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1 Pre - Introduction

Before starting, I would like to ask reader’s opinion about the truth/falsity of certain NL statements. The
statements are about figures depicting dots connected to stars. In the figures, we distinguish between dots
and stars that are connected, i.e. such that every dot is connected with at least one star and every star is
connected with at least one dot, and dots and stars that aretotally connected, i.e. such that every dot is
connected to every star. For instance, in (1), the dotsd1, d2, andd3 are connected with the starss1, s2,
ands3 (on the left) whiled4 andd5 aretotally connected withs4, s5, ands6 (on the right).

(1) d1d2d3 d4d5s1s2s3 s4s5s6
given these premises, is it true that in the next figureLess than half of the dots are totally connected with
exactly three stars? (do not read below before answering)

(2) d3 s4s5d1d2 s1s2s3 d4d5d6
I do think that the answer is yes. The same answer has been given by several friends/colleagues that were
asked to judge the example. In fact, the figure does contain two dots d1 and d2, which are less than half
of all the dots in the figure, and they are both connected with three same stars s1, s2, and s3.
Now, is it true in (3) thatFew dots are totally connected with few stars?

(3) d3 s3s4d1d2 s1s2 d4d5 d6 s5s7d7d8 s6 s8s9d9
It is somehow harder to provide an answer to this second question. At first sight, it seems the sentence is
false, or at least ‘strange’: no English speaker would ever utter that sentence in that context, whatever he
wants to describe.

We are ready now to explore the proposals that aimed at formally defining the truth conditions of
sentences as the two ones above. In the literature, most logical approaches to the problem state that the
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two sentences are both false in contexts (2) and (3). In (Robaldo, 2009a), drawing from (Sher, 1997), I
proposed a new alternative where they are both evaluated as true. It seems then that neither proposals
is completely satisfatory. The present paper proposes a “pragmatic” revision of (Robaldo, 2009a) that
achieves – what are claimed to be – the proper truth values of such sentences.

2 Introduction

In the Pre-Introduction, it has been asked to judge the truth values of two NL sentences according to their
‘Scopeless interpretation’, termed in (Robaldo, 2009a) as ‘Independent Set (IS) reading’. In constrast, in
a linear reading one of the sets may vary on the entities in the other one. An example isEach boy ate two
apples, whose preferred reading is a linear reading whereEachoutscopesTwo, i.e. where each boy ate
two differentapples. Four kinds of IS readings have been identified in the literature, from (Scha, 1981).

(4) a. Branching Quantifier readings, e.g. Two students of mine have seen three drug-
dealers in front of the school. (Robaldo, 2009a)

b. Collective readings, e.g.Three boys made a chair yesterday. (Nakanishi, 2007)

c. Cumulative readings, e.g.Three boys invited four girls. (Landman, 2000)

d. Cover readings, e.g.Twenty children ate ten pizzas. (Kratzer, 2007)

The preferred reading of (4.a) is the one where there are exactly two1 students and exacly three drug-
dealers and each of the students saw each of the drug-dealers. Note that these are the truth values
assigned to (1)-(3) when dots and stars are asked to betotally connected. (4.b) may be true in case
three boys cooperated in the construction of a single chair. In the preferred reading of (4.c), there are
three boys and four girls such that each of the boys invited at least one girl, and each of the girls was
invited by at least one boy. These are the truth values assigned to (1) when dots and stars are asked to
be connected, possibly not totally. Finally, (4.d) allows for any sharing often pizzas between twenty
children. In Cumulative readings, the single actions are carried out byatomic2 individuals only, while in
(4.d) it is likely that the pizzas are shared among subgroups of children. For instance,Three children ate
five pizzasis satisfied by the following extension ofate′ (‘⊕’ is the standard sum operator (Link, 1983)):

(5) ‖ate′‖M ≡ {〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉}

In (5), childrenc1, c2, andc3 (cut into slices and) share pizzasp1 andp2, c2 andc3 (cut into slices and)
sharep3 andp4, andc3 also ate pizzap5 on his own.

Branching Quantifier readings have been the more controversial (cf. (Beghelli et al., 1997) and
(Gierasimczuk and Szymanik, 2009)). Many authors claim that those readings are always subcases of
Cumulative readings, and they often co-occur with certain adverbs (May, 1989), (Schein, 1993). In fact,
in the Pre-Introduction, in order to force such a reading on (1)-(3), itwas necessary to add the adverb
totally to the verbconnected. Collective and Cumulative readings have been largely studied; see (Scha,
1981), (Link, 1983), (Beck and Sauerland, 2000), and (Ben-Aviand Winter, 2003).

However, the focus here is on Cover readings. This paper assumes – following (van der Does, 1993),
(van der Does and Verkuyl, 1996), (Schwarzschild, 1996), (Kratzer, 2007) – that they aretheIS readings,
of which the three kinds exemplified in (4.a-c) are merely special cases. The name “Cover readings”
comes from the fact that their truth values are traditionally captured in terms ofCovers. A Cover is a
mathematical structure defined with respect to one or more sets. With respectto two setsS1 andS2, a
CoverCov is formally defined as:

1In (4.a-d) “two/three/ten/etc.” are interpreted as “exactlytwo/three/ten/etc.” as in (Scha, 1981). That is actually a pragmatic
implicature, as noted in (Landman, 2000), pp.224-238.

2In line with (Landman, 2000), pp.129, and (Beck and Sauerland, 2000), def.(3), that explicitly define Cumulative readings
as statements among atomic individuals only.
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(6) A CoverCov is a subset ofCov1 × Cov2, whereCov1 ⊆ ℘(S1) andCov2 ⊆ ℘(S2) s.t.

a. ∀s1 ∈ S1, ∃cov1 ∈ Cov1 s.t. s1 ∈ cov1, and∀s2 ∈ S2, ∃cov2 ∈ Cov2 s.t. s2 ∈ cov2.

b. ∀cov1 ∈ Cov1, ∃cov2 ∈ Cov2 s.t. 〈cov1, cov2〉 ∈ Cov.

c. ∀cov2 ∈ Cov2, ∃cov1 ∈ Cov1 s.t. 〈cov1, cov2〉 ∈ Cov.

Covers may be denoted by 2-order variables called “Cover variables”.We may then define a meta-
predicateCover that, taken a Cover variableC and two unary predicatesP1 andP2, asserts that the
extension of the former is a Cover of the extensions of the latter:

(7) Cover(C, P1, P2) ⇔

∀X1X2
[C(X1, X2)→∀x1x2

[((x1 ⊂ X1) ∧ (x2 ⊂ X2))→(P1(x1) ∧ P2(x2))]] ∧

∀x1
[ P1(x1) → ∃X1X2

[ (x1 ⊂ X1) ∧ C(X1, X2) ] ] ∧

∀x2
[ P2(x2) → ∃X1X2

[ (x2 ⊂ X2) ∧ C(X1, X2) ] ]

Thus, it is possible to decouple the quantifications from the predications. This is done by introducing
two relational variables whose extensions include theatomic individuals involved. Another relational
variable that covers them describes how the actions are actually done. For instance, in (5), in order to
evaluate as true the variant of (4.d), we may introduce three variablesP1, P2, andC such that:

‖P1‖
M = {c1, c2, c3} ‖P2‖

M = {p1, p2, p3, p4, p5}

‖C‖M = { 〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉 }

The above extensions ofP1, P2, andC satisfyCover(C, P1, P2).
Among the Cover approaches mentioned above, an interesting one is (Schwarzschild, 1996).

Schwarzschild discusses numerous NL sentences where the identificationof Covers appears to be prag-
matically determined, rather than existentially quantified. In other words, in the formulae the value of
the Cover variables ought to be provided by an assignmentg. One of the examples mostly discussed in
(Schwarzschild, 1996) is:

(8) a. The cows and the pigs were separated.

b. The cows and the pigs were separatedaccording to color.

The preferred reading of (8.a) is the one where the cows were separated from the pigs. However, that
is actually an implicature that may be rewritten as in (8.b), where the separation is not done by race.
Examples like (8) are used by (Schwarzschild, 1996) in order to argue against the existence of groups
and the overgeneration of readings, extensively advocated by (Landman, 2000). Schwarzschild claims
that the NP in (8.a) must correspond to a unary predicate whose extensionis the set ofindividual cows
and pigs, while the precise separation is described by a contextually-dependent Cover variable. Similarly,
in (4.c) the Cumulative interpretation is preferred as in real contexts invitations are usually thought as
actions among pairs of persons. But it may be the case that two or more boyscollectivelyinvited two
or more girls. On the other hand, in (4.a) the fact that each student saw each drug-dealer seems to be
favoured by the low value of the numerals. If the sentence wereAlmost all of my students have seen
several drug-dealers in front of the school, the preferred reading appears to be Cumulative.

The next section illustrates a final component needed to build whole formulaefor representing Cover
readings. This is the requirement of Maximal participancy of the witness sets, e.g. the Maximal partic-
ipancy ofP1 andP2’s extension in the formula representing the meaning of the variant of (4.d).It will
be also shown that there are two possible ways to maximize the witness sets:Locally andGlobally. The
former predicts that both examples in (2) and (3) are true, while the latter predicts that they are both false.
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3 The Maximality requirement

The previous section showed that, for representing IS readings, it is necessary to reify the witness sets
into relational variables asP1 andP2. Separately, the elements of these sets are combined as described
by the Cover variables, in order to assert the predicates on the correctpairs of (possibly plural) individu-
als. Conversely, it is not possible to represent an IS reading by nestingquantifiers into the scope of other
quantifiers, as it is done in the standard Generalized Quantifier (GQ) approach (Keenan and Westerståhl,
1997), because the set of entities quantified by the narrow-scope quantifier would vary on each entity
quantified by the wide-scope one.
As argued by (van Benthem, 1986), (Kadmon, 1987), (Sher, 1990),(Sher, 1997), (Spaan, 1996), (Steed-
man, 2007), (Robaldo, 2009a), and (Robaldo, 2009b) the relational variables must, however, beMaxi-
mizedin order to achieve the proper truth values with any quantifier, regardlessto its monotonicity. To
see why, let us consider sentences in (9), taken from (Robaldo, 2009a), that involve a single quantifier.

(9) a. At least two men walk.

b. At most two men walk.

c. Exactly two men walk.

In terms of reified relational variables, it seems that the meaning of (9.a-c) mayrepresented via (10.a-c),
where≥2, ≤2, and=2 are, respectively, an M↑, an M↓, and a non-M Generalized Quantifier.

(10) a. ∃P [ ≥2x(man’(x), P (x))∧∀x[P (x)→walk’(x)] ]

b. ∃P [ ≤2x(man’(x), P (x))∧∀x[P (x)→walk’(x)] ]

c. ∃P [ =2x(man’(x), P (x))∧∀x[P (x)→walk’(x)] ]

Only (10.a) correctly yields the truth values of the corresponding sentence. To see why, consider a
model in which three men walk. In such a model, (10.a) is true, while (10.b-c) are false. Conversely,
all formulae in (10) evaluate to true, as all of them allow to chooseP such that‖P‖M is a set of two
walking men. Therefore, we cannot allow a free choice ofP . Instead,P must denote the Maximal set of
individuals satisfying the predicates, i.e. the Maximal set of walking men, in (10). This is achieved by
changing (10.b-c) to (11.a-b) respectively.

(11) a. ∃P [ ≤2x(man’(x), P (x)) ∧ ∀x[P (x)→walk’(x)]∧
∀′P [(∀x[P (x)→P ′(x)] ∧ ∀x[P

′(x)→walk’(x)])→∀x[P
′(x)→P (x)] ] ]

b. ∃P [ =2x(man’(x), P (x)) ∧ ∀x[P (x)→walk’(x)]∧
∀′P [(∀x[P (x)→P ′(x)] ∧ ∀x[P

′(x)→walk’(x)])→∀x[P
′(x)→P (x)] ] ]

The clauses∀′P [ . . . ] in the second rows are Maximality Conditions asserting the non-existence ofa
supersetP ′ of P that also satisfies the predication. There is a single choice forP in (11.a-b): it must
denote the set ofall walking men. Note that, for the sake of uniformity, the Maximality condition may
be added in (10.a) as well: in case of M↑ quantifiers, it does not affect the truth values.

3.1 Local Maximalization

Let me term the kind of Maximalization done in (11) asLocal Maximalization. The Maximality con-
ditions in (11) require the non-existence of a set‖P ′‖M of walkersthat includes‖P‖M . In (Robaldo,
2009a) and (Robaldo, 2009b), I proposed a logical framework for representing Branching Quantifier
based on Local Maximalization. For instance, in (Robaldo, 2009a), thetwo witness sets of students and
drug-dealers in (4.a) are respectively reified into two variablesP1 andP2, and the Maximality condi-
tion requires the non-existence of aCartesian Product‖P ′

1‖
M × ‖P ′

2‖
M , that also satisfies the main

predication andthat includes‖P1‖
M × ‖P2‖

M :
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(12) ∃P1P2[
=2x(stud’(x), P1(x)) ∧ =3x(drugD’(y), P2(y)) ∧
∀xy[(P1(x) ∧ P2(y))→ saw’(x, y)]∧
∀P ′

1
P ′

2

[ ( ∀xy[(P1(x) ∧ P2(y))→(P ′
1(x) ∧ P ′

2(y))]∧

∀xy[(P
′
1(x) ∧ P ′

2(y))→ saw’(x, y)] )→
∀xy[(P

′
1(x) ∧ P ′

2(y))→(P1(x) ∧ P2(y))] ] ]

In order to extend (Robaldo, 2009a) to Cover readings, which are assumed to be the most general cases
of IS readings, we cannot simply require the inclusion of‖P1‖

M×‖P2‖
M into the main predicate’s

extension. Rather, we require the inclusion therein of a pragmatically-determined Cover‖C‖M,g of
‖P1‖

M and‖P2‖
M . Furthermore, the (local) Maximality condition must require the non-existenceof

a superset of either‖P1‖
M or ‖P2‖

M whose corresponding Cover is a superset of‖C‖M,g that is also
included in the main predicate’s extension. Thus, (4.d) is represented as3:

(13) ∃P1P2[
=20x(child’(x), P1(x)) ∧ =10y(pizza’(y), P2(y)) ∧
Cover(C,P1, P2) ∧ ∀xy[C(x, y)→ ate’(x, y)]∧

∀P ′

1

[(∀x[P1(x)→P ′
1(x)] ∧ ∃C′ [Cover(C ′, P ′

1, P2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀x[P

′
1(x)→P1(x)] ] ] ∧

∀P ′

2

[(∀y[P2(y)→P ′
2(y)] ∧ ∃C′ [Cover(C ′, P1, P

′
2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀y[P

′
2(y)→P2(y)] ] ] ]

Note that there are two Maximality conditions:∀P ′

1

[ . . . ] and∀P ′

2

[ . . . ]. In fact, contrary to what is
done with Cartesian Products, in Cover readingsP1 andP2 must be Maximized independently, as it is
no longer required thateverymember of the former is related witheverymember of the latter. Note
also that the inner Cover variableC ′ is existentially quantified. Of course, it would make no sense to
pragmatically interpret it as it is done withC.

3.2 Global Maximalization

The other kind of Maximalization of the witness sets, termed here as ‘Global Maximalization’ has been
advocated by (Schein, 1993), and formalized in most formal theories of Cumulativity, e.g. (Landman,
2000), (Hackl, 2000), and (Ben-Avi and Winter, 2003). With respect to IS readings involving two witness
sets‖P1‖

M and‖P2‖
M , Global Maximalization requires the non-existence of other two witness sets that

also satisfy the predication butthat do not necessarily include‖P1‖
M and ‖P2‖

M . For instance, the
event-based logic defined by (Landman, 2000) represents the Cumulative reading of (4.c) as:

(14) ∃e∈∗INVITE: ∃x∈∗BOY: |x|=3∧∗Ag(e)=x ∧ ∃y∈∗GIRL: |y|=4∧∗Th(e)=y ∧

|∗Ag(
⋃
{e ∈INVITE: Ag( e)∈BOY ∧ Th(e)∈GIRL })| = 3∧

|∗Th(
⋃
{e ∈INVITE: Ag( e)∈BOY ∧ Th(e)∈GIRL })| = 4

Formula in (14) asserts the existence of a plural evente whose Agent is a plural individual made up of
three boys and whose Theme is a plural individual made up of four girls. The two final conjuncts, in
boldface, are Maximality conditionsasserted on pragmatic grounds(see footnote 1 above). Takenex as
the plural sum of all inviting events having a boy as agent and a girl as theme, i.e.

ex=
⋃
{e ∈INVITE: Ag(e)∈BOY ∧ Th(e)∈GIRL}

the cardinality of its agent∗Ag(ex) is exactly three while the one of its theme∗Th(ex) is exactly four.
Therefore, Landman’s Maximality conditions in (14) do not refer to the sameevents and actors quantified
in the first row. Rather, they require that the number of the boys who inviteda girl in the whole modelis
exactly three and the number of girls who were invited by a boyin the whole modelis exactly four.

3Without going down into further details, I simply stipulate that the GQs used in thearticle are Conservative (Barwise and
Cooper, 1981), (Keenan and Stavi, 1986). In other words, for every quantifierQx, we require‖PB

x ‖M ⊆ ‖PR

x ‖M .
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4 Local Maximalization VS Global Maximalization

We are ready now to compare the two kinds of Maximalization. Global Maximalization appears to be
more problematic than Local one. Since Branching Quantifier readings arespecial cases of Cumulative
readings, and it has been discussed above that many authors, e.g. (Beghelli et al., 1997), argue that this
is even a good reason to avoid an explicit representation of them, sentence(15.a) entails (15.b).

(15) a. Less than half of the dots are totally connected with exactly three stars.

b. Less than half of the dots are connected with exactly three stars.

Nevertheless, Global Maximalization predicts that (15.b) is false in figure (2). The number of all dots
in the model connected to a star is six, while the number of all stars in the model connected to a dot
is five, not exactly three. On the contrary, once the witness sets have been identified as in (16), Local
Maximalization predicts (15.b) as true, in that no other star is connected to a dot occurring in‖P1‖

M ,
and no other dot is connected to a staroccurring in‖P2‖

M .

(16) d3 s4s5d1d2 s1s2s3 d4d5d6kP1kM kP2kM
Another scenario where Global Maximalization predicts presumably wrong truth values, with respect to
formula (14) and sentence (4.c), is shown in (17):

(17) g1g3g2b3b1b2 g4g5b4
In (17), the Cumulative readings of all (18.a-c) appear to be true provided that numeralsN are still
interpreted as exactly-N .

(18) a. Three boys invited four girls.

b. One boy invited one girl.

c. Four boys invited five girls.

Global Maximalization states that only (18.c) is true in (17). Local Maximalizationevaluates all (18.a-c)
as true; the witness sets are obviously identified.

Landman does not discuss the evaluation of his formulae in contexts like (17). This is done instead
by (Ferreira, 2007) and (Brasoveanu, 2009). However, the latter do not provide strong linguistic moti-
vations: they simply claim that (18.a-b) are false in (17), as the present paper claims they are not. A
comparison between Local and Global Maximalization is found in (Schein, 1993), even if no formaliza-
tion is presented. (Schein, 1993),§12, reasonably argues, contra (Sher, 1997), that (19.a-b) are false in
contexts like (20) (or (3)), while (19.c) is true. Local Maximalization predicts all (19.a-c) as true.

(19) a. Few dots are totally connected with few stars.

b. Exactly two dots are totally connected with exactly two stars.

c. At least two dots are totally connected with at least two stars.

260



(20) d1 d3s1s2 s3d2 d4 d6s4 s5s6d5 d7 s7s8d8
From these observations, Schein concludes that (Sher, 1997)’s Local Maximalization, which is defined
for any kind of quantifier, with any monotonicity, is incorrect. A proper semantics for NL quantification
should instead stipulate twodifferentsemantics depending on the monotonicity: one for M↑ quantifiers,
e.g. At least two, and one for M↓ quantifiers, e.g.Few, and non-M quantifiers, e.g.Exactly two. The
truth conditions of the former should be defined in terms of Local Maximalization, while those of the
latter in terms of Global Maximalization.

While I accept the truth values attested by Schein for sentences (19.a-c) in(20), I do not share his
conclusions. On the one hand, there are several cases, particularly mixed cases, that are quite hard to
reconcile in Schein’s view. An example is the sentence evaluated in (2), which include a M↓ quantifier
(Less than half) and a non-M one (Exactly three). Global Maximalization, contrary to Local Maximal-
ization, evaluates the sentence as false in (2), as pointed out above. Also(21.a), which includes an M↓
quantifier and an M↑ one (More than half), and sentence (21.b), which is not a mixed case as it includes
two M↓ quantifiers, seems to be true in (2), contra Schein’s predictions.

(21) a. Less than half of the dots are connected with more than half of the stars.

b. Less than half of the dots are connected with less than five stars.

On the other hand, all sentences in (19.a-c) seems to be true in (22), while inSchein’s view they should
have the same truth values they have in (20).

(22) d6 s5s6d1d2 s1s2 d7d8
d3d4d5 s3s4s7s8

These considerations lead to conclude that the oddity of sentences (19) incontexts (20) or (3) does not
depend on the monotonicity of the quantifiers involved.
The present paper suggests instead that such an oddity stems from Pragmatics. No English speaker would
ever utter those sentences in those contexts, as they would not be informative enough, and so they would
violate a Gricean Maxim. From the examples above, it seems that sentences involving non-M↑ quanti-
fiers sound odd in contexts where more pairs of witness sets are available.For instance, the reader gets
confused when he tries to evaluate (19.a) in (20), as multiple pairs of (witness) sets of dots and stars are
available, i.e.〈{d1, d2}, {s1, s2}〉, 〈{d3, d4}, {s3, s4}〉, etc., and he does not have enough information
to prefer one of them upon the others. This does not arises in (3) or (22), where the witness sets are
immediatly and uncontroversially identified.
The multiple availability of witness sets does not seem to confuse the reader for sentences involving M↑
quantifiers, perhaps because they are simpler to interpret (cf. (Geurts and van der Silk, 2005)). How-
ever, several cognitive experimental results showed that many other factors besides monotonicity, e.g.
expressivity/computability, fuzzyness, the fact that quantifiers are cardinal rather than proportional, etc.,
may affect the accuracy and reaction time of the interpretation of IS readings (cf. (Sanford and Paterson,
1994), (Bott and Rad́o, 2009), (Musolino, 2009), and (Szymanik and Zajenkowski, 2009)).
As it is clear to understand, however, extra-linguistic factors seem the ones that mainly affect the inter-
pretation of quantifiers. For instance, in (17), if the boysb1, b2, b3 are friends who decided to go to a
party with some girls, andb4 wants to go there with his girlfriend (g5) only, the witness sets are most
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likely identified for (18.a-b) rather than for (18.c), as the two groups of persons are not related.
Conversely, if the four boys belong to the same group of friends hangingout together, the identification
of the witness sets most likely fails in (18.a-b). That is probably the assumptiondone by (Ferreira, 2007)
and (Brasoveanu, 2009) for claiming that sentences like (18.a-b) are false in contexts like (17). Analo-
gously, in the children-pizza example in (4.d), the arrangement of the children among the tables of the
pizzeria, their mutual friendship, and so on, may affect the identification ofthe witness sets. Similar
discussions may be found in (Fintel, 1994) and (Winter, 2000).

Of course, an exhaustive study of all factors involved in the pragmatic identification of the witness
sets goes much beyond the goal of the present paper. The aim of this paper is to argue that, once witness
sets are identified, Local Maximalization applies to them. In order to formally obtain this result, a final
modification of the formulae is needed: it is necessary to pragmatically interpret the relational variables
denoting the witness sets, besides those denoting the Covers. Formula (13)is then revised as in (23).

(23) =20x(child’(x), P1(x)) ∧ =10y(pizza’(y), P2(y)) ∧
Cover(C,P1, P2) ∧ ∀xy[C(x, y))→ ate’(x, y)]∧

∀P ′

1

[(∀x[P1(x)→P ′
1(x)] ∧ ∃C′ [Cover(C ′, P ′

1, P2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀x[P

′
1(x)→P1(x)] ] ] ∧

∀P ′

2

[(∀y[P2(y)→P ′
2(y)] ∧ ∃C′ [Cover(C ′, P1, P

′
2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀y[P

′
2(y)→P2(y)] ] ]

The only difference between (23) and (13) is that the value ofP1 andP2 is provided by an assignmentg,
as it is done for the Cover variableC. g must obey to all (extra-)linguistic pragmatic constraints briefly
listed above. The reader could start thinking that, in the new version of the formulae, we may avoid
Maximality conditions, either Local or Global. In fact, Maximalization could be simply implemented
as a constraint on the assignment functiong. In other words, we could simply imposeg to select only
Maximal witness sets. Ifg is unable to do so, the intepretation fails as in the cases discussed above.
Such a solution has been actually proposed in (Steedman, 2007) and (Brasoveanu, 2009). Conversely,
in (Robaldo, 2009b) I explained that we do need to explicitly represent theMaximality conditions. In
other words, those are not only seen as necessary conditions neededto determine if a sentence is true or
false in a certain context. Rather, in (Robaldo, 2009b), it is extensively argued that they are part of the
knowledge needed to draw the appropriate inferences from the sentences’ meaning.

5 Conclusions

This paper compared the two kind of Maximalization proposed in the literature for handling the proper
truth values of Independent Set readings. They have been termed as Local and Global Maximalization.
The former requires the non-existence of any tuple of supersets of the witness sets that also satisfy the
predication. The latter requires the witness sets to be the only tuple of sets thatsatisfy the predication.
The present paper argues in favour of Local Maximalization, and claims that the motivations that led to
the definition of Global Maximalitation, and its incorporation within most current formal approaches to
NL quantification, do not appear to be justified enough. These claims are supported by showing that, for
many NL sentences, Global Maximalization predicts counter-intuitive truth conditions.
Also several examples are hard to reconcile in a logical framework basedon Local Maximalization. It
seems, however, that the oddity of such examples depends upon pragmaticgrounds.

Based on these assumptions, the solution presented here still adopts LocalMaximalization, but ad-
vocates a pragmatic interpretation of all relational variables. Drawing from(Schwarzschild, 1996), the
present paper evolves the formulae in (Robaldo, 2009a) and (Robaldo, 2009b), making them able to
handle Cover readings, which are assumed to be the more general casesof Independent Set readings.

In the resulting formulae, the witness sets are firstly pragmatically identified, asit is done with Cover
variables, then they are locally Maximized. In other words, Pragmatics is responsible for identifying
both the (atomic) individuals involved, and the way they sub-combine to carryout the singular actions.
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The result is able to predict the suitable truth values of Cover readings in allexamples considered, and
seems to mirror the correct interplay between the Semantics and the Pragmatics of NL quantifiers.
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