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Abstract

Measures of similarity have traditionally focused on computing the semantic relatedness between
pairs of words and texts. In this paper, we construct an evaluation framework to quantify cross-modal
semantic relationships that exist between arbitrary pairsof words and images. We study the effec-
tiveness of a corpus-based approach to automatically derive the semantic relatedness between words
and images, and perform empirical evaluations by measuringits correlation with human annotators.

1 Introduction

Traditionally, a large body of research in natural languageprocessing has focused on formalizing word
meanings. Several resources developed to date (e.g., WordNet (Miller, 1995)) have enabled a systematic
encoding of the semantics of words and exemplify their usagein different linguistic frameworks. As a
result of this formalization, computing semantic relatedness between words has been possible and has
been used in applications such as information extraction and retrieval, query reformulation, word sense
disambiguation, plagiarism detection and textual entailment.

In contrast, while research has shown that the human cognitive system is sensitive to visual informa-
tion and incorporating a dual linguistic-and-pictorial representation of information can actually enhance
knowledge acquisition (Potter and Faulconer, 1975), themeaningof an image in isolation is not well-
defined and it is mostly task-specific. A given image, for instance, may be simultaneously labeled by a
set of words using an automatic image annotation algorithm,or classified under a different set of seman-
tic tags in the image classification task, or simply draw its meaning from a few representative regions
following image segmentation performed in an object localization framework.

Given that word meanings can be acquired and disambiguated using dictionaries, we can perhaps
express the meaning of an image in terms of the words that can be suitably used to describe it. Specif-
ically, we are interested to bridge thesemantic gap(Smeulders et al., 2000) between words and images
by exploring ways to harvest the information extracted fromvisual data in a general framework. While a
large body of work has focused on measuring the semantic similarity of words (e.g., (Miller and Charles,
1998)), or the similarity between images based on image content (e.g., (Goldberger et al., 2003)), very
few researchers have considered the measure of semantic relatedness1 between words and images.

But, how exactly is an image related to a given word? In reality, quantification of such a cross-
modal semantic relation is impossible without supplying itwith a proper definition. Our work seeks to
address this challenge by constructing a standard evaluation framework to derive a semantic relatedness
metric for arbitrary pairs of words and images. In our work, we explore methods to build a representa-
tion model consisting of a joint semantic space of images andwords by combining techniques widely
adopted in computer vision and natural language processing, and we evaluate the hypothesis that we can
automatically derive a semantic relatedness score using this joint semantic space.

Importantly, we acknowledge that it is significantly harderto decode the semantics of an image, as its
interpretation relies on a subjective and perceptual understanding of its visual components (Biederman,

1In our paper, we are concerned with semanticrelatedness, which is a more general concept than semanticsimilarity.
Similarity is concerned with entities related by virtues oftheir likeness, e.g.,bank-trust company, but dissimilar entities may
also be related, e.g.,hot-cold. A full treatment of the topic can be found in Budanitsky and Hirst (2005).
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1987). Despite this challenge, we believe this is a worthy research direction, as many important problems
can benefit from the association of image content in relationto word meanings, such as automatic image
annotation, image retrieval and classification (e.g., (Leong et al., 2010)) as well as tasks in the domains
of of text-to-image synthesis, image harvesting and augmentative and alternative communication.

2 Related Work

Despite the large amount of work in computing semantic relatedness between words or similarity be-
tween images, there are only a few studies in the literature that associate the meaning of words and
pictures in a joint semantic space. The work most similar to ours was done by Westerveld (2000), who
employed LSA to combine textual words with simple visual features extracted from news images using
colors and textures. Although it was concluded that such a joint textual-visual representation model was
promising for image retrieval, no intensive evaluation wasperformed on datasets on a large scale, or
datasets other than the news domain. Similarly, Hare et al. (2008) compared different methods such as
LSA and probabilistic LSA to construct joint semantic spaces in order to study their effects on automatic
image annotation and semantic image retrieval, but their evaluation was restricted exclusively to the
Corel dataset, which is somewhat idealistic and not reflective of the challenges presented by real-world,
noisy images.

Another related line of work by Barnard and Forsyth (2001) used a generative hierarchical model
to learn the associative semantics of words and images for improving information retrieval tasks. Their
approach was supervised and evaluated again only on the Corel dataset.

More recently, Feng and Lapata (2010) showed that it is possible to combine visual representations
of word meanings into a joint bimodal representation constructed by using latent topics. While their
work focused on unifying meanings from visual and textual data via supervised techniques, no effort
was made to compare the semantic relatedness between arbitrary pairs of word and image.

3 Bag of Visual Codewords

Inspired by the bag-of-words approach employed in information retrieval, the “bag of visual codewords”
is a similar technique used mainly for scene classification (Yang et al., 2007). Starting with an image
collection, visual features are first extracted as data points from each image, characterizing its appear-
ance. By projecting data points from all the images into a common space and grouping them into a large
number of clusters such that similar data points are assigned to the same cluster, we can treat each cluster
as a “visual codeword” and express every image in the collection as a “bag of visual codewords”. This
representation enables the application of methods used in text retrieval to tasks in image processing and
computer vision.

Typically, the type of visual features selected can beglobal– suitable for representation in all images,
or local – specific to a given image type and task requirement. Global features are often described using a
continuous feature space, such as color histogram in three different color spaces (RGB, HSV and LAB),
or textures using Gabor and Haar wavelets (Makadia et al., 2008). In comparison, local features such as
key points (Fei-Fei and Perona, 2005) are often distinct across different objects or scenes. Regardless of
the features used, visual codeword generation involves thefollowing three important phases.

1. Feature Detection: The image is divided into partitions of varying degrees of granularity from
which features can be extracted and represented. Typically, we can employ normalized cuts to
divide an image into irregular regions, or apply uniform segmentation to break it into smaller
but fixed grids, or simply locate information-rich local patches on the image using interest point
detectors.

2. Feature Description: A descriptor is selected to represent the features that arebeing extracted
from the image. Typically, feature descriptors (global or local) are represented as numerical vec-
tors, with each vector describing the feature extracted in each region. This way, an image is
represented by a set of vectors from its constituent regions.
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Figure 1: An illustration of the process of generating “Bag of Visual Codewords”

3. Visual Codeword Generation: Clustering methods are applied to group vectors into clusters,
where the center of each cluster is defined as a visual codeword, and the entire collection of clusters
defines the visual vocabulary for that image collection. Each image region or patch abstracted in
feature detection is now represented by the visual codewordmapped from its corresponding feature
vector.

The process of visual codeword generation is illustrated inFigure 1. Fei-Fei and Perona (2005) has
shown that, unlike most previous work on object or scene classification that focused on adopting global
features, local features are in fact extremely powerful cues. In our work, we use the Scale-Invariant
Feature Transform (SIFT) introduced by Lowe (2004) to describe distinctive local features of an image
in the feature description phase. SIFT descriptors are selected for their invariance to image scale, rotation,
differences in 3D viewpoints, addition of noise, and changein illumination. They are also robust across
affine distortions.

4 Semantic Vector Models

The underlying idea behind semantic vector models is that concepts can be represented as points in a
mathematical space, and this representation is learned from a collection of documents such that concepts
related in their meanings are near to one another in that space. In the past, semantic vector models
have been widely adopted by natural language processing researchers for tasks ranging from information
retrieval and lexical acquisition, to word sense disambiguation and document segmentation. Several
variants have been proposed, including the original vectorspace model (Salton et al., 1997) and the
Latent Semantic Analysis (Landauer and Dumais, 1997). Generally, vector models are attractive because
they can be constructed using unsupervised methods of distributional corpus analysis and assume little
language-specific requirements as long as texts can be reliably tokenized. Furthermore, various studies
(Kanerva, 1998) have shown that by using collaborative, distributive memory units to represent semantic
vectors, a closer correspondence to human cognition can be achieved.

While vector-space models typically require nontrivial algebraic machinery, reducing dimensions is
often key to uncover the hidden (latent) features of the terms distribution in the corpus, and to circumvent
the sparseness issue. There are a number of methods that havebeen developed to reduce dimensions –
see e.g., Widdows and Ferraro (2008) for an overview. Here, we briefly describe one commonly used
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technique, namely the Latent Semantic Analysis (LSA), noted for its effectiveness in previous works for
reducing dimensions.

In LSA, term co-occurrences in a corpus are captured by meansof a dimensionality reduction op-
erated by aSingular Value Decomposition (SVD) on the term-by-document matrixT representing the
corpus. SVD is a well-known operation in linear algebra, which can be applied to any rectangular matrix
in order to find correlations among its rows and columns. SVD decomposes the term-by-document ma-
trix T into three matricesT = UΣkVT whereΣk is the diagonalk × k matrix containing the singulark
values ofT, σ1 ≥ σ2 ≥ ... ≥ σk andU andV are column-orthogonal matrices. When the three matrices
are multiplied together the original term-by-document matrix is re-composed. Typically we can choose
k′ ≪ k obtaining the approximationT ≃ UΣk′VT .

5 Semantic Relatedness between Words and Images

Although the bag of visual codewords has been extensively used in image classification and retrieval
tasks, and vector-space models are well explored in naturallanguage processing, there has been little
connection between the two streams of research. Specifically, to our knowledge, there is no research work
that combines the two techniques to model multimodal meaning relatedness. Since we are exploring new
grounds, it is important to clarify what we mean by computingthe semantic relatedness between a word
and an image, and how the nature of this task impacts our hypothesis. The assumptions below are
necessary to validate our findings:

1. Computing semantic relatedness between a word and an image involves comparing the concepts
invoked by the word and the salient objects in the image as well as their interaction. This goes
beyond simply identifying the presence or absence of specific objects indicated by a given word.
For instance, we expect a degree of relatedness between an image showing a soccer ball and the
word “jersey,” since both invoke concepts like{sports, soccer, teamwork} and so on.

2. The semantics of an image is dependent on the focus, size and position of distinct objects identi-
fied through image segmentation. During labeling, we expectthis segmentation to be performed
implicitly by the annotators. Although it is possible to focus one’s attention on specific objects via
bounding boxes, we are interested to harvest the meaning of an image using a holistic approach.

3. In the case of measuring the relatedness of a word that has multiple senses with a given image,
humans are naturally inclined to choose the sense that provides the highest relatedness inside the
pair. For example, an image of a river bank expectedly calls upon the “river bank” sense of the
word “bank” (and not “financial bank” or other alternative word senses).

4. A degree of semantic relatedness can exist between any arbitrary word and image, on a scale
ranging from being totally unrelated to perfectly synonymous with each other. This is trivially
true, as the same property holds when measuring similarity between words and texts.

Next, we evaluate our hypothesis that we can measure the relatedness between a word and an image
empirically, using a parallel corpus of words and images as our dataset.

5.1 ImageNet

We use the ImageNet database (Deng et al., 2009), which is a large-scale ontology of images devel-
oped for advancing content-based image search algorithms,and serving as a benchmarking standard for
various image processing and computer vision tasks. ImageNet exploits the hierarchical structure of
WordNet by attaching relevant images to each synonym set (known as “synset”), hence providing picto-
rial illustrations of the concept associated with the synset. On average, each synset contains 500-1000
images that are carefully audited through a stringent quality control mechanism.

Compared to other image databases with keyword annotations, we believe that ImageNet is suitable
for evaluating our hypothesis for three reasons. First, by leveraging on reliable keyword annotations in
WordNet (i.e., words in the synset and their gloss naturallyserve as annotations for the corresponding
images), we can effectively circumvent the propagation of errors caused by unreliable annotations, and
consequently hope to reach more conclusive results for thisstudy. Second, unlike other image databases,
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ImageNet consists of millions of images, and it is a growing resource with more images added on a
regular basis. This aligns with our long-term goal of building a large-scale joint semantic space of images
and words. Finally, third, although we can search for relevant images using keywords in ImageNet,2

there is currently no method to query it in the reverse direction. Given a test image, we must search
through millions of images in the database to find the most similar image and its corresponding synset.
A joint semantic model can hopefully augment this shortcoming by allowing queries to be made in both
directions. Figure 2 shows an example of a synset and the corresponding images in ImageNet.

(a)

(b)
Joint Semantic Space of Words and Images

Synsets 167
Images 230,864
Words 1144

Nouns 783
Verbs 140
Adjectives 221

Image:Words ratio 202:1

Figure 2: (a) A subset of images associated with a node in ImageNet. The WordNet synset illustrated
here is{Dog, domestic dog, Canis familiaris} with the gloss:A member of the genus Canis (probably
descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in
many breeds; “the dog barked all night”(b) A table showing statistical information on our joint semantic
space model

5.2 Dataset

For our experiments, we randomly select 167 synsets3 from ImageNet, covering a wide range of concepts
such as plants, mammals, fish, tools, vehicles etc. We perform a simple pre-processing step using Tree
Tagger (Schmid, 1994) and extract only the nouns. Multiwords are explicitly recognized as collocations
or named entities in the synset. Not considering part-of-speech distinctions, the vocabulary for synset
words is 352. The vocabulary for gloss words is 777. The shared vocabulary between them is 251.

There are a total of 230,864 images associated with the 167 synsets, with an average of 1383 images
per synset. We randomly select an image for each synset, thusobtaining a set of 167 test images in
total. The technique explained in Section 3 is used to generate visual codewords for each image in this
dataset.4 Each image is first pre-processed to have a maximum side length of 300 pixels. Next, SIFT
descriptors are obtained by densely sampling the image on 20x20 overlapping patches spaced 10 pixels
apart. K-means clustering is applied on a random subset of 10million SIFT descriptors to derive a visual
vocabulary of 1,000 codewords. Each descriptor is then quantized into a visual codeword by assigning it
to the nearest cluster.

To create the gold-standard relatedness annotation, for each test image, six nouns are randomly se-
lected from its associated synset and gloss words, and six other nouns are again randomly selected from
the shared vocabulary words.5 In all, we have 167 x 12 = 2004 word-image pairs as our test dataset. Sim-
ilar to previous word similarity evaluations (Miller and Charles, 1998), we ask human annotators to rate
each pair on a scale of 0 to 10 to indicate their degree of semantic relatedness using the evaluation frame-
work outlined below, with 0 being totally unrelated and 10 being perfectly synonymous with each other.
To ensure quality ratings, for each word-image pair we used 15 annotators from Amazon Mechanical

2http://www.image-net.org/
3Not all synsets in ImageNet are annotated with images. We obtain our dataset from the Spring 2010 version of ImageNet

built around Wordnet 3.0.
4For our experiments, we obtained the visual codewords computed a priori from ImageNet. Test images are not used to

construct the model
512 data points are generally considered sufficient for reliable correlation measures (Vania Kovic, p.c.).

189



Synset {sunflower, helianthus} Synset {oxygen-mask} Synset {submarine , pigboat ,
sub , U-boat}

Gloss any plant of the genus
Helianthus having large flower
heads with dark disk florets and
showy yellow rays

Gloss a breathing device that
is placed over the mouth and
nose; supplies oxygen from an
attached storage tank

Gloss a submersible warship
usually armed with torpedoes

Relatedness Scores Relatedness Scores Relatedness Scores
color (5.13) dog (0.53) basketball (0.20) central (1.53) africa (0.80) brass (1.73)
floret (6.53) flower (9.67) device (5.47) family (0.80) door (1.67) good (2.40)
freshwater (2.40) hair (1.00) iron-tree (0.47) mouth (5.13) pacific (2.40) pigboat (6.47)
garden (6.60) head (3.80) oxygen-mask (7.73) tank (4.47) sub (8.20) submarine (9.67)
plant (8.47) ray (3.67) storage (3.07) supply (5.20) tail (0.93) torpedo (7.60)
sunflower (9.80) reed (2.27) nose (6.20) time (1.13) u-boat (7.47) warship (8.73)

Table 1: A sample of test images with their synset words and glosses : The number in parenthesis rep-
resents the numerical association of the word with the image(0-10). Human annotations reveal different
degree of semantic relatedness between the image and words in the synset or gloss.

Turk.6 Finally, the average of all 15 annotations for each word-image pair is taken as its gold-standard
relatedness score7. Note that only the pairs of images and words are provided to the annotators, and not
their synsets and gloss definitions.

The set of standard criteria underlying the cross-modal similarity evaluation framework shown here
is inspired by the semantic relations defined in Wordnet. These criteria were provided to the human
annotators, to help them decide whether a word and an image are related to each other.

1. Instance of itself: Does the image contain an entity that is represented by the word itself (e.g. an
image of “Obama” vs the word “Obama”) ?

2. Member-of Relation: Does the image contain an entity that is a member of the classsuggested
by the word or vice versa (e.g. an image of an “apple” vs the word “fruits”) ?

3. Part-of Relation: Does the image contain an entity that is a part of a larger entity represented by
the word or vice versa (e.g. an image of a “tree” vs the word “forest”) ?

4. Semantically Related: Do both the word and the image suggest concepts that are related (e.g. an
image of troops at war vs the word “peace”) ?

5. Semantically Close: Do both the word and the image suggest concepts that are not only related
but also close in meaning? (e.g. an image of troops at war vs the word “gun”) ?

Criterion (1) basically tests for synonym relation. Criteria (2) and (3) are modeled after the hyponym-
hypernym and meronym-holonym relations in WordNet, which are prevalent among nouns. Note that
none of the criteria is preemptive over the others. Rather, we provide these criteria as guidelines in
a subjectiveevaluation framework, similar to the word semantic similarity task in Miller and Charles
(1998). Importantly, criterion (4) models dissimilar but related concepts, or any other relation that indi-
cates frequent association, while criterion (5) serves to provide additional distinction for pairs of words
and images on a higher level of relatedness toward similarity. In Table 1, we show sample images from
our test dataset, along with the annotations provided by thehuman annotators.

6We only allowed annotators with an approval rating of 97% or higher. Here, we expect some variance in the degree of
relatedness between the candidate words and images, hence annotations marked with all 10s or 0s are discarded due to lackof
distinctions in similarity relatedness

7Annotation guidelines and dataset can be downloaded at http://lit.csci.unt.edu/index.php/Downloads
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5.3 Experiments

Following Erk and McCarthy (2009), who argued that word meanings are graded over their senses, we
believe that the meaning of an image is not limited to a set of “best fitting” tags, but rather it exists as
a distribution over arbitrary words with varying degrees ofassociation. Specifically, the focus of our
experiments is to investigate the correlation between automatic measures of such relatedness scores with
respect to human judgments.

To construct the joint semantic space of words and images, weuse the SVD described in Section 4
to reduce the number of dimensions. To build each model, we use the 167 synsets from ImageNet and
their associated images (minus the held out test data), hence accounting for 167 latent dimensions. We
first represent the synsets as a collection of documents D, each document containing visual codewords
used to describe their associated images as well as textual words extracted from their gloss and synset
words. Thus, computing a cross-modal relatedness distanceamounts to comparing the cosine similarity
of vectors representing an image to the vector representinga word in the term-document vector space.
Note that, unlike textual words, an image is represented by multiple visual codewords. Prior to computing
the actual cosine distance, we perform a weighted addition of vectors representing each visual codeword
for that image.

To illustrate, consider a single document di, representing the synset “snail,” which consists of{cw0,
cw555, cw23, cw124, cw876, snail, freshwater, mollusk, spiral, shell}, where cwX represents a particular
visual codeword indexed from 0-9998, and the textual words are nouns extracted from the associated
synset and gloss. Given a test imageI, it can be expressed as a bag of visual codewords{cw1 , ... , cwk}.
We first represent each visual codeword inI as a vector of length|D| using term-frequency inverse-
document-frequency (tf idf ) weighting, e.g., cwk=<0.4*d1, 0.2*d2, ... , 0.9*dm>, where m=167, and
perform an addition ofk such vectors to form a final vector vi. To measure the semantic relatedness
between imageI and a wordw, e.g., “snail,” we simply compute the cosine similarity between vi and
vw, where vw is also a vector of length|D| calculated usingtf idf .

This paper seeks answers to the following questions. First,what is the relation between the discrim-
inability of the visual codewords and their ability to capture semantic relatedness between a word and an
image, as compared to the gold-standard annotation by humans? Second, given the unbalanced dataset
of images and words, can we use a relatively small number of visual codewords to derive such semantic
relatedness measures reliably? Third, what is the efficiency of an unsupervised vector semantic model in
measuring such relatedness, and is it applicable to large datasets?

Analogous to text-retrieval methods, we measure the discriminability of the visual codewords using
two weighting factors. The first isterm-frequency (tf), which measures the number of times a codeword
appears in all images for a particular synset, while the second, image-term-frequency (itf), captures the
number of images using the codeword in a synset. For the two weighting schemes, we apply normal-
ization by using the total number of codewords for a synset (for tf weighting) and the total number of
images in a synset (foritf weighting).

We are interested to quantify the relatedness for pairs of words and images under two scenarios. By
ranking the 12 words associated with an image in reverse order of their relatedness to the image, we
can determine the ability of our models to identify the most related words for a given image (image-
centered). In the second scenario, we measure the relatedness of words and images regardless of the
synset they belong to, thus evaluating the ability of our methods to capture the relatedness between any
word and any image. This allows us to capture the correlationin an (arbitrary-image) scenario. For the
evaluations, we use the Spearman’s Rank correlation.

To place our results in perspective, we implemented two baselines and an upper bound for each of
the two scenarios above. TheRandombaseline randomly assigns ratings to each word-image pair on the
same 0 to 10 scale, and then measures the correlation to the human gold-standard. TheVector-Based (VB)
method is a stronger baseline aimed to study the correlationperformance in the absence of dimensionality
reduction. As an upper bound, theInter-Human-Agreement (IHA)measures the correlation of the rating
by each annotator against the average of the ratings of the rest of the annotators, averaged over the 167
synsets (for the image-centered scenario) and over the 2004word-image pairs (for the arbitrary-image
scenario).

8For simplicity, we only show the top 5 visual codewords

191



Spearman’s Rank Coefficient (image-centered)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.228 0.325 0.273 0.242 0.185 0.181 0.107 0.043 -0.018 0.000
LSA tf (norm) 0.233 0.339 0.293 0.254 0.202 0.180 0.124 0.047 -0.012 0.000
LSA tf*itf 0.268 0.317 0.256 0.248 0.219 0.166 0.081 -0.004 -0.037 0.000
LSA tf*itf (norm) 0.252 0.327 0.257 0.246 0.211 0.153 0.097 0.002 -0.042 0.000
VB tf 0.243 0.168 0.101 0.055 -0.021 -0.084 -0.157 -0.210 -0.236 -0.332
VB tf (norm) 0.240 0.181 0.110 0.062 -0.010 -0.082 -0.152 -0.204 -0.235 -0.332
VB tf*itf 0.262 0.181 0.107 0.065 -0.019 -0.081 -0.156 -0.211 -0.241 -0.332
VB tf*itf (norm) 0.257 0.180 0.116 0.068 -0.014 -0.079 -0.150 -0.250 -0.237 -0.332
Random 0.001 0.018 0.016 -0.008 0.008 0.005 -0.001 0.014 -0.035 0.012
IHA 0.687

Spearman’s Rank Coefficient (arbitrary-image)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.236 0.341 0.291 0.249 0.208 0.183 0.106 0.033-0.039 0.000
LSA tf (norm) 0.230 0.353 0.301 0.271 0.220 0.186 0.115 0.032 -0.029 0.000
LSA tf*itf 0.291 0.332 0.289 0.262 0.235 0.172 0.092 0.008 -0.041 0.000
LSA tf*itf (norm) 0.277 0.345 0.292 0.269 0.234 0.164 0.098 0.015 -0.046 0.000
VB tf 0.272 0.195 0.119 0.059 -0.012 -0.088 -0.164 -0.218 -0.240 -0.339
VB tf (norm) 0.277 0.207 0.130 0.069 -0.003 -0.083 -0.160 -0.215 -0.242 -0.339
VB tf*itf 0.287 0.206 0.127 0.062 -0.008 -0.085 -0.161 -0.214 -0.241 -0.339
VB tf*itf (norm) 0.286 0.212 0.132 0.071 -0.005 -0.081 -0.158 -0.214 -0.241 -0.339
Random -0.024 -0.014 0.015 -0.015 -0.004 -0.014 0.024 -0.009 -0.007 0.007
IHA 0.764

Table 2: Correlation of automatically generated scores with human annotations on cross-modal semantic
relatedness, as performed on the ImageNet test dataset of 2004 pairs of word and image. Correlation
figures scoring the highest within a weighting scheme are marked in bold, while those scoring the highest
across weighting schemes and within a visual vocabulary size are underlined.

6 Discussion

Our experimental results are shown in Table 2. A somewhat surprising observation is the consistency of
correlation figures between the two scenarios. In both scenarios, a representative set of 200 visual code-
words is sufficient to consistently score the highest correlation ratings across the 8 weighting schemes.
Intuitively, based on the experimental results, automatically choosing the top 10% or 20% of the visual
codewords seems to suffice and gives optimal correlation figures, but requires further justification. Con-
versely, the relatively simple weighting scheme usingtf (normalized)produces the highest correlation in
six visual codeword sizes (K=200,300,400,700,800,900) for the image-centered scenario, as well as in
another six visual codeword sizes (K=200,300,400,600,700,900) for the arbitrary-image scenario. Un-
like stopwords in text retrieval accounting for most of the highesttf scores, visual codewords weighted
by the same schemetf and a similartf (normalized)scheme seem to be the most discriminative. The
correlation for including the entire visual vocabulary set(1000) produces identical results for all vector-
based and LSA weighting schemes, as images across synsets are now encoded by the same set of visual
codewords without discrimination between them.

Dimensionality reduction using SVD gains an advantage overthe vector-based method for both sce-
narios, with the highest correlation rating in LSA (200 visual codeword,tf(norm)) achieving 0.077 points
better than the corresponding highest correlation in Vector-based (100 visual codeword,tf*itf ) for the
image-centered scenario, representing a 29.3% improvement. Similarly, in the arbitrary-image scenario,
the increase in correlation from 0.287 (VBtf*itf at 100 visual codeword) to 0.353 (LSAtf(norm) at
200 visual codeword) underlines a gain of approximately 23.0%. Overall, the arbitrary-image scenario
also scores consistently higher than the image-centered scenario under similar experimental conditions.
For instance, for the top 200 visual words, the same weighting schemes produce consistently lower
correlation figures for the image-centered scenario. This is also true for the Inter-Human-Agreement
score, which is higher in the arbitrary-image scenario (0.764) compared to the image-centered scenario
(0.687). Note that for all the experiments, the semantic relatedness scores generated from the semantic
vector space are significantly more correlated with the human gold-standard than the random baselines.
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(a) (b)

Figure 3: (a) Correlation performance, and (b) Classification accuracy, as more data is added to construct
the semantic space model.

To investigate the effectiveness of the model when scaling up to large datasets, we employ the best
combination of weighting scheme and vocabulary size shown in Table 2, i.e., a visual vocabulary size
of 200 andtf (normalized)weighting for LSA, and vocabulary size of 100 andtf*itf weighting for the
vector-based model, and incrementally construct models ranging from 167 synsets to 800 synsets (all
randomly selected from ImageNet). We then measure the correlation of relatedness scores generated
using the same test dataset with respect to human annotations. The dataset was randomly selected to in-
crease by approximately five times, from a total of 230,864 images with 878 words to a total of 1,014,528
images with 3887 words. Furthermore, for each unseen test image taken from SynsetSi and the associ-
ated 12 candidate words, we evaluate the ability of the modelto identify which of the candidate words
actually appear in the gloss or the synset ofSi, in a task we term as word classification. Here, the top
six words are predictably classified as those appearing inSi while the last six are classified as outside
of Si , after all 12 words are ranked in reverse order of their relatedness to the test image. We measure
the accuracy of the word classification task usingTP+TN

2004
, whereTP is the number of words correctly

classified as synset or gloss words, andTN is the number of words correctly classified as outside of
synset or gloss, both summed over the 2004 pairs of words and images.

As shown in Figure 3, when a small number of synsets (33) was added to the original semantic space,
correlation with human ratings increased steeply to around0.45 and higher for LSA in both scenarios,
while the vector-based method suffers a slight decrease in correlation ratings from 0.262 to 0.251 (image-
centered) and from 0.287 to 0.278 (arbitrary-image). As more images and words are added, correlation
for the vector-based model continues to decrease markedly.Comparatively, LSA is less sensitive to data
scaling, as correlation figures for both scenarios decreases slightly but stays within a 0.40 to 0.45 range.
Additionally, we infer that LSA is consistently more effective than the vector-based model in the words
classification task (as also seen in Figure 3). Even with moredata added to the semantic space, word
classification accuracy stays consistently at 0.7 for LSA, while it drops to 0.535 for the vector-based
model at a synset size of 800.

7 Conclusion

In this paper, we provided a proof of concept in quantifying the semantic relatedness between words and
images through the use of visual codewords and textual wordsin constructing a joint semantic vector
space. Our experiments showed that the relatedness scores have a positive correlation to human gold-
standards, as measured using a standard evaluation framework.

We believe many aspects of this work can be explored further.For instance, other visual codeword
attributes, such as pixel coordinates, can be employed in a structured vector space along with the existing
model for improving vector similarity measures. To improvetextual words coverage, a potentially effec-
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tive way would be to create mappings from WordNet synsets to Wikipedia entries, where the concepts
represented by the synsets are discussed in detail. We also plan to study the applicability of the joint
semantic representation model to tasks such as automatic image annotation and image classification.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation CAREER award
#0747340 and IIS award #1018613. Any opinions, findings, andconclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References
Barnard, K. and D. Forsyth (2001). Learning the semantics ofwords and pictures. InProceedings of International

Conference on Computer Vision.
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. InPsychological

Review, Volume 94, pp. 115–147.
Budanitsky, A. and G. Hirst (2005). Evaluating wordnet-based measures of lexical semantic relatedness. In

Computational Linguistics, Volume 32.
Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). ImageNet: A Large-Scale Hierarchical Image

Database. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Erk, K. and D. McCarthy (2009). Graded word sense assignment. In Proceedings of Empirical Methods in Natural

Language Processing.
Fei-Fei, L. and P. Perona (2005). A bayesian hierarchical model for learning natural scene categories. InProceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition.
Feng, Y. and M. Lapata (2010). Visual information in semantic representation. InProceedings of the Annual

Conference of the North American Chapter of the ACL.
Goldberger, J., S. Gordon, and H. Greenspan (2003). An efficient image similarity measure based on approxima-

tions of kl-divergence between two gaussian mixtures. InProceedings of IEEE International Conference on
Computer Vision.

Hare, J. S., S. Samangooei, P. H. Lewis, and M. S. Nixon (2008). Investigating the performance of auto-annotation
and semantic retrieval using semantic spaces. InProceedings of the international conference on content-based
image and video retrieval.

Kanerva, P. (1998). Sparse distributed memory. InMIT Press.
Landauer, T. and S. Dumais (1997). A solution to platos problem: The latent semantic analysis theory of acquisi-

tion. In Psychological Review, Volume 104, pp. 211–240.
Leong, C. W., R. Mihalcea, and S. Hassan (2010). Text mining for automatic image tagging. InProceedings of the

International Conference on Computational Linguistics.
Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. InInternational Journal of Computer

Vision.
Makadia, A., V. Pavlovic, and S. Kumar (2008). A new baselinefor image annotation. InProceedings of European

Conference on Computer Vision.
Miller, G. (1995). Wordnet: A lexical database for english.In Communications of the ACM, Volume 38, pp. 39–41.
Miller, G. and W. Charles (1998). Contextual correlates of semantic similarity. Language and Cognitive Pro-

cesses 6(1).
Potter, M. C. and B. A. Faulconer (1975). Time to understand pictures and words. InNature, Volume 253, pp.

437–438.
Salton, G., A. Wong, and C. Yang (1997). A vector space model for automatic indexing. InReadings in Information

Retrieval, pp. 273–280. San Francisco, CA: Morgan Kaufmann Publishers.
Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. InProceedings of the International

Conference on New Methods in Language Processing.
Smeulders, A. W., M. Worring, S. Santini, A. Gupta, and R. Jain (2000). Content-based image retrieval at the

end of the early years. InIEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22, pp.
1349–1380.

Westerveld, T. (2000). Image retrieval: Context versus context. InContent-Based Multimedia Information Access.
Widdows, D. and K. Ferraro (2008). Semantic vectors: a scalable open source package and online technology man-

agement application. InProceedings of the Sixth International Language Resourcesand Evaluation (LREC’08).
Yang, J., Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo (2007).Evaluating bag-of-visual-words representations

in scene classification. InACM Multimedia Information Retrieval Workshop.

194


