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Abstract

Measures of similarity have traditionally focused on cotmmythe semantic relatedness between
pairs of words and texts. In this paper, we construct an atialu framework to quantify cross-modal
semantic relationships that exist between arbitrary pHingords and images. We study the effec-
tiveness of a corpus-based approach to automaticallyeltressemantic relatedness between words
and images, and perform empirical evaluations by measiusmgrrelation with human annotators.

1 Introduction

Traditionally, a large body of research in natural langupgeessing has focused on formalizing word
meanings. Several resources developed to date (e.g., \Wb(hNler, 1995)) have enabled a systematic
encoding of the semantics of words and exemplify their usagkfferent linguistic frameworks. As a
result of this formalization, computing semantic relatesk between words has been possible and has
been used in applications such as information extractichrammieval, query reformulation, word sense
disambiguation, plagiarism detection and textual entiin

In contrast, while research has shown that the human cegsijistem is sensitive to visual informa-
tion and incorporating a dual linguistic-and-pictoriapresentation of information can actually enhance
knowledge acquisition (Potter and Faulconer, 1975),nleaningof an image in isolation is not well-
defined and it is mostly task-specific. A given image, foranste, may be simultaneously labeled by a
set of words using an automatic image annotation algoritdrlassified under a different set of seman-
tic tags in the image classification task, or simply draw itsaming from a few representative regions
following image segmentation performed in an object I@adion framework.

Given that word meanings can be acquired and disambiguaied dictionaries, we can perhaps
express the meaning of an image in terms of the words thateanitably used to describe it. Specif-
ically, we are interested to bridge teemantic gaggSmeulders et al., 2000) between words and images
by exploring ways to harvest the information extracted frasual data in a general framework. While a
large body of work has focused on measuring the semantitasityiof words (e.g., (Miller and Charles,
1998)), or the similarity between images based on imageeooife.g., (Goldberger et al., 2003)), very
few researchers have considered the measure of semaatedmssbetween words and images.

But, how exactly is an image related to a given word? In ngatjiantification of such a cross-
modal semantic relation is impossible without supplyingith a proper definition. Our work seeks to
address this challenge by constructing a standard evatufrimework to derive a semantic relatedness
metric for arbitrary pairs of words and images. In our worle @xplore methods to build a representa-
tion model consisting of a joint semantic space of imagesvamdis by combining techniques widely
adopted in computer vision and natural language procesainijwe evaluate the hypothesis that we can
automatically derive a semantic relatedness score usiaigpiht semantic space.

Importantly, we acknowledge that it is significantly harttiedecode the semantics of an image, as its
interpretation relies on a subjective and perceptual wtdeding of its visual components (Biederman,

In our paper, we are concerned with semamngiatednesswhich is a more general concept than semasiigilarity.
Similarity is concerned with entities related by virtuestioéir likeness, e.ghank-trust companybut dissimilar entities may
also be related, e.chpt-cold A full treatment of the topic can be found in Budanitsky anidsH(2005).
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1987). Despite this challenge, we believe this is a wortegaech direction, as many important problems
can benefit from the association of image content in reldbomord meanings, such as automatic image
annotation, image retrieval and classification (e.g., (igeet al., 2010)) as well as tasks in the domains
of of text-to-image synthesis, image harvesting and auggtiga and alternative communication.

2 Reated Work

Despite the large amount of work in computing semantic eellass between words or similarity be-
tween images, there are only a few studies in the literatuge dssociate the meaning of words and
pictures in a joint semantic space. The work most similaruis avas done by Westerveld (2000), who
employed LSA to combine textual words with simple visuakfeas extracted from news images using
colors and textures. Although it was concluded that suclina jextual-visual representation model was
promising for image retrieval, no intensive evaluation ywasformed on datasets on a large scale, or
datasets other than the news domain. Similarly, Hare e2@08) compared different methods such as
LSA and probabilistic LSA to construct joint semantic spaiteorder to study their effects on automatic
image annotation and semantic image retrieval, but theifuation was restricted exclusively to the
Corel dataset, which is somewhat idealistic and not refleaif the challenges presented by real-world,
noisy images.

Another related line of work by Barnard and Forsyth (20019dua generative hierarchical model
to learn the associative semantics of words and images fmowng information retrieval tasks. Their
approach was supervised and evaluated again only on thé dadaset.

More recently, Feng and Lapata (2010) showed that it is plesgd combine visual representations
of word meanings into a joint bimodal representation camstd by using latent topics. While their
work focused on unifying meanings from visual and textughdaa supervised techniques, no effort
was made to compare the semantic relatedness betweemgrpiirs of word and image.

3 Bagof Visual Codewords

Inspired by the bag-of-words approach employed in inforomatetrieval, the “bag of visual codewords”

is a similar technique used mainly for scene classificatdang et al., 2007). Starting with an image
collection, visual features are first extracted as datatpdiom each image, characterizing its appear-
ance. By projecting data points from all the images into aroom space and grouping them into a large
number of clusters such that similar data points are asdignéne same cluster, we can treat each cluster
as a “visual codeword” and express every image in the calleets a “bag of visual codewords”. This
representation enables the application of methods usexttimetrieval to tasks in image processing and
computer vision.

Typically, the type of visual features selected camgledal — suitable for representation in all images,
orlocal — specific to a given image type and task requirement. Glaaalifes are often described using a
continuous feature space, such as color histogram in thifeestht color spaces (RGB, HSV and LAB),
or textures using Gabor and Haar wavelets (Makadia et @8)20n comparison, local features such as
key points (Fei-Fei and Perona, 2005) are often distinasacdifferent objects or scenes. Regardless of
the features used, visual codeword generation involvefotlmsving three important phases.

1. Feature Detection: The image is divided into partitions of varying degrees rlarity from
which features can be extracted and represented. Typieadlycan employ normalized cuts to
divide an image into irregular regions, or apply uniform reegtation to break it into smaller
but fixed grids, or simply locate information-rich local pla¢s on the image using interest point
detectors.

2. Feature Description: A descriptor is selected to represent the features thabeirgy extracted
from the image. Typically, feature descriptors (globalardl) are represented as numerical vec-
tors, with each vector describing the feature extractedacheegion. This way, an image is
represented by a set of vectors from its constituent regions
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Feature detection on overlapping patches
“Bag of Visual Codewords”

Projection of feature data points into
a common feature space, followed by A®ASG® - . ..
clustering to form visual codewords ®

Visual Codeword Vocabulary Set e

Figure 1: An illustration of the process of generating “Bd¢/sual Codewords”

3. Visual Codeword Generation: Clustering methods are applied to group vectors into efgst
where the center of each cluster is defined as a visual codeatd the entire collection of clusters
defines the visual vocabulary for that image collection. HHatage region or patch abstracted in
feature detection is now represented by the visual codemamped from its corresponding feature
vector.

The process of visual codeword generation is illustratefiguire 1. Fei-Fei and Perona (2005) has
shown that, unlike most previous work on object or scenesiflaation that focused on adopting global
features, local features are in fact extremely powerfulscu® our work, we use the Scale-Invariant
Feature Transform (SIFT) introduced by Lowe (2004) to dbscdistinctive local features of an image
in the feature description phase. SIFT descriptors areteeldor their invariance to image scale, rotation,
differences in 3D viewpoints, addition of noise, and chaimgdumination. They are also robust across
affine distortions.

4 Semantic Vector Models

The underlying idea behind semantic vector models is thateuts can be represented as points in a
mathematical space, and this representation is learneddrollection of documents such that concepts
related in their meanings are near to one another in thatesphcthe past, semantic vector models
have been widely adopted by natural language processiagnaers for tasks ranging from information
retrieval and lexical acquisition, to word sense disamdiigun and document segmentation. Several
variants have been proposed, including the original vespaice model (Salton et al., 1997) and the
Latent Semantic Analysis (Landauer and Dumais, 1997). faéimevector models are attractive because
they can be constructed using unsupervised methods obdtidnal corpus analysis and assume little
language-specific requirements as long as texts can bblyelakenized. Furthermore, various studies
(Kanerva, 1998) have shown that by using collaborativertibigive memory units to represent semantic
vectors, a closer correspondence to human cognition cachievad.

While vector-space models typically require nontrivigdetiraic machinery, reducing dimensions is
often key to uncover the hidden (latent) features of the $adistribution in the corpus, and to circumvent
the sparseness issue. There are a number of methods thaideaveeveloped to reduce dimensions —
see e.g., Widdows and Ferraro (2008) for an overview. Heeebriefly describe one commonly used
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technique, namely the Latent Semantic Analysis (LSA), tnéte its effectiveness in previous works for
reducing dimensions.

In LSA, term co-occurrences in a corpus are captured by mefaaslimensionality reduction op-
erated by &ingular Value Decomposition (SVD) on the term-by-document matrix representing the
corpus. SVD is a well-known operation in linear algebra,shitan be applied to any rectangular matrix
in order to find correlations among its rows and columns. S¥Bothposes the term-by-document ma-
trix T into three matrice3 = UX, VT whereX;, is the diagonak x k matrix containing the singulak
values ofT, o1 > 09 > ... > 0} andU andV are column-orthogonal matrices. When the three matrices
are multiplied together the original term-by-document nimas re-composed. Typically we can choose
k' < k obtaining the approximatio ~ UX,/V7T.

5 Semantic Relatedness between Words and | mages

Although the bag of visual codewords has been extensivedg irs image classification and retrieval
tasks, and vector-space models are well explored in na@mmgliage processing, there has been little
connection between the two streams of research. Spegijfitatiur knowledge, there is no research work
that combines the two techniques to model multimodal meprélatedness. Since we are exploring new
grounds, it is important to clarify what we mean by computing semantic relatedness between a word
and an image, and how the nature of this task impacts our hgpst The assumptions below are
necessary to validate our findings:

1. Computing semantic relatedness between a word and areimagves comparing the concepts
invoked by the word and the salient objects in the image abasgetheir interaction. This goes
beyond simply identifying the presence or absence of spedifiects indicated by a given word.
For instance, we expect a degree of relatedness betweenage showing a soccer ball and the
word “jersey,” since both invoke concepts likeports, soccer, teamwdrland so on.

2. The semantics of an image is dependent on the focus, sizpagition of distinct objects identi-
fied through image segmentation. During labeling, we exfféstsegmentation to be performed
implicitly by the annotators. Although it is possible to f@cone’s attention on specific objects via
bounding boxes, we are interested to harvest the meaningiofage using a holistic approach.

3. In the case of measuring the relatedness of a word that blple senses with a given image,
humans are naturally inclined to choose the sense thatq@ethe highest relatedness inside the
pair. For example, an image of a river bank expectedly cgtnuhe “river bank” sense of the
word “bank” (and not “financial bank” or other alternative misenses).

4. A degree of semantic relatedness can exist between aityagrbvord and image, on a scale
ranging from being totally unrelated to perfectly synonymavith each other. This is trivially
true, as the same property holds when measuring similagttyden words and texts.

Next, we evaluate our hypothesis that we can measure thedekss between a word and an image
empirically, using a parallel corpus of words and imagesuasiataset.

5.1 ImageNet

We use the ImageNet database (Deng et al., 2009), which ig@daale ontology of images devel-
oped for advancing content-based image search algoritimasserving as a benchmarking standard for
various image processing and computer vision tasks. Imeigekploits the hierarchical structure of
WordNet by attaching relevant images to each synonym set(kras “synset”), hence providing picto-
rial illustrations of the concept associated with the syn&n average, each synset contains 500-1000
images that are carefully audited through a stringent tyuatintrol mechanism.

Compared to other image databases with keyword annotatimbelieve that ImageNet is suitable
for evaluating our hypothesis for three reasons. Firstelgriaging on reliable keyword annotations in
WordNet (i.e., words in the synset and their gloss natursdive as annotations for the corresponding
images), we can effectively circumvent the propagationradre caused by unreliable annotations, and
consequently hope to reach more conclusive results fosthdy. Second, unlike other image databases,
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ImageNet consists of millions of images, and it is a growiagource with more images added on a
regular basis. This aligns with our long-term goal of builyla large-scale joint semantic space of images
and words. Finally, third, although we can search for reiewmages using keywords in ImageNet,
there is currently no method to query it in the reverse dibact Given a test image, we must search
through millions of images in the database to find the mosil@irimage and its corresponding synset.
A joint semantic model can hopefully augment this shorteaniy allowing queries to be made in both
directions. Figure 2 shows an example of a synset and thesgmnding images in ImageNet.

(b)
Joint Semantic Space of Words and Images
Synsets 167
Images 230,864
Words 1144
Nouns 783
Verbs 140
Adjectives 221
Image:Words ratio 202:1

Figure 2: (a) A subset of images associated with a node inéidag The WordNet synset illustrated
here is{Dog, domestic dog, Canis familiajisvith the gloss:A member of the genus Canis (probably
descended from the common wolf) that has been domesticatadibsince prehistoric times; occurs in
many breeds; “the dog barked all nigh{b) A table showing statistical information on our joint semtic
space model

5.2 Dataset

For our experiments, we randomly select 167 syddedsn ImageNet, covering a wide range of concepts
such as plants, mammals, fish, tools, vehicles etc. We perdosimple pre-processing step using Tree
Tagger (Schmid, 1994) and extract only the nouns. Multiwa explicitly recognized as collocations
or named entities in the synset. Not considering part-eksh distinctions, the vocabulary for synset
words is 352. The vocabulary for gloss words is 777. The shemeabulary between them is 251.

There are a total of 230,864 images associated with the I&éts; with an average of 1383 images
per synset. We randomly select an image for each synset,otftaming a set of 167 test images in
total. The technique explained in Section 3 is used to gémeraual codewords for each image in this
datasef. Each image is first pre-processed to have a maximum sidehlefi@00 pixels. Next, SIFT
descriptors are obtained by densely sampling the image x2026verlapping patches spaced 10 pixels
apart. K-means clustering is applied on a random subset wiillion SIFT descriptors to derive a visual
vocabulary of 1,000 codewords. Each descriptor is thent@mezhinto a visual codeword by assigning it
to the nearest cluster.

To create the gold-standard relatedness annotation, &brteat image, six nouns are randomly se-
lected from its associated synset and gloss words, andisgx nbuns are again randomly selected from
the shared vocabulary worédn all, we have 167 x 12 = 2004 word-image pairs as our tessdatsim-
ilar to previous word similarity evaluations (Miller and @ftes, 1998), we ask human annotators to rate
each pair on a scale of 0 to 10 to indicate their degree of sétnatatedness using the evaluation frame-
work outlined below, with 0 being totally unrelated and 1@ngeperfectly synonymous with each other.
To ensure quality ratings, for each word-image pair we udedrinotators from Amazon Mechanical

2http://www.image-net.org/

3Not all synsets in ImageNet are annotated with images. Wairobur dataset from the Spring 2010 version of ImageNet
built around Wordnet 3.0.

“For our experiments, we obtained the visual codewords ctedpai priori from ImageNet. Test images are not used to
construct the model

®12 data points are generally considered sufficient forbigiaorrelation measures (Vania Kovic, p.c.).
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)

Synset {sunflower, helianthus

Synset {oxygen-mask

Synset {submarine , pigboat ,

sub, U-boa}

Gloss any plant of the genus
Helianthus having large flower|
heads with dark disk florets ang

Gloss a breathing device that
is placed over the mouth and
nose; supplies oxygen from an

Gloss a submersible warship
usually armed with torpedoes

showy yellow rays
Relatedness Scores
color (5.13)

attached storage tank
Relatedness Scores
basketball (0.20)

Relatedness Scores

dog (0.53) central (1.53) africa (0.80)  brass (1.73)

floret (6.53) flower (9.67) device (5.47) family (0.80)| door (1.67) good (2.40)
freshwater (2.40) hair (1.00) | iron-tree (0.47) mouth (5.13) pacific (2.40) pigboat (6.47)
garden (6.60) head (3.80)| oxygen-mask (7.73) tank (4.47) | sub (8.20) submarine (9.67)
plant (8.47) ray (3.67) storage (3.07) supply (5.2Q) tail (0.93) torpedo (7.60)
sunflower (9.80) reed (2.27) | nose (6.20) time (1.13) | u-boat (7.47) warship (8.73)

Table 1: A sample of test images with their synset words andsgls : The number in parenthesis rep-
resents the numerical association of the word with the infagk). Human annotations reveal different
degree of semantic relatedness between the image and wdtdassynset or gloss.

Turk.8 Finally, the average of all 15 annotations for each wordgenpair is taken as its gold-standard
relatedness scofeNote that only the pairs of images and words are providetigahnotators, and not
their synsets and gloss definitions.

The set of standard criteria underlying the cross-modailaiity evaluation framework shown here
is inspired by the semantic relations defined in Wordnet. s€heriteria were provided to the human
annotators, to help them decide whether a word and an imagelated to each other.

1. Instance of itself: Does the image contain an entity that is represented by tiné itself (e.g. an
image of “Obama” vs the word “Obama”) ?

Member-of Relation: Does the image contain an entity that is a member of the slaggested
by the word or vice versa (e.g. an image of an “apple” vs thedvifsuits”) ?

Part-of Relation: Does the image contain an entity that is a part of a largetyamfpresented by
the word or vice versa (e.g. an image of a “tree” vs the worde$g’) ?

Semantically Related: Do both the word and the image suggest concepts that ateddkag. an
image of troops at war vs the word “peace”) ?

Semantically Close: Do both the word and the image suggest concepts that arenhyotedated

but also close in meaning? (e.g. an image of troops at wareva/tind “gun”) ?

2.

3.

Criterion (1) basically tests for synonym relation. Ciitef2) and (3) are modeled after the hyponym-
hypernym and meronym-holonym relations in WordNet, whioh prevalent among nouns. Note that
none of the criteria is preemptive over the others. Ratherpvovide these criteria as guidelines in
a subjectiveevaluation framework, similar to the word semantic sinifiyatask in Miller and Charles
(1998). Importantly, criterion (4) models dissimilar betated concepts, or any other relation that indi-
cates frequent association, while criterion (5) servegdwige additional distinction for pairs of words
and images on a higher level of relatedness toward simyildritTable 1, we show sample images from
our test dataset, along with the annotations provided bitinean annotators.

®We only allowed annotators with an approval rating of 97% ighr. Here, we expect some variance in the degree of
relatedness between the candidate words and images, haraations marked with all 10s or Os are discarded due todack
distinctions in similarity relatedness

"Annotation guidelines and dataset can be downloaded at/fittpsci.unt.edu/index.php/Downloads
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5.3 Experiments

Following Erk and McCarthy (2009), who argued that word niegs are graded over their senses, we
believe that the meaning of an image is not limited to a sebest fitting” tags, but rather it exists as
a distribution over arbitrary words with varying degreesassociation. Specifically, the focus of our
experiments is to investigate the correlation betweenmaatic measures of such relatedness scores with
respect to human judgments.

To construct the joint semantic space of words and imagesise¢he SVD described in Section 4
to reduce the number of dimensions. To build each model, wahes167 synsets from ImageNet and
their associated images (minus the held out test data) ehemounting for 167 latent dimensions. We
first represent the synsets as a collection of documentsdb, @@cument containing visual codewords
used to describe their associated images as well as textrdsvextracted from their gloss and synset
words. Thus, computing a cross-modal relatedness disamoents to comparing the cosine similarity
of vectors representing an image to the vector represeatingrd in the term-document vector space.
Note that, unlike textual words, an image is representedudipte visual codewords. Prior to computing
the actual cosine distance, we perform a weighted addifiepaiors representing each visual codeword
for that image.

To illustrate, consider a single document @:presenting the synset “snail,” which consistg @#O0,
cw555, cw23, cwl124, cw876, snail, freshwater, molluskiadpshell, where cwX represents a particular
visual codeword indexed from 0-999and the textual words are nouns extracted from the assdciat
synset and gloss. Given a test imdgé can be expressed as a bag of visual codew{eds , ... , cw; }.

We first represent each visual codeword/ims a vector of lengthD| using term-frequency inverse-
document-frequencyt fidf) weighting, e.g., cw=<0.4*d;, 0.2*d,, ... , 0.9*d,,>, where m=167, and
perform an addition ok such vectors to form a final vectog.vTo measure the semantic relatedness
between imagd and a wordw, e.g., “snail,” we simply compute the cosine similarityweén v and
V., Where v, is also a vector of lengthD| calculated usingfidf.

This paper seeks answers to the following questions. Fisd} is the relation between the discrim-
inability of the visual codewords and their ability to cagsemantic relatedness between a word and an
image, as compared to the gold-standard annotation by l#m&acond, given the unbalanced dataset
of images and words, can we use a relatively small numberso&vicodewords to derive such semantic
relatedness measures reliably? Third, what is the effigiehan unsupervised vector semantic model in
measuring such relatedness, and is it applicable to langsels?

Analogous to text-retrieval methods, we measure the disgability of the visual codewords using
two weighting factors. The first ierm-frequency (tf)which measures the number of times a codeword
appears in all images for a particular synset, while thersgdmage-term-frequency (itfcaptures the
number of images using the codeword in a synset. For the tvighitieg schemes, we apply normal-
ization by using the total number of codewords for a synsmtt{f weighting) and the total number of
images in a synset (foif weighting).

We are interested to quantify the relatedness for pairs oflsvand images under two scenarios. By
ranking the 12 words associated with an image in reverse afdieir relatedness to the image, we
can determine the ability of our models to identify the madated words for a given imagénfage-
centered). In the second scenario, we measure the relatedness o \woddimages regardless of the
synset they belong to, thus evaluating the ability of ourhods to capture the relatedness between any
word and any image. This allows us to capture the correlati@m @rbitrary-image) scenario. For the
evaluations, we use the Spearman’s Rank correlation.

To place our results in perspective, we implemented twolipeseand an upper bound for each of
the two scenarios above. TRandonbaseline randomly assigns ratings to each word-image pahie
same 0to 10 scale, and then measures the correlation torttenigold-standard. Théector-Based (VB)
method is a stronger baseline aimed to study the correlpgdiormance in the absence of dimensionality
reduction. As an upper bound, theer-Human-Agreement (IHAheasures the correlation of the rating
by each annotator against the average of the ratings of shefréhe annotators, averaged over the 167
synsets (for the image-centered scenario) and over the ®08dimage pairs (for the arbitrary-image
scenario).

8For simplicity, we only show the top 5 visual codewords
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Spearman’s Rank Coefficient (image-centered)
Top K codewords| 100 200 300 400 500 600 700 800 900 1000

LSA tf 0.228 0325 0.273 0.242 0.185 _0.181 0.107 0.043 -0.018 0.000
LSA tf (norm) 0.233 0339 0.293 0.254 0.202 0.180 _0.124 0.047 -0.012 0.000

LSA tf*itf 0.268 0317 0.256 0.248 _0.219 0.166 0.081 -0.004 -0.037 0.000
LSA tf*itf (norm) | 0.252 0.327 0.257 0.246 0.211 0.153 0.097 0.002 -0.042 0.000
VB tf 0243 0.168 0.101 0.055 -0.021 -0.084 -0.157 -0.210 -0.236 -0.332
VB tf (norm) 0240 0.181 0.110 0.062 -0.010 -0.082 -0.152 -0.204 -0.235 -0.332
VB tf*itf 0262 0.181 0.107 0.065 -0.019 -0.081 -0.156 -0.211 -0.241 -0.332
VB tf*itf (norm) 0257 0.180 0.116 0.068 -0.014 -0.079 -0.150 -0.250 -0.237 -0.332
Random 0.001 0.018 0.016 -0.008 0.008 0.005 -0.001 0.014 -0.035120.0
IHA 0.687

Spearman’s Rank Coefficient (arbitrary-image)
Top K codewords| 100 200 300 400 500 600 700 800 900 1000

LSA tf 0.236 0341 0.291 0.249 0.208 0.183 0.106 __ 0.033-0.039 0.000
LSA tf (norm) 0.230 0353 0.301 0.271 0.220 0.186 0.115 0.032 -0.029 0.000

LSA tfitf 0.291 0332 0.289 0.262 _0.235 0.172 0.092 0.008 -0.041 0.000
LSA tf*itf (norm) | 0.277 0345 0.292 0.269 0.234 0.164 0.098 0.015 -0.046 0.000
VB tf 0272 0.195 0.119 0.059 -0.012 -0.088 -0.164 -0.218 -0.240 -0.339
VB tf (norm) 0277 0.207 0.130 0.069 -0.003 -0.083 -0.160 -0.215 -0.242 -0.339
VB tf*itf 0287 0.206 0.127 0.062 -0.008 -0.085 -0.161 -0.214 -0.241 -0.339
VB tf*itf (norm) 0286 0.212 0.132 0.071 -0.005 -0.081 -0.158 -0.214 -0.241 -0.339
Random -0.024 -0.014 0.015 -0.015 -0.004 -0.014 0.024 -0.009 -0.0M®.007

IHA 0.764

Table 2: Correlation of automatically generated scorebk titman annotations on cross-modal semantic
relatedness, as performed on the ImageNet test dataseDéfgzirs of word and image. Correlation
figures scoring the highest within a weighting scheme aré&eaukin bold, while those scoring the highest
across weighting schemes and within a visual vocabulagyaie underlined.

6 Discussion

Our experimental results are shown in Table 2. A somewhatisimg observation is the consistency of
correlation figures between the two scenarios. In both simEa representative set of 200 visual code-
words is sufficient to consistently score the highest cati@h ratings across the 8 weighting schemes.
Intuitively, based on the experimental results, autoradficchoosing the top 10% or 20% of the visual
codewords seems to suffice and gives optimal correlatiomefggiout requires further justification. Con-
versely, the relatively simple weighting scheme udingormalized)produces the highest correlation in
six visual codeword sizes (K=200,300,400,700,800,900}He image-centered scenario, as well as in
another six visual codeword sizes (K=200,300,400,600900) for the arbitrary-image scenario. Un-
like stopwords in text retrieval accounting for most of thighesttf scores, visual codewords weighted
by the same schenté and a similartf (normalized)scheme seem to be the most discriminative. The
correlation for including the entire visual vocabulary €600) produces identical results for all vector-
based and LSA weighting schemes, as images across syrsetsaencoded by the same set of visual
codewords without discrimination between them.

Dimensionality reduction using SVD gains an advantage thesrvector-based method for both sce-
narios, with the highest correlation rating in LSA (200 \d@koodewordtf(norm)) achieving 0.077 points
better than the corresponding highest correlation in \feoésed (100 visual codewortf*itf ) for the
image-centered scenario, representing a 29.3% improvei@inilarly, in the arbitrary-image scenario,
the increase in correlation from 0.287 (MBitf at 100 visual codeword) to 0.353 (LS#(norm) at
200 visual codeword) underlines a gain of approximatelYp23. Overall, the arbitrary-image scenario
also scores consistently higher than the image-centemthgo under similar experimental conditions.
For instance, for the top 200 visual words, the same weigtgithemes produce consistently lower
correlation figures for the image-centered scenario. Thalso true for the Inter-Human-Agreement
score, which is higher in the arbitrary-image scenario®) €ompared to the image-centered scenario
(0.687). Note that for all the experiments, the semantiateelness scores generated from the semantic
vector space are significantly more correlated with the hugwdd-standard than the random baselines.
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(a) (b)
Spearman Correlation against number of Synsets used Words Classification Accuracy against number of Synsets used

N Image-centered-LSA E Image-centered-VB [ Arbitrary-image-LSA [ Arbitrary-image-VB 038
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Figure 3: (a) Correlation performance, and (b) Classificaticcuracy, as more data is added to construct
the semantic space model.

To investigate the effectiveness of the model when scalptpuarge datasets, we employ the best
combination of weighting scheme and vocabulary size shewrable 2, i.e., a visual vocabulary size
of 200 andtf (normalized)weighting for LSA, and vocabulary size of 100 atititf weighting for the
vector-based model, and incrementally construct modelgimg from 167 synsets to 800 synsets (all
randomly selected from ImageNet). We then measure thelabor of relatedness scores generated
using the same test dataset with respect to human annatafibe dataset was randomly selected to in-
crease by approximately five times, from a total of 230,86dges with 878 words to a total of 1,014,528
images with 3887 words. Furthermore, for each unseen tegjartaken from Synset; and the associ-
ated 12 candidate words, we evaluate the ability of the mimdielentify which of the candidate words
actually appear in the gloss or the synsetSgfin a task we term as word classification. Here, the top
six words are predictably classified as those appearirtg imhile the last six are classified as outside
of S; , after all 12 words are ranked in reverse order of their eglia¢ss to the test image. We measure
the accuracy of the word classification task usﬁ%ﬁ—]\’, whereT P is the number of words correctly
classified as synset or gloss words, & is the number of words correctly classified as outside of
synset or gloss, both summed over the 2004 pairs of wordsnaagies.

As shown in Figure 3, when a small number of synsets (33) wasdtb the original semantic space,
correlation with human ratings increased steeply to ardud8 and higher for LSA in both scenarios,
while the vector-based method suffers a slight decreasarialation ratings from 0.262 to 0.251 (image-
centered) and from 0.287 to 0.278 (arbitrary-image). Asamiarages and words are added, correlation
for the vector-based model continues to decrease mark@dipparatively, LSA is less sensitive to data
scaling, as correlation figures for both scenarios decseslgghtly but stays within a 0.40 to 0.45 range.
Additionally, we infer that LSA is consistently more effet than the vector-based model in the words
classification task (as also seen in Figure 3). Even with rdata added to the semantic space, word
classification accuracy stays consistently at 0.7 for LSAilevit drops to 0.535 for the vector-based
model at a synset size of 800.

7 Conclusion

In this paper, we provided a proof of concept in quantifyihg semantic relatedness between words and
images through the use of visual codewords and textual wiardenstructing a joint semantic vector
space. Our experiments showed that the relatedness sawes positive correlation to human gold-
standards, as measured using a standard evaluation fraknewo

We believe many aspects of this work can be explored furtRer.instance, other visual codeword
attributes, such as pixel coordinates, can be employedtimetgred vector space along with the existing
model for improving vector similarity measures. To improsetual words coverage, a potentially effec-
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tive way would be to create mappings from WordNet synsets itapAtia entries, where the concepts
represented by the synsets are discussed in detail. We lalsdgpstudy the applicability of the joint
semantic representation model to tasks such as automatgeiannotation and image classification.
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