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Abstract

Protein modifications, in particular post-
translational modifications, have a central role
in bringing about the full repertoire of pro-
tein functions, and the identification of spe-
cific protein modifications is important for
understanding biological systems. This task
presents a number of opportunities for the au-
tomatic support of manual curation efforts.
However, the sheer number of different types
of protein modifications is a daunting chal-
lenge for automatic extraction that has so far
not been met in full, with most studies focus-
ing on single modifications or a few prominent
ones. In this work, aim to meet this challenge:
we analyse protein modification types through
ontologies, databases, and literature and intro-
duce a corpus of 360 abstracts manually anno-
tated in the BioNLP Shared Task event repre-
sentation for over 4500 mentions of proteins
and 1000 statements of modification events of
nearly 40 different types. We argue that to-
gether with existing resources, this corpus pro-
vides sufficient coverage of modification types
to make effectively exhaustive extraction of
protein modifications from text feasible.

1 Introduction

In the decade following the sequencing of the hu-
man genome, the critical role of protein modifica-
tions in establishing the full set of protein functions
from forms transcribed from the fixed DNA is in-
creasingly appreciated, reflected in the rise of pro-
teomics as an extension and complement to genetics
in efforts to understand gene and protein functions.

The mapping of the space of modifications of spe-
cific proteins is a formidable undertaking: the num-
ber of known types of post-translational modifica-
tions (PTMs) is as high as 300 (Witze et al., 2007)
with new types identified regularly (e.g. (Brennan
and Barford, 2009)), and the number of specific
molecular variants of proteins in cells may be several
orders of magnitude larger than that encoded in the
genome; up to millions for humans (Walsh, 2006).
Automatic extraction of protein modifications from
the massive literature on the topic could contribute
significantly to addressing these challenges.

Biomedical information extraction (IE) has ad-
vanced substantially in recent years, shifting from
the detection of simple binary associations such
as protein-protein interactions toward resources and
methods for the extraction of multiple types of struc-
tured associations of varying numbers participants in
specific roles. These IE approaches are frequently
termed event extraction (Ananiadou et al., 2010).
While protein modifications have been considered
in numerous IE studies in the domain (e.g. (Fried-
man et al., 2001; Rzhetsky et al., 2004; Hu et al.,
2005; Narayanaswamy et al., 2005; Saric et al.,
2006; Yuan et al., 2006; Lee et al., 2008; Ohta et
al., 2010), event extraction efforts have brought in-
creased focus also on the extraction of protein modi-
fications: in the BioNLP Shared Task series that has
popularized event extraction, the 2009 shared task
(Kim et al., 2009) involved the extraction of nine
event types including one PTM, and in the 2011
follow-up event (Kim et al., 2011) the Epigenet-
ics and Post-translational modifications (EPI) task
(Ohta et al., 2011) targeted six PTM types, their re-
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verse reactions, and statements regarding their catal-
ysis. The results of these tasks were promising, sug-
gesting that the single PTM type could be extracted
at over 80% F-score (Buyko et al., 2009) and the
core arguments of the larger set at nearly 70% F-
score (Björne and Salakoski, 2011).

The increasing availability of systems capable of
detailed IE for protein modifications, their high per-
formance also for multiple modifications types, and
demonstrations of the scalability of the technology
to the full scale of the literature (Björne et al., 2010)
are highly encouraging for automatic extraction of
protein modifications. However, previous efforts
have been restricted by the relatively narrow scope
of targeted modification types. In the present study,
we seek to address the task in full by identifying
all modifications of substantial biological signifi-
cance and creating an annotated resource with effec-
tively complete type-level coverage. We addition-
ally present preliminary extraction results to assess
the difficulty of exhaustive modification extraction.

2 Event representation

To be able to benefit from the substantial number of
existing resources and systems for event extraction,
we apply the event representation of the BioNLP
Shared Task (ST) for annotating protein modifica-
tions. Specifically, we directly extend the approach
of the BioNLP ST 2011 EPI task (Ohta et al., 2011).
In brief, in the applied representation, each event
is marked as being expressed by a specific span of
text (the event trigger) and assigned a type from a
fixed ontology defining event types. Events can take
a conceptually open-ended number of participants,
each of which is similarly bound to a specific tex-
tual expression and marked as participating in the
event in a specific role. In this work, we apply three
roles: Theme identifies the entity or event that is af-
fected by the event (e.g. the protein that is modified),
Cause its cause, and Site specifies a specific part on
the Theme participant that is affected, i.e. the mod-
ification site or region. Further, events are primary
objects of annotation and can thus in turn be par-
ticipants in other events as well as being marked as
e.g. explicitly negated (“is not phosphorylated”) or
stated speculatively (“may be phosphorylated”). An
event annotation example is shown in Figure 1.

Figure 1: Illustration of the event representation. An
event of type ADP-RIBOSYLATION (expressed through
the text “ADP-ribosylation”) with a PROTEIN (“P2X7”)
participant in the Theme role is in turn the Theme of a
CATALYSIS event with another PROTEIN (“ART2”) as its
Cause.

3 Protein Modifications

We next present our selection of protein modifica-
tion types relevant to event annotation and an ex-
tended analysis of their relative prominence.

3.1 Protein Modifications in Ontologies

For mapping and structuring the space of protein
modification concepts, we primarily build on the
community-standard Gene Ontology (GO) (Ash-
burner et al., 2000). GO has substantial represen-
tation of protein modifications: the sub-ontology
rooted at protein modification process
(GO:0006464) in the GO biological process ontol-
ogy contains 805 terms1 (including both leaf and in-
ternal nodes). This set of terms is the starting point
for our selection of modifications types to target.

First, many specific GO terms can be excluded
due to the different approach to semantic representa-
tion taken in event annotation: while GO terms rep-
resent detailed concepts without explicit structure
(see e.g. (Ogren et al., 2004)), the event representa-
tion is structured, allowing more general terms to be
applied while capturing the same information. For
example, many GO modification terms have child
nodes that identify the target (substrate) of modifica-
tion, e.g. protein phosphorylation has the
child actin phosphorylation. In the event
representation, the target of modification is cap-
tured through the Theme argument. Similarly, GO
terms may identify the site or region of modifica-
tion, which becomes a Site argument in the event
representation (see Figure 2). To avoid redundancy,
we exclude GO terms that differ from a more gen-
eral included term only in specifying a substrate or
modification site. We similarly exclude terms that
specify a catalyst or refer to regulation of modifi-

1GO structure and statistics from data retrieved Dec. 2010.
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Figure 2: Comparison of hypothetical text-bound GO an-
notation with specific terms (top) and event annotation
with general GO terms (bottom).

cation, as these are captured using separate events
in the applied representation, as illustrated in Fig-
ure 1. For an analogous reason, we do not separately
include type-level distinctions for “magnitude”
variants of terms (e.g. monoubiquitination,
polyubiquitination) as these can be system-
atically modeled as aspects that can mark any event
(cf. the low/neutral/high Manner of Nawaz et al.
(2010)).

Second, a number of the GO terms identify reac-
tions that are in scope of previously defined (non-
modification) event types in existing resources. To
avoid introducing redundant or conflicting annota-
tion with e.g. the GENIA Event corpus (Kim et al.,
2008) or BioNLP ST resources, we excluded terms
that involve predominantly (or exclusively) non-
covalent binding (included in the scope of the event
type BINDING) and terms involving the removal of
or binding between the amino acids of a protein, in-
cluding protein maturation by peptide bond cleav-
age (annotated – arguably somewhat inaccurately –
as PROTEIN CATABOLISM in GENIA/BioNLP ST
data). By contrast, we do differentiate between re-
actions involving the addition of chemical groups or
small proteins and those involving their removal, in-
cluding e.g. PALMITOYLATION and DEPALMITOY-
LATION as distinct types. To preserve the ontology
structure, we further include also internal nodes ap-
pearing in GO for the purposes of structuring the
ontology (e.g. small protein conjugation
or removal), although we only apply more spe-
cific leaf nodes in event annotation.

This selection, aiming to identify the maximal
subset of the protein modification branch of the GO
ontology relevant to event annotation, resulted in
the inclusion of 74 terms, approximately 9% of the
branch total. Table 1 shows the relevant part of
the GO protein modification subontology

term structure, showing each term only once2 and
excluding very rare terms for space. (A detailed de-
scription of other information in the table is given in
the following sections.)

In addition to GO, we consider protein modifica-
tions in the MeSH ontology,3 used to index PubMed
citations with concepts relevant to them. Further, for
resolving cases not appearing in GO, we refer to the
Uniprot controlled vocabulary of posttranslational
modifications4 and the Proteomics Standards Ini-
tiative Protein Modification Ontology5 (PSI-MOD)
(Montecchi-Palazzi et al., 2008).

3.2 Protein Modifications in Databases
A substantial number of databases tracking pro-
tein modifications from a variety of perspectives ex-
ist, and new ones are introduced regularly. The
databases range from the specific (e.g. (Gupta et al.,
1999; Diella et al., 2004; Zhang et al., 2010)) to the
broad in scope (Lee et al., 2005; Li et al., 2009). In-
formation on protein modifications is also found in
general protein knowledge resources such as Swiss-
Prot (Boeckmann et al., 2003) and PIR (Wu et al.,
2003). The relative number of entries relevant to
each protein modification in such resources is one
possible proxy for the biological significance of the
various modifications. We apply two such estimates
in this work.

One of the primary applications of GO is the use
of the ontology terms to annotate gene products,
identifying their functions. These annotations, pro-
vided by a variety of groups in different efforts (e.g.
(Camon et al., 2004)), are readily available in GO
and used in various GO tools as a reflection of the
prominence of each of the ontology concepts. As
GO is a community standard with wide participa-
tion and a primary source in this work, we give these
annotation numbers priority in introducing an addi-
tional filter: we exclude from detailed analysis any
term that has no gene product association annota-
tions, taking this as an indication that the modifica-

2GO allows multiple inheritance, and e.g. protein
palmitoylation occurs under both protein
lipidation and protein acylation reflecting
the biological definition.

3http://www.nlm.nih.gov/mesh/meshhome.
html

4http://www.uniprot.org/docs/ptmlist
5http://www.psidev.info/MOD
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Term GO ID
phosphorylation GO:0006468 8246 24705 93584 546 3 130 85
small protein conj./removal GO:0070647

small protein conjugation GO:0032446
ubiquitination GO:0016567 1724 439 4842 6 - 340 52
sumoylation GO:0016925 121 260 886 - - - 101
neddylation GO:0045116 66 2 100 - - - 52
ufmylation GO:0071569 33 - 1 - - - -
urmylation GO:0032447 16 - 7 - - - -
pupylation GO:0070490 11 - 15 - - - -

small protein removal GO:0070646
deubiquitination GO:0016579 360 - 206 0 - 17 2
deneddylation GO:0000338 45 - 39 - - - 8
desumoylation GO:0016926 20 - 45 - - - 3

dephosphorylation GO:0006470 1479 121 8339 28 - 3 1
glycosylation GO:0006486 1145 2982 12619 - 122 347 62
acylation GO:0043543 1 - 1728 - - - 71

acetylation GO:0006473 522 2000 4423 7 90 337 17
palmitoylation GO:0018345 49 198 1009 - - - 187
myristoylation GO:0018377 27 150 895 - - - 34
octanoylation GO:0018190 4 - 11 - - - -
palmitoleylation GO:0045234 3 - 0 - - - -

alkylation GO:0008213 0
methylation GO:0006479 552 499 9749 - 90 374 18

lipidation GO:0006497 34 51 258 - - - 16
prenylation GO:0018342 64 111 822 - - - 71

farnesylation GO:0018343 19 - 118 - - - 48
geranylgeranylation GO:0018344 26 - 79 - - - 30

deacylation GO:0035601 1 - 331 - - - 1
deacetylation GO:0006476 320 6 1056 1 - 50 4
depalmitoylation GO:0002084 9 - 81 - - - 9

ADP-ribosylation GO:0006471 261 9 3113 - - - 52
cofactor linkage GO:0018065

lipoylation GO:0009249 53 - 49 - - - 14
FAD linkage GO:0018293 46 - 6 - - - -
pyridoxal-5-phosphate linkage GO:0018352 6 - 0 - - - -

dealkylation GO:0008214 0
demethylation GO:0006482 116 - 1465 - - 13 1

deglycosylation GO:0006517 22 1 1204 - - 27 0
ISG15-protein conjugation GO:0032020 20 - 3 - - - -
arginylation GO:0016598 20 - 46 - - - -
hydroxylation GO:0018126 20 226 2948 - 103 139 3
sulfation GO:0006477 18 132 960 - - - 37
carboxylation GO:0018214 17 7 595 - - - 34
nucleotidylation GO:0018175 0

adenylylation GO:0018117 16 - 116 - - - -
uridylylation GO:0018177 1 - 105 - - - -

polyglycylation GO:0018094 17 - 14 - - - -
de-ADP-ribosylation GO:0051725 16 - 7 - - - 5
nitrosylation GO:0017014 14 - 670 - - - -
glutathionylation GO:0010731 11 - 279 - - - -
biotinylation GO:0009305 8 - 1247 - - - 4
deglutathionylation GO:0080058 3 - 42 - - - -
delipidation GO:0051697 3 - 303 - - - -
oxidation GO:0018158 3 475 23413 - - - 21
phosphopantetheinylation GO:0018215 3 - 26 - - - -
tyrosinylation GO:0018322 2 - 2 - - - -
deamination GO:0018277 1 - 840 - - - -
esterification GO:0018350 1 - 1180 - - - -
glucuronidation GO:0018411 1 - 705 - - - -
polyamination GO:0018184 1 - 13 - - - -

Table 1: Protein modifications and protein modification resources. GO terms shown abbreviated, mostly by removing
“protein” (e.g. “acylation” instead of “protein acylation”). Terms with 0 GPA not shown except when required for
structure. Columns: GPA: number of Gene Product Associations for each term in GO (not including counts of more
specific child nodes), SysPTM: number of SysPTM modification entries (excluding sites), PubMed: PubMed query
matches (see Section 3.3), GENIA: GENIA corpus (Kim et al., 2008), Ohta’10: corpus introduced in Ohta et al.
(2010), EPI: BioNLP ST’11 EPI task corpus (Ohta et al., 2011) (excluding test set).
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tion is not presently established as having high bio-
logical significance.6

In addition to the GO associations, we include
an estimate based on dedicated protein modification
databases. We chose to use the integrated SysPTM
resource (Li et al., 2009), which incorporates data
from five databases, four webservers, and manual
extraction from the literature. In its initial release,
SysPTM included information on “nearly 50 modifi-
cation types” on over 30,000 proteins. The columns
labeled GPA and SysPTM in Table 1 show the num-
ber of gene product associations for each selected
type in GO and entries per type in SysPTM, respec-
tively.

3.3 Protein Modifications in domain literature
As a final estimate of the relative prominence of the
various protein modification types, we estimated the
relative frequency with which they are discussed in
the literature through simple PubMed search, query-
ing the Entrez system for each modification in its
basic nominalized form (e.g. phosphorylation) in a
protein-related article. Specifically, for each modifi-
cation string MOD we searched Entrez for

“MOD”[TIAB] AND “protein”[TIAB]
The modifier [TIAB] specifies to search the title and
abstract. The literal string “protein” is included to
improve the estimate by removing references that
involve the modification of non-proteins or related
concepts that happen to share the term.7 While this
query is far from a perfect estimate of the actual
number of protein modifications, we expect it to be
a useful as a rough indicator of their relative fre-
quencies and more straightforward to assess than
more involved statistical analyses (e.g. (Pyysalo et
al., 2010)). The results for these queries are given in
the PubMed column of Table 1.

6We are also aware that GO coverage of protein modifica-
tions is not perfect: for example, citrullination, eliminylation,
sialylation, as well as a number of reverse reactions for addi-
tion reactions in the ontology (e.g. demyristoylation) are not
included at the time of this writing. As for terms with no gene
product associations, we accept these omissions as indicating
that these modifications are not biologically prominent.

7For example, search for only dehydration – a modification
with zero GPA in GO – matches nearly 10 times as many doc-
uments as search including protein, implying that most of the
hits for the former query likely do not concern protein modi-
fication by dehydration. By contrast, the majority of hits for
phosphorylation match also phosphorylation AND protein.

3.4 Protein Modifications in Event Resources

The rightmost four columns of Table 1 present the
number of annotations for each modification type
in previously introduced event-annotated resources
following the BioNLP ST representation as well as
those annotated in the present study. While modi-
fication annotations are found also in other corpora
(e.g. (Wu et al., 2003; Pyysalo et al., 2007)), we
only include here resources readily compatible with
the BioNLP ST representation.

Separating for the moment from consideration the
question of what level of practical extraction per-
formance can be supported by these event annota-
tions, we can now provide an estimate of the up-
per bound on the coverage of relevant modifica-
tion statements for each of the three proxies (GO
GPA, SysPTM DB entries, PubMed query hits) sim-
ply by dividing the sum of instances of modifica-
tions for which annotations exist by the total. Thus,
for example, there are 8246 GPA annotations for
Phosphorylation and a total of 15597 GPA an-
notations, so the BioNLP ST’09 data (containing
only PHOSPHORYLATION events) could by the GPA
estimate cover 8246/15597, or approximately 53%
of individual modifications.8

For the total coverage of the set of types for which
event annotation is available given the corpus in-
troduced in this study, the coverage estimates are:
GO GPA: 98.2%, SysPTM 99.6%, PubMed 97.5%.
Thus, we estimate that correct extraction of the in-
cluded types would, depending on whether one takes
a gene association, database entry, or literature men-
tion point of view, cover between 97.5% to 99.6%
of protein modification instances – a level of cov-
erage we suggest is effectively exhaustive for most
practical purposes. We next briefly describe our an-
notation effort before discarding the assumption that
correct extraction is possible and measuring actual
extraction performance.

4 Annotation

This section presents the entity and event annotation
approach, document selection, and the statistics of
the created annotation.

8The remarkably high coverage for a single type reflects the
Zipfian distribution of the modification types; see e.g. Ohta et
al. (2010).
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4.1 Entity and Event Annotation

To maximize compatibility with existing event-
annotated resources, we chose to follow the gen-
eral representation and annotation guidelines ap-
plied in the annotation of GENIA/BioNLP ST re-
sources, specifically the BioNLP ST 2011 EPI task
corpus. Correspondingly, we followed the GE-
NIA gene/gene product (Ohta et al., 2009) annota-
tion guidelines for marking protein mentions, ex-
tended the GENIA event corpus guidelines (Kim et
al., 2008) for the annotation of protein modification
events, and marked CATALYSIS events following the
EPI task representation. For compatibility, we also
marked event negation and speculation as in these
resources. We followed the GO definitions for in-
dividual modification types, and in the rare cases
where a modification discussed in text had no ex-
isting GO definition, we extrapolated from the way
in which protein modifications are generally defined
in GO, consulting other domain ontologies and re-
sources (Section 3.1) as necessary.

4.2 Document Selection

As the distribution of protein modifications in
PubMed is extremely skewed, random sampling
would recover almost solely instances of major
types such as phosphorylation. As we are inter-
ested also in the extraction of very rare modifica-
tions, we applied a document selection strategy tar-
geted at individual modification types. We applied
one of two primary strategies depending on whether
each targeted modification type had a correspond-
ing MeSH term or not. If a MeSH term specific
to the modification exists, we queried PubMed for
the MeSH term, thus avoiding searches for spe-
cific forms of expression that might bias the search.
In cases where no specific MeSH term existed,
we searched the text of documents marked with
the generic MeSH term protein processing,
post-translational for mentions of likely
forms of expression for the modification.9 Fi-
nally, in a few isolated instances we applied cus-
tom text-based PubMed searches with broader cov-

9Specifically, we applied a regular expression incorporating
the basic form of modification expression and allowing variance
through relevant affixes and inflections derived from an initial
set of annotations for documents for which MeSH terms were
defined.

Item Count
Abstract 360

Word 76806
Protein 4698

Event type 37
Event instance 1142

Table 2: Annotation statistics.

erage. Then, as many of the modifications are not
limited to protein substrates, to select documents re-
lating specifically to protein modification we pro-
ceeded to tagged a large random sample of selected
documents with the BANNER named entity tagger
(Leaman and Gonzalez, 2008) trained on the GENE-
TAG corpus (Tanabe et al., 2005) and removed doc-
uments with fewer than five automatically tagged
gene/protein-related entities. The remaining docu-
ments were then randomly sampled for annotation.10

4.3 Corpus Statistics
We initially aimed to annotate balanced numbers of
modification types in order of their estimated promi-
nence, with particular focus on previously untar-
geted reaction types involving the addition of chem-
ical groups or small proteins. However, it became
apparent in the annotation process that the extreme
rarity of some of the modifications as well as the
tendency for more frequent modifications to be dis-
cussed in texts mentioning rare ones made this im-
possible. Thus, while preserving the goal of es-
tablishing broadly balanced numbers of major new
modifications, we allowed the number of rare reac-
tions to remain modest.

Table 2 summarizes the statistics of the final cor-
pus, and the rightmost column of Table 1 shows
per-type counts. We note that as reactions involv-
ing the removal of chemical groups or small pro-
teins were not separately targeted, only few events
of such types were annotated. We did not sepa-
rately measure inter-annotator agreement for this ef-
fort, but note that this work is an extension of the
EPI corpus annotation, for which comparison of in-
dependently created event annotations indicated an
F-score of 82% for the full task and 89% for the core
targets (see Section 5.1) (Ohta et al., 2011).

10This strategy, including MeSH-based search, was applied
also in the BioNLP Shared Task 2011 EPI task document selec-
tion.
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5 Experiments

To assess actual extraction performance, we per-
formed experiments using a state-of-the art event ex-
traction system.

5.1 Experimental Setup

We first split the corpus into a training/development
portion and a held out set for testing, placing half of
the abstracts into each set. The split was stratified
by event type to assure that relatively even numbers
of each event type were present in both sets. All
development was performed using cross-validation
on the visible portion of the data, and a single final
experiment was performed on the test dataset.

To assure that our results are comparable with
those published in recent event extraction stud-
ies, we adopted the standard evaluation crite-
ria of the BioNLP Shared Task. The evalua-
tion is event instance-based and uses the standard
precision/recall/F1-score metrics. We modified the
shared task evaluation software to support the newly
defined event types and ran experiments with the
standard approximate span matching and partial re-
cursive matching criteria (see (Kim et al., 2009)).
We further follow the EPI task evaluation in re-
porting results separately for the extraction of only
Theme and Cause arguments (core task) and for the
full argument set.

5.2 Event extraction method

We applied the EventMine event extraction system
(Miwa et al., 2010a; Miwa et al., 2010b), an SVM-
based pipeline system using an architecture similar
to that of the best-performing system in the BioNLP
ST’09 (Björne et al., 2009); we refer to the studies
of Miwa et al. for detailed description of the base
system. For analysing sentence structure, we applied
the mogura 2.4.1 (Matsuzaki and Miyao, 2007) and
GDep beta2 (Sagae and Tsujii, 2007) parsers.

For the present study, we modified the base Event-
Mine system as follows. First, to improve efficiency
and generalizability, instead of using all words as
trigger candidates as in the base system, we filtered
candidates using a dictionary extracted from train-
ing data and expanded by using the UMLS specialist
lexicon (Bodenreider, 2004) and the “hypernyms”
and “similar to” relations in WordNet (Fellbaum,

1998). Second, to allow generalization across ar-
gument types, we added support for solving a single
classification problem for event argument detection
instead of solving multiple classification problems
separated by argument types. Finally, to facilitate
the use of other event resources for extraction, we
added functionality to incorporate models trained by
other corpora as reference models, using predictions
from these models as features in classification.

5.3 Experimental results

We first performed a set of experiments to determine
whether models can beneficially generalize across
different modification event types. The EventMine
pipeline has separate classification stages for event
trigger detection, event-argument detection, and the
extraction of complete event structures. Each of
these stages involves a separate set of features and
output labels, some of which derive directly from
the involved event types: for example, in deter-
mining whether a specific entity is the Theme of
an event triggered by the string “phosphorylation”,
the system by default uses the predicted event type
(PHOSPHORYLATION) among its features. It is pos-
sible to force the model to generalize across event
types by replacing specific types with placehold-
ers, for example replacing PHOSPHORYLATION,
METHYLATION, etc. with MODIFICATION.

In preliminary experiments on the development
set, we experimented with a number of such gener-
alizations. Results indicated that while some gen-
eralization was essential for achieving good ex-
traction performance, most implementation variants
produced broadly comparable results. We chose the
following generalizations for the final test: in the
trigger detection model, no generalization was per-
formed (allowing specific types to be extracted), for
argument detection, all instances of event types were
replaced with a generic type (EVENT), and for event
structure prediction, all instances of specific modi-
fication event types (but not CATALYSIS) were re-
placed with a generic type (MODIFICATION). Re-
sults comparing the initial, ungeneralized model to
the generalized one are shown in the top two rows
of Table 3. The results indicate that generalization is
clearly beneficial: attempting to learn each of the
event types in isolation leaves F-score results ap-
proximately 4-5% points lower than when general-
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Core Full
Initial 39.40 / 46.36 / 42.60 31.39 / 38.88 / 34.74

Generalized 39.02 / 61.18 / 47.65 31.07 / 51.89 / 38.87
+Model 41.28 / 61.28 / 49.33 33.66 / 53.06 / 41.19

+Ann 38.46 / 66.99 / 48.87 32.36 / 59.17 / 41.84
+Model +Ann 41.84 / 66.17 / 51.26 33.98 / 56.00 / 42.30

Test data 45.69 / 62.35 / 52.74 38.03 / 54.57 / 44.82

Table 3: Experimental results.

izing across types. A learning curve for the gen-
eralized model is shown in Figure 3. While there
is some indication of decreasing slope toward use
of the full dataset, the curve suggests performance
could be further improved through additional anno-
tation efforts.

In a second set of experiments, we investigated
the compatibility of the newly introduced annota-
tions with existing event resources by incorporat-
ing their annotations either directly as training data
(+Ann) or indirectly through features from predic-
tions from a model trained on existing resources
(+Model), as well as their combination. We per-
formed experiments with the BioNLP Shared Task
2011 EPI task corpus11 and the generalized setting.
The results of these experiments are given in the
middle rows of Table 3. We find substantial bene-
fit from either form of existing resource integration
alone, and, interestingly, an indication that the ben-
efits of the two approaches can be combined. This
result indicates that the newly introduced corpus is
compatible with the EPI corpus, a major previously
introduced resource for protein modification event
extraction. Evaluation on the test data (bottom row
of Table 3) confirmed that development data results
were not overfit and generalized well to previously
unseen data.

6 Discussion and Conclusions

We have presented an effort to directly address the
challenges involved in the exhaustive extraction of
protein modifications in text. We analysed the Gene
Ontology protein modification process
subontology from the perspective of event extraction
for information extraction, arguing that due largely
to the structured nature of the event representation,

11When combining EPI annotations directly as additional
training abstracts, we filtered out abstracts including possible
“missing” annotations for modification types not annotated in
EPI data using a simple regular expression.

Figure 3: Learning curve.

74 of the 805 ontology terms suffice to capture the
general modification types included. Through an
analysis of the relative prominence of protein modi-
fications in ontology annotations, domain databases,
and literature, we then filtered and prioritized these
types, estimating that correct extraction of the most
prominent half of these types would give 97.5%-
99.6% coverage of protein modifications, a level that
is effectively exhaustive for practical purposes.

To support modification event extraction and to
estimate actual extraction performance, we then
proceeded to manually annotate a corpus of 360
PubMed abstracts selected for relevance to the se-
lected modification types. The resulting corpus an-
notation marks over 4500 proteins and over 1000 in-
stances of modification events and more than triples
the number of specific protein modification types for
which text-bound event annotations are available.
Experiments using a state-of-the-art event extraction
system showed that a machine learning method can
beneficially generalize features across different pro-
tein modification event types and that incorporation
of BioNLP Shared Task EPI corpus annotations can
improve performance, demonstrating the compati-
bility of the created resource with existing event cor-
pora. Using the best settings on the test data, we
found that the core extraction task can be performed
at 53% F-score.

The corpus created in this study is freely available
for use in research from http://www-tsujii.
is.s.u-tokyo.ac.jp/GENIA.
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