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Abstract

The question of how to compose meaning in distributional representations of meaning has re-
cently been recognised as a central issue in computational linguistics. In this paper we describe
three general and powerful tools that can be used to describe composition in distributional seman-
tics: quotient algebras, learning of finite dimensional algebras, and the construction of algebras from
semigroups.

1 Introduction

Vector based representations of meaning have wide application in natural language processing. While
these techniques work well at the word level, for longer strings, data becomes extremely sparse. The
question of how the principle of compositionality might apply for such representations has thus been
recognised as an important one (Widdows, 2008; Clark et al., 2008).

Context-theoretic semantics (Clarke, 2007) is a framework for composing meanings in vector based
semantics, in which the composition of the meaning of strings is described by a multiplication on a real
vector space A that is bilinear with respect to the addition of the vector space, i.e.

w(y+z)=ay+uz (r+y)z=rz+yz (ax)(fy) = abry

where z,y, z € Aand o, 8 € R. Ttis assumed that the multiplication is associative, but not commutative.
The resulting structure is an associative algebra over a field — or simply an algebra when there is no
ambiguity. Clarke (2007) gives a mathematical model of meaning as context, and shows that under this
model, the meaning of natural language expressions can be described by an algebra. The framework
is also applied to models of textual entailment, and logical and ontological representations of natural
language meaning.

In this paper, we identify three general techniques for constructing algebras.

e Using quotient algebras to impose relations on a free algebra, as described in (Clarke et al., 2010).

e Defining finite-dimensional algebras using matrices. Any finite-dimensional algebra can be de-
scribed in this way; we have investigated the possibility of learning such algebras using least
squares regression.

e Constructing algebras from a semigroup to give it vector space properties. We sketch a possible
method of using this technique, identified by Clarke (2007), to endow logical semantics with a
vector space nature.

This paper presents a preliminary consideration of these general techniques, and our goal is simply to
show that they are worthy of further exploration.
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Figure 2: The corpus used to compute the vectors
Figure 1: Cosine similarity values between phrases that formed the generating set for the ideal.

2  Quotient Algebras

One commonly used bilinear multiplication operator on vector spaces is the tensor product (denoted ®),
whose use as a method of combining meaning was first proposed by Smolensky (1990), and has been
considered more recently by Clark and Pulman (2007) and Widdows (2008), who also looked at the
direct sum (which Widdows calls the direct product, denoted &).

The tensor algebra on a vector space V' (where V' is a space of context features) is defined as:

TV)=RoVo(VeV)e(VeaVeal)e---

Any element of T'(V') can be described as a sum of components with each in a different tensor power
of V. Multiplication is defined as the tensor product on these components, and extended linearly to the
whole of T'(V').

Previous work has not made full use of the tensor product space; only tensor products are used,
not sums of tensor products, giving us the equivalent of the product states of quantum mechanics. Our
approach imposes relations on the vectors of the tensor product space that causes some product states
to become equivalent to entangled states, containing sums of tensor products of different degrees. This
allows strings of different lengths to share components. We achieve this by constructing a quotient
algebra.

An ideal I of an algebra A is a sub-vector space of A such that za € [ andax € [ foralla € A
and all z € I. An ideal introduces a congruence = on A defined by x = y if and only if x — y € I. For
any set of elements A C A there is a unique minimal ideal I containing all elements of A; this is called
the ideal generated by A. The quotient algebra A/I is the set of all equivalence classes defined by this
congruence. Multiplication is defined on A/I by the multiplication on A, since = is a congruence.

Elements that are congruent with respect to the ideal have equivalence classes that are equal in the
quotient algebra. The construction is thus a way of imposing relations between vector elements: we
simply choose a set of pairs that we wish to be equal, and put their difference in the generating set A.

Clarke et al. (2010), showed how an inner product can be computed for elements of the quotient
algebra by taking the quotient of a finite dimensional subspace of the ideal and how a treebank could be
used to identify suitable elements to put into the generating set for the ideal in such a way that strings of
different lengths become comparable. Figure 1 shows similarities between adjective phrases computed
using vectors derived from the corpus in figure 2. The construction allows many properties of the tensor
product to carry over into the quotient algebra, for example the similarity of red book to red apple is the
same as the similarity of book to apple, as we would expect from the tensor product. Unlike the tensor
product, strings of different length are comparable, so for example, the similarity of apple to red apple
is non-zero. The benefit of using quotient algebras for compositional distributional semantics lies in
this ability to extend the favourable properties of the tensor product by imposing linguistically plausible
relations between vectors.
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3 Learning Finite-dimensional Algebras

Quotient algebras are useful constructions when we have a small number of relations which we wish
to impose on the tensor algebra. In highly lexicalised grammars, the number of relations we wish to
impose may become so large that the ideal generates the whole vector space, and is thus useless, since
the resulting quotient space will be trivial. An alternative to this is to restrict the space of exploration to
finite-dimensional algebras. In this case, we can explore the space of possible products in relation to the
set of relations we wish to hold; in other words, we can view this as an optimisation problem in which
we want to find the best possible product given the required relations.

We apply this to the situation where we obtain a vector Z for each individual word and pair of
words in sequence. We then find the product that best fits these observed vectors. Given a set W =
{wy,ws ... wy} of words, we want to define a product ® to minimise the difference between w; © W;
and w/ﬂ?j, for 1 <i,5 < m. Specifically, we can define this as minimising

D lwiw; — i © |
i

If word vectors have n dimensions, then © is defined by an n3 dimensional vector, which we denote Sfrst
for 1 <r,s,t <n, where (e, ® e5)s = frst and e is the vector with 1 in every component, and vy is the
tth component of v.

We can view this as a linear model:

(wiw;)e = €t + Z (Wi)r (W) s frst

r,s=1

where we have m? statistical units to learn n? parameters relating to the ¢th component of the vector
space. Since these parameters are independent for each value of ¢, each set of n? parameters can be learnt
in parallel. We are currently exploring ways of learning these parameters. The form of the equation
above suggests the use of least squares, and we have performed some experiments using this method
using a corpus extracted from the ukWaC corpus (Ferraresi et al., 2008). We extracted a list of verb
adjective®noun sequences, and used latent semantic analysis (Deerwester et al., 1990) to generate n-
dimensional vectors for the 160 most common adjectives and nouns, and pairs of these adjectives and
nouns. Our initial results indicate that the learnt parameters tend to get very large when using least
squares to find the parameters, leading to poor results; we plan to investigate other methods such as
linear optimisation.

Guevara (2010) proposed a related method of learning composition which used linear regression to
learn how components compose. His model is however much more restrictive than ours in that the value
of a component in the product depends only on that same component in the composed vectors, whereas
in our model, the value of the component can depend on all components in the composed vectors.

Baroni and Zamparelli (2010) took a similar approach, in which adjectives are modelled as matrices
acting on the space of nouns, and the matrices are learnt using least squares regression. The algebra
products we propose learning are more general than matrix products; in addition we do not need to
distinguish between words which are represented as matrices and words which are represented as vectors.

4 Constructing Algebras from Semigroups

Whilst the previous two techniques we have discussed are very general, and allow corpus data to be easily
incorporated into the composition definition, our implementations are currently a long way from being
able to represent the complexities of natural language semantics that is currently possible with logical
semantics. This has become the standard method of representing natural language meaning, originating
in the work of Montague (1973), however there is currently no way to incorporate statistical features of
meaning that are described by the distributional hypothesis of Harris (1968).
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n; = (N, Az noun;(x))

Term Context vector a; = (N/N,\p\yadj,;(y) A p.y)
Fish 0,0,1)
big (1,2,0)

Figure 4: Equations describing syntax and semantics
Figure 3: Example context vectors for terms. of adjectives and nouns.

In related work, Clark et al. (2008) described a method of composing meanings which they noted

was a generalisation of Montague semantics. However, their version of Montague semantics assumed a
particular model, and thus effectively mapped sentences to truth values. This omits much of the power
of Montague semantics in which sentences are mapped to logical forms which then provide restrictions
on the set of allowable models, allowing, for example, entailments to be computed between sentences.

We will sketch a method by which Montague semantics can be described within the context-theoretic

framework. We follow a standard method of representing logic in language, but instead of representing
words using logic, we represent an individual dimension of meaning of a word by a logical form — we
call this dimension a “aspect”. The general scheme is to represent aspects as elements of a semigroup,
from which we form an algebra. Words are then represented as weighted sums over individual aspects.

We define a set S of all aspects as the set of pairs (s, o), where s is the syntactic type of an aspect

(for example in the Lambek calculus) and o is the semantics of the aspect (for example described in
the lambda calculus). We can extend S by defining a product on such pairs reducing each element to a
normal form. This defines a semigroup: the Lambek calculus can be described in terms of a residuated
lattice, which is a partially ordered semigroup (Lambek, 1958), and the lambda calculus is equivalent to a
Cartesian closed category under 3-equivalence (Lambek, 1985), which can be considered as a semigroup
with additional structure.

Given any semigroup S we can construct an algebra L'(S) of real-valued functions on .S which are

finite under the L' norm with multiplication defined by convolution:

(w-o)(x)= Y uly)(a).

y,z€S8yz=x

For example, suppose we have context vectors for the terms big and fish as described in Figure

3. We represent the syntax and semantics of adjectives and nouns by elements a; and n; respectively
of a semigroup S (Figure 4), where we assume equivalence under S-reduction is accounted for. The
predicates adj; and noun; correspond to aspects, in this case each dimension 7 of the three dimensions
in the context vectors has a corresponding adj, and noun;. We may then represent the vectors for these

terms as elements of the algebra big = a; + 2a9 and fish = ng, where we equate an element « of the

semigroup with the function in the algebra L'(.S) which maps u to 1 and every other element to zero.

Then big fish = aing + 2agns, where

a;n; = (N, Az(noun;(x) A adj;(x))).

Note that the elements a; form a commutative, idempotent subsemigroup of S, so they have a semilattice
structure. In order for this structure to carry over to the vector structure in the algebra, we would need
a more sophisticated construction, such as a C* enveloping algebra; we leave the investigation of this
possibility to further work.

5 Discussion

We have presented our initial investigations into the application of three powerful methods of construct-
ing algebras to representing natural language semantics. Each of these approaches has potential use in
representing meaning; here we have only touched the surface of what is possible with each technique. We
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hope that with further work, these methods will lead to a true synthesis between logical and distributional
approaches to natural language semantics.
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