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Abstract

In this study we investigate the merits of
fast approximate string matching to address
challenges relating to spelling variants and to
utilise large-scale lexical resources for seman-
tic class disambiguation. We integrate string
matching results into machine learning-based
disambiguation through the use of a novel set
of features that represent the distance of a
given textual span to the closest match in each
of a collection of lexical resources. We col-
lect lexical resources for a multitude of se-
mantic categories from a variety of biomedi-
cal domain sources. The combined resources,
containing more than twenty million lexical
items, are queried using a recently proposed
fast and efficient approximate string match-
ing algorithm that allows us to query large
resources without severely impacting system
performance. We evaluate our results on six
corpora representing a variety of disambigua-
tion tasks. While the integration of approxi-
mate string matching features is shown to sub-
stantially improve performance on one corpus,
results are modest or negative for others. We
suggest possible explanations and future re-
search directions. Our lexical resources and
implementation are made freely available for
research purposes at: http://github.com/ninjin/
simsem

1 Introduction

The use of dictionaries for boosting performance has
become commonplace for Named Entity Recogni-
tion (NER) systems (Torii et al., 2009; Ratinov and
Roth, 2009). In particular, dictionaries can give an
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initial improvement when little or no training data
is available. However, no dictionary is perfect, and
all resources lack certain spelling variants and lag
behind current vocabulary usage and thus are un-
able to cover the intended domain in full. Further,
due to varying dictionary curation and corpus anno-
tation guidelines, the definition of what constitutes
a semantic category is highly unlikely to precisely
match for any two specific resources (Wang et al.,
2009). Ideally, for applying a lexical resource to an
entity recognition or disambiguation task to serve as
a definition of a semantic category there would be
a precise match between the definitions of the lexi-
cal resource and target domain, but this is seldom or
never the case.

Most previous work studying the use of dictionary
resources in entity mention-related tasks has focused
on single-class NER, in particular this is true for
BioNLP where it has mainly concerned the detec-
tion of proteins. These efforts include Tsuruoka and
Tsujii (2003), utilising dictionaries for protein de-
tection by considering each dictionary entry using a
novel distance measure, and Sasaki et al. (2008), ap-
plying dictionaries to restrain the contexts in which
proteins appear in text. In this work, we do not
consider entity mention detection, but instead focus
solely on the related task of disambiguating the se-
mantic category for a given continuous sequence of
characters (a textual span), doing so we side-step the
issue of boundary detection in favour of focusing on
novel aspects of semantic category disambiguation.
Also, we are yet to see a high-performing multi-class
biomedical NER system, this motivates our desire to
include multiple semantic categories.
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2 Methods

In this section we introduce our approach and the
structure of our system.

2.1 SimSem

Many large-scale language resources are available
for the biomedical domain, including collections
of domain-specific lexical items (Ashburner et al.,
2000; Bodenreider, 2004; Rebholz-Schuhmann et
al., 2010). These resources present obvious opportu-
nities for semantic class disambiguation. However,
in order to apply them efficiently, one must be able
to query the resources taking into consideration both
lexical variations in dictionary entries compared to
real-world usage and the speed of look-ups.

We can argue that each resource offers a differ-
ent view of what constitutes a particular semantic
category. While these views will not fully overlap
between resources even for the same semantic cate-
gory, we can expect a certain degree of agreement.
When learning to disambiguate between semantic
categories, a machine learning algorithm could be
expected to learn to identify a specific semantic cat-
egory from the similarity between textual spans an-
notated for the category and entries in a related lex-
ical resource. For example, if we observe the text
“Carbonic anhydrase IV” marked as PROTEIN and
have an entry for “Carbonic anhydrase 4” in a lexical
resource, a machine learning method can learn to as-
sociate the resource with the PROTEIN category (at
specific similarity thresholds) despite syntactic dif-
ferences.

In this study, we aim to construct such a system
and to demonstrate that it outperforms strict string
matching approaches. We refer to our system as
SimSem, as in “Similarity” and “Semantic”.

2.2 SimString

SimString! is a software library utilising the CP-
Merge algorithm (Okazaki and Tsujii, 2010) to en-
able fast approximate string matching. The software
makes it possible to find matches in a collection with
over ten million entries using cosine similarity and
a similarity threshold of 0.7 in approximately 1 mil-
lisecond with modest modern hardware. This makes
it useful for querying a large collection of strings to

'http://www.chokkan.org/software/simstring/
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find entries which may differ from the query string
only superficially and may still be members of the
same semantic category.

As an example, if we construct a SimString
database using an American English wordlist> and
query it using the cosine measure and a threshold of
0.7. For the query “reviewer” SimString would re-
turn the following eight entries: review, viewer, pre-
view, reviewer, unreviewed, televiewer, and review-
eress. We can observe that most of the retrieved en-
tries share some semantic similarity with the query.

2.3 Machine Learning

For the machine learning component of our system
we use the L2-regularised logistic regression im-
plementation of the LIBLINEAR? software library
(Fan et al., 2008). We do not normalise our feature
vectors and optimise our models’ penalty parameter
using k-fold cross-validation on the training data. In
order to give a fair representation of the performance
of other systems, we use a rich set of features that are
widely applied for NER (See Table 1).

Our novel SimString features are generated as fol-
lows. We query each SimString database using the
cosine measure with a sliding similarity threshold,
starting at 1.0 and ending at 0.7, lowering the thresh-
old by 0.1 per query. If a query is matched, we gen-
erate a feature unique for that database and thresh-
old, we also generate the same feature for each step
from the current threshold to the cut-off of 0.7 (a
match at e.g. 0.9 similarity also implies matches at
0.8 and 0.7).

The cut-off is motivated by the fact that very
low thresholds introduces a large degree of noise.
For example, for our American English wordlist
the query “rejection” using threshold 0.1 and the
cosine measure will return 13,455 results, among
them “questionableness” which only have a single
sequence “ion” in common.

It is worthwhile to note that during our prelimi-
nary experiments we failed to establish a consistent
benefit from contextual features across our develop-
ment sets. Thus, contextual features are not included
in our feature set and instead our study focuses only

2 jusr/share/dict/web?2 under FreeBSD 8.1-RELEASE, based
on Webster’s Second International dictionary from 1934
3We used version 1.7 of LIBLINEAR for our experiments



Feature Type Input Value(s)
Text Text  Flu Flu
Lower-cased Text DNA dna
Prefixes: sizes 3 to 5 Text  bull bul, ...
Suffixes: sizes 3 to 5 Text  bull ull, ...
Stem (Porter, 1993) Text  performing  perform
Is a pair of digits Bool 42 True
Is four digits Bool 4711 True
Letters and digits Bool C4 True
Digits and hyphens Bool 9-12 True
Digits and slashes Bool 172 True
Digits and colons Bool 3,1 True
Digits and dots Bool 3.14 True
Upper-case and dots Bool M.C. True
Initial upper-case Bool Pigeon True
Only upper-case Bool PMID True
Only lower-case Bool pure True
Only digits Bool 131072 True
Only non-alpha-num Bool  #*$! True
Contains upper-case Bool gAwn True
Contains lower-case Bool  After True
Contains digits Bool B52 True
Contains non-alpha-num  Bool B52;s True
Date regular expression*  Bool  1989-01-30  True
Pattern Text 1B-zz 0A-aa
Collapsed Pattern Text 1B-zz 0A-a

Table 1: Basic features used for classification

the features that are generated solely from the tex-
tual span which has been annotated with a semantic
category (span-internal features) and the comparison
of approximate and strict string matching.

3 Resources

This section introduces and discusses the prepro-
cessing and statistics of the lexical and corpus re-
sources used in our experiments.

3.1 Lexical Resources

To generate a multitude of SimString databases cov-
ering a wide array of semantic categories we employ
several freely available lexical resources (Table 2).
The choice of lexical resources was initially made
with the aim to cover commonly annotated domain
semantic categories: the CHEBI and CHEMICAL
subsets of JOCHEM for chemicals, LINNAEUS for
species, Entrez Gene and SHI for proteins. We then

A simple regular expression matching dates:

“(191200\d\d[- /.1(0[1-9]|1[012D)[- /.1(O[1-91|[12][0-91|3[01])$
from http://www.regular-expressions.info/dates.html
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expanded the selection based on error analysis to in-
crease our coverage of a wider array of semantic cat-
egories present in our development data.

We used the GO version from March 2011, ex-
tracting all non-obsolete terms from the ontology
and separating them into the three GO subontolo-
gies: biological process (BP), cellular component
(CC) and molecular function (MF). We then created
an additional three resources by extracting all exact
synonyms for each entry. Lastly, we expanded these
Six resources into twelve resources by applying the
GO term variant generation technique described by
Beisswanger et al. (2008).

UMLS, a collection of various resources, contain
135 semantic categories (e.g. Body Location or Re-
gion and Inorganic Chemical) which we use to cre-
ate a database for each category.

For Entrez Gene we extracted all entries for the
following types: gene locus, protein name, protein
description, nomenclature symbol and nomenclature
fullname, creating a SimString database for each.
This leaves some parts of Entrez Gene unutilised,
but we deemed these categories to be sufficient for
our experiments.

The Turku Event Corpus is a resource created by
applying an automated event extraction system on
the full release of PubMed from 2009. As a pre-
condition for the event extraction system to operate,
protein name recognition is necessary; for this cor-
pus, NER has been performed by the corpus curators
using the BANNER (Leaman and Gonzalez, 2008)
NER system trained on GENETAG (Tanabe et al.,
2005). We created a database (PROT) containing
all protein annotations, extracted all event triggers
(TRIG) and created a database for each of the event
types covered by the event extraction system.

For the AZDC corpus, we extracted each anno-
tated textual span since the corpus covers only a sin-
gle semantic category. Similarly, the LINNAEUS
dictionary was converted into a single database since
it covers the single category “species”.

Table 3 contains the statistics per dictionary re-
source and the number of SimString databases cre-
ated for each resource. Due to space requirements
we leave out the full details for GO BP, GO CC,
GO MF, UMLS, Entrez Gene and TURKU TRIG,
and instead give the total entries for all the databases
generated from these resources.



Name Abbreviation  Semantic Categories Publication
Gene Ontology GO Multiple Ashburner et al. (2000)
Protein Information Resource PIR Proteins Wu et al. (2003)
Unified Medical Language System  UMLS Multiple Bodenreider (2004)
Entrez Gene - Proteins Maglott et al. (2005)
Automatically generated dictionary ~ SHI Proteins Shi and Campagne (2005)
Jochem JOCHEM Multiple Hettne et al. (2009)
Turku Event Corpus TURKU Proteins and biomolecular events Bjorne et al. (2010)
Arizona Disease Corpus AZDC Diseases Chowdhury and Lavelli (2010)
LINNAEUS Dictionary LINNAEUS  Species Gerner et al. (2010)
Webster’s International Dictionary ~ WID Multiple -

Table 2: Lexical resources gathered for our experiments

Resource Unique Entries  Databases
GO BP 67,411 4
GO CC 5,993 4
GO MF 55,595 4
PIR 691,577 1
UMLS 5,902,707 135
Entrez Gene 3,602,757 5
SHI 61,676 1
CHEBI 187,993 1
CHEMICAL 1,527,751 1
TURKU PROT 4,745,825 1
TURKU TRIG 130,139 10
AZDC 1,195 1
LINNAEUS 3,119,005 1
WID 235,802 1
Total: 20, 335,426 170

Table 3: Statistics per dictionary resource

3.2 Corpora

To evaluate our approach we need a variety of cor-
pora annotated with multiple semantic categories.
For this purpose we selected the six corpora listed
in Table 4.

The majority of our corpora are available in the
common stand-off style format introduced for the
BioNLP 2009 Shared Task (BioNLP’09 ST) (Kim
et al., 2009). The remaining two, NLPBA and
CALBC CII, were converted into the BioNLP’09 ST
format so that we could process all resources in the
same manner for our experimental set-up.

In addition to physical entity annotations, the
GREC, EPI, ID and GENIA corpora incorporate
event trigger annotations (e.g. Gene Regulatory
Event (GRE) for GREC). These trigger expressions
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carry with them a specific semantic type (e.g. “in-
teract” can carry the semantic type BINDING for
GENIA), allowing us to enrich the data sets with
additional semantic categories by including these
types in our dataset as distinct semantic categories.
This gave us the following increase in semantic cat-
egories: GREC one, EPI 15, ID ten, GENIA nine.

The original GREC corpus contains an exception-
ally wide array of semantic categories. While this
is desirable for evaluating the performance of our
approach under different task settings, the sparsity
of the data is a considerable problem; the majority
of categories do not permit stable evaluation as they
have only a handful of annotations each. To alleviate
this problem we used the five ontologies defined in
the GREC annotation guidelines®, collapsing the an-
notations into five semantic super categories to cre-
ate a resource we refer to as Super GREC. This pre-
processing conforms with how the categories were
used when annotating the GREC corpus (Thompson
et al., 2009). This resource contains sufficient anno-
tations for each semantic category to enable evalua-
tion on a category-by-category basis. Also, for the
purpose of our experiments we removed all “SPAN”
type annotations since they themselves carry no se-
mantic information (cf. GREC annotation guide-
lines).

CALBC CII contains 75,000 documents, which
is more than enough for our experiments. In order
to maintain balance in size between the resources in
our experiments, we sampled a random 5,000 docu-
ments and used these as our CALBC CII dataset.

Shttp://www.nactem.ac.uk/download.php?target=GREC/
Event_annotation_guidelines.pdf



Name Abbreviation Publication
BioNLP/NLPBA 2004 Shared Task Corpus NLPBA Kim et al. (2004)
Gene Regulation Event Corpus GREC Thompson et al. (2009)
Collaborative Annotation of a Large Biomedical Corpus CALBC CII ~ Rebholz-Schuhmann et al. (2010)
Epigenetics and Post-Translational Modifications EPI Ohta et al. (2011)
Infectious Diseases Corpus ID Pyysalo et al. (2011)
Genia Event Corpus GENIA Kim et al. (2011)

Table 4: Corpora used for evaluation

3.3 Corpus Statistics

In this section we present statistics for each of our
datasets. For resources with a limited number of se-
mantic categories we use pie charts to illustrate their
distribution (Figure 1). For the other corpora we use
tables to illustrate this. Tables for the corpora for
which pie charts are given has been left out due to
space requirements.

The NLPBA corpus (Figure 1a) with 59,601 to-
kens annotated, covers five semantic categories, with
a clear majority of protein annotations. While
NLPBA contains several semantic categories, they
are closely related, which is expected to pose chal-
lenges for disambiguation. This holds in particular
for proteins, DNA and RNA, which commonly share
names.

Our collapsed version of GREC, Super GREC
(see Figure 1b), contains 6,777 annotated tokens and
covers a total of six semantic categories: Regulatory
Event (GRE), nucleic acids, proteins, processes, liv-
ing system and experimental. GREC is an interest-
ing resource in that its classes are relatively distinct
and four of them are evenly distributed.

CALBC (Il is balanced among its annotated cat-
egories, as illustrated in Figure 1c. The 6,433 to-
kens annotated are of the types: proteins and genes
(PRGE), species (SPE), disorders (DISO) and chem-
icals and drugs (CHED). We note that we have in-
troduced lexical resources covering each of these
classes (Section 3.1).

For the BioNLP’11 ST resources EPI (Table 5),
GENIA (Figure 1d and contains 27,246 annotated
tokens) and ID (Table 6), we observe a very skewed
distribution due to our decision to include event
types as distinct classes; The dominating class for
all the datasets are proteins. For several of these
categories, learning accurate disambiguation is ex-
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Type Ratio  Annotations
Acetylation 2.3% 294
Catalysis 1.4% 186
DNA demethylation 0.1% 18
DNA methylation 2.3% 301
Deacetylation 0.3% 43
Deglycosylation 0.2% 26
Dehydroxylation 0.0% 1
Demethylation 0.1% 12
Dephosphorylation 0.0% 3
Deubiquitination 0.1% 13
Entity 6.6% 853
Glycosylation 2.3% 295
Hydroxylation 0.9% 116
Methylation 2.5% 319
Phosphorylation 0.9% 112
Protein 77.7% 10,094
Ubiquitination 2.3% 297
Total: 12,983

Table 5: Semantic categories in EPI

pected to be very challenging if not impossible due
to sparsity: For example, Dehydroxylation in EPI
has a single annotation.

ID is of particular interest since it contains a con-
siderable amount of annotations for more than one
physical entity category, including in addition to
protein also organism and a minor amount of chem-
ical annotations.

4 [Experiments

In this section we introduce our experimental set-up
and discuss the outcome of our experiments.

4.1 Experimental Set-up

To ensure that our results are not biased by over-
fitting on a specific set of data, all data sets were
separated into training, development and test sets.
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Figure 1: Semantic category distributions

NLPBA defines only a training and test set, GREC
and CALBC CII are provided as resources and lack
any given division, and for the BioNLP’11 ST data
the test sets are not distributed. Thus, we combined
all the available data for each dataset and separated
the documents into fixed sets with the following ra-
tios: 1/2 training, 1/4 development and 1/4 test.
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Type Ratio  Annotations
Binding 1.0% 102
Chemical 6.8% 725
Entity 0.4% 43
Gene expression 3.3% 347
Localization 0.3% 36
Negative regulation 1.6% 165
Organism 25.5% 2,699
Phosphorylation 0.5% 54
Positive regulation 2.5% 270
Process 8.0% 843
Protein 43.1% 4,567
Protein catabolism 0.0% 5
Regulation 1.8% 188
Regulon-operon 1.1% 121
Transcription 0.4% 47
Two-component-system 3.7% 387
Total: 10,599

Table 6: Semantic categories in ID

We use a total of six classifiers for our experi-
ments. First, a naive baseline (Naive): a majority
class voter with a memory based on the exact text
of the textual span. The remaining five are ma-
chine learning classifiers trained using five differ-
ent feature sets: gazetteer features constituting strict
string matching towards our SimString databases
(Gazetteer), SimString features generated from our
SimString databases (SimString), the span internal
features listed in Table 1 (Internal), the span inter-
nal and gazetteer features (Internal-Gazetteer) and
the span internal and SimString features (Internal-
SimString).

We evaluate performance using simple instance-
level accuracy (correct classifications / all classifica-
tions). Results are represented as learning curves for
each data set.

4.2 Results

From our experiments we find that — not surpris-
ingly — the performance of the Naive, Gazetteer and
SimString classifiers alone is comparatively weak.
Their performance is illustrated in Figure 2. We can
briefly summarize the results for these methods by
noting that the SimString classifier outperforms the
Gazetteer by a large margin for every dataset.> From

“Due to space restrictions we do not include further analysis
or charts.
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Figure 3: Learning curve for NLPBA

here onwards we focus on the performance of the In-
ternal classifier in combination with Gazetteer and
SimString features.

For NLPBA (Figure 3), GENIA (Figure 4) and ID
(Figure 5) our experiments show no clear systematic
benefit from either SimString or Gazetteer features.

For Super GREC (Figure 6) and EPI (Figure 7)
classifiers with Gazetteer and SimString features
consistently outperform the Internal classifier, and
the SimString classifier further shows some benefit
over Gazetteer for EPIL.

The only dataset for which we see a clear benefit
from SimString features over Gazetteer and Internal
is for CALBC CII (Figure 8).

5 Discussion and Conclusions

While we expected to see clear benefits from both
using Gazetteers and SimString features, our exper-
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iments returned negative results for the majority of
the corpora. For NLPBA, GENIA and ID we are
aware that most of the instances are either proteins
or belong to event trigger classes for which we may
not have had adequate lexical resources for disam-
biguation. By contrast, for Super GREC there are
several distinct classes for which we expected lex-
ical resources to have fair coverage for SimString
and Gazetteer features. While an advantage over In-
ternal was observed for Super GREC, SimString fea-
tures showed no benefit over Gazetteer features. The
methods exhibited the expected result on only one of
the six corpora, CALBC CII, where there is a clear
advantage for Gazetteer over Internal and a further
clear advantage for SimString over Gazetteer.
Disappointingly, we did not succeed in establish-
ing a clear improvement for more than one of the six
corpora. Although we have not been successful in
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proving our initial hypothesis we argue that our re-
sults calls for further study due to several concerns
raised by the results remaining unanswered. It may
be that our notion of distance to lexical resource en-
tries is too naive. A possible future direction would
be to compare the query string to retrieved results us-
ing a method similar to that of Tsuruoka and Tsujii
(2003). This would enable us to retain the advantage
of fast approximate string matching, thus being able
to utilise larger lexical resources than if we were to
calculate sophisticated alignments for each lexical
entry.

Study of the confusion matrices revealed that
some event categories such as negative regulation,
positive regulation and regulation for ID are com-
monly confused by the classifiers. Adding addi-
tional resources or contextual features may alleviate
these problems.
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To conclude, we have found a limited advantage
but failed to establish a clear, systematic benefit
from approximate string matching for semantic class
disambiguation. However, we have demonstrated
that approximate string matching can be used to gen-
erate novel features for classifiers and allow for the
utilisation of large scale lexical resources in new and
potentially interesting ways. It is our hope that by
making our findings, resources and implementation
available we can help the BioNLP community to
reach a deeper understanding of how best to incor-
porate our proposed features for semantic category
disambiguation and related tasks.

Our system and collection of resources are freely
available for research purposes at http://github.com/
ninjin/simsem
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