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Abstract

We consider the problem of distinguishing polysemous from homonymous nouns. This distinction

is often taken for granted, but is seldom operationalized in the shape of an empirical model. We

present a first step towards such a model, based on WordNet augmented with ontological classes

provided by CoreLex. This model provides a polysemy index for each noun which (a), accurately

distinguishes between polysemy and homonymy; (b), supports the analysis that polysemy can be

grounded in the frequency of the meaning shifts shown by nouns; and (c), improves a regression

model that predicts when the “one-sense-per-discourse” hypothesis fails.

1 Introduction

Linguistic studies of word meaning generally divide ambiguity into homonymy and polysemy. Homony-

mous words exhibit idiosyncratic variation, with essentially unrelated senses, e.g. bank as FINANCIAL

INSTITUTION versus as NATURAL OBJECT. In polysemy, meanwhile, sense variation is systematic,

i.e., appears for whole sets of words. E.g., lamb, chicken and salmon have ANIMAL and FOOD senses.

It is exactly this systematicity that represents a challenge for lexical semantics. While homonymy is

assumed to be encoded in the lexicon for each lemma, there is a substantial body of work on dealing with

general polysemy patterns (cf. Nunberg and Zaenen (1992); Copestake and Briscoe (1995); Pustejovsky

(1995); Nunberg (1995)). This work is predominantly theoretical in nature. Examples of questions

addressed are the conditions under which polysemy arises, the representation of polysemy in the semantic

lexicon, disambiguation mechanisms in the syntax-semantics interface, and subcategories of polysemy.

The distinction between polysemy and homonymy also has important potential ramifications for

computational linguistics, in particular for Word Sense Disambiguation (WSD). Notably, Ide and Wilks

(2006) argue that WSD should focus on modeling homonymous sense distinctions, which are easy to

make and provide most benefit. Another case in point is the one-sense-per-discourse hypothesis (Gale

et al., 1992), which claims that within a discourse, instances of a word will strongly tend towards realizing

the same sense. This hypothesis seems to apply primarily to homonyms, as pointed out by Krovetz (1998).

Unfortunately, the distinction between polysemy and homonymy is still very much an unsolved

question. The discussion in the theoretical literature focuses mostly on clear-cut examples and avoids

the broader issue. Work on WSD, and in computational linguistics more generally, almost exclusively

builds on the WordNet (Fellbaum, 1998) word sense inventory, which lists an unstructured set of senses

for each word and does not indicate in which way these senses are semantically related. Diachronic

linguistics proposes etymological criteria; however, these are neither undisputed nor easy to operationalize.

Consequently, there are currently no broad-coverage lexicons that indicate the polysemy status of words,

nor even, to our knowledge, precise, automatizable criteria.

Our goal in this paper is to take a first step towards an automatic polysemy classification. Our approach

is based on the aforementioned intuition that meaning variation is systematic in polysemy, but not in

homonymy. This approach is described in Section 2. We assess systematicity by mapping WordNet senses

onto basic types, a set of 39 ontological categories defined by the CoreLex resource (Buitelaar, 1998),

and looking at the prevalence of pairs of basic types (such as {FINANCIAL INSTITUTION, NATURAL
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OBJECT} above) across the lexicon. We evaluate this model on two tasks. In Section 3, we apply the

measure to the classification of a set of typical polysemy and homonymy lemmas, mostly drawn from the

literature. In Section 4, we apply it to the one-sense-per-discourse hypothesis and show that polysemous

words tend to violate this hypothesis more than homonyms. Section 5 concludes.

2 Modeling Polysemy

Our goal is to take the first steps towards an empirical model of polysemy, that is, a computational model

which makes predictions for – in principle – arbitrary words on the basis of their semantic behavior.

The basis of our approach mirrors the focus of much linguistic work on polysemy, namely the fact

that polysemy is systematic: There is a whole set of words which show the same variation between two

(or more) ontological categories, cf. the “universal grinder” (Copestake and Briscoe, 1995). There are

different ways of grounding this notion of systematicity empirically. An obvious choice would be to use a

corpus. However, this would introduce a number of problems. First, while corpora provide frequency

information, the role of frequency with respect to systematicity is unclear: should acceptable but rare

senses play a role, or not? We side with the theoretical literature in assuming that they do. Another

problem with corpora is the actual observation of sense variation. Few sense-tagged corpora exist, and

those that do are typically small. Interpreting context variation in untagged corpora, on the other hand,

corresponds to unsupervised WSD, a serious research problem in itself – see, e.g., Navigli (2009).

We therefore decided to adopt a knowledge-based approach that uses the structure of the WordNet

ontology to calculate how systematically the senses of a word vary. The resulting model sets all senses of

a word on equal footing. It is thus vulnerable to shortcomings in the architecture of WordNet, but this

danger is alleviated in practice by our use of a “coarsened” version of WordNet (see below).

2.1 WordNet, CoreLex and Basic Types

WordNet provides only a flat list of senses for each word. This list does not indicate the nature of the

sense variation among the senses. However, building on the generative lexicon theory by Pustejovsky

(1995), Buitelaar (1998) has developed the “CoreLex” resource. It defines a set of 39 so-called basic

types which correspond to coarse-grained ontological categories. Each basic type is linked to one or more

WordNet anchor nodes, which define a complete mapping between WordNet synsets and basic types by

dominance.1 Table 1 shows the set of basic types and their main anchors; Table 2 shows example lemmas

for some basic types.

Ambiguous lemmas are often associated with two or more basic types. CoreLex therefore further

assigns each lemma to what Buitelaar calls a polysemy class, the set of all basic types its synsets belong to;

a class with multiple representatives is considered systematic. These classes subsume both idiosyncratic

and systematic patterns, and thus, despite their name, provide no clue about the nature of the ambiguity.

CoreLex makes it possible to represent the meaning of a lemma not through a set of synsets, but instead

in terms of a set of basic types. This constitutes an important step forward. Our working hypothesis is that

these basic types approximate the ontological categories that are used in the literature on polysemy to

define polysemy patterns. That is, we can define a meaning shift to mean that a lemma possesses one sense

in one basic type, while another sense belongs to another basic type. Naturally, this correspondence is not

perfect: systematic polysemy did not play a role in the design of the WordNet ontology. Nevertheless,

there is a fairly good approximation that allows us to recover many prominent polysemy patterns. Table 3

shows three polysemy patterns characterized in terms of basic types. The first class was already mentioned

before. The second class contains a subset of “transparent nouns” which can denote a container or a

quantity. The last class contains words which describe a place or a group of people.

1Note that not all of CoreLex anchor nodes are disjoint; therefore a given WordNet synset may be dominated by two CoreLex

anchor nodes. We assign each synset to the basic type corresponding to the most specific dominating anchor node.
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BT WordNet anchor BT WordNet anchor BT WordNet anchor

abs ABSTRACTION loc LOCATION pho PHYSICAL OBJECT

act ACTION log GEOGRAPHICAL AREA plt PLANT

agt AGENT mea MEASURE pos POSSESSION

anm ANIMAL mic MICROORGANISM pro PROCESS

art ARTIFACT nat NATURAL OBJECT prt PART

atr ATTRIBUTE phm PHENOMENON psy PSYCHOLOGICAL FEATURE

cel CELL frm FORM qud DEFINITE QUANTITY

chm CHEMICAL ELEMENT grb BIOLOGICAL GROUP qui INDEFINITE QUANTITY

com COMMUNICATION grp GROUP rel RELATION

con CONSEQUENCE grs SOCIAL GROUP spc SPACE

ent ENTITY hum PERSON sta STATE

evt EVENT lfr LIVING THING sub SUBSTANCE

fod FOOD lme LINEAR MEASURE tme TIME

Table 1: The 39 CoreLex basic types (BTs) and their WordNet anchor nodes

Basic type WordNet anchor Examples

agt AGENT driver, menace, power, proxy, . . .

grs SOCIAL GROUP city, government, people, state, . . .

pho PHENOMENON life, pressure, trade, work, . . .

pos POSSESSION figure, land, money, right, . . .

qui INDEFINITE QUANTITY bit, glass, lot, step, . . .

rel RELATION function, part, position, series, . . .

Table 2: Basic types with example words

Pattern (Basic types) Examples

ANIMAL, FOOD fowl, hare, lobster, octopus, snail, . . .

ARTIFACT, INDEFINITE QUANTITY bottle, jug, keg, spoon, tub, . . .

ARTIFACT, SOCIAL GROUP academy, embassy, headquarters, . . .

Table 3: Examples of polysemous meaning variation patterns

2.2 Polysemy as Systematicity

Given the intuitions developed in the previous section, we define a basic ambiguity as a pair of basic

types, both of which are associated with a given lemma. The variation spectrum of a word is then the set

of all its basic ambiguities. For example, bottle would have the variation spectrum {{art qui} } (cf.

Table 3); the word course with the three basic types act, art, grs would have the variation spectrum

{{act art}; {act grs}; {art grs} }.

There are 39 basic types and thus 39 · 38/2 = 741 possible basic ambiguities. In practice, only 663

basic ambiguities are attested in WordNet. We can quantify each basic ambiguity by the number of words

that exhibit it. For the moment, we simply interpret frequency as systematicity.2 Thus, we interpret the

high-frequency (systematic) basic ambiguities as polysemous, and low-frequency (idiosyncratic) basic

ambiguities as homonymous. Table 4 shows the most frequent basic ambiguities, all of which apply to

several hundred lemmas and can safely be interpreted as polysemous. At the other end, 56 of the 663

basic ambiguities are singletons, i.e. are attested by only a single lemma.

In a second step, we extend this classification from basic ambiguities to lemmas. The intuition is again

fairly straightforward: A word whose basic ambiguities are systematic will be perceived as polysemous,

and as homonymous otherwise. This is clearly an oversimplification, both practically, since we depend

on WordNet/CoreLex having made the correct design decisions in defining the ontology and the basic

types; as well as conceptually, since not all polysemy patterns will presumably show the same degree of

systematicity. Nevertheless, we believe that basic types provide an informative level of abstraction, and

that our model is in principle even able to account for conventionalized metaphor, to the extent that the

corresponding senses are encoded in WordNet.

2Note that this is strictly a type-based notion of frequency: corpus (token) frequencies do not enter into our model.
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Basic ambiguity Examples

{act com} construction, consultation, draft, estimation, refusal, . . .

{act art} press, review, staging, tackle, . . .

{com hum} egyptian, esquimau, kazakh, mojave, thai, . . .

{act sta} domination, excitement, failure, marriage, matrimony, . . .

{art hum} dip, driver, mouth, pawn, watch, wing, . . .

Table 4: Top five basic ambiguities with example lemmas

Noun Basic types Noun Basic types

chicken anm fod evt hum lamb anm fod hum

salmon anm fod atr nat duck anm fod art qud

Table 5: Words exhibiting the “grinding” (animal – food) pattern

The exact manner in which the systematicity of the individual basic ambiguities of one lemma are

combined is not a priori clear. We have chosen the following method. Let P be a basic ambiguity, P(w)
the variation spectrum of a lemma w, and freq(P ) the number of WordNet lemmas with basic ambiguity P .

We define the set of polysemous basic ambiguities PN as the N -most frequent bins of basic ambiguities:

PN = {[P1], ..., [PN ]}, where [Pi] = {Pj | freq(Pi) = freq(Pj)} and freq(Pk) > freq(Pl) for k < l.
We call non-polysemous basic ambiguities idiosyncratic. The polysemy index of a lemma w, πN (w), is:

πN (w) =
| PN ∩P(w)|

| P(w)|
(1)

πN simply measures the ratio of w’s basic ambiguities which are polysemous, i.e., high-frequency basic

ambiguities. πN ranges between 0 and 1, and can be interpreted analogously to the intuition that we

have developed on the level of basic ambiguities: high values of π (close to 1) mean that the majority

of a lemma’s basic ambiguities are polysemous, and therefore the lemma is perceived as polysemous.

In contrast, low values of π (close to 0) mean that the lemma’s basic ambiguities are predominantly

idiosyncratic, and thus the lemma counts as homonymous. Again, note that we consider basic ambiguities

at the type level, and that corpus frequency does not enter into the model.

This model of polysemy relies crucially on the distinction between systematic and idiosyncratic basic

ambiguities, and therefore in turn on the parameter N . N corresponds to the sharp cutoff that our model

assumes. At the N -th most frequent basic ambiguity, polysemy turns into homonymy. Since frequency

is our only criterion, we have to lump together all basic ambiguities with the same frequency into 135

bins. If we set N = 0, none of the bins count as polysemous, so π0(w) = 0 for all w – all lemmas are

homonymous. In the other extreme, we can set N to 135, the total number of frequency bins, which

makes all basic ambiguities polysemous, and thus all lemmas: π135(w) = 1 for all w. The optimization

of N will be discussed in Section 3.

2.3 Gradience between Homonymy and Polysemy

We assign each lemma a polysemy index between 0 and 1. We thus abandon the dichotomy that is usually

made in the literature between two distinct categories of polysemy and homonymy. Instead, we consider

polysemy and homonymy the two end points on a gradient, where words in the middle show elements of

both. This type of behavior can be seen even for prototypical examples of either category, such as the

homonym bank, which shows a variation between SOCIAL GROUP and ARTIFACT:

(1) a. The bill would force banks [...] to report such property. (grs)

b. The coin bank was empty. (art)

Note that this is the same basic ambiguity that is often cited as a typical example of polysemous sense

variation, for example for words like newspaper.

On the other hand, many lemmas which are presumably polysemous show rather unsystematic basic

ambiguities. Table 5 shows four lemmas which are instances of the meaning variation between ANIMAL
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Homonymous nouns ball, bank, board, chapter, china, degree, fall, fame, plane, plant, pole, post, present, rest,

score, sentence, spring, staff, stage, table, term, tie, tip, tongue

Polysemous nouns bottle, chicken, church, classification, construction, cup, development, fish, glass, improve-

ment, increase, instruction, judgment, lamb, management, newspaper, painting, paper, picture,

pool, school, state, story, university

Table 6: Experimental items for the two classes hom and poly

(anm) and FOOD (fod), a popular example of a regular and productive sense extension. Yet each of the

nouns exhibits additional basic types. The noun chicken also has the highly idiosyncratic meaning of a

person who lacks confidence. A lamb can mean a gullible person, salmon is the name of a color and a

river, and a duck a score in the game of cricket. There is thus an obvious unsystematic variety in the words’

sense variations – a single word can show both homonymic as well as polysemous sense alternation.

3 Evaluating the Polysemy Model

To identify an optimal cutoff value N for our polysemy index, we use a simple supervised approach: we

optimize the quality with which our polysemy index models a small, manually created dataset. More

specifically, we created a two-class, 48-word dataset with 24 homonymous nouns (class hom) and 24

polysemous nouns (class poly) drawn from the literature. The dataset is shown in Table 6.

We now rank these items according to πN for different values of N and observe the ability of πN
to distinguish the two classes. We measure this ability with the Mann-Whitney U test, a nonparametric

counterpart of the t-test.3 In our case, the U statistic is defined as

U(N) =

m∑

i=1

n∑

j=1

1(πN (homi) < πN (polyi))

where 1 is the function function that returns the truth value of its argument (1 for “true”). Informally,

U(N) counts the number of correctly ranked pairs of a homonymous and a polysemous noun.

The maximum for U is the number of item pairs from the classes (24 ·24 = 576). A score of U = 576
would mean that every πN -value of a homonym is smaller than every polysemous value. U = 0 means

that there are no homonyms with smaller π-scores. So U can be directly interpreted as the quality of

separation between the two classes. The null hypothesis of this test is that the ranking is essentially

random, i.e., half the rankings are correct4. We can reject the null hypothesis if U is significantly larger.

Figure 1(a) shows the U -statistic for all values of N (between 0 and 135). The left end shows the

quality of separation (i.e. U ) for few basic ambiguities (i.e. small N ) which is very small. As soon as we

start considering the most frequent basic ambiguities as systematic and thus as evidence for polysemy,

hom and poly become much more distinct. We see a clear global maximum of U for N = 81 (U = 436.5).

This U value is highly significant at p < 0.005, which means that even on our fairly small dataset, we can

reject the null hypothesis that the ranking is random. π81 indeed separates the classes with high confidence:

436.5 of 576 or roughly 75% of all pairwise rankings in the dataset are correct. For N > 81, performance

degrades again: apparently these settings include too many basic ambiguities in the “systematic” category,

and homonymous words start to be misclassified as polysemous.

The separation between the two classes is visualized in the box-and-whiskers plot in Figure 1(b). We

find that more than 75% of the polysemous words have π81 > .6. The median value for poly is 1, thus

for more than half of the class π81 = 1, which can be seen in Figure 2(b) as well. This is a very positive

result, since our hope is that highly polysemous words get high scores. Figure 2(a) shows that homonyms

are concentrated in the mid-range while exhibiting a small number of π81-values at both extremes.

We take the fact that there is indeed an N which clearly maximizes U as a very positive result that

validates our choice of introducing a sharp cutoff between polysemous and idiosyncratic basic ambiguities.

3The advantage of U over t is that t assumes comparable variance in the two samples, which we cannot guarantee.
4Provided that, like in this case, the classes are of equal size.
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Figure 1: Separation of the hom and poly classes in our dataset

These 81 frequency bins contain roughly 20% of the most frequent basic ambiguities. This corresponds to

the assumption that basic ambiguities are polysemous if they occur with a minimum of about 50 lemmas.

If we look more closely at those polysemous words that obtain low scores (school, glass and cup),

we observe that they also show idiosyncratic variation as discussed in Section 2.3. In the case of school,

we have the senses schooltime of type tme and group of fish of type grb which one would not expect to

alternate regularly with grs and art, the rest of its variation spectrum. The word glass has the unusual

type agt due to its use as a slang term for crystal methamphetamine. Finally, cup is unique in that means

both an indefinite quantity as well as the definite measurement equal to half a pint. Only 10 other words

have this variation in WordNet, including such words as million and billion, which are often used to

describe an indefinite but large number.

On the other hand, those homonyms that have a high score (e.g. tie, staff and china) have somewhat

unexpected regularities due to obscure senses. Both tie and staff are terms used in musical notation. This

leads to basic ambiguities with the com type, something that is very common. Finally, the obviously

unrelated senses for china, China and porcelain, are less idiosyncratic when abstracted to their types, log

and art, respectively. There are 117 words that can mean a location as well as an artifact, (e.g. fireguard,

bath, resort, front, . . . ) which are clearly polysemous in that the location is where the artifact is located.

In conclusion, those examples which are most grossly miscategorized by π81 contain unexpected

sense variations, a number of which have been ignored in previous studies.
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4 The One-Sense-Per-Discourse Hypothesis

The second evaluation that we propose for our polysemy index concerns a broader question on word

sense, namely the so-called one-sense-per-discourse (1spd) hypothesis. This hypothesis was introduced

by Gale et al. (1992) and claims that “[...] if a word such as sentence appears two or more times in

a well-written discourse, it is extremely likely that they will all share the same sense”. The authors

verified their hypothesis on a small experiment with encouraging results (only 4% of discourses broke

the hypothesis). Indeed, if this hypothesis were unreservedly true, then it would represent a very strong

global constraint that could serve to improve word sense disambiguation – and in fact, a follow-up paper

by Yarowsky (1995) exploited the hypothesis for this benefit.

Unfortunately, it seems that 1spd does not apply universally. At the time (1992), WordNet had

not yet emerged as a widely used sense inventory, and the sense labels used by Gale et al. were fairly

coarse-grained ones, motivated by translation pairs (e.g., English duty translated as French droit (tax)

vs. devoir (obligation)), which correspond mostly to homonymous sense distinctions.5 Current WSD, in

contrast, uses the much more fine-grained WordNet sense inventory which conflates homonymous and

polysemous sense distinctions. Now, 1spd seems intuitively plausible for homonyms, where the senses

describe different entities that are unlikely to occur in the same discourse (or if they do, different words

will be used). However, the situation is different for polysemous words: In a discourse about a party, bottle

might felicitously occur both as an object and a measure word. A study by Krovetz (1998) confirmed this

intuition on two sense-tagged corpora, where he found 33% of discourses to break 1spd. He suggests that

knowledge about polysemy classes can be useful as global biases for WSD.

In this section, we analyze the sense-tagged SemCor corpus in terms of the basic type-based framework

of polysemy that we have developed in Section 2 both qualitatively and quantitatively to demonstrate that

basic types, and our polysemy index π, help us better understand the 1spd hypothesis.

4.1 Analysis by Basic Types and One-Basic-Type-Per-Discourse

The first step in our analysis looks specifically at the basic types and basic ambiguities we observe in

discourses that break 1spd. Our study reanalyses SemCor, a subset of the Brown corpus annotated ex-

haustively with WordNet senses (Fellbaum, 1998). SemCor contains a total of 186 discourses, paragraphs

of between 645 and 1023 words. These 186 discourses, in combination with 1088 nouns, give rise to

7520 lemma-discourse pairs, that is, cases where a sense-tagged lemma occurs more than once within a

discourse.6 These 7520 lemma-discourse pairs form the basis of our analysis. We started by looking at

the relative frequency of 1spd. We found that the hypothesis holds for 69% of the lemma-discourse pairs,

but not for the remaining 31%. This is a good match with Krovetz’ findings, and indicates that there are

many discourses where there lemmas are used in different senses.

In accordance with our approach to modeling meaning variation at the level of basic types, we

implemented a “coarsened” version of 1spd, namely one-basic-type-per-discourse (1btpd). This hypothesis

is parallel to the original, claiming that it is extremely likely that all words in a discourse share the

same basic type. As we have argued before, the basic-type level is a fairly good approximation to the

most important ontological categories, while smoothing over some of the most fine-grained (and most

troublesome) sense distinctions in WordNet. In this vein, 1btpd should get rid of “spurious” ambiguity,

but preserve meaningful ambiguity, be it homonymous or polysemous. In fact, the basic type with most

of these “within-basic-type” ambiguities is PSYCHOLOGICAL FEATURE, which contains many subtle

distinctions such as the following senses of perception:

a. a way of conceiving something b. the process of perceiving

c. knowledge gained by perceiving d. becoming aware of something via the senses

Such distinctions are collapsed in 1btpd. In consequence, we expect a noticeable, but limited, reduction in

5Note that Gale et al. use the term “polysemy” synonymously with “ambiguous”.
6We exclude cases where a lemma occurs once in a discourse, since 1spd holds trivially.
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Basic ambiguity most common breaking words freq(P breaks 1btpd) freq(P ) N

{com psy} evidence, sense, literature, meaning, style, . . . 89 365 13

{act psy} study, education, pattern, attention, process, . . . 88 588 7

{psy sta} need, feeling, difficulty, hope, fact, . . . 79 338 14

{act atr} role, look, influence, assistance, interest, . . . 79 491 9

{act art} church, way, case, thing, design, . . . 67 753 2

{act sta} operation, interest, trouble, employment, absence, . . . 60 615 4

{act com} thing, art, production, music, literature, . . . 59 755 1

{atr sta} life, level, desire, area, unity, . . . 58 594 6

Table 7: Most frequent basic ambiguities that break the 1btpd hypothesis in SemCor

the cases that break the hypothesis. Indeed, 1btpd holds for 76% of all lemma-discourse pairs, i.e., for 7%

more than 1spd. For the remainder of this analysis, we will test the 1btpd hypothesis instead of 1spd.

The basic type level also provides a good basis to analyze the lemma-discourse pairs where the

hypothesis breaks down. Table 7 shows the basic ambiguities that break the hypothesis in SemCor most

often. The WordNet frequencies are high throughout, which means that these basic ambiguities are poly-

semous according to our framework. It is noticeable that the two basic types PSYCHOLOGICAL FEATURE

and ACTION participate in almost all of these basic ambiguities. This observation can be explained

straightforwardly through polysemous sense extension as sketched above: Actions are associated, among

other things, with attributes, states, and communications, and discussion of an action in a discourse can

fairly effortlessly switch to these other basic types. A very similar situation applies to psychological

features, which are also associated with many of the other categories. In sum, we find that the data bears

out our hypothesis: almost all of the most frequent cases of several-basic-types-per-discourse clearly

correspond to basic ambiguities that we have classified as polysemous rather than homonymous.

4.2 Analysis by Regression Modeling

This section complements the qualitative analysis of the previous section with a quantitative analysis

which predicts specifically for which lemma-discourse pairs 1btpd breaks down. To do so, we fit a logit

mixed effects model (Breslow and Clayton, 1993) to the SemCor data. Logit mixed effects models can

be seen as a generalization of logistic regression models. They explain a binary response variable y in

terms of a set of fixed effects x, but also include a set of random effects x′. Fixed effects correspond to

“ordinary” predictors as in traditional logistic regression, while random effects account for correlations in

the data introduced by groups (such as items or subjects) without ascribing these random effects the same

causal power as fixed effects – see, e.g., Jaeger (2008) for details.

The contribution of each factor is modelled by a coefficient β, and their sum is interpreted as the

logit-transformed probability of a positive outcome for the response variable:

p(y = 1) =
1

1 + e−z
with z =

∑
βixi +

∑
β′

jx
′

j (2)

Model estimation is usually performed using numeric approximations. The coefficients β′ of the random

effects are drawn from a multivariate normal distribution, centered around 0, which ensures that the

majority of random effects are ascribed very small coefficients.

From a linguistic perspective, a desirable property of regression models is that they describe the

importance of the different effects. First of all, each coefficient can be tested for significant difference

to zero, which indicates whether the corresponding effect contributes significantly to modeling the data.

Furthermore, the absolute value of each βi can be interpreted as the log odds – that is, as the (logarithmized)

change in the probability of the response variable being positive depending on xi being positive.

In our experiment, each datapoint corresponds to one of the 7520 lemma-discourse pair from SemCor

(cf. Section 4.1). The response variable is binary: whether 1btpd holds for the lemma-discourse pair or

not. We include in the model five predictors which we expect to affect the response variable: three fixed

effects and two random ones. The first fixed effect is the ambiguity of the lemma as measured by the
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Predictor Coefficient Odds (95% confidence interval) Significance

Number of basic types -0.50 0.61 (0.59–0.63) ***

Log length of discourse (words) -0.60 1.83 (1.14–2.93) –

Polysemy index (π81) -0.91 0.40 (0.35–0.46) ***

Table 8: Logit mixed effects model for the response variable “one-basic-type-per-discourse (1btpd) holds”

(SemCor; random effects: discourse and lemma; significances: –: p > 0.05; ***: p < 0.001)

number of its basic types, i.e. the size of its variation spectrum. We expect that the more ambiguous a

noun, the smaller the chance for 1btpd. We expect the same effect for the (logarithmized) length of the

discourse in words: longer discourses run a higher risk for violating the hypothesis. Our third fixed effect

is the polysemy index π81, for which we also expect a negative effect. The two random effects are the

identity of the discourse and the noun. Both of these can influence the outcome, but should not be used as

full explanatory variables.

We build the model in the R statistical environment, using the lme47 package. The main results are

shown in Table 8. We find that the number of basic types has a highly significant negative effect on the

1btpd hypothesis (p < 0.001) . Each additional basic type lowers the odds for the hypothesis by a factor

of e−0.50 ≈ 0.61. The confidence interval is small; the effect is very consistent. This was to be expected –

it would have been highly suspicious if we had not found this basic frequency effect. Our expectations are

not met for the discourse length predictor, though. We expected a negative coefficient, but find a positive

one. The size of the confidence interval shows the effect to be insignificant. Thus, we have to assume that

there is no significant relationship between the length of the discourse and the 1btpd hypothesis. Note

that this outcome might result from the limited variation of discourse lengths in SemCor: recall that no

discourse contains less than 645 or more than 1023 words.

However, we find a second highly significant negative effect (p < 0.001) in our polysemy index π81.

With a coefficient of -0.91, this means that a word with a polysemy index of 1 is only 40% as likely

to preserve 1btpd than a word with a polysemy index of 0. The confidence interval is larger than for

the number of basic types, but still fairly small. To bolster this finding, we estimated a second mixed

effects model which was identical to the first one but did not contain π81 as predictor. We tested the

difference between the models with a likelihood ratio test and found that the model that includes π81 is

highly preferred (p < 0.0001;D = −2∆LL = 40; df = 1).

These findings establish that our polysemy index π can indeed serve a purpose beyond the direct

modeling of polysemy vs. homonymy, namely to explain the distribution of word senses in discourse

better than obvious predictors like the overall ambiguity of the word and the length of the discourse can.

This further validates the polysemy index as a contribution to the study of the behavior of word senses.

5 Conclusion

In this paper, we have approached the problem of distinguishing empirically two different kinds of

word sense ambiguity, namely homonymy and polysemy. To avoid sparse data problems inherent in

corpus work on sense distributions, our framework is based on WordNet, augmented with the ontological

categories provided by the CoreLex lexicon. We first classify the basic ambiguities (i.e., the pairs of

ontological categories) shown by a lemma as either polysemous or homonymous, and then assign the ratio

of polysemous basic ambiguities to each word as its polysemy index.

We have evaluated this framework on two tasks. The first was distinguishing polysemous from

homonymous lemmas on the basis of their polysemy index, where it gets 76% of all pairwise rankings

correct. We also used this task to identify an optimal value for the threshold between polysemous and

homonymous basic ambiguities. We located it at around 20% of all basic ambiguities (113 of 663 in

the top 81 frequency bins), which apparently corresponds to human intuitions. The second task was

an analysis of the one-sense-per-discourse heuristic, which showed that this hypothesis breaks down

7http://cran.r-project.org/web/packages/lme4/index.html
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frequently in the face of polysemy, and that the polysemy index can be used within a regression model to

predict the instances within a discourse where this happens.

It may seem strange that our continuous index assumes a gradient between homonymy and polysemy.

Our analyses indicate that on the level of actual examples, the two classes are indeed not separated by a

clear boundary: many words contain basic ambiguities of either type. Nevertheless, even in the linguistic

literature, words are often considered as either polysemous or homonymous. Our interpretation of this

contradiction is that some basic types (or some basic ambiguities) are more prominent than others. The

present study has ignored this level, modeling the polysemy index simply on the ratio of polysemous

patterns without any weighting. In future work, we will investigate human judgments of polysemy vs.

homonymy more closely, and assess other correlates of these judgments (e.g., corpus counts).

A second area of future work is more practical. The logistic regression incorporating our polysemous

index predicts, for each lemma-discourse pair, the probability that the one-sense-per-discourse hypothesis

is violated. We will use this information as a global prior on an “all-words” WSD task, where all

occurrences of a word in a discourse need to be disambiguated. Finally, Stokoe (2005) demonstrates

the chances for improvement in information retrieval systems if we can reliably distinguish between

homonymous and polysemous senses of a word.
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