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Abstract 

Suppose we have a large collection of 

documents most of which are unlabeled. Suppose 

further that we have a small subset of these 
documents which represent a particular class of 

documents we are interested in, i.e. these are 

labeled as positive examples. We may have reason 
to believe that there are more of these positive 

class documents in our large unlabeled collection. 

What data mining techniques could help us find 
these unlabeled positive examples? Here we 

examine machine learning strategies designed to 

solve this problem. We find that a proper choice of 

machine learning method as well as training 
strategies can give substantial improvement in 

retrieving, from the large collection, data enriched 

with positive examples. We illustrate the principles 
with a real example consisting of multiword 

UMLS phrases among a much larger collection of 

phrases from Medline. 
 

1 Introduction 

Given a large collection of documents, a few of 

which are labeled as interesting, our task is to 
identify unlabeled documents that are also 

interesting. Since the labeled data represents the 

data we are interested in, we will refer to it as the 
positive class and to the remainder of the data as 

the negative class. We use the term negative class, 

however, documents in the negative class are not 

necessarily negative, they are simply unlabeled and 
the negative class may contain documents relevant 

to the topic of interest. Our goal is to retrieve these 

unknown relevant documents. 
A naïve approach to this problem would simply 

take the positive examples as the positive class and 

the rest of the collection as the negative class and 
apply machine learning to learn the difference and 

rank the negative class based on the resulting 

scores. It is reasonable to expect that the top of this 

ranking would be enriched for the positive class. 

But an appropriate choice of methods can improve 
over the naïve approach.  

One issue of importance would be choosing the 

most appropriate machine learning method. Our 
problem can be viewed from two different 

perspectives: the problem of learning from 

imbalanced data as well as the problem of 

recommender systems. In terms of learning from 
imbalanced data, our positive class is significantly 

smaller than the negative, which is the remainder 

of the collection. Therefore we are learning from 
imbalanced data. Our problem is also a 

recommender problem in that based on a few 

examples found of interest to a customer we seek 

similar positive examples amongst a large 
collection of unknown status. Our bias is to use 

some form of wide margin classifier for our 

problem as such classifiers have given good 
performance for both the imbalanced data problem 

and the recommender problem (Zhang and Iyengar 

2002; Abkani, Kwek et al. 2004; Lewis, Yang et 
al. 2004).  

Imbalanced data sets arise very frequently in 

text classification problems. The issue with 

imbalanced learning is that the large prevalence of 
negative documents dominates the decision 

process and harms classification performance. 

Several approaches have been proposed to deal 
with the problem including sampling methods and 

cost-sensitive learning methods and are described 

in (Chawla, Bowyer et al. 2002; Maloof 2003; 
Weiss, McCarthy et al. 2007). These studies have 

shown that there is no clear advantage of one 

approach versus another. Elkan (2001) points out 

that cost-sensitive methods and sampling methods 
are related in the sense that altering the class 

distribution of training data is equivalent to 

altering misclassification cost. Based on these 
studies we examine cost-sensitive learning in 

which the cost on the positive set is increased, as a 

useful approach to consider when using an SVM.  

In order to show how cost-sensitive learning for 
an SVM is formulated, we write the standard 

equations for an SVM following (Zhang 2004). 
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Given training data   ,i ix y  where iy  is 1 or –1 

depending on whether the data point ix  is 

classified as positive or negative, an SVM seeks 

that vector iw  which minimizes  
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where the loss function is defined by  
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The cost-sensitive version modifies (1) to become  

 

 

and now we can choose r  and r  to magnify the 

losses appropriately. Generally we take r  to be 1, 

and r  to be some factor larger than 1. We refer to 

this formulation as CS-SVM. Generally, the same 

algorithms used to minimize (1) can be used to 
minimize (3). 

Recommender systems use historical data on 

user preferences, purchases and other available 

data to predict items of interest to a user. Zhang 
and Iyengar (2002) propose a wide margin 

classifier with a quadratic loss function as very 

effective for this purpose (see appendix). It is used 
in (1) and requires no adjustment in cost between 

positive and negative examples. It is proposed as a 

better method than varying costs because it does 
not require searching for the optimal cost 

relationship between positive and negative 

examples. We will use for our wide margin 

classifier the modified Huber loss function (Zhang 
2004).  The modified Huber loss function is 

quadratic where this is important and has the form  
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We also use it in (1). We refer to this approach as 

the Huber method (Zhang 2004) as opposed to 

SVM. We compare it with SVM and CS-SVM. We 

used our own implementations for SVM, CS-SVM, 
and Huber that use gradient descent to optimize the 

objective function. 

The methods we develop are related to semi-

supervised learning approaches (Blum and 
Mitchell 1998; Nigam, McCallum et al. 1999) and 

active learning (Roy and McCallum 2001; Tong 

and Koller 2001). Our method differs from active 

learning in that active learning seeks those 
unlabeled examples for which labels prove most 

informative in improving the classifier. Typically 

these examples are the most uncertain. Some semi-
supervised learning approaches start with labeled 

examples and iteratively seek unlabeled examples 

closest to already labeled data and impute the 
known label to the nearby unlabeled examples. Our 

goal is simply to retrieve plausible members for the 

positive class with as high a precision as possible. 

Our method has value even in cases where human 
review of retrieved examples is necessary. The 

imbalanced nature of the data and the presence of 

positives in the negative class make this a 
challenging problem. 

In Section 2 we discuss additional strategies 

proposed in this work, describe the data used and 
design of experiments, and provide the evaluation 

measure used. In Section 3 we present our results, 

in Sections 4 and 5 we discuss our approach and 

draw conclusions.  
 

2 Methods 

2.1 Cross Training 

Let D  represent our set of documents, and C  

those documents that are known positives in D . 

Generally C  would be a small fraction of D  and 

for the purposes of learning we assume that 

\C D C  . 

 We are interested in the case when some of the 

negatively labeled documents actually belong to 

the positive class. We will apply machine learning 
to learn the difference between the documents in 

the class C  and documents in the class C  and 

use the weights obtained by training to score the 

documents in the negative class C . The highest 

scoring documents in set C  are candidate 

mislabeled documents. However, there may be a 

problem with this approach, because the classifier 

is based on partially mislabeled data. Candidate 
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mislabeled documents are part of the C  class. In 

the process of training, the algorithm purposely 

learns to score them low. This effect can be 

magnified by any overtraining that takes place. It 

will also be promoted by a large number of 
features, which makes it more likely that any 

positive point in the negative class is in some 

aspect different from any member of C . 

Another way to set up the learning is by 

excluding documents from directly participating in 
the training used to score them. We first divide the 

negative set into disjoint pieces 

1 2C Z Z    

Then train documents in C  versus documents in 

1Z  to rank documents in 2Z  and train documents 

in C  versus documents in 2Z  to rank documents 

in 1Z . We refer to this method as cross training 

(CT). We will apply this approach and show that it 

confers benefit in ranking the false negatives in 

C .  

2.2 Data Sources and Preparation 

The databases we studied are MeSH25, Reuters, 
20NewsGroups, and MedPhrase. 

MeSH25.
  
 We selected 25 MeSH® terms with 

occurrences covering a wide frequency range: from 

1,000 to 100,000 articles. A detailed explanation of 
MeSH can be found at 

http://www.nlm.nih.gov/mesh/. 

For a given MeSH term m, we treat the records 
assigned that MeSH term m as positive. The 

remaining MEDLINE® records do not have m 

assigned as a MeSH and are treated as negative. 

Any given MeSH term generally appears in a small 
minority of the approximately 20 million MEDLINE 

documents making the data highly imbalanced for 

all MeSH terms.  
Reuters. The data set consists of 21,578 Reuters 

newswire articles in 135 overlapping topic 

categories. We experimented on the 23 most 
populated classes. 

For each of these 23 classes, the articles in the 

class of interest are positive, and the rest of 21,578 

articles are negative. The most populous positive 
class contains 3,987 records, and the least 

populous class contains 112 records.  

 20NewsGroups. The dataset is a collection of 

messages from twenty different newsgroups with 
about one thousand messages in each newsgroup. 

We used each newsgroup as the positive class and 

pooled the remaining nineteen newsgroups as the 

negative class. 
Text in the MeSH25 and Reuters databases has 

been preprocessed as follows: all alphabetic 

characters were lowercased, non-alphanumeric 
characters replaced by blanks, and no stemming 

was done. Features in the MeSH25 dataset are all 

single nonstop terms and all pairs of adjacent 
nonstop terms that are not separated by 

punctuation. Features in the Reuters database are 

single nonstop terms only. Features in the 

20Newsgroups are extracted using the Rainbow 
toolbox (McCallum 1996).  

MedPhrase. We process MEDLINE to extract all 

multiword UMLS® 
(http://www.nlm.nih.gov/research/umls/) phrases 

that are present in MEDLINE. From the resulting 

set of strings, we drop the strings that contain 
punctuation marks or stop words. The remaining 

strings are normalized (lowercased, redundant 

white space is removed) and duplicates are 

removed. We denote the resulting set of 315,679 

phrases by phrasesU .  

For each phrase in ,phrasesU  we randomly 

sample, as available, up to 5 MEDLINE sentences 
containing it. We denote the resulting set of 

728,197 MEDLINE sentences by phrasesS . From

phrasesS  we extract all contiguous multiword 

expressions that are not present in phrasesU . We 

call them n-grams, where n>1. N-grams containing 
punctuation marks and stop words are removed 

and remaining n-grams are normalized and 

duplicates are dropped. The result is 8,765,444 n-

grams that we refer to as .ngramM  We believe that 

ngramM contains many high quality biological 

phrases. We use phrasesU  , a known set of high 

quality biomedical phrases, as the positive class, 

and ngramM
 
as the negative class. 

In order to apply machine learning we need to 
define features for each n-gram. Given an n-gram 

grm that is composed of n  words,

1 2 ngrm w w w , we extract a set of 11 numbers 
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 
11

1i i
f


 associated with the n-gram grm.

 
These are 

as follows: 
f1: number of occurrences of grm throughout 

Medline; 

f2: -(number of occurrences of w2…wn not 
following w1 in documents that contain grm)/ f1; 

f3: -(number of occurrences of w1…wn-1 not 

preceding wn in documents that contain grm)/ f1; 

f4: number of occurrences of (n+1)-grams of the 
form xw1…wn throughout Medline; 

f5: number of occurrences of (n+1)-grams  of 

the form w1…wn x throughout Medline; 

f6: 
    
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f7: mutual information between w1 and w2; 

f8: 
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f9: mutual information between wn-1 and wn; 

f10: -(number of different multiword expressions 
beginning with w1 in Medline); 

f11: -(number of different multiword expressions 

ending with wn in Medline).   

We discretize the numeric values of the  
11

1i i
f


 

into categorical values.  

In addition to these features, for every n-gram 
grm, we include the part of speech tags predicted 

by the MedPost tagger (Smith, Rindflesch et al. 

2004).  To obtain the tags for a given n-gram grm 

we randomly select a sentence from phrasesS  

containing grm,
 
tag the sentence, and consider the 

tags 0 1 2 1 1n n nt t t t t t   where 0t is the tag of the 

word preceding word 1w in n-gram grm, 1t  is the 

tag of word 1w  in n-gram grm, and so on. We 

construct the features  

  
 

These features emphasize the left and right ends of 

the n-gram and include parts-of-speech in the 
middle without marking their position. The 

resulting features are included with  
11

1i i
f


 to 

represent the n-gram. 

2.3 Experimental Design  

A standard way to measure the success of a 
classifier is to evaluate its performance on a 

collection of documents that have been previously 

classified as positive or negative. This is usually 
accomplished by randomly dividing up the data 

into training and test portions which are separate. 

The classifier is then trained on the training 

portion, and is tested on test portion. This can be 
done in a cross-validation scheme or by randomly 

re-sampling train and test portions repeatedly.   

We are interested in studying the case where 
only some of the positive documents are labeled. 

We simulate that situation by taking a portion of 

the positive data and including it in the negative 
training set. We refer to that subset of positive 

documents as tracer data (Tr). The tracer data is 

then effectively mislabeled as negative. By 

introducing such an artificial supplement to the 
negative training set we are not only certain that 

the negative set contains mislabeled positive 

examples, but we know exactly which ones they 
are. Our goal is to automatically identify these 

mislabeled documents in the negative set and 

knowing their true labels will allow us to measure 
how successful we are. Our measurements will be 

carried out on the negative class and for this 

purpose it is convenient to write the negative class 

as composed of true negatives and tracer data 
(false negatives) 

'C C Tr   . 

 

When we have trained a classifier, we evaluate 

performance by ranking 
'C  and measuring how 

well tracer data is moved to the top ranks. The 
challenge is that Tr appears in the negative class 

and will interact with the training in some way.  

2.4 Evaluation 

We evaluate performance using Mean Average 
Precision (MAP) (Baeza-Yates and Ribeiro-Neto 

1999). The mean average precision is the mean 

value of the average precisions computed for all 

topics in each of the datasets in our study. Average 
precision is the average of the precisions at each 

rank that contains a true positive document. 
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Table 1: MAP scores trained with three levels of tracer data introduced to the negative training set. 
 

No Cross Training No Tracer Data Tr20 in training Tr50 in training 

MeSH Terms Huber SVM Huber SVM Huber SVM 

celiac disease 0.694 0.677 0.466 0.484 0.472 0.373 

lactose intolerance 0.632 0.635 0.263 0.234 0.266 0.223 

myasthenia gravis 0.779 0.752 0.632 0.602 0.562 0.502 

carotid stenosis 0.466 0.419 0.270 0.245 0.262 0.186 

diabetes mellitus 0.181 0.181 0.160 0.129 0.155 0.102 

rats, wistar 0.241 0.201 0.217 0.168 0.217 0.081 

myocardial infarction 0.617 0.575 0.580 0.537 0.567 0.487 

blood platelets 0.509 0.498 0.453 0.427 0.425 0.342 

serotonin 0.514 0.523 0.462 0.432 0.441 0.332 

state medicine 0.158 0.164 0.146 0.134 0.150 0.092 

urinary bladder 0.366 0.379 0.312 0.285 0.285 0.219 

drosophila melanogaster 0.553 0.503 0.383 0.377 0.375 0.288 

tryptophan 0.487 0.480 0.410 0.376 0.402 0.328 

laparotomy 0.186 0.173 0.138 0.101 0.136 0.066 

crowns 0.520 0.497 0.380 0.365 0.376 0.305 

streptococcus mutans 0.795 0.738 0.306 0.362 0.218 0.306 

infectious mononucleosis 0.622 0.614 0.489 0.476 0.487 0.376 

blood banks 0.283 0.266 0.170 0.153 0.168 0.115 

humeral fractures 0.526 0.495 0.315 0.307 0.289 0.193 

tuberculosis, lymph node 0.385 0.397 0.270 0.239 0.214 0.159 

mentors 0.416 0.420 0.268 0.215 0.257 0.137 

tooth discoloration 0.499 0.499 0.248 0.215 0.199 0.151 

pentazocine 0.710 0.716 0.351 0.264 0.380 0.272 

hepatitis e 0.858 0.862 0.288 0.393 0.194 0.271 

genes, p16 0.278 0.313 0.041 0.067 0.072 0.058 

Avg 0.491 0.479 0.321 0.303 0.303 0.238 

 

3 Results 

3.1 MeSH25, Reuters, and 20NewsGroups 

We begin by presenting results for the MeSH25 

dataset. Table 1 shows the comparison between 

Huber and SVM methods. It also compares the 

performance of the classifiers with different levels 

of tracer data in the negative set. We set aside 50% 

of C  to be used as tracer data and used the 

remaining 50% of C  as the positive set for 

training. We describe three experiments where we 
have different levels of tracer data in the negative 

set at training time. These sets are ,C  20 ,C Tr   
and 50  C Tr  representing no tracer data, 20% of 

C  as tracer data and 50% of C  as tracer data, 

respectively. The test set 20C Tr   is the same for 

all of these experiments. Results indicate that on 

average Huber outperforms SVM on these highly 

imbalanced datasets. We also observe that 

performance of both methods deteriorates with 
increasing levels of tracer data.   

Table 2 shows the performance of Huber and 

SVM methods on negative training sets with tracer 

data 20C Tr   and 50  C Tr  as in Table 1, but 

with cross training. As mentioned in the Methods 

section, we first divide each negative training set 

into two disjoint pieces 1Z  and 2Z . We then train 

documents in the positive training set versus 

documents in 1Z  to score documents in 2Z  and 

train documents in the positive training set versus  

documents in 2Z  to score documents in 1Z . We 

then merge 1Z  and 2Z  as scored sets and report 

measurements on the combined ranked set of 

documents. Comparing with Table 1, we see a 

significant improvement in the MAP when using 

cross training. 
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Table 2: MAP scores for Huber and SVM trained with two levels of tracer data introduced to the 
negative training set using cross training technique. 
 

2-fold Cross Training Tr20 in training Tr50 in training 

MeSH Terms Huber SVM Huber SVM 

celiac disease 0.550 0.552 0.534 0.521 

lactose intolerance 0.415 0.426 0.382 0.393 

myasthenia gravis 0.652 0.643 0.623 0.631 

carotid stenosis 0.262 0.269 0.241 0.241 

diabetes mellitus 0.148 0.147 0.144 0.122 

rats, wistar 0.212 0.186 0.209 0.175 

myocardial infarction 0.565 0.556 0.553 0.544 

blood platelets 0.432 0.435 0.408 0.426 

serotonin 0.435 0.447 0.417 0.437 

state medicine 0.135 0.136 0.133 0.132 

urinary bladder 0.295 0.305 0.278 0.280 

drosophila melanogaster 0.426 0.411 0.383 0.404 

tryptophan 0.405 0.399 0.390 0.391 

laparotomy 0.141 0.128 0.136 0.126 

crowns 0.375 0.376 0.355 0.353 

streptococcus mutans 0.477 0.517 0.448 0.445 

infectious mononucleosis 0.519 0.514 0.496 0.491 

blood banks 0.174 0.169 0.168 0.157 

humeral fractures 0.335 0.335 0.278 0.293 

tuberculosis, lymph node 0.270 0.259 0.262 0.244 

mentors 0.284 0.278 0.275 0.265 

tooth discoloration 0.207 0.225 0.209 0.194 

pentazocine 0.474 0.515 0.495 0.475 

hepatitis e 0.474 0.499 0.482 0.478 

genes, p16 0.102 0.101 0.083 0.093 

Avg 0.350 0.353 0.335 0.332 

 

 
We performed similar experiments with the 

Reuters and 20NewsGroups datasets, where 20%  

and 50% of the good set is used as tracer data. We 
report MAP scores for these datasets in Tables 3 

and 4. 

 

3.2 Identifying high quality biomedical 

phrases in the MEDLINE Database 

We illustrate our findings with a real example 

of detecting high quality biomedical phrases 

among ,ngramM a large collection of multiword 

expressions from Medline. We believe that ngramM
 

contains many high quality biomedical phrases. 

These examples are the counterpart of the 
mislabeled positive examples (tracer data) in the 

previous tests. 

  
Table 3: MAP scores for Huber and SVM 

trained with 20% and 50% tracer data introduced to 
the negative training set for Reuters dataset. 

 

Reuters 
Tr20 in training Tr50 in training 

Huber SVM Huber SVM 

No CT 0.478 0.451 0.429 0.403 

2-Fold CT 0.662 0.654 0.565 0.555 
 

Table 4: MAP scores for Huber and SVM 

trained with 20% and 50% tracer data introduced to 
the negative training set for 20NewsGroups dataset. 

 

20News 

Groups 

Tr20 in training Tr50 in training 

Huber SVM Huber SVM 

No CT 0.492 0.436 0.405 0.350 

2-Fold CT 0.588 0.595 0.502 0.512 
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To identify these examples, we learn the 

difference between the phrases in 
phrasesU

 
 and 

.ngramM  Based on the training we rank the n-grams 

in .ngramM
 
We expect the n-grams that cannot be 

separated from UMLS phrases are high quality 

biomedical phrases. In our experiments, we 

perform 3-fold cross validation for training and 
testing. This insures we obtain any possible benefit 

from cross training. The results shown in figure 1 

are MAP values for these 3 folds.  
 

Figure 1. Huber, CS-SVM, and naïve Bayes 

classifiers applied to the MedPhrase dataset. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

We trained naïve Bayes, Huber, and CS-SVM 

with a range of different cost factors. The results 
are presented in Figure 1. We observe that the 

Huber classifier performs better than naïve Bayes. 

CS-SVM with the cost factor of 1 (standard SVM) 
is quite ineffective. As we increase the cost factor, 

the performance of CS-SVM improves until it is 

comparable to Huber. We believe that the quality 

of ranking is better when the separation of phrasesU
 

from ngramM  is better.  

Because we have no tracer data we have no 

direct way to evaluate the ranking of .ngramM  

However, we selected a random set of 100 n-grams 

from ,ngramM  which score as high as top-scoring 

10% of phrases in phrasesU . Two reviewers 

manually reviewed that list and identified that 99 
of these 100 n-grams were high quality biomedical 

phrases. Examples are: aminoshikimate pathway, 

berberis aristata, dna hybridization, subcellular 

distribution, acetylacetoin synthase, etc. One false-
positive example in that list was congestive heart.  
 

 

4 Discussion 

We observed that the Huber classifier performs 

better than SVM on imbalanced data with no cross 

training (see appendix). The improvement of 

Huber over SVM becomes more marked as the 
percentage of tracer data in the negative training 

set is increased. However, the results also show 

that cross training, using either SVM or Huber 
(which are essentially equivalent), is better than 

using Huber without cross training. This is 

demonstrated in our experiments using the tracer 
data. The results are consistent over the range of 

different data sets. We expect cross training to 

have benefit in actual applications.  

Where does cost-sensitive learning fit into this 
picture? We tested cost-sensitive learning on all of 

our corpora using the tracer data. We observed 

small and inconsistent improvements (data not 
shown). The optimal cost factor varied markedly 

between cases in the same corpus. We could not 

conclude this was a useful approach and instead 

saw better results simply using Huber. This 
conclusion is consistent with (Zhang and Iyengar 

2002) which recommend using a quadratic loss 

function. It is also consistent with results reported 
in (Lewis, Yang et al. 2004) where CS-SVM is 

compared with SVM on multiple imbalanced text 

classification problems and no benefit is seen using 
CS-SVM. Others have reported a benefit with CS-

SVM (Abkani, Kwek et al. 2004; Eitrich and Lang 

2005). However, their datasets involve relatively 

few features and we believe this is an important 
aspect where cost-sensitive learning has proven 

effective. We hypothesize that this is the case 

because with few features the positive data is more 
likely to be duplicated in the negative set. In our 

case, the MedPhrase dataset involves relatively 

few features (410) and indeed we see a dramatic 
improvement of CS-SVM over SVM. 

One approach to dealing with imbalanced data 

is the artificial generation of positive examples as 

seen with the SMOTE algorithm (Chawla, Bowyer 
et al. 2002). We did not try this method and do not 

know if this approach would be beneficial for 
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textual data or data with many features. This is an 

area for possible future research. 
Effective methods for leveraging positively 

labeled data have several potential applications:  

 Given a set of documents discussing a 

particular gene, one may be interested in 

finding other documents that talk about the 
same gene but use an alternate form of the 

gene name.  

 Given a set of documents that are indexed with 

a particular MeSH term, one may want to find 
new documents that are candidates for being 

indexed with the same MeSH term. 

 Given a set of papers that describe a particular 

disease, one may be interested in other 
diseases that exhibit a similar set of symptoms. 

 One may identify incorrectly tagged web 

pages.  

These methods can address both removing 

incorrect labels and adding correct ones. 
 

5 Conclusions 

Given a large set of documents and a small set 

of positively labeled examples, we study how best 

to use this information in finding additional 

positive examples. We examine the SVM and 
Huber classifiers and conclude that the Huber 

classifier provides an advantage over the SVM 

classifier on such imbalanced data. We introduce a 
technique which we term cross training. When this 

technique is applied we find that the SVM and 

Huber classifiers are essentially equivalent and 
superior to applying either method without cross 

training.  We confirm this on three different 

corpora. We also analyze an example where cost-

sensitive learning is effective. We hypothesize that 
with datasets having few features, cost-sensitive 

learning can be beneficial and comparable to using 

the Huber classifier.  
 

Appendix: Why Huber Loss Function works 

better for problems with Unbalanced Class 
Distributions. 
The drawback of the standard SVM for the 

problem with an unbalanced class distribution 

results from the shape of ( )h z  in (2). Consider the 

initial condition at 0w   and also imagine that there is 

a lot more C  training data than C  training data.  In 

this case, by choosing 1   , we can achieve the 

minimum value of the loss function in (1) for the initial 

condition 0w  . Under these conditions, all C  points 

yield 1z   and ( ) 0h z  and all C  points yield 

1z    and ( ) 2h z  . The change of the loss function 

( )h z  in (2) with a change w  is given by 

 

 

 

In order to reduce the loss at a C  
data point ( , )i ix y , 

we must choose w  such that 0.ix w    But we 

assume that there are significantly more C  class 

data points than C  and many such points x are 

mislabeled and close to ix  such that 0.x w    

Then ( )h z  is likely be increased by ( 0)x w    

for these mislabeled points. Clearly, if there are 

significantly more C  class data than those of  C

class and the C set  contains a lot of mislabeled 

points, it may be difficult to find w  that can 

result in a net effect of decreasing the right hand 

side of (2). The above analysis shows why the 
standard support vector machine formulation in (2) 

is vulnerable to an unbalanced and noisy training 

data set. The problem is clearly caused by the fact 

that the SVM loss function ( )h z  in (2) has a 

constant slope for 1z  . In order to alleviate this 

problem, Zhang and Iyengar (2002) proposed the 

loss function 
2 ( )h z  which is a smooth non-

increasing function with slope 0 at 1z  . This 
allows the loss to decrease while the positive 

points move a small distance away from the bulk 

of the negative points and take mislabeled points 
with them. The same argument applies to the 

Huber loss function defined in (4). 
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