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Abstract

This paper presents a machine learning-based approach to the incremental understanding of dia-

logue utterances, with a focus on the recognition of their communicative functions. A token-based

approach combining the use of local classifiers, which exploit local utterance features, and global

classifiers which use the outputs of local classifiers applied to previous and subsequent tokens, is

shown to result in excellent dialogue act recognition scores for unsegmented spoken dialogue. This

can be seen as a significant step forward towards the development of fully incremental, on-line meth-

ods for computing the meaning of utterances in spoken dialogue.

1 Introduction

When reading a sentence in a text, a human language understander obviously does not wait trying to

understand what he is reading until he has come to the end of the sentence. Similarly for participants

in a spoken conversation. There is overwhelming psycholinguistic evidence that human understanders

construct syntactic, semantic, and pragmatic hypotheses on the fly, while receiving the written or spoken

input. Dialogue phenomena such as backchannelling (providing feedback while someone else is speak-

ing), the completion of a partner utterance, and requests for clarification that overlap the utterance of the

main speaker, illustrate this. Evidence from the analysis of nonverbal behaviour in multimodal dialogue

lends further support to the claim that human understanding works incrementally, as input is being re-

ceived. Dialogue participants start to perform certain body movements and facial expressions that are

perceived and interpreted by others as dialogue acts (such as head nods, smiles, frowns) while another

participant is speaking, see e.g. Petukhova and Bunt (2009). As another kind of evidence, eye-tracking

experiments by Tanenhaus et al. (1995), Sedivy et al. (1999) and Sedivy (2003) showed that definite

descriptions are resolved incrementally when the referent is visually accessible.

Traditional models of language understanding for dialogue systems, by contrast, are pipelined, mod-

ular, and operate on complete utterances. Typically, such a system has an automatic speech recognition

module, a language understanding module responsible for syntactic and semantic analysis, an interpre-

tation manager, a dialogue manager, a natural language generation module, and a module for speech

synthesis. The output of each module is the input for another. The language understanding module typ-

ically performs the following tasks: (1) segmentation: identification of relevant segments in the input,

such as sentences;(2) lexical analysis: lexical lookup, possibly supported by morphological processing,

and by additional resources such as WordNet, VerbNet, or lexical ontologies; (3) parsing: construction

of syntactic interpretations; (4) semantic analysis: computation of propositional, referential, or action-

related content; and (5) pragmatic analysis: determination of speaker intentions.

Of these tasks, lexical analysis, being concerned with local information at word level, can be done

for each word as soon as it has been recognized, and is naturally performed as an incremental part

of utterance processing, but syntactic, semantic and pragmatic analysis are traditionally performed on

complete utterances. Tomita’s pioneering work in left-to-right syntactic parsing has shown that incre-

mental parsing can be much more efficient and of equal quality as the parsing of complete utterances

(Tomita (1986)). Computational approaches to incremental semantic and pragmatic interpretation have
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been less successful (see e.g. Haddock (1989); Milward and Cooper (2009)), but work in computational

semantics on the design of underspecified representation formalisms has shown that such formalisms,

developed originally for the underspecified representation of quantifier scopes, can also be applied in

situations where incomplete input information is available (see e.g. Bos (2002); Bunt (2007), Hobbs

(1985), Pinkal (1999)) and as such hold a promise for incremental semantic interpretation.

Pragmatic interpretation, in particular the recognition of a speaker’s intentions in incoming dialogue

utterances, is another major aspect of language understanding for dialogue systems. Computational

modelling of dialogue behaviour in terms of dialogue acts aims to capture speaker intentions in the com-

municative functions of dialogue acts, and offers an effective integration with semantic content analysis

through the information state update approach (Poesio and Traum (1998)). In this approach, a dialogue

act is viewed as having as its main components a communicative function and a semantic content, where

the semantic content is the referential, propositional, or action-related information that the dialogue act

addresses, and the communicative function defines how an understander’s information state is to be up-

dated with that information.

Evaluation of a non-incremental dialogue system and its incremental counterpart reported in Aist

et al. (2007) showed that the latter is faster overall than the former due to the incorporation of pragmatic

information in early stages of the understanding process. Since users formulate utterances incrementally,

partial utterances may be available for a substantial amount of time and may be interpreted by the system.

An incremental interpretation strategy may allow the system to respond more quickly, by minimizing the

delay between the time the user finishes and the time the utterance is interpreted DeVault and Stone

(2003).

This suggests that a dialogue system performance may benefit from reliable partial processing of

input. This paper is concerned with the automatic recognition of dialogue acts based on partially available

input and shows that in order to arrive at the best output prediction two different classification strategies

are needed: (1) local classification that is based on features observed in dialogue behaviour and that can

be extracted from the annotated data; and (2) global classification that takes the locally predicted context

into account.

This paper is structured as follows. In Section 2 we will outline performed experiments describing

the data, tagset, features, algorithms and evaluation metrics that have been used. Section 3 reports on the

experimental results, applying a variety of machine learning techniques and feature selection algorithms,

to assess the automatic recognition and classification of dialogue acts using simultaneous incremental

segmentation and dialogue act classification. In Section 4 we discuss strategies in management and

correction of the output of local classifies. Section 5 concludes.

2 Incremental understanding experiments

2.1 Related work

Nakano et al. (Nakano et al. (1999)) proposed a method for the incremental understanding of utterances

whose boundaries are not known. The Incremental Sentence Sequence Search (ISSS) algorithm finds

plausible boundaries of utterances, called significant utterances (SUs), which can be a full sentence or a

subsentential phrase, such as a noun phrase or a verb phrase. Any phrase that can change the belief state

is defined as a SU. In this sense an SU corresponds more or less with what we call a ‘functional segment’,

which is defined as a minimal stretch of behaviour that has a communicative function (see Bunt et al.

(2010)). ISSS maintains multiple possible belief states, and updates these each time a word hypothesis

is input. The ISSS approach does not deal with the multifunctionality of segments, however, and does

not allow segments to overlap.

Lendvai and Geertzen (Lendvai and Geertzen (2007)) proposed token-based dialogue act segmenta-

tion and classification, which was worked out in more detail in Geertzen (2009). This approach takes

dialogue data that is not segmented into syntactic or semantic units, but operates on the transcribed speech

as a stream of words and other vocal signs (e.g. laughs), including disfluent elements (e.g. abandoned
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Dimension Frequency General-purpose function Frequency

Task 31.8 PropositionalQuestion 5.8

Auto-Feedback 20.5 Set Question 2.3

Allo-Feedback 0.7 Check Question 3.3

Turn Management 50.2 Propositional Answer 9.8

Social Obligation Management 0.5 Set Answer 3.9

Discourse Structuring 2.8 Inform 11.7

Own Communication Management 10.3 InformRhetorical 21.9

Time Management 26.7 Instruct 0.3

Partner Communication Management 0.3 Suggest 10.1

Contact Management 0.1 Request 5.6

Table 1: Distribution of functional tags across dimensions and general-purpose functions for the AMI corpus (in

%).

or interrupted words). Segmentation and classification of dialogue acts are performed simultaneously in

one step. Geertzen (2009) reports on classifier performance on this task for the DIAMOND data1 using

DIT++ labels. The success scores in terms of F-scores range from 47.7 to 81.7. It was shown that per-

forming segmentation and classification together results in better segmentation, but affects the dialogue

act classification negatively.

The incremental dialogue act recognition system proposed here takes the token-based approach for

building classifiers for the recognition (segmentation and classification) of multiple dialogue acts for each

input token, and adopts the ISSS idea for information-state updates based on partial input interpretation.

2.2 Tagset

The data selected for the experiments was annotated with the DIT++ tagset Release 42. The DIT tax-

onomy distinguishes 10 dimensions, addressing information about: the domain or task (Task), feedback

on communicative behaviour of the speaker (Auto-feedback) or other interlocutors (Allo-feedback), man-

aging difficulties in the speaker’s contributions (Own-Communication Management) or those of other

interlocutors (Partner Communication Management), the speaker’s need for time to continue the di-

alogue (Time Management), establishing and maintaining contact (Contact Management), about who

should have the next turn (Turn Management), the way the speaker is planning to structure the dialogue,

introducing, changing or closing a topic (Dialogue Structuring), and conditions that trigger dialogue acts

by social convention (Social Obligations Management), see Table 1.

For each dimension, at most one communicative function can be assigned, which is either a function

that can occur in this dimension alone (a dimension-specific (DS) function) or a function that can occur in

any dimension (a general-purpose (GP) function). Dialogue acts with a DS communicative function are

always concerned with a particular type of information, such as a Turn Grabbing act, which is concerned

with the allocation of the speaker role, or a Stalling act, which is concerned with the timing of utterance

production. GP functions, by contrast, are not specifically related to any dimension in particular, e.g.

one can ask a question about any type of semantic content, provide an answer about any type of content,

or request the performance of any type of action (such as Could you please close the door or Could you

please repeat that). These communicative functions include Question, Answer, Request, Offer, Inform,

and many other familiar core speech acts.

The tagset used in these studies contains 38 dimension-specific functions and 44 general-purpose

functions. A tag consists either of a pair consisting of a communicative function (CF ) and the addressed

dimension (D).

1For more information see Geertzen,J., Girard,Y., and Morante,R. 2004. The DIAMOND project. Poster at the 8th Work-

shop on the Semantics and Pragmatics of Dialogue (CATALOG 2004).
2For more information about the tagset and the dimensions that are identified, please visit:http://dit.uvt.nl/ or see

Bunt (2009).
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Speaker Token Task Auto-F. Allo-F. TurnM. TimeM. ContactM. DS OCM PCM SOM

B it B;inf O O O O O O O O O

B has I:inf O O O O O O O O O

B to I:inf O O O O O O O O O

B look I:inf O O O O O O O O O

B you O O B:check O O O O O O O

B know O O E:check O O O O O O O

B cool I:inf O O O O O O O O O

D mmhmm O BE:positive O O O O O O O O

B and I:inf O O BE:t keep O O O O O O

B gimmicky E:inf O O O O O O O O O

Figure 1: Segment boundaries and dialogue act label encoding in different dimensions.

2.3 Features and data encoding

In the recognition experiments we used data from the AMI meeting corpus3. For training we used three

annotated AMI meetings that contain 17,335 tokens forming 3,897 functional segments. The distribution

of functional tags across dimensions is given in Table 1.

Features extracted from the data considered here relate to dialogue history: functional tags of the

10 previous turns; timing: token duration and floor-transfer offset4 computed in milliseconds; prosody:

minimum, maximum, mean, and standard deviation for pitch (F0 in Hz), energy (RMS), voicing (fraction

of locally unvoiced frames and number of voice breaks) and speaking rate (number of syllables per

second)5; and lexical information: token occurrence, bi- and trigram of those tokens. In total, 1,668

features are used for the AMI data.

To be able to identify segment boundaries, we assign to each token its communicative function label

and indicate whether a token starts a segment (B), is inside a segment (I), ends a segment (E), is out-

side a segment (O), or forms a functional segment on its own (BE). Thus, the class labels consist of a

segmentation prefix (IBOE) and a communicative function label, see example in Figure 1.

2.4 Classifiers and evaluation metrics

A wide variety of machine-learning techniques has been used for NLP tasks with various instantiations of

feature sets and target class encodings. For dialogue processing, it is still an open issue which techniques

are the most suitable for which task. We used two different types of classifiers to test their performance

on our dialogue data: a probabilistic one and a rule inducer.

As a probabilistic classifier we used Bayes Nets. This classifier estimates probabilities rather than

produce predictions, which is often more useful because this allows us to rank predictions. Bayes Nets

estimate the conditional probability distribution on the values of the class attributes given the values of

the other attributes.

As a rule induction algorithm we chose Ripper (Cohen (1995)). The advantage of a rule inducer is

that the regularities discovered in the data are represented as human-readable rules.

The results of all experiments were obtained using 10-fold cross-validation.7 As a baseline it is

common practice to use the majority class tag, but for our data sets such a baseline is not very useful

because of the relatively low frequencies of the tags in some dimensions. Instead, we use a baseline

3The A
¯

ugmented M
¯

ulti-party I
¯
nteraction meeting corpus consists of multimodal task-oriented human-human multi-party

dialogues in English, for more information visit (http://www.amiproject.org/
4Difference between the time that a turn starts and the moment the previous turn ends.
5These features were computed using the PRAAT tool6. We examined both raw and normalized versions of these features.

Speaker-normalized features were obtained by computing z-scores (z = (X-mean)/standard deviation) for the feature, where

mean and standard deviation were calculated from all functional segments produced by the same speaker in the dialogues. We

also used normalizations by first speaker turn and by previous speaker turn.
7In order to reduce the effect of imbalances in the data, it is partitioned ten times. Each time a different 10% of the data is

used as test set and the remaining 90% as training set. The procedure is repeated ten times so that in the end, every instance has

been used exactly once for testing and the scores are averaged. The cross-validation was stratified, i.e. the 10 folds contained

approximately the same proportions of instances with relevant tags as in the entire dataset.

238



that is based on a single feature, namely, the tag of the previous dialogue utterance (see Lendvai et al.

(2003))).

Several metrics have been proposed for the evaluation of a classifier’s performance: error metrics

and performance metrics. The word-based error rate metric, introduced in Ang et al. (2005), measures

the percentage of words that were placed in a segment perfectly identical to that in the reference. The

dialogue act based metric (DER) was proposed in Zimmermann et al. (2005). In this metric a word is

considered to be correctly classified if and only if it has been assigned the correct dialogue act type and

it lies in exactly the same segment as the corresponding word of the reference. We will use the combined

DERsc error metric to evaluate joint segmentation (s) and classification (c):

DERsc =
Tokens with wrong boundaries and/or function class

total number of tokens
× 100

To assess the quality of classification results, the standard F-score metric is used, which represents

the balance between precision and recall.

3 Classification results

Dialogue utterances are often multifunctional, having a function in more than one dimension (see e.g.

Bunt (2010)). This makes dialogue act recognition a complex task. Splitting up the output structure may

make the task more manageable; for instance, a popular strategy is to split a multi-class learning task

into several binary learning tasks. Sometimes, however, learning of multiple classes allows a learning

algorithm to exploit the interactions among classes. We will combine these two strategies. We have built

in total 64 classifiers for dialogue act recognition for the AMI data. Some of the tasks were defined as

binary ones, e.g. the dimension recognition task, others are multi-class learning tasks.

We first trained classifiers to recognize the boundaries of a segment and its communicative functions

(joint multi-class learning task) per dimension, see Table 2.

BL BayesNet Ripper

Dimensions F1 DERsc F1 DERsc F1 DERsc

Task 32.7 51.2 52.1 48.7 66.7 42.6

Auto-Feedback 43.2 84.4 62.7 33.9 60.1 45.6

Allo-Feedback 70.2 59.5 73.7 35.1 71.3 49.1

Turn Management:initial 34.2 95.2 57.0 58.4 54.3 81.3

Turn Management:close 33.3 92.7 54.2 46.9 49.3 87.3

Time Management 43.7 96.5 64.5 46.1 61.4 53.1

Discourse Structuring 41.2 35.1 72.7 19.9 50.2 30.9

Contact Management 59.9 53.2 71.4 49.9 83.3 37.2

Own Communication Management 36.5 87.9 68.3 51.3 58.3 76.8

Partner Communication Management 49.5 59.0 58.5 45.5 51.4 58.7

Social Obligation Management 34.5 47.5 86.5 35.9 83.3 44.3

Table 2: Overview of F-scores and DERsc for the baseline (BL) and the classifiers for joint segmentation and

classification for each DIT++ dimension, for the data of the AMI corpus.

The results show that both classifiers outperform the baseline by a broad margin. The Bayes Nets

classifier marginally outperforms the Ripper rule inducer, but shows no significant differences in overall

performance. Though the results obtained are quite encouraging, the performance on the joint segmen-

tation and classification task does not outperforms the two-step segmentation and classification task re-

ported in Geertzen et al. (2007). There is a drop in F-scores compared to the results reported by Geertzen

et al. (2007), which is explained by the fact that recall was quite low. This means that the classifiers

missed a lot of relevant cases. Looking more closely at the predictions made by the classifiers, we no-

ticed that beginnings and endings of many segments were not found. For example, the beginnings of Set

Questions are identified with perfect precision (100%), but about 60% of the segment beginnings were

not found. The reason that the classifiers still show a reasonable performance is that most tokens occur
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inside segments and are better classified, e.g. the inside-tokens of Set Questions are classified with high

precision (83%) and reasonably high recall scores (76%). Still, this is rather worrying, since the correct

identification of, in particular, the start of a relevant segment is crucial for future decisions. These obser-

vations led us to the conclusion that the search space and the number of initially generated hypotheses

for classifiers should be reduced, and we split the classification task in such a way that a classifier needs

to learn one particular type of communicative function.

We trained a classifier for each general-purpose and dimension-specific function defined in the

DIT++ taxonomy, and observed that this has the effect that the various classifiers perform significantly

better. These functions were learned (1) in isolation; (2) as semantically related functions together, e.g.

all information-seeking functions (all types of questions) or all information-providing functions (all an-

swers and all informs). Both the recognition of communicative functions and that of segment boundaries

improves significantly. Table 3 gives an overview of the overall performance (best obtained scores) of

the trained classifiers after splitting the learning task.

BL BayesNet Ripper

Classification task F1 DERsc F1 DERsc F1 DERsc

General-purpose functions

Propositional Questions 47.0 39.1 94.9 3.9 75.8 23.5

Check Questions 43.8 56.4 68.5 19.6 61.3 33.1

Set Questions 44.8 52.1 74.1 18.6 76.3 17.7

Inform 45.8 39.9 79.8 18.7 66.5 30.5

Inform Rhetorical 37.2 38.9 69.1 13.4 68.7 23.9

Agreement 41.3 79.1 72.1 12.6 71.6 60.2

Propositional Answer 32.0 77.8 66.8 26.1 52.2 53.8

Set Answer 44.3 54.2 77.5 13.2 57.3 44.1

Suggest 45.8 38.4 65.6 17.3 48.8 35.6

Request 45.8 49.3 75.8 14.5 50.3 36.9

Instruct 46.3 49.3 60.5 14.5 46.3 36.9

Dimension-specific functions

Auto-Feedback 57.1 23.5 78.8 13.2 66.7 15.5

Allo-Feedback 89.3 4.4 95.1 2.9 94.3 3.9

Turn Management:initial 24.8 21.9 72.8 7.4 46.3 10.7

Turn Management:close 30.7 64.9 62.0 22.5 54.7 39.6

Time management 68.3 32.3 82.4 13.7 92.8 11.4

Discourse Structuring 40.7 13.6 72.6 2.5 74.5 1.7

Contact Management 21.4 48.6 89.2 5.7 92.3 3.6

Own Communication Management 26.7 48.6 78.0 11.6 68.1 20.0

Partner Communication Management 33.4 18.2 77.8 8.5 88.9 6.5

Social Obligation Management 60.0 18.7 88.9 8.3 90.1 5.5

Table 3: Overview of F-scores and DERsc for the baseline (BL) and the classifiers upon joint segmentation

and classification task for each DIT++ communicative function or cluster of functions. (Best scores indicated by

numbers in bold face.)

Segments having a general-purpose functions may address any of the ten DIT dimensions. The task

of dimension recognition can be approached in two ways. One approach is to learn segment boundaries,

communicative function label and dimension in one step (e.g. the class label B:task;inform). This task is

very complicated, however. First, it leads to data which are high dimensional and sparse, which will have

a negative influence on the performance of the trained classifiers. Second, in many cases the dimension

can be recognized reliably only with some delay; for the first few segment tokens it is often impossible

to say what the segment is about. For example:

(1) 1. What do you think who we’re aiming this at?

2. What do you think we are doing next?

3. What do you think Craig?

The three Set Questions in (1) start with exactly the same words, but they address different dimensions:

Question 1 is about the Task (in AMI - the design the television remote control); Question 2 serves the
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purpose of Discourse Structuring; and Question 3 elicits feedback.

Another approach is to first recognize segment boundaries and communicative function, and define

dimension recognition as a separate classification task.

Tokens SetQuestion Task Auto-F. TurnM. Complex label (BIOE:D;CF)

label p label p label p label p label p

what B:setQ 0.85 O 0.71 O 1 O 0.68 O 0.933

you I:setQ 1 task 0.985 O 1 B:give 0.64 O 0.869

guys I:setQ 1 task 0.998 O 1 E:give 0.66 O 0.937

have I:setQ 1 task 0.997 O 1 O 1 I:task;setQ 0.989

already I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.903

received I:setQ 1 task 0.987 O 1 O 1 I:task;setQ 0.813

um O 0.93 O 0.89 O 1 BE:keep 0.99 O 0.982

in I:setQ 1 task 0.826 O 1 O 0.89 I:task;setQ 0.875

your I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.948

mails E:setQ 0.99 task 0.987 O 1 O 1 E:task;setQ 0.948

Figure 2: Predictions with indication of confidence scores (highest p class probability selected) for each token

assigned by five trained classifiers simultaneously.

We tested both strategies. The F-scores for the joint learning of complex class labels range from

23.0 (DERsc = 68.3) to 45.3 (DERsc = 63.8). For dimension recognition as a separate learning task

the F-scores are significantly higher, ranging from 70.6 to 97.7. The scores for joint segmentation and

function recognition in the latter case are those listed in Table 3. Figure 2 gives an example of predictions

made by five classifiers for the input what you guys have already received um in your mails.

4 Managing local classifiers

4.1 Global classification and global search

As shown in the previous section, given a certain input we obtain all possible output predictions (hypothe-

ses) from local classifiers. Some predictions are false, but once a local classifier has made a decision it

is never revisited. It is therefore important to base the decision on dialogue act labels not only on local

features of the input, but to take other parts of the output into account as well. For example, the partial

output predicted so far, i.e. the history of previous predictions, may be taken as features for the next

classification step, and helps to discover and correct errors. This is known as ‘recurrent sliding window

strategy’ (see Dietterich (2002)) when the true values of previous predictions are used as features. This

approach suffers from the label bias problem, however, when a classifier overestimates the importance

of certain features, and moreover does not apply in a realistic situation, since the true values of previous

predictions are not available to a classifier in real time. A solution proposed by Van den Bosch (1997) is

to apply adaptive training using the predicted output of previous steps as features.

We trained higher-level classifiers (often referred to as ‘global’) that have, along with features ex-

tracted locally from the input data as described above, the partial output predicted so far from all local

classifiers. We used five previously predicted class labels, assuming that long distance dependencies

may be important, and taking into account that the average length of a functional segment in our data

is 4.4 tokens. Table 4 gives an overview of the results of applying these global classifiers. We see that

the global classifiers make more accurate predictions than the local classifiers, showing an improvement

of about 10% on average. The classifiers still make some incorrect predictions, because the decision

is sometimes based on incorrect previous predictions. An optimized global search strategy may lead to

further improvements of these results.

A strategy to optimize the use of output hypotheses, is to perform a global search in the output space

looking for best predictions. Our classifiers do not just predict the most likely class for an instance,

but also generate a distribution of output classes. Class distributions can be seen as confidence scores

of all predictions that led to a certain state. Our confidence models are constructed based on token

level information given the dialogue left-context (i.e. dialogue history, wording of the previous and
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Classification task BayesNet Ripper

F1 DERsc F1 DERsc

Task 65.3 14.9 79.1 21.8

Auto-Feedback 72.9 8.1 77.8 7.2

Allo-Feedback 67.7 10.9 74.2 9.5

Turn Management:initial 72.2 11.5 69.5 11.4

Turn Management:close 82.7 5.0 83.0 4.9

Time Management 70.0 3.0 73.5 2.1

Discourse Structuring 72.3 4.9 63.7 3.6

Contact Management 79.1 4.5 84.3 4.6

Own Communication Management 66.0 2.4 68.3 2.3

Partner Communication Management 63.2 7.8 59.5 11.4

Social Obligation Management 88.4 0.9 81.6 1.7

Table 4: Overview of F-scores and DERsc of the global classifiers for the AMI data based on added previous

predictions of local classifiers.

currently produced functional segment). This is particular useful for dialogue act recognition because

the recognition of intentions should be based on the system’s understanding of discourse and not just on

the interpretation of an isolated utterance. Searching the (partial) output space for the best predictions

is not always the best strategy, however, since the highest-ranking predictions are not always correct

in a given context. A possible solution to this is to postpone the prediction until some (or all) future

predictions have been made for the rest of the segment. For training, the classifier then uses not only

previous predictions as additional features, but also some or all future predictions of local classifiers (till

the end of the current segment or to the beginning of the next segment, depending on what is recognized).

This forces the classifier to not immediately select the highest-ranking predictions, but to also consider

lower-ranking predictions that could be better in the context of the rest of the sequence.

Classification task BayesNet Ripper

F1 DERsc F1 DERsc

Task 82.6 9.5 86.1 8.3

Auto-Feedback 81.9 1.9 95.1 0.6

Allo-Feedback 96.3 0.6 95.7 0.5

Turn Management:initial 85.7 1.5 81.5 1.6

Turn Management:close 90.9 3.8 91.2 3.6

Time management 90.4 2.4 93.4 1.7

Discourse Structuring 82.1 1.7 78.3 1.8

Contact Management 87.9 1.2 94.3 0.6

Own Communication Management 78.4 2.2 81.6 2.0

Partner Communication Management 71.8 2.4 70.0 4.6

Social Obligation Management 98.6 0.4 98.6 0.5

Table 5: Overview of F-scores and DERsc of global classifiers for the AMI data per DIT++ dimension.

The results show the importance of optimal global classification for finding the best output prediction.

We performed similar experiments on the English MapTask data8 and obtained comparable results,

where F-scores on the global classification task range from 66.7 for Partner Communication Management

and Discourse Structuring to 79.7 for Task and 91.2 for Allo-Feedback. For the MapTask corpus the

performance of human annotators on segmentation and classification has been assessed; standard kappa

scores reported in Bunt et al. (2007) range between 0.92 and 1.00, indicating near perfect agreement

between two expert annotators9.

8For more information about the MapTask corpus see http://www.hcrc.ed.ac.uk/maptask/
9Note, however, that a slightly simplified version of the DIT++ tagset has been used here, called the LIRICS tagset, in

which the five DIT levels of processing in the Auto- and Allo-Feedback dimensions were collapsed into one.
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5 Conclusions and future research

The incremental construction of input interpretation hypotheses is useful in a language understanding

system, since it has the effect that the understanding of a relevant input segment is already nearly ready

when the last token of the segment is received; when a dialogue act is viewed semantically as a recipe for

updating an information state, this means that the specification of the update operation is almost ready at

that moment, thus allowing an instantaneous response from the system. It may even happen that the con-

fidence score of a partially processed input segment is that high, that the system may decide to go forward

and update its information state without waiting until the end of the segment, and prepare or produce a

response based on that update. Of course, full incremental understanding of dialogue utterances includes

not only the recognition of communicative functions, but also that of semantic content. However, many

dialogue acts have no or only marginal semantic content, such as turn-taking acts, backchannels (m-hm)

and other feedback acts (okay), time management acts (Just a moment), apologies and thankings and

other social obligation management acts, and in general dialogue acts with a dimension-specific func-

tion; for these acts the proposed strategy can work well without semantic content analysis, and will

increase the system’s interactivity significantly. Moreover, given that the average length of a functional

segment in our data is no more than 4.4 tokens, the semantic content of such a segment tends not to be

very complex, and its construction therefore does not seem to require very sophisticated computational

semantic methods, applied either in an incremental fashion (see e.g. Aist et al. (2007) and DeVault and

Stone (2003)) or to a complete segment.

Interactivity is however not the sole motivation for incremental interpretation. The integration of

pragmatic information obtained from the dialogue act recognition module, as proposed here, at early

processing stage can be beneficially used by the incremental semantic parser (but also syntactic parser

module). For instance, information about the communicative function of the incoming segment at early

processing stage can defuse a number of ambiguous interpretations, e.g. used for the resolution of

many anaphoric expressions. A challenge for future work is to integrate the incremental recognition of

communicative functions with incremental syntactic and semantic parsing, and to exploit the interaction

of syntactic, semantic and pragmatic hypotheses in order to understand incoming dialogue segments

incrementally in an optimally efficient manner.
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