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Abstract

We propose a biomedical event extraction system, HVS-BioEvent, which employs the hidden
vector state (HVS) model for semantic parsing. Biomedical events extraction needs to deal with
complex events consisting of embedded or hierarchical relations among proteins, events, and their
textual triggers. In HVS-BioEvent, we further propose novel machine learning approaches for event
trigger word identification, and for biomedical events extraction from the HVS parse results. Our
proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP’09 shared task,
which is only two points lower than the best performing system by UTurku. Nevertheless, HVS-
BioEvent outperforms UTurku on the extraction of complex event types. The results suggest that the
HVS model with the hierarchical hidden state structure is indeed more suitable for complex event
extraction since it can naturally model embedded structural context in sentences.

1 Introduction

In the past few years, there has been a surge of interests in utilizing text mining techniques to pro-
vide in-depth bio-related information services. With an increasing number of publications reporting on
protein-protein interactions (PPIs), much effort has been made in extracting information from biomedical
articles using natural language processing (NLP) techniques. Several shared tasks, such as LLL [7] and
BioCreative [4], have been arranged for the BioNLP community to compare different methodologies for
biomedical information extraction.

Comparing to LLL and BioCreative which primarily focus on a simple representation of relations of
bio-molecules, i.e. protein-protein interaction, the BioNLP’09 Shared Task [5] involves the recognition
of bio-molecular events in scientific abstracts, such as gene expression, transcription, protein catabolism,
localization and binding, plus (positive or negative) regulation of proteins. The task concerns the detailed
behavior of bio-molecules, and can be used to support the development of biomedical-related databases.
In the BioNLP’09 shared task evaluation, the system constructed by UTurku [2] achieved an F-score of
51.95% on the core task, the best results among all the participants.

In this paper, we describe a system, called HVS-BioEvent, which employs the hidden vector state
model (HVS) to automatically extract biomedical events from biomedical literature. The HVS model has
been successfully employed to extract PPIs [9]. However, it is not straightforward to extend the usage
of the HVS model for biomedical events extraction. There are two main challenges. First, comparing
to the trigger words used for PPIs which are often expressed as single words or at most two words, the
trigger words for biomedical event are more complex. For example, controlled at transcriptional and
post-transcriptional levels, spanning over 6 words, is considered as the trigger word for the regulation
event. In addition, the same word can be the trigger word for different types of biomedical events in
different context. Second, biomedical events consist of both simple events and complex events. While
simple events are more similar to PPIs which only involve binary or pairwise relations, complex events
involve both n-ary (n > 2) and nested relations. For example, a regulation event may take another
event as its theme or cause which represents a structurally more complex relation. Being able to handle
both simple and complex events thus poses a huge challenge to the development of our HVS-BioEvent
system.

The rest of the paper is organized as follows. Section 2 presents the overall process of the HVS-
BioEvent system, which consists of three steps, trigger words identification, semantic parsing based on
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the HVS model, and biomedical events extraction from the HVS parse results. Experimental results are
discussed in section 3. Finally, section 4 concludes the paper.

2 Biomedical Event Extraction

We perform biomedical event extraction with the following steps. At the beginning, abstracts are re-
trieved from MEDLINE and split into sentences. Protein names, gene names, trigger words for biomed-
ical events are then identified. After that, each sentence is parsed by the HVS semantic parser. Finally,
biomedical events are extracted from the HVS parse results using a hybrid method based on rules and
machine learning. All these steps process one sentence at a time. Since 95% of all annotated events
are fully annotated within a single sentence, this does not incur a large performance penalty but greatly
reduces the size and complexity of the problem. The remainder of the section will discuss each of the
steps in details.

2.1 Event Trigger Words Identification

Event trigger words are crucial to biomedical events extraction. In our system, we employ two ap-
proaches for event trigger words identification, one is a hybrid approach using both rules and a dictio-
nary, the other treats trigger words identification as a sequence labeling problem and uses a Maximum
Entropy Markov Model (MEMM) to detect trigger words.

For the hybrid approach using both rules and a dictionary, firstly, we constructed a trigger dictionary
from the original GENIA event corpus [6] by extracting the annotated trigger words. These trigger words
were subsequently lemmatized and stemmed. However, the wide variety of potential lexicalized triggers
for an event means that lots of triggers lack discriminative power relative to individual event types. For
example, in certain context, through is the trigger word for the binding event type and are is the trigger
word for localization. Such words are too common and cause potential ambiguities and therefore lead to
many false positive events extracted. We could perform disambiguation by counting the co-occurrence
of a event trigger and a particular event type from the training data and discard those event triggers whose
co-occurrence counts are lower than certain threshold for that event type. After this filtering stage, still,
there might be cases where one trigger might representing multiple event types, we thus define a set of
rules to further process the trigger words matched from the constructed dictionary.

In the second approach, we treat trigger words identification as a sequence labeling problem and train
a first-order MEMM model [8] from the BioNLP’09 shared task training data. As in typical named entity
recognition tasks, the training data are converted into BIO format where ‘B’ refers to the word which is
the beginning word of an event trigger, ‘I’ indicates the rest of the words (if the trigger contains more
than one words) and ‘O’ refers to the other words which are not event triggers. The features used in the
MEMM model was extracted from the surface string and the part-of-speech information of the words
corresponding to (or adjacent to) the target BIO tags.

2.2 Semantic Parsing using the HVS Model

The Hidden Vector State (HVS) model [3] is a discrete Hidden Markov Model (HMM) in which each
HMM state represents the state of a push-down automaton with a finite stack size. State transitions
are factored into separate stack pop and push operations constrained to give a tractable search space.
The sequence of HVS stack states corresponding to the given parse tree is illustrated in Figure 1. The
result is a model which is complex enough to capture hierarchical structure but which can be trained
automatically from only lightly annotated data.

In the HVS-based semantic parser, conventional grammar rules are replaced by three probability
tables. Let each state at time ¢ be denoted by a vector of D; semantic concept labels (tags) ¢; =
[ce[1], et[2], ..ci[Dy]] where ¢;[1] is the preterminal concept label and ¢;[D;] is the root concept label
(SS in Figure 3). Given a word sequence W, concept vector sequence C and a sequence of stack pop
operations N, the joint probability of P(T¥, C, N)) can be decomposed as

T
P(W,C,N) = [[ P(nslci-1)P(cil1]|es[2 - - - D]) Pwelcr) (1)
t=1
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Positive_regulation

sent_start IFN-alpha enhanced tyrosine phosphorylation of STATI sent_end

SS Dummy | | Positive_regulation Site Phosphorylation Dummy Protein SE
SS SS Positive_regulation Site Phosphorylation Phosphorylation SS
SS Positive_regulation Site Site
SS Positive_regulation || Positive_regulation
SS SS

Figure 1: Example of a parse tree and its vector state equivalent.

where n; is the vector stack shift operation and takes values in the range 0, - - - , D;_1, and ¢;[1] = ¢y, is
the new pre-terminal semantic label assigned to word w; at word position ¢.

Thus, the HVS model consists of three types of probabilistic move, each move being determined by a
discrete probability table: (1) popping semantic labels off the stack - P(n|c); (2) pushing a pre-terminal
semantic label onto the stack - P(c[1]|c[2 - - D]); (3) generating the next word - P(w|c). Each of these
tables are estimated in training using an EM algorithm and then used to compute parse trees at run-time
using Viterbi decoding. In training, each word string W is marked with the set of semantic concepts
C that it contains. For example, the sentence IFN-alpha enhanced tyrosine phosphorylation of STAT1
contains the semantic concept/value pairs as shown in Figure 1. Its corresponding abstract semantic
annotation is:

Positive_regulation (Site (Phosphorylation (protein)))

where brackets denote the hierarchical relations among semantic concepts'. For each word wy, of a
training sentence W, EM training uses the forward-backward algorithm to compute the probability of
the model being in stack state ¢ when wy, is processed. Without any constraints, the set of possible stack
states would be intractably large. However, in the HVS model this problem can be avoided by pruning
out all states which are inconsistent with the semantic concepts associated with WW. The details of how
this is done are given in [3].

For the sentences in the BioNLP’09 shared task, only event information is provided. However, the
abstract semantic annotation as shown above is required for training the HVS model. We propose Algo-
rithm 1 to automatically convert the annotated event information into the abstract semantic annotations.
An example of how the abstract annotations are generated is given as follows.

Sentence: According to current models the inhibitory capacity of I(kappa)B(alpha) would be mediated
through the retention of Rel/NF-kappaB proteins in the cytosol.
Corresponding Events: E1 Negative_regulation: inhibitory_capacity Theme: l(kappa)B(alpha)
E2  Positive_regulation: mediated Theme: E1
Candidate annotation generation (Steps 1-4 of Algorithm 1):
Negative_regulation(Protein)  Negative_regulation(Protein(Positive_regulation))
Abstract annotation pruning (Steps 5-14 of Algorithm 1):
Negative_regulation(Protein(Positive_regulation))

2.3 Biomedical Events Extraction From HVS Parse Results

Based on HVS parse results, it seems straightforward to extract the event information. However, after
detailed investigation, we found that sentences having the same semantic tags might contain different
events information. For example, the two sentences shown in Table 1 have the same semantic parsing
results but with different event information.

This problem can be solved by classification. For the semantic tags which can represent multiple
event information, we considered each event information as a class and employed hidden Markov support
vector machines (HM-SVMs) [1] for disambiguation among possible events. The features used in HM-
SVMs are extracted from surface strings and part-of-speech information of the words corresponding to
(or adjacent to) trigger words.

"We omit SS and SE here which denote sentence start and end.

397



Algorithm 1 Abstract semantic annotation generation.

Input: A sentence W =< wy,wo, -+ ,w, >, and its event information Ev =< ey, ea, - , e, >
Output: Abstract semantic annotation A

: for each event e; =<Event_type:Trigger_words Theme:Protein_name ...> do

Sort the Trigger_words, Protein_name, and other arguments based on their positions in W and get
a sorted list ¢1, 29, ..., g

3:  Generate an annotation as t1 (t2(..tx)), add it into the annotation list A

4: end for

5: for each annotation a; € A do

6:  if a; contains another event then

7.

8

DN =

Replace the event with its corresponding annotation a,
. endif
9: end for
10: for each annotation a; € A do
11:  if a; is a subset of another annotation in A then

12 Remove a; from the annotation list A
13:  endif
14: end for

15: Reorder annotations in A based on their positions in W

Sentence| We concluded that CTCF expression and activity is con- | CONCLUSION: IL-5 synthesis by human helper T cells
trolled at transcriptional and post-transcriptional levels is regulated at the transcriptional level
Parse SS+Protein(CTCF) SS+Protein+Gene_Expression(expression) | SS+Protein(IL-5)  SS+Protein+Gene_Expression(synthesis)
results SS+Protein+Gene_Expression+Regulation( controlled...levels) | SS+Protein+Gene_Expression+Regulation( regulated)
Events | E1 Gene_expression:expression Theme: CTCF E1 Gene_expression: synthesis Theme: IL-5
E2 Regulation: controlled...levels Theme: E1 E2 Regulation: regulated Theme: E1
E3 Regulation: controlled...levels Theme: CTCF

Table 1: An example of the same semantic parse results denoting different event information

3 Results and Discussion

Experiments have been conducted on the training data of the BioNLP’(09 shared task which consists of
800 abstracts. After cleaning up the sentences which do not contain biomedical events information, 2893
sentences were kept. We split the 2893 sentences randomly into the training set and the test set at the
ratio of 9:1 and conducted the experiments ten times with different training and test data each round.

Method Recall (%) Precision (%) F-score (%)
Trigger Word Identification

Dictionary+Rules 46.31 53.34 49.57
MEMM 45.43 40.91 42.99
Event Extraction from HVS Parse Results

No classification 43.57 52.85 47.77
With Classification 46.31 53.34 49.57

Table 2: Experimental results based on 10 fold cross-validation.

Table 2 shows the performance evaluated using the approximate recursive matching method adopted
from the BioNLP’09 share task evaluation mode. To evaluate the performance impact of trigger word
identification, we also report the overall performance of the system using the two approaches we pro-
posed, dictionary+rules and MEMM. The results show that the hybrid approach combining a trigger
dictionary and rules gives better performance than MEMM which only achieved a F-score around 43%.
For biomedical event extraction from HVS parse results, employing the classification method presented
in Section 2.3 improves the overall performance from 47.77% to 49.57%.

The best performance that HVS-BioEvent achieved is an F-score of 49.57%, which is only two points
lower than UTurku, the best performing system in the BioNLP’09 share task. It should be noted that our
results are based on 10-fold cross validation on the BioNLP’09 shared task training data only since we
don’t have the access to the BioNLP’09 test set while the results generated by UTurku were evaluated
on the BioNLP’09 test set. Although a direct comparison is not possible, we could still speculate that
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Simple Events Complex Events
Event Class HVS-BioEvent UTurku | Event Class HVS-BioEvent UTurku
localization 61.40 61.65 | binding 49.90 44.41
gene expression 72.44 73.90 | regulation 36.57 30.52
transcription 68.30 50.23 | negative regulation 40.61 38.99
protein catabolism 70.27 52.17
phosphorylation 56.52 77.58

Table 3: Per-class performance comparison in F-score (%) between HVS-BioEvent and UTurku.

HVS-BioEvent is comparable to the best performing system in the BioNLP’09 shared task.

The results on the five event types involving only a single theme argument are shown in Table 3
as Simple Events. For the complex events such as “binding”, “regulation” and “negative regulation”
events, the results are shown in Table 3 as Complex Events. We notice that HVS-BioEvent outperforms
UTurku on the extraction of the complex event types, with the performance gain ranging between 2%
and 7%. The results suggest that the HVS model with the hierarchical hidden state structure is indeed
more suitable for complex event extraction since it could naturally model embedded structural context in

sentences.

4 Conclusions

In this paper, we have presented HVS-BioEvent which uses the HVS model to automatically extract
biomedical events from text. The system is able to offer comparable performance compared with the
best performing system in the BioNLP’09 shared task. Moreover, it outperforms the existing systems
on complex events extraction which shows the ability of the HVS model in capturing embedded and
hierarchical relations among named entities. In future work we will explore incorporating arbitrary
lexical features into the HVS model training in order to further improve the extraction accuracy.
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