly
worse than that of TEMPLATE, presumably because
PHRASE FUSION often generates poetic or creative
expressions, as shown in Figure 5, which can be con-
sidered a deviation from the image content.

Error Analysis There are different sources of er-
rors. Some errors are due to mistakes in the origi-
nal visual recognition input. For example, in the 3rd
image in Figure 5, the color of sky is predicted to
be “golden”. In the 4th image, the wall behind the
table is recognized as “sky”, and in the 6th image,
the parrots are recognized as “person”.

Other errors are from surface realization. For in-
stance, in the 8th image, PHRASE FUSION selects
the preposition “under”, presumably because dogs
are typically under the chair rather than on the chair
according to Google n-gram statistics. In the 5th
image, an unexpected word “burning” is selected to
make the resulting output idiosyncratic. Word sense
disambiguation sometimes causes a problem in sur-
face realization as well. In the 3rd image, the word
“way” is chosen to represent “path” or “street” by
the image recognizer. However, a different sense of
way – “very” – is being used in the final output.

6 Related Work

There has been relatively limited work on automat-
ically generating natural language image descrip-
tions. Most work related to our study is discussed
in §1, hence we highlight only those that are clos-
est to our work here. Yao et al. (2010) present a
comprehensive system that generates image descrip-
tions using Head-driven phrase structure (HPSG)
grammar, which requires carefully written domain-
specific lexicalized grammar rules, and also de-
mands a very specific and complex meaning rep-
resentation scheme from the image processing. In
contrast, our approach handles images in the open-
domain more naturally using much simpler tech-
niques.

We use similar vision based inputs – object detec-
tors, modifier classifiers, and prepositional functions
– to some very recent work on generating simple de-
scriptions for images (Kulkarni et al., 2011), but fo-
cus on improving the sentence generation method-
ology and produce descriptions that are more true
to human generated descriptions. Note that the
BLEU scores reported in their work of Kulkarni et
al. (2011) are not directly comparable to ours, as the
scale of the scores differs depending on the number
of sentences generated per image.

7 Conclusion

In this paper, we presented a novel surface realiza-
tion technique based on web-scale n-gram data to
automatically generate image description. Despite
its simplicity, our method is highly effective in gen-
erating mostly appealing and presentable language,
while permitting creative writing at times. We con-
clude from our study that it is viable to generate
simple textual descriptions that are germane to the
specific image content while also sometimes pro-
ducing almost poetic natural language. Furthermore,
we demonstrate that world knowledge implicitly en-
coded in natural language can help enhance image
content recognition.

Acknowledgments

This work is supported in part by NSF Faculty Early
Career Development (CAREER) Award #1054133.

227

References
A. Aker and R. Gaizauskas. 2010. Generating image

descriptions using dependency relational patterns. In
ACL.

K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth,
D. Blei, and M. Jordan. 2003. Matching words and
pictures. JMLR, 3:1107–1135.

Songsak Channarukul, Susan W. McRoy, and Syed S.
Ali. 2003. Doghed: a template-based generator for
multimodal dialog systems targeting heterogeneous
devices. In NAACL.

Michael Chisholm and Prasad Tadepalli. 2002. Learning
decision rules by randomized iterative local search. In
ICML, pages 75–82.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A Large-Scale Hierarchical Im-
age Database. In CVPR.

A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth.
2009. Describing objects by their attributes. In CVPR.

A. Farhadi, M Hejrati, A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, and D. A. Forsyth.
2010. Every picture tells a story: generating sentences
for images. In ECCV.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. 2010. Object detection with discriminatively
trained part based models. tPAMI, Sept.

Y. Feng and M. Lapata. 2010a. How many words is a
picture worth? automatic caption generation for news
images. In ACL.

Yansong Feng and Mirella Lapata. 2010b. Topic models
for image annotation and text illustration. In HLT.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of the 41st An-
nual Meeting on Association for Computational Lin-
guistics, pages 423–430. Association for Computa-
tional Linguistics.

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming
Li, Yejin Choi, Alexander C Berg, and Tamara L Berg.
2011. Babytalk: Understanding and generating simple
image descriptions. In CVPR.

Chee Wee Leong, Rada Mihalcea, and Samer Hassan.
2010. Text mining for automatic image tagging. In
COLING.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation.

Katerina Pastra, Horacio Saggion, and Yorick Wilks.
2003. Nlp for indexing and retrieval of captioned pho-
tographs. In EACL.

Michael White and Claire Cardie. 2002. Selecting sen-
tences for multidocument summaries using random-
ized local search. In ACL Workshop on Automatic
Summarization.

B.Z. Yao, Xiong Yang, Liang Lin, Mun Wai Lee, and
Song-Chun Zhu. 2010. I2t: Image parsing to text de-
scription. Proc. IEEE, 98(8).

Liang Zhou and Eduard Hovy. 2004. Template-
filtered headline summarization. In Text Summariza-
tion Branches Out: Pr ACL-04 Wkshp, July.

228

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 229–237,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Adapting Text instead of the Model: An Open Domain Approach

Gourab Kundu, Dan Roth
University of Illinois at Urbana Champaign

Urbana, IL 61801
{kundu2,danr}@illinois.edu

Abstract

Natural language systems trained on labeled
data from one domain do not perform well
on other domains. Most adaptation algorithms
proposed in the literature train a new model for
the new domain using unlabeled data. How-
ever, it is time consuming to retrain big mod-
els or pipeline systems. Moreover, the domain
of a new target sentence may not be known,
and one may not have significant amount of
unlabeled data for every new domain.

To pursue the goal of an Open Domain NLP
(train once, test anywhere), we propose ADUT
(ADaptation Using label-preserving Transfor-
mation), an approach that avoids the need for
retraining and does not require knowledge of
the new domain, or any data from it. Our ap-
proach applies simple label-preserving trans-
formations to the target text so that the trans-
formed text is more similar to the training do-
main; it then applies the existing model on
the transformed sentences and combines the
predictions to produce the desired prediction
on the target text. We instantiate ADUT for
the case of Semantic Role Labeling (SRL)
and show that it compares favorably with ap-
proaches that retrain their model on the target
domain. Specifically, this “on the fly” adapta-
tion approach yields 13% error reduction for
a single parse system when adapting from the
news wire text to fiction.

1 Introduction

In several NLP tasks, systems trained on annotated
data from one domain perform well when tested

on the same domain but adapt poorly to other do-
mains. For example, all systems of CoNLL 2005
shared task (Carreras and Màrquez, 2005) on Se-
mantic Role Labeling showed a performance degra-
dation of almost 10% or more when tested on a dif-
ferent domain.

Most works in domain adaptation have focused
on learning a common representation across train-
ing and test domains (Blitzer et al., 2006; DauméIII,
2007; Huang and Yates, 2009). Using this represen-
tation, they retrain the model for every new domain.
But these are not Open Domain Systems since the
model needs to be retrained for every new domain.
This is very difficult for pipeline systems like SRL
where syntactic parser, shallow parser, POS tagger
and then SRL need to be retrained. Moreover, these
methods need to have a lot of unlabeled data that is
taken from the same domain, in order to learn mean-
ingful feature correspondences across training and
test domain. These approaches cannot work when
they do not have a lot of unlabeled data from the test
domain or when the test domain in itself is very di-
verse, e.g., the web.

The contribution of this paper is a new frame-
work for adaptation. We propose ADUT (ADap-
tation Using label-preserving Transformation) as a
framework in which a previously learned model can
be used on an out-of-domain example without re-
training and without looking at any labeled or unla-
beled data for the domain of the new example. The
framework transforms the test sentence to generate
sentences that have, in principle, identical labeling
but that are more like instances from the training do-
main. Consequently, it is expected that the exist-

229

ing model will make better predictions on them. All
these predictions are then combined to choose the
most probable and consistent prediction for the test
sentence.

ADUT is a general technique which can be ap-
plied to any natural language task. In this paper, we
demonstrate its usefulness on the task of semantic
role labeling (Carreras and Màrquez, 2005). Start-
ing with a system that was trained on the news text
and does not perform well on fiction, we show that
ADUT provides significant improvement on fiction,
and is competitive with the performance of algo-
rithms that were re-trained on the test domain.

The paper is organized as follows. Section 2 dis-
cusses two motivating examples. Section 3 gives a
formal definition of our adaptation framework. Sec-
tion 4 describes the transformation operators that we
applied for this task. Section 5 presents our joint in-
ference approach. Section 6 describes our semantic
role labeling system and our experimental results are
in Section 7. Section 8 describes the related works
for domain adaptation. Finally in Section 9 we con-
clude the paper with a discussion.

2 Motivating Examples

One of the key reasons for performance degradation
of an NLP tool is unseen features such as words in
the new domain that were not seen in the training
domain. But if an unknown word is replaced by a
known word without changing the labeling of the
sentence, tools perform better. For example, in the
task of syntactic parsing, the unknown word checkup
causes the Charniak parser to make a wrong co-
ordination decision on the sentence

He was discharged from the hospital af-
ter a two-day checkup and he and his par-
ents had what Mr. Mckinley described as
a “celebration lunch” at the cafeteria on
the campus.

If we replace the word checkup with its hyper-
nym examination which appears in training data, the
parse gets corrected. Figure 1 shows both original
and corrected parse trees.

For the task of semantic role labeling, systems do
not perform well on the predicates that are infre-
quent in training domain. But if an infrequent predi-

cate is replaced with a frequent predicate from train-
ing domain such that both predicates have similar
semantic argument structure, the system performs
better. Consider the following sentence

Scotty gazed out at ugly gray slums.

The semantic role for the phrase at ugly gray slums
with respect to predicate gaze is A1. But the pred-
icate gaze appears only once in training data and
our model predicts at ugly gray slums as AM-LOC
instead of A1. But if gaze is replaced with look
which occurs 328 times in training data and has sim-
ilar argument structure (in the same VerbNet class as
gaze), the system makes the correct prediction.

3 Problem Formulation

Let the in-domain distribution be Di and out-of-
domain distribution be Do. We have a model f
trained over a set of labeled examples drawn from
Di. If Di and Do are very dissimilar, f will not per-
form well on examples drawn from Do. The prob-
lem is to get good performance from f on Do with-
out retraining f .

We define a Transformation g to be a function that
maps an example e into a set of examples E. So g :
X → 2X where X is the entire space of examples.
In this paper, we only consider the Label-preserving
Transformations which satisfy the property that all
transformed examples in E have the same label as
input example e, i.e., ∀x x ∈ Sk ⇒ g(x) ⊂ Sk
where Sk is the set of examples with label k . Let
G be a set of label-preserving transformation func-
tions. G = {g1, g2, . . ., gp}.

At evaluation time, for test example d, we will
apply G to get a set of examples T1. Let T2 = {d′ ∈
T1 : Di(d

′) > Di(d)}. So all examples in T2 have
same label as d but have a higher probability than
d to be drawn from the in-domain distribution. So
f should perform better on examples in T2 than on
d. For each d′ ∈ T2, f will produce scores for the
output labels. The scores will be combined subject
to constraints to produce the final output.

4 Transformation Functions

After applying a transformation function to get a
new sentence from an input sentence, we remem-
ber the mapping of segments across the original

230

a. S1

S

NP

He

VP

was VP

discharged PP

from the hospital

PP

after NP

NP

a two-day
checkup

SBAR

NP

and he and his parents

VP

had . . . campus

.

b. S1

S

S

NP

He

VP

was VP

discharged PP

from the hospital

PP

after NP

a two-day
examination

and S

NP

he and his parents

VP

had . . . campus

.

Figure 1: a. Original Parse tree b. Corrected Parse tree after replacement of unknown word checkup by examination

and transformed sentence. Thus, after annotating
the transformed sentence with SRL, we can transfer
the roles to the original sentence through this map-
ping. Transformation functions can be divided into
two categories. The first category is Transforma-
tions From List which uses external resources like
WordNet, VerbNet and Word Clusters. The second
is Learned Transformations that uses transformation
rules that have been learned from training data.

4.1 Transformation From List
I. Replacement of Predicate:

As noted in (Huang and Yates, 2010), 6.1% of the
predicates in the Brown test set do not appear in WSJ
training set and 11.8% appear at most twice. Since
the semantic roles of a sentence depend on the pred-
icate, these infrequent predicates hurt SRL perfor-
mance on new domains. Note that since all predi-
cates in PropBank are verbs, we will use the words
predicate and verb interchangeably.

We count the frequency of each predicate and its
accuracy in terms of F1 score over the training data.
If the frequency or the F1 score of the predicate in
the test sentence is below a threshold, we perturb
that predicate. We take all the verbs in the same class
of VerbNet1 as the original verb (in case the verb is
present in multiple classes, we take all the classes).
In case the verb is not present in VerbNet, we take
its synonyms from WordNet. If there is no synonym
in WordNet, we take the hypernyms.

From this collection of new verbs, we select verbs
that have a high accuracy and a high frequency in

1
http://verbs.colorado.edu/ mpalmer/projects/verbnet.html

training. We replace the original verb with each of
these new verbs and generate one new sentence for
each new verb; the sentence is retained if the parse
score for the new sentence is higher than the parse
score for the original sentence.2 VerbNet has de-
fined a set of verb-independent thematic roles and
grouped the verbs according to their usage in frames
with identical thematic roles. But PropBank anno-
tation was with respect to each verb. So the same
thematic role is labeled as different roles for dif-
ferent verbs in PropBank. For example, both warn
and advise belong to the same VerbNet class (37.9)
and take thematic roles of Recipient (person being
warned or advised) and Topic (topic of warning or
advising). But Recipient was marked as A2 for warn
and A1 for advise and Topic was marked as A1 for
warn and A2 for advise in PropBank annotation.
Semlink3 provides a mapping from the thematic role
to PropBank role for each verb. After the SRL anno-
tates the new sentence with PropBank roles for the
new verb, we map the PropBank roles of the new
verb to their corresponding thematic roles and then
map the thematic roles to the corresponding Prop-
Bank roles for the original verb.
II. Replacement and Removal of Quoted Strings:

Quoted sentences can vary a lot from one domain
to another. For example, in WSJ, quoted sentences
are like formal statements but in Brown, these are
like informal conversations. We generate the trans-
formations in the following ways:

1) We use the content of the quoted string as one
2

Parse score is the parse probability returned by Charniak or Stanford parser.
3

http://verbs.colorado.edu/semlink/

231

sentence. 2) We replace each quoted string in turn
with a simple sentence (This is good) to generate a
new sentence. 3) If a sentence has a quoted string in
the beginning, we move that quoted string after the
first NP and VP that immediately follow the quoted
string. For example, from the input sentence, “We
just sit quiet”, he said. we generate the sentences 1)
We just sit quiet 2) “This is good”, he said. 3) He
said, “We just sit quiet”.
III. Replacement of Unseen Words:

A major difficulty for domain adaptation is that
some words in the new domain do not appear in the
training domain. In the Brown test set, 5% of total
words were never seen in the WSJ training set.

Given an unseen word which is not a verb, we
replace it with WordNet synonyms and hypernyms
that were seen in the training data. We used the
clusters obtained in (Liang, 2005) from running the
Brown algorithm (Brown et al., 1992) on Reuters
1996 dataset. But since this cluster was generated
automatically, it is noisy. So we chose replacements
from the Brown clusters selectively. We only replace
those words for which the POS tagger and the syn-
tactic parser predicted different tags. For each such
word, we find its cluster and select the set of words
from the cluster. We delete from this set all words
that do not take at least one part-of-speech tag that
the original word can take (from WordNet). For each
candidate synonym or hypernym or cluster member,
we get a new sentence. Finally we only keep those
sentences that have higher parse scores than the orig-
inal sentence.
IV. Sentence Split based on Stop Symbols:

We split each sentence based on stop symbols like
; and . . Each of the splitted sentences becomes one
transformation of the original sentence.
V. Sentence Simplification:

We have a set of heuristics for simplifying the
constituents of the parse tree; for example, replac-
ing an NP with its first and last word, removal of
PRN phrases etc. We apply these heuristics and gen-
erate simpler sentences until no more simplification
is possible. Examples of our heuristics are given in
Table 1.

Note that we can use composition of multiple
transformation functions as one function. A compo-
sition p1 � p2(s) = ∪a∈p1(s)p2(a). We apply II�I,
III�I, IV�I and V�I.

Node Input Example Simplified Example Operation

NP He and she ran. He ran. replace

NP The big man ran. The man ran. replace

ADVP He ran fast. He ran. delete

PP He ran in the field. He ran. delete

PRN He – though sick – ran. He ran. delete

VP He walked and ran. He ran. delete

TO I want him to run. I want that he can ran. rewrite

Table 1: Examples of Simplifications (Predicate is run)

4.2 Learned Transformations

The learned model is inaccurate over verbs and roles
that are infrequent in the training data. The purpose
of the learned transformation is to transfer such a
phrase in the test sentence in place of a phrase of a
simpler sentence; this is done such that there exists
a mapping from the role of the phrase in the new
sentence to the role of the phrase in the original sen-
tence.

Phrase Representation: A phrase tuple is a 3-
tuple (t, i, h) where, t is the phrase type, i is the in-
dex, and h is the headword of the phrase. We denote
by PR the Phrase Representation of a sentence – an
ordered list of phrase tuples. A phrase tuple corre-
sponds to a node in the tree. We only consider phrase
tuples that correspond to nodes that are (1) a sibling
of the predicate node or (2) a sibling of an ancestor
of the predicate node. Phrase tuples inPR are sorted
based on their position in the sentence. The index i
of the phrase tuple containing the predicate is taken
to be zero with the indices of the phrase tuples on
the left (right) sequentially decreasing (increasing).

Transformation Rule: We denote by Label(n, s)
the semantic role of nth phrase in the PR of the
sentence s. Let Replace(ns, nt, ss, st) be a new
sentence that results from inserting the phrase ns in
sentence ss instead of phrase nt in sentence st. We
will refer to st as target sentence and to nt as the
target phrase. Let sp be a sequence of phrase tuples
named as source pattern. If Label(ns, ss) = r1 and
Label(nt, Replace(ns, nt, ss, st)) = r2, then denote
f(r2) = r1. In this case we call the 6-tuple (st, nt,
p, sp, ns, f) a transformation rule. We call f the

232

label correspondence function.
Example: Consider the sentence st = “But it did
not sing." and the rule τ : (st, nt, p, sp, ns, f). Let:
nt = −3, p = entitle,
sp = [−2, NP, φ][−1, AUX, φ][0, V, entitle][1, φ, to]
ns = −2, f = {<A0, A2>} ∪ {<Ai,Ai>|i 6= 0}.

The PR of τ.st is {[−4, CC, But] [−3, NP, it]
[−2, AUX, did] [−1, RB, not] [0, VB, sing] [1, ., .]}.
Consider the input sentence ss: Mr. X was entitled
to a discount . with PR of {[−2, NP, X] [−1, AUX,
was] [0, V, entitle] [1, PP, to][2, ., .]}. Since τ.sp is
a subsequence of the PR of ss, τ will apply to the
predicate entitle of ss. The transformed sentence is:
str = Replace(τ.ns, τ.nt, ss, τ.st) = But Mr. X

did not sing. with PR of {[−4, CC, But] [−3, NP,
X] [−2, AUX, did] [−1, RB, not] [0, VB, sing] [1,
., .]}. If the SRL system assigns the semantic role
of A0 to the phrase Mr. X of str, the semantic role
of Mr. X in ss can be recovered through τ.f since
τ.f(A0) = A2 = Label(−2, ss).

While checking if τ.sp is a subsequence of the
PR of the input sentence, φ in each tuple of τ.sp
has to be considered a trivial match. So τ will
match the sentence He is entitled to a reward. with
PR = {[−2, NP, He] [−1, AUX, is] [0, V, entitle]
[1, PP, to][2, ., .]} but will not match the sentence
The conference was entitled a big success. with
PR = {[−2, NP, conference] [−1, AUX, was] [0,
V, entitle] [1, S, success][2, ., .]} (mismatch position
is bolded). The index of a phrase tuple cannot be φ,
only the head word or type can be φ and the rules
with more φ strings in the source pattern are more
general since they can match more sentences.

Algorithm 1 GenerateRules
1: Input: predicate v, semantic role r, Training sentences D, SRL

Model M
2: Output: set of rules R
3: R⇐ GetInitialRules(v, r,D,M)
4: repeat
5: J ⇐ ExpandRules(R)
6: K ⇐ R ∪ J
7: sort K based on accuracy, support, size of source pattern
8: select some rules R ⊂ K based on database coverage
9: until all rules in R have been expanded before

10: return R

The algorithm for finding rules for a semantic role
r of a predicate v is given in Algorithm 1. It is a
specific to general beam search procedure that starts
with a set of initial rules (Line 3, detail in Algorithm

2) and finds new rules from these rules (Line 5, de-
tail in Algorithm 3). In Line 7, the rules are sorted
by decreasing order of accuracy, support and number
of φ strings in the source pattern. In Line 8, a set of
rules are selected to cover all occurrences of the se-
mantic role r with the predicate v a specific number
of times. This process continues until no new rules
are found. Note that these rules need to be learned
only once and can be used for every new domain.

Algorithm 2 GetInitialRules
1: Input: predicate v, semantic role r, Training sentences D, SRL-

Model M
2: Output: Set of initial rules I
3: I ⇐ φ
4: T ⇐ {s ∈ D : length(s) <= e}
5: S ⇐ {s ∈ D : s has role r for predicate v}
6: M ⇐ Set of all semantic roles
7: for each phrase p1 in s1 ∈ S with gold label r for predicate v do
8: for each phrase p2 in s2 ∈ T labeled as a core argument do
9: if s1 6= s2 and p1 and p2 have same phrase types then

10: τ ⇐ empty rule
11: τ.st ⇐ s2, τ.p⇐ v
12: τ.nt ⇐ index of p2 in PR of s2
13: τ.ns ⇐ index of p1 in PR of s1
14: τ.sp ⇐ phrase tuples for phrases from p1 to v and two

phrases after v in PR of s1
15: L⇐ φ
16: for each sentence s3 ∈D with predicate v do
17: if τ.sp is a subsequence of PR of s3 then
18: x⇐ replace(τ.ns, τ.nt, s3, τ.st)
19: annotate x with SRL using M
20: r1 ⇐ the gold standard semantic role of the

phrase with index τ.ns in PR of s3
21: r2 ⇐ Label(τ.nt, x)
22: if r2 /∈ L then
23: insert(r2, r1) in τ.f
24: L = L ∪ {r2}
25: end if
26: end if
27: end for
28: for each role j ∈M − L do
29: insert(j, j) in τ.f
30: end for
31: I ⇐ I∪ {τ}
32: end if
33: end for
34: end for
35: return I

The algorithm for generating initial rules for the
semantic role r of predicate v is given in Algorithm
2. Shorter sentences are preferred to be target sen-
tences(Line 4). A rule τ is created for every (p1,p2)
pair where p1, p2 are phrases, p1 has the semantic
role r in some sentence s1, p2 is labeled as a core
argument(A0 − A5) in some sentence in T and the
phrase types of p1 and p2 in their respective parse
trees are same(Lines 7 − 9). Every sentence s3 in

233

training corpus with predicate τ.p is a potential can-
didate for applying τ (Line 16) if τ.sp is a subse-
quence ofPR of s3(Line 17). After applying τ to s3,
a transformed sentence x is created(Line 18). Lines
20 − 26 find the semantic role r2 of the transferred
phrase from SRL annotation of x using model M
and create a mapping from r2 to the gold standard
role r1 of the phrase in s3. L maintains the set of se-
mantic roles for which mappings have been created.
In lines 28 − 30, all unmapped roles are mapped to
themselves.

The algorithm for creating new rules from a set
of existing rules is given in Algorithm 3. Lines 4 −
13 generate all immediate more general neighbors of
the current rule by nullifying the headword or phrase
type element in any of the phrase tuples in its source
pattern.

Algorithm 3 ExpandRules
1: Input: a set of rules R
2: Output: a set of expanded rules E
3: E ⇐ φ
4: for each phrase tuple c in the source pattern of r ∈ R do
5: if c is not the tuple for predicate then
6: create a new rule r′ with all components of r
7: mark the head word of c in the source pattern of r′ to φ
8: add r′ to E
9: create a new rule r′′ with all components of r

10: mark the phrase type of c in the source pattern of r′′ to φ
11: add r′′ to E
12: end if
13: end for
14: return E

5 Combination by Joint Inference

The transformation functions transform an input
sentence into a set of sentences T . From each trans-
formed sentence ti, we get a set of argument can-
didates Si. Let S =

⋃|T |
i=1 Si be the set of all ar-

guments. Argument classifier assigns scores for
each argument over the output labels(roles) in S
that is then converted into a probability distribu-
tion over the possible labels using the softmax func-
tion (Bishop, 1995). Note that multiple arguments
with the same span can be generated from multiple
transformed sentences.

First, we take all arguments from S with distinct
span and put them in S′. For each argument arg in
S′, we calculate scores over possible labels as the
sum over the probability distribution (over output la-
bels) of all arguments in S that have the same span

as arg divided by the number of sentences in T that
contained arg. This results in a set of arguments with
distinct spans and for each argument, a set of scores
over possible labels. Following the joint inference
procedure in (Punyakanok et al., 2008), we want to
select a label for each argument such that the total
score is maximized subject to some constraints. Let
us index the set S′ as S′1:M where M = |S′|. Also
assume that each argument can take a label from a
set P . The set of arguments in S′1:M can take a set
of labels c1:M ∈ P 1:M . Given some constraints, the
resulting solution space is limited to a feasible set F;
the inference task is: c1:M = arg maxc1:M∈F (P 1:M)∑M

i=1 score(S
′i = ci).

The constraints used are: 1) No overlapping or
embedding argument. 2) No duplicate argument for
core arguments A0-A5 and AA. 3) For C-arg, there
has to be an arg argument.

6 Experimental Setup

In this section, we discuss our experimental setup
for the semantic role labeling system. Similar to the
CoNLL 2005 shared tasks, we train our system using
sections 02-21 of the Wall Street Journal portion of
Penn TreeBank labeled with PropBank. We test our
system on an annotated Brown corpus consisting of
three sections (ck01 - ck03).

Since we need to annotate new sentences with
syntactic parse, POS tags and shallow parses, we do
not use annotations in the CoNLL distribution; in-
stead, we re-annotate the data using publicly avail-
able part of speech tagger and shallow parser1, Char-
niak 2005 parser (Charniak and Johnson, 2005) and
Stanford parser (Klein and Manning, 2003).

Our baseline SRL model is an implementation of
(Punyakanok et al., 2008) which was the top per-
forming system in CoNLL 2005 shared task. Due to
space constraints, we omit the details of the system
and refer readers to (Punyakanok et al., 2008).

7 Results

Results for ADUT using only the top parse of Char-
niak and Stanford are shown in Table 2. The Base-
line model using top Charniak parse (BaseLine-
Charniak) and top Stanford parse (BaseLine-
Stanford) score respectively 76.4 and 73.3 on the

1
http://cogcomp.cs.illinois.edu/page/software

234

WSJ test set. Since we are interested in adaptation,
we report and compare results for Brown test set
only. On this set, both ADUT-Charniak and ADUT-
Stanford significantly outperform their respective
baselines. We compare with the state-of-the-art sys-
tem of (Surdeanu et al., 2007). In (Surdeanu et
al., 2007), the authors use three models: Model
1 and 2 do sequential tagging of chunks obtained
from shallow parse and full parse. Model 3 assumes
each predicate argument maps to one syntactic con-
stituent and classifies it individually. So Model 3
matches our baseline model. ADUT-Charniak out-
performs the best individual model (Model 2) of
(Surdeanu et al., 2007) by 1.6% and Model 3 by
3.9%. We also tested another system that used clus-
ter features and word embedding features computed
following (Collobert and Weston, 2008). But we
did not see any performance improvement on Brown
over baseline.

System P R F1

BaseLine-Charniak 69.6 61.8 65.5

ADUT-Charniak 72.75 66.1 69.3
BaseLine-Stanford 70.8 56.5 62.9

ADUT-Stanford 72.5 60.0 65.7

(Surdeanu et al., 2007)(Model 2) 71.8 64.0 67.7

(Surdeanu et al., 2007)(Model 3) 72.4 59.7 65.4

Table 2: Comparing single parse system on Brown.

All state-of-the-art systems for SRL are a com-
bination of multiple systems. So we combined
ADUT-Stanford, ADUT-Charniak and another sys-
tem ADUT-Charniak-2 based on 2nd best Charniak
parse using joint inference. In Table 3, We com-
pare with (Punyakanok et al., 2008) which was the
top performing system in CoNLL 2005 shared task.
We also compare with the multi parse system of
(Toutanova et al., 2008) which uses a global joint
model using multiple parse trees. In (Surdeanu et al.,
2007), the authors experimented with several com-
bination strategies. Their first combination strategy
was similar to ours where they directly combined the
outputs of different systems using constraints (de-
noted as Cons in Table 3). But their best result on
Brown set was obtained by treating the combina-
tion of multiple systems as a meta-learning problem.

They trained a new model to score candidate argu-
ments produced by individual systems before com-
bining them through constraints (denoted as LBI in
Table 3). We also compare with (Huang and Yates,
2010) where the authors retrained a SRL model us-
ing HMM features learned over unlabeled data of
WSJ and Brown.

System P R F1 Retrain

(Punyakanok et al., 2008) 73.4 62.9 67.8 ×
(Toutanova et al., 2008) NR NR 68.8 ×

(Surdeanu et al., 2007) (Cons) 78.2 62.1 69.2 ×
(Surdeanu et al., 2007) (LBI) 81.8 61.3 70.1 ×

ADUT-combined 74.3 67.0 70.5 ×
(Huang and Yates, 2010) 77.0 70.9 73.8 X

Table 3: Comparison of the multi parse system on Brown.

Table 3 shows that ADUT-Combined performs
better than (Surdeanu et al., 2007) (Cons) when in-
dividual systems have been combined similarly. We
believe that the techniques in (Surdeanu et al., 2007)
of using multiple models of different kinds (two
based on sequential tagging of chunks to capture ar-
guments whose boundaries do not match a syntac-
tic constituent) and training an additional model to
combine the outputs of individual systems are or-
thogonal to the performance improvement that we
have and applying these methods will further in-
crease the performance of our final system which is
a research direction we want to pursue in future.

We did an ablation study to determine which
transformations help and by how much. Table 4
presents results when only one transformation is ac-
tive at a time. We see that each transformation im-
proves over the baseline.

The effect of the transformation of Replacement
of Predicate on infrequent verbs is shown in Table
5. This transformation improves F1 as much as 6%
on infrequent verbs.

The running time for ADUT-Charniak on Brown
set is 8 hours compared to SRL training time of 20
hours. Average number of transformed sentences
generated by ADUT-Charniak for every sentence
from Brown is 36. The times are calculated based
on a machine with 2x 6-Core Xeon X5650 Proces-
sor with 48G memory.

235

Transformation P R F1

Baseline 69.6 61.8 65.5

Replacement of Unknown Words 70.6 62.1 66.1
Replacement of Predicate 71.2 62.8 66.8
Replacement of Quotes 71.0 63.4 67.0

Simplification 70.3 62.9 66.4
RuleTransformation 70.9 62.2 66.2

Sentence Split 70.8 62.1 66.2
Together 72.75 66.1 69.3

Table 4: Ablation Study for ADUT-Charniak

Frequency Baseline Replacement of Predicate

0 64.2 67.8
less than 3 59.7 65.1
less than 7 58.9 64.8

all predicates 65.5 66.78

Table 5: Performance on Infrequent Verbs for the Trans-
formation of Replacement of Predicate

8 Related Work

Traditional adaptation techniques like (DauméIII,
2007; Chelba and Acero, 2004; Finkel and Man-
ning, 2009; Jiang and Zhai, 2007; Blitzer et al.,
2006; Huang and Yates, 2009; Ando and Zhang,
2005; Ming-wei Chang and Roth, 2010) need to re-
train the model for every new domain. In (Umansky-
Pesin et al., 2010), there was no retraining; instead,
a POS tag was predicted for every unknown word
in the new domain by considering contexts of that
word collected by web search queries. We differ
from them in that our transformations are label-
preserving; moreover, our transformations aim at
making the target text resemble the training text.
We also present an algorithm to learn transformation
rules from training data. Our application domain,
SRL, is also more complex and structured than POS
tagging.

In (McClosky et al., 2010), the task of multiple
source parser adaptation was introduced. The au-
thors trained parsing models on corpora from dif-
ferent domains and given a new text, used a linear
combination of trained models. Their approach re-
quires annotated data from multiple domains as well
as unlabeled data for the new domain, which is not

needed in our framework. In (Huang and Yates,
2010), the authors trained a HMM over the Brown
test set and the WSJ unlabeled data. They derived
features from Viterbi optimal states of single words
and spans of words and retrained their models us-
ing these features. In (Vickrey and Koller, 2008),
a large number of hand-written rules were used to
simplify the parse trees and reduce syntactic vari-
ation to overcome feature sparsity. We have sev-
eral types of transformations, and use less than 10
simplification heuristics, based on replacing larger
phrases with smaller phrases and deleting unneces-
sary parse tree nodes. There are also some methods
for unsupervised semantic role labeling (Swier and
Stevenson, 2004), (Abend et al., 2009) that easily
adapt across domains but their performances are not
comparable to supervised systems.

9 Conclusion

We presented a framework for adaptating natural
language text so that models can be used across do-
mains without modification. Our framework sup-
ports adapting to new domains without any data or
knowledge of the target domain. We showed that our
approach significantly improves SRL performance
over the state-of-the-art single parse based system
on Brown set. In the future, we would like to extend
this approach to other NLP problems and study how
combining multiple systems can further improve its
performance and robustness.

Acknowledgements This research is sponsored
by the Army Research Laboratory (ARL) under
agreement W911NF-09-2-0053 and by the Defense
Advanced Research Projects Agency (DARPA) Ma-
chine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-
C-0181. Any opinions, findings, conclusions or rec-
ommendations are those of the authors and do not
necessarily reflect the view of the ARL, the DARPA,
AFRL, or the US government.

References
Omri Abend, Roi Reichart, and Ari Rappoport. 2009.

Unsupervised argument identification for semantic
role labeling . In Proceedings of the ACL.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple labeled

236

and unlabeled data . Journal of Machine Learning Re-
search.

Christopher Bishop. 1995. Neural Networks for Pattern
recognition, chapter 6.4: Modelling conditional distri-
butions. Oxford University Press.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. D. Pietra, and Jenifer C. Lai. 1992. Class-based
n-gram models of natural language. Computational
Linguistics, 18(4):467–479.

Xavier Carreras and Lluís Màrquez. 2005. Introduction
to the conll-2005 shared task: Semantic role labeling .
In Proceedings of CoNLL.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of ACL.

Ciprian Chelba and Alex Acero. 2004. Little data
can help a lot. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML.

Hal DauméIII. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the the Annual Meeting of the
Association of Computational Linguistics (ACL).

Jenny R. Finkel and Christopher D. Manning. 2009. Hi-
erarchical bayesian domain adaptation . In Proceed-
ings of NAACL.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised
sequence-labeling . In Proceedings of ACL.

Fei Huang and Alexander Yates. 2010. Open-domain
semantic role labeling by modeling word spans. In
Proceedings of ACL.

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in nlp. In Proceedings of
ACL.

Dan Klein and Christopher D. Manning. 2003. Fast exact
inference with a factored model for natural language
parsing. In Proceedings of NIPS.

Percy Liang. 2005. Semi-supervised learning for natural
language. Masters thesis, Massachusetts Institute of
Technology.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic domain adaptation for parsing. In
Proceedings of NAACL.

Michael Connor Ming-wei Chang and Dan Roth. 2010.
The necessity of combining adaptation methods. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Mas-
sachusetts, USA.

Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2).

Mihai Surdeanu, Lluís Màrquez, Xavier Carreras, and
Pere R. Comas. 2007. Combination strategies for se-
mantic role labeling. Journal of Artificial Intelligence
Research, 29:105–151.

Robert S. Swier and Suzanne Stevenson. 2004. Unsuper-
vised semantic role labelling. In Proceedings of Em-
pirical Methods in Natural Language Processing.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics, 34:161–191.

Shulamit Umansky-Pesin, Roi Reichart, and Ari Rap-
poport. 2010. A multi-domain web-based algorithm
for pos tagging of unknown words . In Proceedings of
Coling.

David Vickrey and Daphne Koller. 2008. Sentence sim-
plification for semantic role labeling. In Proceedings
of the ACL-HLT.

237

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 238–246,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Learning with Lookahead:
Can History-Based Models Rival Globally Optimized Models?

Yoshimasa Tsuruoka†∗ Yusuke Miyao‡∗ Jun’ichi Kazama∗

† Japan Advanced Institute of Science and Technology (JAIST), Japan
‡ National Institute of Informatics (NII), Japan

∗ National Institute of Information and Communications Technology (NICT), Japan
tsuruoka@jaist.ac.jp yusuke@nii.ac.jp kazama@nict.go.jp

Abstract

This paper shows that the performance of
history-based models can be significantly im-
proved by performing lookahead in the state
space when making each classification deci-
sion. Instead of simply using the best ac-
tion output by the classifier, we determine
the best action by looking into possible se-
quences of future actions and evaluating the
final states realized by those action sequences.
We present a perceptron-based parameter op-
timization method for this learning frame-
work and show its convergence properties.
The proposed framework is evaluated on part-
of-speech tagging, chunking, named entity
recognition and dependency parsing, using
standard data sets and features. Experimental
results demonstrate that history-based models
with lookahead are as competitive as globally
optimized models including conditional ran-
dom fields (CRFs) and structured perceptrons.

1 Introduction

History-based models have been a popular ap-
proach in a variety of natural language process-
ing (NLP) tasks including part-of-speech (POS) tag-
ging, named entity recognition, and syntactic pars-
ing (Ratnaparkhi, 1996; McCallum et al., 2000; Ya-
mada and Matsumoto, 2003; Nivre et al., 2004).
The idea is to decompose the complex structured
prediction problem into a series of simple classifi-
cation problems and use a machine learning-based
classifier to make each decision using the informa-
tion about the past decisions and partially completed
structures as features.

Although history-based models have many prac-
tical merits, their accuracy is often surpassed by
globally optimized models such as CRFs (Lafferty
et al., 2001) and structured perceptrons (Collins,
2002), mainly due to the label bias problem. To-
day, vanilla history-based models such as maximum
entropy Markov models (MEMMs) are probably not
the first choice for those who are looking for a ma-
chine learning model that can deliver the state-of-
the-art accuracy for their NLP task. Globally opti-
mized models, by contrast, are gaining popularity in
the community despite their relatively high compu-
tational cost.

In this paper, we argue that history-based mod-
els are not something that should be left behind
in research history, by demonstrating that their ac-
curacy can be significantly improved by incorpo-
rating a lookahead mechanism into their decision-
making process. It should be emphasized that we
use the word “lookahead” differently from some lit-
erature on syntactic parsing in which lookahead sim-
ply means looking at the succeeding words to choose
the right parsing actions. In this paper, we use the
word to refer to the process of choosing the best ac-
tion by considering different sequences of future ac-
tions and evaluating the structures realized by those
sequences. In other words, we introduce a looka-
head mechanism that performs a search in the space
of future actions.

We present a perceptron-based training algorithm
that can work with the lookahead process, together
with a proof of convergence. The algorithm enables
us to tune the weight of the perceptron in such a way
that we can correctly choose the right action for the

238

State Operation Stack Queue
0 I saw a dog with eyebrows
1 shift I saw a dog with eyebrows
2 shift I saw a dog with eyebrows
3 reduceL saw(I) a dog with eyebrows

. . .
4 saw(I) dog(a) with eyebrows
5 shift saw(I) dog(a) with eyebrows
6 shift saw(I) dog(a) with eyebrows
7 reduceR saw(I) dog(a) with(eyebrows)
8 reduceR saw(I) dog(a, with(eyebrows))
5’ reduceR saw(I, dog(a)) with eyebrows
6’ shift saw(I, dog(a)) with eyebrows
7’ shift saw(I, dog(a)) with eyebrows
8’ reduce R saw(I, dog(a)) with(eyebrows)
9’ reduce R saw(I, dog(a), with(eyebrows))

Figure 1: Shift-reduce dependency parsing

current state at each decision point, given the infor-
mation obtained from a search.

To answer the question of whether the history-
based models enhanced with lookahead can actually
compete with globally optimized models, we eval-
uate the proposed framework with a range of stan-
dard NLP tasks, namely, POS tagging, text chunking
(a.k.a. shallow parsing), named entity recognition,
and dependency parsing.

This paper is organized as follows. Section 2
presents the idea of lookahead with a motivating
example from dependency parsing. Section 3 de-
scribes our search algorithm for lookahead and a
perceptron-based training algorithm. Experimen-
tal results on POS tagging, chunking, named entity
recognition, and dependency parsing are presented
in Section 4. We discuss relationships between our
approach and some related work in Section 5. Sec-
tion 6 offers concluding remarks with some potential
research directions.

2 Motivation

This section describes an example of dependency
parsing that motivates the introduction of lookahead
in history-based models.

A well-known history-based approach to depen-
dency parsing is shift-reduce parsing. This al-
gorithm maintains two data structures, stack and

queue: A stack stores intermediate parsing results,
and a queue stores words to read. Two operations
(actions), shift and reduce, on these data structures
construct dependency relations one by one.

For example, assume that we are given the follow-
ing sentence.

I saw a dog with eyebrows.

In the beginning, we have an empty stack, and a
queue filled with a list of input words (State 0 in Fig-
ure 1). The shift operation moves the left-most ele-
ment of the queue to the stack. In this example, State
1 is obtained by applying shift to State 0. After the
two shift operations, we reach State 2, in which the
stack has two elements. When we have two or more
elements in the stack, we can apply the other opera-
tion, reduce, which merges the two stack elements
by creating a dependency relation between them.
When we apply reduceL, which means to have the
left element as a dependent of the right element, we
reach State 3: The word “I” has disappeared from
the stack and instead it is attached to its head word
“saw”.1 In this way, the shift-reduce parsing con-
structs a dependency tree by reading words from the
queue and constructing dependency relations on the
stack.

1In Figure 1, H(D1, D2, . . .) indicates that D1, D2, . . . are
the dependents of the head H .

239

Let’s say we have now arrived at State 4 after sev-
eral operations. At this state, we cannot simply de-
termine whether we should shift or reduce. In such
cases, conventional methods rely on a multi-class
classifier to determine the next operation. That is,
a classifier is used to select the most plausible oper-
ation, by referring to the features about the current
state, such as surface forms and POSs of words in
the stack and the queue.

In the lookahead strategy, we make this decision
by referring to future states. For example, if we ap-
ply shift to State 4, we will reach State 8 in the end,
which indicates that “with” attaches to “dog”. The
other way, i.e., applying reduceR to State 4, eventu-
ally arrives at State 9’, indicating “with” attaches to
“saw”. These future states indicate that we were im-
plicitly resolving PP-attachment ambiguity at State
4. While conventional methods attempt to resolve
such ambiguity using surrounding features at State
4, the lookahead approach resolves the same ambi-
guity by referring to the future states, for example,
State 8 and 9’. Because future states can provide ad-
ditional and valuable information for ambiguity res-
olution, improved accuracy is expected.

It should be noted that Figure 1 only shows one
sequence of operations for each choice of operation
at State 4. In general, however, the number of poten-
tial sequences grows exponentially with the looka-
head depth, so the lookahead approach requires us to
pay the price as the increase of computational cost.
The primary goal of this paper is to demonstrate that
the cost is actually worth it.

3 Learning with Lookahead

This section presents our framework for incorporat-
ing lookahead in history-based models. In this pa-
per, we focus on deterministic history-based models
although our method could be generalized to non-
deterministic cases.

We use the word “state” to refer to a partially
completed analysis as well as the collection of his-
torical information available at each decision point
in deterministic history-based analysis. State transi-
tions are made by “actions” that are defined at each
state. In the example of dependency parsing pre-
sented in Section 2, a state contains all the infor-
mation about past operations, stacks, and queues as

1: Input
2: d: remaining depth of search
3: S0: current state
4: Output
5: S: state of highest score
6: v: highest score
7:
8: function SEARCH(d, S0)
9: if d = 0 then

10: return (S0, w · φ(S0))
11: (S, v)← (null,−∞)
12: for each a ∈ POSSIBLEACTIONS(S0)
13: S1 ← UPDATESTATE(S0, a)
14: (S′, v′)← SEARCH(d− 1, S1)
15: if v′ > v then
16: (S, v)← (S′, v′)
17: return (S, v)

Figure 2: Search algorithm.

well as the observation (i.e. the words in the sen-
tence). The possible actions are shift, reduceR, and
reduceL. In the case of POS tagging, for example, a
state is the words and the POS tags assigned to the
words on the left side of the current target word (if
the tagging is conducted in the left-to-right manner),
and the possible actions are simply defined by the
POS tags in the annotation tag set.

3.1 Search

With lookahead, we choose the best action at each
decision point by considering possible sequences of
future actions and the states realized by those se-
quences. In other words, we need to perform a
search for each possible action.

Figure 2 describes our search algorithm in pseudo
code. The algorithm performs a depth-first search to
find the state of the highest score among the states in
its search space, which is determined by the search
depth d. This search process is implemented with
a recursive function, which receives the remaining
search depth and the current state as its input and
returns the state of the highest score together with
its score.

We assume a linear scoring model, i.e., the score
of each state S can be computed by taking the dot
product of the current weight vector w and φ(S),
the feature vector representation of the state. The

240

1: Input
2: C: perceptron margin
3: D: depth of lookahead search
4: S0: current state
5: ac: correct action
6:
7: procedure UPDATEWEIGHT(C, D, S0, ac)
8: (a∗, S∗, v)← (null, null,−∞)
9: for each a ∈ POSSIBLEACTIONS(S0)

10: S1 ← UPDATESTATE(S0, a)
11: (S′, v′)←SEARCH(D,S1)
12: if a = ac then
13: v′ ← v′ − C
14: S∗

c ← S′

15: if v′ > v then
16: (a∗, S∗, v)← (a, S′, v′)
17: if a∗ 6= ac then
18: w ← w + φ(S∗

c)− φ(S∗)

Figure 3: Perceptron weight update

scores are computed at each leaf node of the search
tree and backed up to the root.2

Clearly, the time complexity of determinis-
tic tagging/parsing with this search algorithm is
O(nmD+1), where n is the number of actions
needed to process the sentence, m is the (average)
number of possible actions at each state, and D is
the search depth. It should be noted that the time
complexity of k-th order CRFs is O(nmk+1), so
a history-based model with k-depth lookahead is
comparable to k-th order CRFs in terms of train-
ing/testing time.

Unlike CRFs, our framework does not require the
locality of features since it is history-based, i.e., the
decisions can be conditioned on arbitrary features.
One interpretation of our learning framework is that
it trades off the global optimality of the learned pa-
rameters against the flexibility of features.

3.2 Training a margin perceptron

We adapt a learning algorithm for margin percep-
trons (Krauth and Mezard, 1987) to our purpose of

2In actual implementation, it is not efficient to compute the
score of a state from scratch at each leaf node. For most of
the standard features used in tagging and parsing, it is usually
straight-forward to compute the scores incrementally every time
the state is updated with an action.

optimizing the weight parameters for the lookahead
search. Like other large margin approaches such
as support vector machines, margin perceptrons are
known to produce accurate models compared to per-
ceptrons without a margin (Li et al., 2002).

Figure 3 shows our learning algorithm in pseudo
code. The algorithm is very similar to the standard
training algorithm for margin perceptrons, i.e., we
update the weight parameters with the difference of
two feature vectors (one corresponding to the cor-
rect action, and the other the action of the highest
score) when the perceptron makes a mistake. The
feature vector for the second best action is also used
when the margin is not large enough. Notice that the
feature vector for the second best action is automat-
ically selected by using a simple trick of subtracting
the margin parameter from the score for the correct
action (Line 13 in Figure 3).

The only difference between our algorithm and
the standard algorithm for margin perceptrons is that
we use the states and their scores obtained from
lookahead searches (Line 11 in Figure 3), which are
backed up from the leaves of the search trees. In Ap-
pendix A, we provide a proof of the convergence of
our training algorithm and show that the margin will
approach at least half the true margin (assuming that
the training data are linearly separable).

As in many studies using perceptrons, we average
the weight vector over the whole training iterations
at the end of the training (Collins, 2002).

4 Experiments

This section presents four sets of experimental re-
sults to show how the lookahead process improves
the accuracy of history-based models in common
NLP tasks.

4.1 Sequence prediction tasks

First, we evaluate our framework with three se-
quence prediction tasks: POS tagging, chunking,
and named entity recognition. We compare our
method with the CRF model, which is one of the de
facto standard machine learning models for such se-
quence prediction tasks. We trained L1-regularized
first-order CRF models using the efficient stochastic
gradient descent (SGD)-based training method pre-
sented in Tsuruoka et al. (2009). Since our main in-

241

terest is not in achieving the state-of-the-art results
for those tasks, we did not conduct feature engineer-
ing to come up with elaborate features—we sim-
ply adopted the feature sets described in their paper
(with an exception being tag trigram features tested
in the POS tagging experiments). The experiments
for these sequence prediction tasks were carried out
using one core of a 3.33GHz Intel Xeon W5590 pro-
cessor.

The first set of experiments is about POS tagging.
The training and test data were created from the Wall
Street Journal corpus of the Penn Treebank (Marcus
et al., 1994). Sections 0-18 were used as the training
data. Sections 19-21 were used for tuning the meta
parameters for learning (the number of iterations and
the margin C). Sections 22-24 were used for the
final accuracy reports.

The experimental results are shown in Table 1.
Note that the models in the top four rows use exactly
the same feature set. It is clearly seen that the looka-
head improves tagging accuracy, and our history-
based models with lookahead is as accurate as the
CRF model. We also created another set of models
by simply adding tag trigram features, which can-
not be employed by first-order CRF models. These
features have slightly improved the tagging accu-
racy, and the final accuracy achieved by a search
depth of 3 was comparable to some of the best re-
sults achieved by pure supervised learning in this
task (Shen et al., 2007; Lavergne et al., 2010).

The second set of experiments is about chunking.
We used the data set for the CoNLL 2000 shared
task, which contains 8,936 sentences where each to-
ken is annotated with the “IOB” tags representing
text chunks. The experimental results are shown
in Table 2. Again, our history-based models with
lookahead were slightly more accurate than the CRF
model using exactly the same set of features. The
accuracy achieved by the lookahead model with a
search depth of 2 was comparable to the accuracy
achieved by a computationally heavy combination
of max-margin classifiers (Kudo and Matsumoto,
2001). We also tested the effectiveness of additional
features of tag trigrams using the development data,
but there was no improvement in the accuracy.

The third set of experiments is about named en-
tity recognition. We used the data provided for
the BioNLP/NLPBA 2004 shared task (Kim et al.,

2004), which contains 18,546 sentences where each
token is annotated with the “IOB” tags representing
biomedical named entities. We performed the tag-
ging in the right-to-left fashion because it is known
that backward tagging is more accurate than forward
tagging on this data set (Yoshida and Tsujii, 2007).

Table 3 shows the experimental results, together
with some previous performance reports achieved
by pure machine leaning methods (i.e. without rule-
based post processing or external resources such as
gazetteers). Our history-based model with no looka-
head was considerably worse than the CRF model
using the same set of features, but it was signifi-
cantly improved by the introduction of lookahead
and resulted in accuracy figures better than that of
the CRF model.

4.2 Dependency parsing

We also evaluate our method in dependency parsing.
We follow the most standard experimental setting
for English dependency parsing: The Wall Street
Journal portion of Penn Treebank is converted to de-
pendency trees by using the head rules of Yamada
and Matsumoto (2003).3 The data is split into train-
ing (section 02-21), development (section 22), and
test (section 23) sets. The parsing accuracy was eval-
uated with auto-POS data, i.e., we used our looka-
head POS tagger (depth = 2) presented in the previ-
ous subsection to assign the POS tags for the devel-
opment and test data. Unlabeled attachment scores
for all words excluding punctuations are reported.
The development set is used for tuning the meta pa-
rameters, while the test set is used for evaluating the
final accuracy.

The parsing algorithm is the “arc-standard”
method (Nivre, 2004), which is briefly described in
Section 2. With this algorithm, state S corresponds
to a parser configuration, i.e., the stack and the
queue, and action a corresponds to shift, reduceL,
and reduceR. In this experiment, we use the same
set of feature templates as Huang and Sagae (2010).

Table 4 shows training time, test time, and parsing
accuracy. In this table, “No lookahead (depth = 0)”
corresponds to a conventional shift-reduce parsing
method without any lookahead search. The results

3Penn2Malt is applied for this conversion, while depen-
dency labels are removed.

242

Training Time (sec) Test Time (sec) Accuracy
CRF (L1 regularization & SGD training) 847 3 97.11 %
No lookahead (depth = 0) 85 5 97.00 %
Lookahead (depth = 1) 294 9 97.19 %
Lookahead (depth = 2) 8,688 173 97.19 %
No lookahead (depth = 0) + tag trigram features 88 5 97.11 %
Lookahead (depth = 1) + tag trigram features 313 10 97.22 %
Lookahead (depth = 2) + tag trigram features 10,034 209 97.28 %
Structured perceptron (Collins, 2002) n/a n/a 97.11 %
Guided learning (Shen et al., 2007) n/a n/a 97.33 %
CRF with 4 billion features (Lavergne et al., 2010) n/a n/a 97.22 %

Table 1: Performance of English POS tagging (training times and accuracy scores on test data)

Training time (sec) Test time (sec) F-measure
CRF (L1 regularization & SGD training) 74 1 93.66
No lookahead (depth = 0) 22 1 93.53
Lookahead (depth = 1) 73 1 93.77
Lookahead (depth = 2) 1,113 9 93.81
Voting of 8 SVMs (Kudo and Matsumoto, 2001) n/a n/a 93.91

Table 2: Performance of text chunking (training times and accuracy scores on test data).

clearly demonstrate that the lookahead search boosts
parsing accuracy. As expected, training and test
speed decreases, almost by a factor of three, which
is the branching factor of the dependency parser.

The table also lists accuracy figures reported in
the literature on shift-reduce dependency parsing.
Most of the latest studies on shift-reduce depen-
dency parsing employ dynamic programing or beam
search, which implies that deterministic methods
were not as competitive as those methods. It should
also be noted that all of the listed studies learn struc-
tured perceptrons (Collins and Roark, 2004), while
our parser learns locally optimized perceptrons. In
this table, our parser without lookahead search (i.e.
depth = 0) resulted in significantly lower accuracy
than the previous studies. In fact, it is worse than the
deterministic parser of Huang et al. (2009), which
uses (almost) the same set of features. This is pre-
sumably due to the difference between locally opti-
mized perceptrons and globally optimized structured
perceptrons. However, our parser with lookahead
search is significantly better than their determinis-
tic parser, and its accuracy is close to the levels of
the parsers with beam search.

5 Discussion

The reason why we introduced a lookahead mech-
anism into history-based models is that we wanted
the model to be able to avoid making such mistakes
that can be detected only in later stages. Probabilis-
tic history-based models such as MEMMs should be
able to avoid (at least some of) such mistakes by per-
forming a Viterbi search to find the highest proba-
bility path of the actions. However, as pointed out
by Lafferty et al. (2001), the per-state normaliza-
tion of probabilities makes it difficult to give enough
penalty to such incorrect sequences of actions, and
that is primarily why MEMMs are outperformed by
CRFs.

Perhaps the most relevant to our work in terms
of learning is the general framework for search and
learning problems in history-based models proposed
by Daumé III and Marcu (2005). This framework,
called LaSO (Learning as Search Optimization), can
include many variations of search strategies such as
beam search and A* search as a special case. In-
deed, our lookahead framework could be regarded
as a special case in which each search node con-

243

Training time (sec) Test time (sec) F-measure
CRF (L1 regularization & SGD training) 235 4 71.63
No lookahead (depth = 0) 66 4 70.17
Lookahead (depth = 1) 91 4 72.28
Lookahead (depth = 2) 302 7 72.00
Lookahead (depth = 3) 2,419 33 72.21
Semi-Markov CRF (Okanohara et al., 2006) n/a n/a 71.48
Reranking (Yoshida and Tsujii, 2007) n/a n/a 72.65

Table 3: Performance of biomedical named entity recognition (training times and accuracy scores on test data).

Training time (sec) Test time (sec) Accuracy
No lookahead (depth = 0) 1,937 4 89.73
Lookahead (depth = 1) 4,907 13 91.00
Lookahead (depth = 2) 12,800 31 91.10
Lookahead (depth = 3) 31,684 79 91.24
Beam search (k = 64) (Zhang and Clark, 2008) n/a n/a 91.4
Deterministic (Huang et al., 2009) n/a n/a 90.2
Beam search (k = 16) (Huang et al., 2009) n/a n/a 91.3
Dynamic programming (Huang and Sagae, 2010) n/a n/a 92.1

Table 4: Performance of English dependency parsing (training times and accuracy scores on test data).

sists of the next and lookahead actions4, although
the weight updating procedure differs in several mi-
nor points. Daumé III and Marcu (2005) did not try
a lookahead search strategy, and to the best of our
knowledge, this paper is the first that demonstrates
that lookahead actually works well for various NLP
tasks.

Performing lookahead is a very common tech-
nique for a variety of decision-making problems
in the field of artificial intelligence. In computer
chess, for example, programs usually need to per-
form a very deep search in the game tree to find a
good move. Our decision-making problem is sim-
ilar to that of computer Chess in many ways, al-
though chess programs perform min-max searches
rather than the “max” searches performed in our al-
gorithm. Automatic learning of evaluation functions
for chess programs can be seen as the training of
a machine learning model. In particular, our learn-
ing algorithm is similar to the supervised approach

4In addition, the size of the search queue is always truncated
to one for the deterministic decisions presented in this paper.
Note, however, that our lookahead framework can also be com-
bined with other search strategies such as beam search. In that
case, the search queue is not necessarily truncated.

(Tesauro, 2001; Hoki, 2006) in that the parameters
are optimized based on the differences of the feature
vectors realized by the correct and incorrect actions.

In history-based models, the order of actions is of-
ten very important. For example, backward tagging
is considerably more accurate than forward tagging
in biomedical named entity recognition. Our looka-
head method is orthogonal to more elaborate tech-
niques for determining the order of actions such as
easy-first tagging/parsing strategies (Tsuruoka and
Tsujii, 2005; Elhadad, 2010). We expect that incor-
porating such elaborate techniques in our framework
will lead to improved accuracy, but we leave it for
future work.

6 Conclusion

We have presented a simple and general framework
for incorporating a lookahead process in history-
based models and a perceptron-based training algo-
rithm for the framework. We have conducted ex-
periments using standard data sets for POS tagging,
chunking, named entity recognition and dependency
parsing, and obtained very promising results—the
accuracy achieved by the history-based models en-

244

hanced with lookahead was as competitive as glob-
ally optimized models including CRFs.

In most of the experimental results, steady im-
provement in accuracy has been observed as the
depth of the search is increased. Although it is
not very practical to perform deeper searches with
our current implementation—we naively explored
all possible sequences of actions, future work should
encompass extending the depths of search space
by introducing elaborate pruning/search extension
techniques.

In this work, we did not conduct extensive feature
engineering for improving the accuracy of individ-
ual tasks because our primary goal with this paper is
to present the learning framework itself. However,
one of the major merits of using history-based mod-
els is that we are allowed to define arbitrary features
on the partially completed structure. Another inter-
esting direction of future work is to see how much
we could improve the accuracy by performing ex-
tensive feature engineering in this particular learning
framework.

Appendix A: Convergence of the Learning
Procedure

Let {xi, ai
c}Ki=1 be the training examples where ai

c

is the correct first action for decision point xi, and
let Si be the set of all the states at the leaves of
the search trees for xi generated by the lookahead
searches and Si

c be the set of all the states at the
leaves of the search tree for the correct action ai

c.
We also define Si = Si \ Si

c. We write the weight
vector before the k-th update as wk. We define
S∗

c = argmax
S∈Si

c

w·φ(S) and S∗ = argmax
S∈Si

w·φ(S)5.

Then the update rule can be interpreted as wk+1 =
wk +(φ(S∗

c)−φ(S∗)). Note that this update is per-
formed only when φ(Sc) ·wk−C < φ(S∗) ·wk for
all Sc ∈ Sc since otherwise S∗ in the learning algo-
rithm cannot be a state with an incorrect first action.
In other words, φ(Sc) ·w − φ(S∗) ·w ≥ C for all
Sc ∈ Sc after convergence.

Given these definitions, we prove the convergence
for the separable case. That is, we assume the exis-
tence of a weight vector u (with ||u|| = 1), δ (> 0),

5S∗
c and S∗ depend on the weight vector at each point, but

we omit it from the notation for brevity.

and R (> 0) that satisfy:

∀i,∀Sc ∈ Si
c,∀S ∈ Si φ(Sc) · u− φ(S) · u ≥ δ,

∀i,∀Sc ∈ Si
c,∀S ∈ Si ||φ(Sc)− φ(S)|| ≤ R.

The proof is basically an adaptation of the proofs
in Collins (2002) and Li et al. (2002). First, we ob-
tain the following relation:

wk+1 · u = wk · u + (φ(S∗
c) · u− φ(S∗) · u)

= wk · u + δ ≥ w1 · u + kδ = kδ.

Therefore, ||wk+1 · u||2 = ||wk+1||2 ≤ (kδ)2 —
(1). We assumed w1 = 0 but this is not an essential
assumption.

Next, we also obtain:

||wk+1||2 ≤ ||wk||2 + 2(φ(S∗
c)− φ(S∗)) ·wk

+||φ(S∗
c)− φ(S∗)||2

≤ ||wk||2 + 2C + R2

≤ ||w1||2 + k(R2 + 2C) = k(R2 + 2C)— (2)

Combining (1) and (2), we obtain k ≤ (R2 +
2C)/δ2. That is, the number of updates is bounded
from above, meaning that the learning procedure
converges after a finite number of updates. Substi-
tuting this into (2) gives ||wk+1|| ≤ (R2 + 2C)/δ
— (3).

Finally, we analyze the margin achieved by the
learning procedure after convergence. The margin,
γ(w), is defined as follows in this case.

γ(w) = min
xi

min
Sc∈Si

c,S∈Si

φ(Sc) ·w − φ(S) ·w
||w||

= min
xi

min
Sc∈Si

c

φ(Sc) ·w − φ(S∗) ·w
||w||

After convergence (i.e., w = wk+1), φ(Sc) · w −
φ(S∗)·w ≥ C for all Sc ∈ Sc as we noted. Together
with (3), we obtain the following bound:

γ(w) ≥ min
xi

δC

2C + R2

=
δC

2C + R2
=

(
δ

2

)(
1− R2

2C + R2

)
As can be seen, the margin approaches at least half
the true margin, δ/2 as C → ∞ (at the cost of infi-
nite number of updates).

245

References

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceedings
of ACL, pages 111–118.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP, pages 1–8.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: Approximate large margin meth-
ods for structured prediction. In Proceedings of ICML,
pages 169–176.

Yoav Goldbergand Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of NAACL-HLT, pages
742–750.

Kunihito Hoki. 2006. Optimal control of minimax
search results to learn positional evaluation. In Pro-
ceedings of the 11th Game Programming Workshop
(GPW), pages 78–83 (in Japanese).

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of ACL, pages 1077–1086.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proceedings of EMNLP, pages 1222–1231.

J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Col-
lier. 2004. Introduction to the bio-entity recogni-
tion task at JNLPBA. In Proceedings of the Interna-
tional Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications (JNLPBA),
pages 70–75.

W Krauth and M Mezard. 1987. Learning algorithms
with optimal stability in neural networks. Journal of
Phisics A, 20(11):L745–L752.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proceedings of NAACL.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of ICML, pages 282–289.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings of ACL, pages 504–513.

Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-
Taylor, and Jaz S. Kandola. 2002. The perceptron
algorithm with uneven margins. In Proceedings of
ICML, pages 379–386.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Andrew McCallum, Dayne Freitag, and Fernando
Pereira. 2000. Maximum entropy markov models for
information extraction and segmentation. In Proceed-
ings of ICML, pages 591–598.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings
of CoNLL, pages 49–56.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In ACL 2004 Workshop on Incre-
mental Parsing: Bringing Engineering and Cognition
Together, pages 50–57.

Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsu-
ruoka, and Jun’ichi Tsujii. 2006. Improving the scal-
ability of semi-markov conditional random fields for
named entity recognition. In Proceedings of COL-
ING/ACL, pages 465–472.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Proceedings of EMNLP
1996, pages 133–142.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided learning for bidirectional sequence classifica-
tion. In Proceedings of ACL, pages 760–767.

Gerald Tesauro, 2001. Comparison training of chess
evaluation functions, pages 117–130. Nova Science
Publishers, Inc.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirec-
tional inference with the easiest-first strategy for tag-
ging sequence data. In Proceedings of HLT/EMNLP
2005, pages 467–474.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2009. Stochastic gradient descent training
for l1-regularized log-linear models with cumulative
penalty. In Proceedings of ACL-IJCNLP, pages 477–
485.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, pages 195–206.

Kazuhiro Yoshida and Jun’ichi Tsujii. 2007. Reranking
for biomedical named-entity recognition. In Proceed-
ings of ACL Workshop on BioNLP, pages 209–216.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graphbased
and transition-based dependency parsing using beam-
search. In Proceedings of EMNLP, pages 562–571.

246

Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 247–256,
Portland, Oregon, USA, 23–24 June 2011. c©2011 Association for Computational Linguistics

Learning Discriminative Projections for Text Similarity Measures

Wen-tau Yih Kristina Toutanova John C. Platt Christopher Meek
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{scottyih,kristout,jplatt,meek}@microsoft.com

Abstract

Traditional text similarity measures consider
each term similar only to itself and do not
model semantic relatedness of terms. We pro-
pose a novel discriminative training method
that projects the raw term vectors into a com-
mon, low-dimensional vector space. Our ap-
proach operates by finding the optimal matrix
to minimize the loss of the pre-selected sim-
ilarity function (e.g., cosine) of the projected
vectors, and is able to efficiently handle a
large number of training examples in the high-
dimensional space. Evaluated on two very dif-
ferent tasks, cross-lingual document retrieval
and ad relevance measure, our method not
only outperforms existing state-of-the-art ap-
proaches, but also achieves high accuracy at
low dimensions and is thus more efficient.

1 Introduction

Measures of text similarity have many applications
and have been studied extensively in both the NLP
and IR communities. For example, a combination
of corpus and knowledge based methods have been
invented for judging word similarity (Lin, 1998;
Agirre et al., 2009). Similarity derived from a large-
scale Web corpus has been used for automatically
extending lists of typed entities (Vyas and Pantel,
2009). Judging the degree of similarity between
documents is also fundamental to classical IR prob-
lems such as document retrieval (Manning et al.,
2008). In all these applications, the vector-based
similarity method is the most widely used. Term
vectors are first constructed to represent the origi-
nal text objects, where each term is associated with

a weight indicating its importance. A pre-selected
function operating on these vectors, such as cosine,
is used to output the final similarity score. This ap-
proach has not only proved to be effective, but is also
efficient. For instance, only the term vectors rather
than the raw data need to be stored. A pruned inverse
index can be built to support fast similarity search.

However, the main weakness of this term-vector
representation is that different but semantically re-
lated terms are not matched and cannot influence
the final similarity score. As an illustrative ex-
ample, suppose the two compared term-vectors
are: {purchase:0.4, used:0.3, automobile:0.2} and
{buy:0.3, pre-owned: 0.5, car: 0.4}. Even though
the two vectors represent very similar concepts, their
similarity score will be 0, for functions like cosine,
overlap or Jaccard. Such an issue is more severe
in cross-lingual settings. Because language vocab-
ularies typically have little overlap, term-vector rep-
resentations are completely inapplicable to measur-
ing similarity between documents in different lan-
guages. The general strategy to handle this prob-
lem is to map the raw representation to a common
concept space, where extensive approaches have
been proposed. Existing methods roughly fall into
three categories. Generative topic models like La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
assume that the terms are sampled by probabil-
ity distributions governed by hidden topics. Lin-
ear projection methods like Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990) learn a projec-
tion matrix and map the original term-vectors to the
dense low-dimensional space. Finally, metric learn-
ing approaches for high-dimensional spaces have

247

also been proposed (Davis and Dhillon, 2008).

In this paper, we propose a new projection learn-
ing framework, Similarity Learning via Siamese
Neural Network (S2Net), to discriminatively learn
the concept vector representations of input text ob-
jects. Following the general Siamese neural network
architecture (Bromley et al., 1993), our approach
trains two identical networks concurrently. The in-
put layer corresponds to the original term vector
and the output layer is the projected concept vector.
Model parameters (i.e., the weights on the edges)
are equivalently the projection matrix. Given pairs
of raw term vectors and their labels (e.g., similar or
not), the model is trained by minimizing the loss of
the similarity scores of the output vectors. S2Net
is closely related to the linear projection and met-
ric learning approaches, but enjoys additional ad-
vantages over existing methods. While its model
form is identical to that of LSA, CCA and OPCA, its
objective function can be easily designed to match
the true evaluation metric of interest for the target
task, which leads to better performance. Compared
to existing high-dimensional metric learning meth-
ods, S2Net can learn from a much larger number
of labeled examples. These two properties are cru-
cial in helping S2Net outperform existing methods.
For retrieving comparable cross-lingual documents,
S2Net achieves higher accuracy than the best ap-
proach (OPCA) at a much lower dimension of the
concept space (500 vs. 2,000). In a monolingual
setting, where the task is to judge the relevance of
an ad landing page to a query, S2Net also has the
best performance when compared to a number of ap-
proaches, including the raw TFIDF cosine baseline.

In the rest of the paper, we first survey some
existing work in Sec. 2, with an emphasis on ap-
proaches included in our experimental comparison.
We present our method in Sec. 3 and report on an
extensive experimental study in Sec. 4. Other re-
lated work is discussed in Sec. 5 and finally Sec. 6
concludes the paper.

2 Previous Work

In this section, we briefly review existing ap-
proaches for mapping high-dimensional term-
vectors to a low-dimensional concept space.

2.1 Generative Topic Models

Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 1999) assumes that each
document has a document-specific distribution θ
over some finite number K of topics, where each
token in a document is independently generated
by first selecting a topic z from a multinomial
distribution MULTI(θ), and then sampling a word
token from the topic-specific word distribution
for the chosen topic MULTI(φz). Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) generalizes
PLSA to a proper generative model for documents
and places Dirichlet priors over the parameters
θ and φ. In the experiments in this paper, our
implementation of PLSA is LDA with maximum a
posteriori (MAP) inference, which was shown to be
comparable to the current best Bayesian inference
methods for LDA (Asuncion et al., 2009).

Recently, these topic models have been general-
ized to handle pairs or tuples of corresponding doc-
uments, which could be translations in multiple lan-
guages, or documents in the same language that are
considered similar. For instance, the Poly-lingual
Topic Model (PLTM) (Mimno et al., 2009) is an
extension to LDA that views documents in a tu-
ple as having a shared topic vector θ. Each of the
documents in the tuple uses θ to select the topics
z of tokens, but could use a different (language-
specific) word-topic-distribution MULTI(φLz). Two
additional models, Joint PLSA (JPLSA) and Cou-
pled PLSA (CPLSA) were introduced in (Platt et al.,
2010). JPLSA is a close variant of PLTM when doc-
uments of all languages share the same word-topic
distribution parameters, and MAP inference is per-
formed instead of Bayesian. CPLSA extends JPLSA
by constraining paired documents to not only share
the same prior topic distribution θ, but to also have
similar fractions of tokens assigned to each topic.
This constraint is enforced on expectation using pos-
terior regularization (Ganchev et al., 2009).

2.2 Linear Projection Methods

The earliest method for projecting term vectors into
a low-dimensional concept space is Latent Seman-
tic Analysis (LSA) (Deerwester et al., 1990). LSA
models all documents in a corpus using a n ×
d document-term matrix D and performs singular

248

value decomposition (SVD) on D. The k biggest
singular values are then used to find the d × k pro-
jection matrix. Instead of SVD, LSA can be done
by applying eigen-decomposition on the correlation
matrix between terms C = DTD. This is very sim-
ilar to principal component analysis (PCA), where a
covariance matrix between terms is used. In prac-
tice, term vectors are very sparse and their means
are close to 0. Therefore, the correlation matrix is in
fact close to the covariance matrix.

To model pairs of comparable documents,
LSA/PCA has been extended in different ways. For
instance, Cross-language Latent Semantic Indexing
(CL-LSI) (Dumais et al., 1997) applies LSA to con-
catenated comparable documents from different lan-
guages. Oriented Principal Component Analysis
(OPCA) (Diamantaras and Kung, 1996; Platt et al.,
2010) solves a generalized eigen problem by intro-
ducing a noise covariance matrix to ensure that com-
parable documents can be projected closely. Canon-
ical Correlation Analysis (CCA) (Vinokourov et al.,
2003) finds projections that maximize the cross-
covariance between the projected vectors.

2.3 Distance Metric Learning

Measuring the similarity between two vectors can be
viewed as equivalent to measuring their distance, as
the cosine score has a bijection mapping to the Eu-
clidean distance of unit vectors. Most work on met-
ric learning learns a Mahalanobis distance, which
generalizes the standard squared Euclidean distance
by modeling the similarity of elements in different
dimensions using a positive semi-definite matrix A.
Given two vectors x and y, their squared Maha-
lanobis distance is: dA = (x − y)TA(x − y).
However, the computational complexity of learn-
ing a general Mahalanobis matrix is at least O(n2),
where n is the dimensionality of the input vectors.
Therefore, such methods are not practical for high
dimensional problems in the text domain.

In order to tackle this issue, special metric
learning approaches for high-dimensional spaces
have been proposed. For example, high dimen-
sion low-rank (HDLR) metric learning (Davis and
Dhillon, 2008) constrains the form of A = UUT ,
where U is similar to the regular projection ma-
trix, and adapts information-theoretic metric learn-
ing (ITML) (Davis et al., 2007) to learn U.

sim(vp,vq)

1t dt

vp vq

it

1c kcjc'tw

tw

Figure 1: Learning concept vectors. The output layer
consists of a small number of concept nodes, where the
weight of each node is a linear combination of all the
original term weights.

3 Similarity Learning via Siamese Neural
Network (S2Net)

Given pairs of documents with their labels, such as
binary or real-valued similarity scores, our goal is
to construct a projection matrix that maps the corre-
sponding term-vectors into a low-dimensional con-
cept space such that similar documents are close
when projected into this space. We propose a sim-
ilarity learning framework via Siamese neural net-
work (S2Net) to learn the projection matrix directly
from labeled data. In this section, we introduce its
model design and describe the training process.

3.1 Model Design

The network structure of S2Net consists of two lay-
ers. The input layer corresponds to the raw term vec-
tor, where each node represents a term in the original
vocabulary and its associated value is determined by
a term-weighting function such as TFIDF. The out-
put layer is the learned low-dimensional vector rep-
resentation that captures relationships among terms.
Similarly, each node of the output layer is an ele-
ment in the new concept vector. In this work, the
final similarity score is calculated using the cosine
function, which is the standard choice for document
similarity (Manning et al., 2008). Our framework
can be easily extended to other similarity functions
as long as they are differentiable.

The output of each concept node is a linear com-

249

bination of the weights of all the terms in the orig-
inal term vector. In other words, these two layers
of nodes form a complete bipartite graph as shown
in Fig. 1. The output of a concept node cj is thus
defined as:

tw′(cj) =
∑
ti∈V

αij · tw(ti) (1)

Notice that it is straightforward to add a non-linear
activation function (e.g., sigmoid) in Eq. (1), which
can potentially lead to better results. However, in
the current design, the model form is exactly the
same as the low-rank projection matrix derived by
PCA, OPCA or CCA, which facilitates comparison
to alternative projection methods. Using concise
matrix notation, let f be a raw d-by-1 term vector,
A = [αij]d×k the projection matrix. g = AT f is
thus the k-by-1 projected concept vector.

3.2 Loss Function and Training Procedure
For a pair of term vectors fp and fq, their similar-
ity score is defined by the cosine value of the corre-
sponding concept vectors gp and gq according to the
projection matrix A.

simA(fp, fq) =
gTp gq

||gp||||gq||
,

where gp = AT fp and gq = AT fq. Let ypq be
the true label of this pair. The loss function can
be as simple as the mean-squared error 1

2(ypq −
simA(fp, fq))

2. However, in many applications, the
similarity scores are used to select the closest text
objects given the query. For example, given a query
document, we only need to have the comparable
document in the target language ranked higher than
any other documents. In this scenario, it is more
important for the similarity measure to yield a good
ordering than to match the target similarity scores.
Therefore, we use a pairwise learning setting by con-
sidering a pair of similarity scores (i.e., from two
vector pairs) in our learning objective.

Consider two pairs of term vectors (fp1 , fq1) and
(fp2 , fq2), where the first pair has higher similarity.
Let ∆ be the difference of their similarity scores.
Namely, ∆ = simA(fp1 , fq1)− simA(fp2 , fq2). We
use the following logistic loss over ∆, which upper-
bounds the pairwise accuracy (i.e., 0-1 loss):

L(∆; A) = log(1 + exp(−γ∆)) (2)

Because of the cosine function, we add a scaling
factor γ that magnifies ∆ from [−2, 2] to a larger
range, which helps penalize more on the prediction
errors. Empirically, the value of γ makes no dif-
ference as long as it is large enough1. In the ex-
periments, we set the value of γ to 10. Optimizing
the model parameters A can be done using gradi-
ent based methods. We derive the gradient of the
whole batch and apply the quasi-Newton optimiza-
tion method L-BFGS (Nocedal and Wright, 2006)
directly. For a cleaner presentation, we detail the
gradient derivation in Appendix A. Given that the
optimization problem is not convex, initializing the
model from a good projection matrix often helps re-
duce training time and may lead to convergence to
a better local minimum. Regularization can be done
by adding a term β

2 ||A − A0||2 in Eq. (2), which
forces the learned model not to deviate too much
from the starting point (A0), or simply by early stop-
ping. Empirically we found that the latter is more
effective and it is used in the experiments.

4 Experiments

We compare S2Net experimentally with existing ap-
proaches on two very different tasks: cross-lingual
document retrieval and ad relevance measures.

4.1 Comparable Document Retrieval
With the growth of multiple languages on the Web,
there is an increasing demand of processing cross-
lingual documents. For instance, machine trans-
lation (MT) systems can benefit from training on
sentences extracted from parallel or comparable
documents retrieved from the Web (Munteanu and
Marcu, 2005). Word-level translation lexicons can
also be learned from comparable documents (Fung
and Yee, 1998; Rapp, 1999). In this cross-lingual
document retrieval task, given a query document in
one language, the goal is to find the most similar
document from the corpus in another language.

4.1.1 Data & Setting
We followed the comparable document retrieval

setting described in (Platt et al., 2010) and evalu-
ated S2Net on the Wikipedia dataset used in that pa-
per. This data set consists of Wikipedia documents

1Without the γ parameter, the model still outperforms other
baselines in our experiments, but with a much smaller gain.

250

in two languages, English and Spanish. An article
in English is paired with a Spanish article if they
are identified as comparable across languages by the
Wikipedia community. To conduct a fair compari-
son, we use the same term vectors and data split as in
the previous study. The numbers of document pairs
in the training/development/testing sets are 43,380,
8,675 and 8,675, respectively. The dimensionality
of the raw term vectors is 20,000.

The models are evaluated by using each English
document as query against all documents in Span-
ish and vice versa; the results from the two direc-
tions are averaged. Performance is evaluated by two
metrics: the Top-1 accuracy, which tests whether
the document with the highest similarity score is the
true comparable document, and the Mean Recipro-
cal Rank (MRR) of the true comparable.

When training the S2Net model, all the compara-
ble document pairs are treated as positive examples
and all other pairs are used as negative examples.
Naively treating these 1.8 billion pairs (i.e., 433802)
as independent examples would make the training
very inefficient. Fortunately, most computation in
deriving the batch gradient can be reused via com-
pact matrix operations and training can still be done
efficiently. We initialized the S2Net model using the
matrix learned by OPCA, which gave us the best per-
formance on the development set2.

Our approach is compared with most methods
studied in (Platt et al., 2010), including the best per-
forming one. For CL-LSI, OPCA, and CCA, we in-
clude results from that work directly. In addition, we
re-implemented and improved JPLSA and CPLSA
by changing three settings: we used separate vocab-
ularies for the two languages as in the Poly-lingual
topic model (Mimno et al., 2009), we performed 10
EM iterations for folding-in instead of only one, and
we used the Jensen-Shannon distance instead of the
L1 distance. We also attempted to apply the HDLR
algorithm. Because this algorithm does not scale
well as the number of training examples increases,
we used 2,500 positive and 2,500 negative docu-
ment pairs for training. Unfortunately, among all the

2S2Net outperforms OPCA when initialized from a random
or CL-LSI matrix, but with a smaller gain. For example, when
the number of dimensions is 1000, the MRR score of OPCA
is 0.7660. Starting from the CL-LSI and OPCA matrices, the
MRR scores of S2Net are 0.7745 and 0.7855, respectively.

Figure 2: Mean reciprocal rank versus dimension for
Wikipedia. Results of OPCA, CCA and CL-LSI are
from (Platt et al., 2010).

hyper-parameter settings we tested, HDLR could not
outperform its initial model, which was the OPCA
matrix. Therefore we omit these results.

4.1.2 Results
Fig. 2 shows the MRR performance of all meth-

ods on the development set, across different dimen-
sionality settings of the concept space. As can be
observed from the figure, higher dimensions usually
lead to better results. In addition, S2Net consistently
performs better than all other methods across differ-
ent dimensions. The gap is especially large when
projecting input vectors to a low-dimensional space,
which is preferable for efficiency. For instance, us-
ing 500 dimensions, S2Net already performs as well
as OPCA with 2000 dimensions.

Table 1 shows the averaged Top-1 accuracy and
MRR scores of all methods on the test set, where
the dimensionality for each method is optimized on
the development set (Fig. 2). S2Net clearly outper-
forms all other methods and the difference in terms
of accuracy is statistically significant3.

4.2 Ad Relevance

Paid search advertising is the main revenue source
that supports modern commercial search engines.
To ensure satisfactory user experience, it is impor-
tant to provide both relevant ads and regular search

3We use the unpaired t-test with Bonferroni correction and
the difference is considered statistically significant when the p-
value is less than 0.01.

251

Algorithm Dimension Accuracy MRR
S2Net 2000 0.7447 0.7973
OPCA 2000 0.7255 0.7734
CCA 1500 0.6894 0.7378
CPLSA 1000 0.6329 0.6842
JPLSA 1000 0.6079 0.6604
CL-LSI 5000 0.5302 0.6130

Table 1: Test results for comparable document retrieval
in Wikipedia. Results of OPCA, CCA and CL-LSI are
from (Platt et al., 2010).

results. Previous work on ad relevance focuses on
constructing appropriate term-vectors to represent
queries and ad-text (Broder et al., 2008; Choi et al.,
2010). In this section, we extend the work in (Yih
and Jiang, 2010) and show how S2Net can exploit
annotated query–ad pairs to improve the vector rep-
resentation in this monolingual setting.

4.2.1 Data & Tasks
The ad relevance dataset we used consists of

12,481 unique queries randomly sampled from the
logs of the Bing search engine. For each query, a
number of top ranked ads are selected, which results
in a total number of 567,744 query-ad pairs in the
dataset. Each query-ad pair is manually labeled as
same, subset, superset or disjoint. In our experi-
ment, when the task is a binary classification prob-
lem, pairs labeled as same, subset, or superset are
considered relevant, and pairs labeled as disjoint are
considered irrelevant. When pairwise comparisons
are needed in either training or evaluation, the rele-
vance order is same > subset = superset > disjoint.
The dataset is split into training (40%), validation
(30%) and test (30%) sets by queries.

Because a query string usually contains only a few
words and thus provides very little content, we ap-
plied the same web relevance feedback technique
used in (Broder et al., 2008) to create “pseudo-
documents” to represent queries. Each query in our
data set was first issued to the search engine. The
result page with up to 100 snippets was used as the
pseudo-document to create the raw term vectors. On
the ad side, we used the ad landing pages instead
of the short ad-text. Our vocabulary set contains
29,854 words and is determined using a document
frequency table derived from a large collection of
Web documents. Only words with counts larger than

a pre-selected threshold are retained.
How the data is used in training depends on the

model. For S2Net, we constructed preference pairs
in the following way. For the same query, each rel-
evant ad is paired with a less relevant ad. The loss
function from Eq. (2) encourages achieving a higher
similarity score for the more relevant ad. For HDLR,
we used a sample of 5,000 training pairs of queries
and ads, as it was not able to scale to more train-
ing examples. For OPCA, CCA, PLSA and JPLSA,
we constructed a parallel corpus using only rele-
vant pairs of queries and ads, as the negative exam-
ples (irrelevant pairs of queries and ads) cannot be
used by these models. Finally, PCA and PLSA learn
the models from all training queries and documents
without using any relevance information.

We tested S2Net and other methods in two differ-
ent application scenarios. The first is to use the ad
relevance measure as an ad filter. When the similar-
ity score between a query and an ad is below a pre-
selected decision threshold, this ad is considered ir-
relevant to the query and will be filtered. Evaluation
metrics used for this scenario are the ROC analysis
and the area under the curve (AUC). The second one
is the ranking scenario, where the ads are selected
and ranked by their relevance scores. In this sce-
nario, the performance is evaluated by the standard
ranking metric, Normalized Discounted Cumulative
Gain (NDCG) (Jarvelin and Kekalainen, 2000).

4.2.2 Results
We first compare different methods in their AUC

and NDCG scores. TFIDF is the basic term vec-
tor representation with the TFIDF weighting (tf ·
log(N/df)). It is used as our baseline and also as
the raw input for S2Net, HDLR and other linear pro-
jection methods. Based on the results on the devel-
opment set, we found that PCA performs better than
OPCA and CCA. Therefore, we initialized the mod-
els of S2Net and HDLR using the PCA matrix. Ta-
ble 2 summarizes results on the test set. All models,
except TFIDF, use 1000 dimensions and their best
configuration settings selected on the validation set.

TFIDF is a very strong baseline on this monolin-
gual ad relevance dataset. Among all the methods
we tested, at dimension 1000, only S2Net outper-
forms the raw TFIDF cosine measure in every eval-
uation metric, and the difference is statistically sig-

252

AUC NDCG@1 NDCG@3 NDCG@5
S2Net 0.892 0.855 0.883 0.901
TFIDF 0.861 0.825 0.854 0.876
HDLR 0.855 0.826 0.856 0.877
CPLSA 0.853 0.845 0.872 0.890

PCA 0.848 0.815 0.847 0.870
OPCA 0.844 0.817 0.850 0.872
JPLSA 0.840 0.838 0.864 0.883
CCA 0.836 0.820 0.852 0.874
PLSA 0.835 0.831 0.860 0.879

Table 2: The AUC and NDCG scores of the cosine sim-
ilarity scores on different vector representations. The di-
mension for all models except TFIDF is 1000.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.05 0.1 0.15 0.2 0.25

T
ru

e-
P

os
iti

ve
 R

at
e

False-Positive Rate

The ROC Curves

S2Net
TFIDF
HDLR

CPLSA

Figure 3: The ROC curves of S2Net, TFIDF, HDLR and
CPLSA when the similarity scores are used as ad filters.

nificant4. In contrast, both CPLSA and HDLR have
higher NDCG scores but lower AUC values, and
OPCA/CCA perform roughly the same as PCA.

When the cosine scores of these vector represen-
tations are used as ad filters, their ROC curves (fo-
cusing on the low false-positive region) are shown
in Fig. 3. It can be clearly observed that the similar-
ity score computed based on vectors derived from
S2Net indeed has better quality, compared to the
raw TFIDF representation. Unfortunately, other ap-
proaches perform worse than TFIDF and their per-
formance in the low false-positive region is consis-
tent with the AUC scores.

Although ideally we would like the dimensional-
ity of the projected concept vectors to be as small

4For AUC, we randomly split the data into 50 subsets and
ran a paired-t test between the corresponding AUC scores. For
NDCG, we compared the DCG scores per query of the com-
pared models using the paired-t test. The difference is consid-
ered statistically significant when the p-value is less than 0.01.

as possible for efficient processing, the quality of
the concept vector representation usually degrades
as well. It is thus interesting to know the best trade-
off point between these two variables. Table 3 shows
the AUC and NDCG scores of S2Net at different di-
mensions, as well as the results achieved by TFIDF
and PCA, HDLR and CPLSA at 1000 dimensions.
As can be seen, S2Net surpasses TFIDF in AUC at
dimension 300 and keeps improving as the dimen-
sionality increases. Its NDCG scores are also con-
sistently higher across all dimensions.

4.3 Discussion

It is encouraging to find that S2Net achieves strong
performance in two very different tasks, given that
it is a conceptually simple model. Its empirical suc-
cess can be attributed to two factors. First, it is flex-
ible in choosing the loss function and constructing
training examples and is thus able to optimize the
model directly for the target task. Second, it can
be trained on a large number of examples. For ex-
ample, HDLR can only use a few thousand exam-
ples and is not able to learn a matrix better than its
initial model for the task of cross-lingual document
retrieval. The fact that linear projection methods
like OPCA/CCA and generative topic models like
JPLSA/CPLSA cannot use negative examples more
effectively also limits their potential.

In terms of scalability, we found that methods
based on eigen decomposition, such as PCA, OPCA
and CCA, take the least training time. The complex-
ity is decided by the size of the covariance matrix,
which is quadratic in the number of dimensions. On
a regular eight-core server, it takes roughly 2 to 3
hours to train the projection matrix in both experi-
ments. The training time of S2Net scales roughly
linearly to the number of dimensions and training
examples. In each iteration, performing the projec-
tion takes the most time in gradient derivation, and
the complexity is O(mnk), where m is the num-
ber of distinct term-vectors, n is the largest number
of non-zero elements in the sparse term-vectors and
k is the dimensionality of the concept space. For
cross-lingual document retrieval, when k = 1000,
each iteration takes roughly 48 minutes and about 80
iterations are required to convergence. Fortunately,
the gradient computation is easily parallelizable and
further speed-up can be achieved using a cluster.

253

TFIDF HDLR CPLSA PCA S2Net100 S2Net300 S2Net500 S2Net750 S2Net1000
AUC 0.861 0.855 0.853 0.848 0.855 0.879 0.880 0.888 0.892

NDCG@1 0.825 0.826 0.845 0.815 0.843 0.852 0.856 0.860 0.855
NDCG@3 0.854 0.856 0.872 0.847 0.871 0.879 0.881 0.884 0.883
NDCG@5 0.876 0.877 0.890 0.870 0.890 0.897 0.899 0.902 0.901

Table 3: The AUC and NDCG scores of S2Net at different dimensions. PCA, HDLR & CPLSA (at dimension 1000)
along with the raw TFIDF representation are used for reference.

5 Related Work

Although the high-level design of S2Net follows the
Siamese architecture (Bromley et al., 1993; Chopra
et al., 2005), the network construction, loss func-
tion and training process of S2Net are all differ-
ent compared to previous work. For example, tar-
geting the application of face verification, Chopra
et al. (2005) used a convolutional network and de-
signed a contrastive loss function for optimizing a
Eucliden distance metric. In contrast, the network
of S2Net is equivalent to a linear projection ma-
trix and has a pairwise loss function. In terms of
the learning framework, S2Net is closely related to
several neural network based approaches, including
autoencoders (Hinton and Salakhutdinov, 2006) and
finding low-dimensional word representations (Col-
lobert and Weston, 2008; Turian et al., 2010). Archi-
tecturally, S2Net is also similar to RankNet (Burges
et al., 2005), which can be viewed as a Siamese neu-
ral network that learns a ranking function.

The strategy that S2Net takes to learn from la-
beled pairs of documents can be analogous to the
work of distance metric learning. Although high
dimensionality is not a problem to algorithms like
HDLR, it suffers from a different scalability issue.
As we have observed in our experiments, the al-
gorithm can only handle a small number of simi-
larity/dissimilarity constraints (i.e., the labeled ex-
amples), and is not able to use a large number of
examples to learn a better model. Empirically, we
also found that HDLR is very sensitive to the hyper-
parameter settings and its performance can vary sub-
stantially from iteration to iteration.

Other than the applications presented in this pa-
per, concept vectors have shown useful in traditional
IR tasks. For instance, Egozi et al. (2008) use ex-
plicit semantic analysis to improve the retrieval re-
call by leveraging Wikipedia. In a companion pa-
per, we also demonstrated that various topic mod-

els including S2Net can enhance the ranking func-
tion (Gao et al., 2011). For text categorization, simi-
larity between terms is often encoded as kernel func-
tions embedded in the learning algorithms, and thus
increase the classification accuracy. Representative
approaches include latent semantic kernels (Cris-
tianini et al., 2002), which learns an LSA-based ker-
nel function from a document collection, and work
that computes term-similarity based on the linguis-
tic knowledge provided by WordNet (Basili et al.,
2005; Bloehdorn and Moschitti, 2007).

6 Conclusions

In this paper, we presented S2Net, a discrimina-
tive approach for learning a projection matrix that
maps raw term-vectors to a low-dimensional space.
Our learning method directly optimizes the model
so that the cosine score of the projected vectors can
become a reliable similarity measure. The strength
of this model design has been shown empirically in
two very different tasks. For cross-lingual document
retrieval, S2Net significantly outperforms OPCA,
which is the best prior approach. For ad selection
and filtering, S2Net also outperforms all methods we
compared it with and is the only technique that beats
the raw TFIDF vectors in both AUC and NDCG.

The success of S2Net is truly encouraging, and
we would like to explore different directions to fur-
ther enhance the model in the future. For instance, it
will be interesting to extend the model to learn non-
linear transformations. In addition, since the pairs of
text objects being compared often come from differ-
ent distributions (e.g., English documents vs. Span-
ish documents or queries vs. pages), learning two
different matrices instead of one could increase the
model expressivity. Finally, we would like to apply
S2Net to more text similarity tasks, such as word
similarity and entity recognition and discovery.

254

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and WordNet-based approaches. In Proceedings of
HLT-NAACL, pages 19–27, June.

Arthur Asuncion, Max Welling, Padhraic Smyth, and
Yee Whye Teh. 2009. On smoothing and inference
for topic models. In UAI.

Roberto Basili, Marco Cammisa, and Alessandro Mos-
chitti. 2005. Effective use of WordNet semantics via
kernel-based learning. In CoNLL.

David M. Blei, Andrew Y. Ng, Michael I. Jordan, and
John Lafferty. 2003. Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3:993–1022.

Stephan Bloehdorn and Alessandro Moschitti. 2007.
Combined syntactic and semantic kernels for text clas-
sification. In ECIR, pages 307–318.

Andrei Z. Broder, Peter Ciccolo, Marcus Fontoura,
Evgeniy Gabrilovich, Vanja Josifovski, and Lance
Riedel. 2008. Search advertising using web relevance
feedback. In CIKM, pages 1013–1022.

Jane Bromley, James W. Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger,
and Roopak Shah. 1993. Signature verification us-
ing a “Siamese” time delay neural network. Interna-
tional Journal Pattern Recognition and Artificial Intel-
ligence, 7(4):669–688.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
ICML.

Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski,
M. Mediano, and B. Pang. 2010. Using landing pages
for sponsored search ad selection. In WWW.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with ap-
plication to face verification. In Proceedings of CVPR-
2005, pages 539–546.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: deep neural
networks with multitask learning. In ICML.

Nello Cristianini, John Shawe-Taylor, and Huma Lodhi.
2002. Latent semantic kernels. Journal of Intelligent
Information Systems, 18(2–3):127–152.

Jason V. Davis and Inderjit S. Dhillon. 2008. Struc-
tured metric learning for high dimensional problems.
In KDD, pages 195–203.

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and
Inderjit S. Dhillon. 2007. Information-theoretic met-
ric learning. In ICML.

Scott Deerwester, Susan Dumais, George Furnas,
Thomas Landauer, and Richard Harshman. 1990. In-
dexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–
407.

Konstantinos I. Diamantaras and S.Y. Kung. 1996. Prin-
cipal Component Neural Networks: Theory and Appli-
cations. Wiley-Interscience.

Susan T. Dumais, Todd A. Letsche, Michael L. Littman,
and Thomas K. Landauer. 1997. Automatic cross-
linguistic information retrieval using latent seman-
tic indexing. In AAAI-97 Spring Symposium Series:
Cross-Language Text and Speech Retrieval.

Ofer Egozi, Evgeniy Gabrilovich, and Shaul Markovitch.
2008. Concept-based feature generation and selection
for information retrieval. In AAAI.

Pascale Fung and Lo Yuen Yee. 1998. An IR approach
for translating new words from nonparallel, compara-
ble texts. In Proceedings of COLING-ACL.

Kuzman Ganchev, Joao Graca, Jennifer Gillenwater, and
Ben Taskar. 2009. Posterior regularization for struc-
tured latent variable models. Technical Report MS-
CIS-09-16, University of Pennsylvania.

Jianfeng Gao, Kristina Toutanova, and Wen-tau Yih.
2011. Clickthrough-based latent semantic models for
web search. In SIGIR.

G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing
the dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507, July.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In SIGIR ’99, pages 50–57.

K. Jarvelin and J. Kekalainen. 2000. Ir evaluation meth-
ods for retrieving highly relevant documents. In SI-
GIR, pages 41–48.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. In Proc. of COLING-ACL 98.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to Information Re-
trieval. Cambridge University Pres.

David Mimno, Hanna W. Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In EMNLP.

Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora. Computational Linguistics,
31:477–504.

Jorge Nocedal and Stephen Wright. 2006. Numerical
Optimization. Springer, 2nd edition.

John Platt, Kristina Toutanova, and Wen-tau Yih. 2010.
Translingual document representations from discrimi-
native projections. In EMNLP.

Reinhard Rapp. 1999. Automatic identification of word
translations from unrelated English and German cor-
pora. In Proceedings of the ACL, pages 519–526.

255

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In ACL.

Alexei Vinokourov, John Shawe-taylor, and Nello Cris-
tianini. 2003. Inferring a semantic representation of
text via cross-language correlation analysis. In NIPS-
15.

Vishnu Vyas and Patrick Pantel. 2009. Semi-automatic
entity set refinement. In NAACL ’09, pages 290–298.

Wen-tau Yih and Ning Jiang. 2010. Similarity models
for ad relevance measures. In MLOAD - NIPS 2010
Workshop on online advertising.

Appendix A. Gradient Derivation
The gradient of the loss function in Eq. (2) can be

derived as follows.

∂L(∆,A)

∂A
=

−γ
1 + exp(−γ∆)

∂∆

∂A

∂∆

∂A
=

∂

∂A
simA(fp1 , fq1)− ∂

∂A
simA(fp2 , fq2)

∂

∂A
simA(fp, fq) =

∂

∂A
cos(gp,gq),

where gp = AT fp and gq = AT fq are the projected
concept vectors of fq and fq. The gradient of the
cosine score can be further derived in the following
steps.

cos(gp,gq) =
gTp gq

‖gp‖‖gq‖
∇AgTp gq = (∇AAT fp)gq + (∇AAT fq)gp

= fpg
T
q + fqg

T
p

∇A
1

‖gp‖
= ∇A(gTp gp)

− 1
2

= −1

2
(gTp gp)

− 3
2∇A(gTp gp)

= −(gTp gp)
− 3

2 fpg
T
p

∇A
1

‖gq‖
= −(gTq gq)

− 3
2 fqg

T
q

Let a, b, c be gTp gq, 1/‖gp‖ and 1/‖gq‖, respec-
tively.

∇A

gTp gq

‖gp‖‖gq‖
= − abc3fqgTq − acb3fpgTp

+ bc(fpg
T
q + fqg

T
p)

256

Author Index

Ahuja, Arun, 125
Akkaya, Cem, 87
Alshawi, Hiyan, 19
Angluin, Dana, 97
Arora, Shilpa, 106

Barzilay, Regina, 1
Becerra-Bonache, Leonor, 97
Berg, Alexander C., 220
Berg, Tamara L., 220
Bohnert, Fabian, 181

Chen, Xinxiong, 135
Choi, Yejin, 78, 220
Cohen, Paul, 39
Conrad, Alexander, 87
Craven, Mark, 49

Dell’Orletta, Felice, 115
Downey, Doug, 125

Gajulapalli, Kailash, 78
Ghosh, Debanjan, 58
Gomez, Fernando, 190

Haghighi, Aria, 1
Hayes, Bruce, 48
Hewlett, Daniel, 39
Huang, Fei, 125

Jurafsky, Daniel, 19

Kazama, Jun’ichi, 238
Komachi, Mamoru, 154
Kübler, Sandra, 200
Kulkarni, Girish, 220
Kundu, Gourab, 229

Lee, Yoong Keok, 1
Li, Siming, 220

Lignos, Constantine, 29
Liu, Ying, 145
Liu, Zhiyuan, 135

Matsumoto, Yuji, 154
McInnes, Bridget T., 145
Meek, Christopher, 247
Melton, Genevieve B., 145
Mihalcea, Rada, 87
Miyao, Yusuke, 238
Mohamed, Emad, 10
Montemagni, Simonetta, 115
Mukund, Smruthi, 58
Munro, Robert, 68

Nyberg, Eric, 106

Ozaki, Kohei, 154

Pakhomov, Serguei V., 145
Pantel, Patrick, 163
Pedersen, Ted, 145
Pennacchiotti, Marco, 163
Platt, John C., 247

Roth, Dan, 229

Sarawgi, Ruchita, 78
Schoenemann, Thomas, 172
Seroussi, Yanir, 181
Shimbo, Masashi, 154
Spitkovsky, Valentin I., 19
Srihari, Rohini, 58
Sun, Maosong, 135
Szumlanski, Sean, 190

Teh, Yee Whye, 219
Toutanova, Kristina, 247
Tsuruoka, Yoshimasa, 238

Venturi, Giulia, 115

257

Vlachos, Andreas, 49

Wiebe, Janyce, 87

Yates, Alexander, 125
Yih, Wen-tau, 247
Yu, Ning, 200

Zheng, Yabin, 135
Zhu, Xiaodan, 210
Zukerman, Ingrid, 181

	Program
	Modeling Syntactic Context Improves Morphological Segmentation
	The Effect of Automatic Tokenization, Vocalization, Stemming, and POS Tagging on Arabic Dependency Parsing
	Punctuation: Making a Point in Unsupervised Dependency Parsing
	Modeling Infant Word Segmentation
	Word Segmentation as General Chunking
	(Invited talk) Computational Linguistics for Studying Language in People: Principles, Applications and Research Problems
	Search-based Structured Prediction applied to Biomedical Event Extraction
	Using Sequence Kernels to identify Opinion Entities in Urdu
	Subword and Spatiotemporal Models for Identifying Actionable Information in Haitian Kreyol
	Gender Attribution: Tracing Stylometric Evidence Beyond Topic and Genre
	Improving the Impact of Subjectivity Word Sense Disambiguation on Contextual Opinion Analysis
	Effects of Meaning-Preserving Corrections on Language Learning
	Assessing Benefit from Feature Feedback in Active Learning for Text Classification
	ULISSE: an Unsupervised Algorithm for Detecting Reliable Dependency Parses
	Language Models as Representations for Weakly Supervised NLP Tasks
	Automatic Keyphrase Extraction by Bridging Vocabulary Gap
	Using Second-order Vectors in a Knowledge-based Method for Acronym Disambiguation
	Using the Mutual k-Nearest Neighbor Graphs for Semi-supervised Classification on Natural Language Data
	Automatically Building Training Examples for Entity Extraction
	Probabilistic Word Alignment under the L0-norm
	Authorship Attribution with Latent Dirichlet Allocation
	Evaluating a Semantic Network Automatically Constructed from Lexical Co-occurrence on a Word Sense Disambiguation Task
	Filling the Gap: Semi-Supervised Learning for Opinion Detection Across Domains
	A Normalized-Cut Alignment Model for Mapping Hierarchical Semantic Structures onto Spoken Documents
	(Invited talk) Bayesian Tools for Natural Language Learning
	Composing Simple Image Descriptions using Web-scale N-grams
	Adapting Text instead of the Model: An Open Domain Approach
	Learning with Lookahead: Can History-Based Models Rival Globally Optimized Models?
	Learning Discriminative Projections for Text Similarity Measures

