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Abstract

We present the first approach to learning the durations of events without annotated training data,

employing web query patterns to infer duration distributions. For example, we learn that “war”

lasts years or decades, while “look” lasts seconds or minutes. Learning aspectual information is an

important goal for computational semantics and duration information may help enable rich document

understanding. We first describe and improve a supervised baseline that relies on event duration

annotations. We then show how web queries for linguistic patterns can help learn the duration of

events without labeled data, producing fine-grained duration judgments that surpass the supervised

system. We evaluate on the TimeBank duration corpus, and also investigate how an event’s participants

(arguments) effect its duration using a corpus collected through Amazon’s Mechanical Turk. We make

available a new database of events and their duration distributions for use in research involving the

temporal and aspectual properties of events.

1 Introduction

Bridging the gap between lexical knowledge and world knowledge is crucial for achieving natural language

understanding. For example, knowing whether a nominal is a person or organization and whether a person

is male or female substantially improves coreference resolution, even when such knowledge is gathered

through noisy unsupervised approaches (Bergsma, 2005; Haghighi and Klein, 2009). However, existing

algorithms and resources for such semantic knowledge have focused primarily on static properties of

nominals (e.g. gender or entity type), not dynamic properties of verbs and events.

This paper shows how to learn one such property: the typical duration of events. Since an event’s

duration is highly dependent on context, our algorithm models this aspectual property as a distribution

over durations rather than a single mean duration. For example, a “war” typically lasts years, sometimes

months, but almost never seconds, while “look” typically lasts seconds or minutes, but rarely years or

decades. Our approach uses web queries to model an event’s typical distribution in the real world.

Learning such rich aspectual properties of events is an important area for computational semantics,

and should enrich applications like event coreference (e.g., Chen and Ji, 2009) in much the same way

that gender has benefited nominal coreference systems. Event durations are also key to building event

timelines and other deeper temporal understandings of a text (Verhagen et al., 2007; Pustejovsky and

Verhagen, 2009).

The contributions of this work are:

• Demonstrating how to acquire event duration distributions by querying the web with patterns.

• Showing that a system that predicts event durations based only on our web count distributions can

outperform a supervised system that requires manually annotated training data.

• Making available an event duration lexicon with duration distributions for common English events.

We first review previous work and describe our re-implementation and augmentation of the latest

supervised system for predicting event durations. Next, we present our approach to learning event

distributions based on web counts. We then evaluate both of these models on an existing annotated corpus

of event durations and make comparisons to durations we collected using Amazon’s Mechanical Turk.

Finally, we present a generated database of event durations.
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2 Previous Work

Early work on extracting event properties focused on linguistic aspect, for example, automatically

distinguishing culminated events that have an end point from non-culminated events that do not (Siegel

and McKeown, 2000). The more fine-grained task of predicting the duration of events was first proposed

by Pan et al. (2006), who annotated each event in a small section of the TimeBank (Pustejovsky et al.,

2003) with duration lower and upper bounds. They then trained support vector machines on their annotated

corpus for two prediction tasks: less-than-a-day vs. more-than-a-day, and bins like seconds, minutes,

hours, etc. Their models used features like bags of words, heads of syntactic subjects and objects, and

WordNet hypernyms of the events. This work provides a valuable resource in its annotated corpus and is

also a good baseline. We replicate their work and also add new features as described below.

Our approach to the duration problem is inspired by the standard use of web patterns for the acquisition

of relational lexical knowledge. Hearst (1998) first observed that a phrase like “. . . algae, such as

Gelidium. . . ” indicates that “Gelidium” is a type of “algae”, and so hypernym-hyponym relations can

be identified by querying a text collection with patterns like “such <noun> as <noun>” and “<noun> ,

including <noun>”. A wide variety of pattern-based work followed, including the application of the idea

in VerbOcean to acquire aspects and temporal structure such as happens-before, using patterns like “to

<verb> and then <verb>” (Chklovski and Pantel, 2004).

More recent work has learned nominal gender and animacy by matching patterns like “<noun> *

himself” and “<noun> and her” to a corpus of Web n-grams (Bergsma, 2005; Ji and Lin, 2009). Phrases like

“John Joseph”, which were observed often with masculine pronouns and never with feminine or neuter

pronouns, can thus have their gender identified as masculine. Ji and Lin found that such web-counts can

predict person names as well as a fully supervised named entity recognition system.

Our goal, then, is to integrate these two strands in the literature, applying pattern/web approaches to

the task of estimating event durations. One difference from previous work is the distributional nature of

the extracted knowledge. In the time domain, unlike in most previous relation-extraction domains, there is

rarely a single correct answer: “war” may last months, years or decades, though years is the most likely.

Our goal is thus to produce a distribution over durations rather than a single mean duration.

3 Duration Prediction Tasks

In both our supervised and unsupervised models, we consider two types of event duration predictions: a

coarse-grained task in which we only want to know whether the event lasts more or less than a day, and a

fine-grained task in which we want to know whether the event lasts seconds, minutes, hours, days, weeks,

months or years. These two duration prediction tasks were originally suggested by Pan et al. (2006), based

on their annotation of a subset of newspaper articles in the Timebank corpus (Pustejovsky et al., 2003).

Events were annotated with a minimum and maximum duration like the following:

• 5 minutes – 1 hour: A Brooklyn woman who was watching her clothes dry in a laundromat.

• 1 week – 3 months: Eileen Collins will be named commander of the Space Shuttle mission.

• 3 days – 2 months: President Clinton says he is committed to a possible strike against Iraq. . .

Pan et al. suggested the coarse-grained binary classification task because they found that the mean event

durations from their annotations were distributed bimodally across the corpus, roughly split into short

events (less than a day) and long events (more than a day). The fine-grained classification task provides

additional information beyond this simple two way distinction.

For both tasks, we must convert the minimum/maximum duration annotations into single labels. We

follow Pan et al. (2006) and take the arithmetic mean of the minimum and maximum durations in seconds.

For example, in the first event above, 5 minutes would be converted into 300 seconds, 1 hour would be

converted into 3600 seconds, the resulting mean would be 1950 seconds, and therefore this event would

be labeled less-than-a-day for the coarse-grained task, and minutes for the fine-grained task. These labels

can then be used directly to train and evaluate our models.
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4 Supervised Approach

Before describing our query-based approach, we describe our baseline, a replication and extension of the

supervised system from Pan et al. (2006). We first briefly describe their features, which are shared across

the coarse and fine-grained tasks, and then suggest new features.

4.1 Pan et. al. Features

The Pan et al. (2006) system included the following features which we also replicate:

Event Properties: The event token, lemma and part of speech (POS) tag.

Bag of Words: The n tokens to the left and right of the event word. However, because Pan et al.

found that n = 0 performed best, we omit this feature.

Subject and Object: The head word of the syntactic subject and object of the event, along with their

lemmas and POS tags. Subjects and objects provide important context. For example, “saw Europe” lasts

for weeks or months while “saw the goal” lasts only seconds.

Hypernyms: WordNet hypernyms for the event, its subject and its object. Starting from the first

synset of each lemma, three hypernyms were extracted from the WordNet hierarchy. Hypernyms can help

cluster similar events together. For example, the event plan had three hypernym ancestors as features:

idea, content and cognition.

4.2 New Features

We present results for our implementation of the Pan et al. (2006) system in Section 8. However, we also

implemented additional features.

Event Attributes: Timebank annotates individual events with four attributes: the event word’s tense

(past, present, future, none), aspect (e.g., progressive), modality (e.g., could, would, can, etc.), and event

class (occurrence, aspectual, state, etc.). We use each of these as a feature in our classifier. The aspect and

tense of the event, in particular, are well known indicators of the temporal shape of events (Vendler, 1976).

Named Entity Classes: Pan et al. found the subject and object of the events to be useful features,

helping to identify the particular sense of the event. We used a named entity recognizer to add more

information about the subjects and objects, labeling them as persons, organizations, locations, or other.

Typed Dependencies: We coded aspects of the subcategorization frame of a predicate, such as

transitivity, or the presence of prepositional objects or adverbial modifiers, by adding a binary feature

for each typed dependency1 seen with a verb or noun. We experimented with including the head of the

argument itself, but results were best when only the dependency type was included.

Reporting Verbs: Many of the events in Timebank are reporting verbs (say, report, reply, etc.). We

used a list of reporting verbs to identify these events with a binary feature.

4.3 Classifier

Both the Pan et al. feature set and our extended feature set were used to train supervised classifiers for the

two event duration prediction tasks. We experimented with naive bayes, logistic regression, maximum

entropy and support vector machine classifiers, but as discussed in Section 8, the maximum entropy model

performed best in cross-validations on the training data.

5 Unsupervised Approach

While supervised learning is effective for many NLP tasks, it is sensitive to the amount of available

training data. Unfortunately, the training data for event durations is very small, consisting of only 58 news

articles (Pan et al., 2006), and labeling further data is quite expensive. This motivates our desire to find an

1We parsed the documents into typed dependencies with the Stanford Parser (Klein and Manning, 2003).
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approach that does not rely on labeled data, but instead utilizes the large amounts of text available on the

Web to search for duration-specific patterns. This section describes our web-based approach to learning

event durations.

5.1 Web Query Patterns

Temporal properties of events are often described explicitly in language-specific constructions which can

help us infer an event’s duration. Consider the following two sentences from our corpus:

• Many spend hours surfing the Internet.

• The answer is coming up in a few minutes.

These sentences explicitly describe the duration of the events. In the first, the dominating clause spend

hours tells us how long surfing the Internet lasts (hours, not seconds), and in the second, the preposition

attachment serves a similar role. These examples are very rare in the corpus, but as can be seen, are

extremely informative when present. We developed several such informative patterns, and searched the

Web to find instances of them being used with our target events.

For each pattern described below, we use Yahoo! to search for the patterns occurring with our events.

We collect the total hit counts and use them as indicators of duration. The Yahoo! search API returns two

numbers for a query: totalhits and deephits. The former excludes duplicate pages and limits the number

of documents per domain while the latter includes all duplicates. We take the sum of these two numbers

as our count (this worked better than either of the two individually on the training data and provides

a balance between the benefits of each estimate) and normalize the results as described in Section 5.2.

Queries are submitted as complete phrases with quotation marks, so the results only include exact phrase

matches. This greatly reduces the number of hits, but results in more precise distributions.

5.1.1 Coarse-Grained Patterns

The coarse grained task is a binary decision: less than a day or more than a day. We can model this

task directly by looking for constructions that can only be used with events that take less than a day.

The adverb yesterday fills this role nicely; an event modified by yesterday strongly implies that it took

place within a single day’s time. For example, ‘shares closed at $18 yesterday’ implies that the closing

happened in less than a day. We thus consider the following two query patterns:
• <eventpast> yesterday

• <eventpastp> yesterday

where <eventpast> is the past tense (preterite) form of the event (e.g., ran), and <eventpastp> is the past

progressive form of the event (e.g., was running).

5.1.2 Fine-Grained Patterns

For the fine-grained task, we need patterns that can identify when an event falls into any of the various

buckets: seconds, minutes, hours, etc. Thus, our fine-grained patterns are parameterized both by the event

and by the bucket of interest. We use the following patterns inspired in part by Dowty (1979):
1. <eventpast> for * <bucket>

2. <eventpastp> for * <bucket>

3. spent * <bucket> <eventger>

where <eventpast> and <eventpastp> are defined as above, <eventger> is the gerund form of the event (e.g.,

running), and the wildcard ‘*’ can match any single token2.

The following three patterns ultimately did not improve the system’s performance on the training data:
4. <eventpast> in * <bucket>

5. takes * <bucket> to <event>

6. <eventpast> last <bucket>

Pattern 4 returned a lot of hits, but had low precision as it picked up many non-durative expressions.

Pattern 5 was very precise but typically returned few hits, and pattern 6 worked for, e.g., last week, but did

not work for shorter durations. All reported systems use patterns 1-3 and do not include 4-6.

2We experimented with varying numbers of wildcards but found little difference in performance on the training data.
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(a) “was saying for <bucket>”
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(b) “for <bucket>”
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(c) (a) counts divided by (b) counts

Figure 1: Normalizing the distribution for the pattern “was saying for <bucket>”.

We also tried adding subjects and/or objects to the patterns when they were present for an event.

However, we found that the benefit of the extra context was outweighed by the significantly fewer hits that

resulted. We implemented several backoff approaches that removed the subject and object from the query,

however, the counts from these backoff approaches were less reliable than just using the base event.

5.2 Predicting Durations from Patterns

To predict the duration of an event from the above patterns, we first insert the event into each pattern

template and query the web to see how often the filled template occurs. These counts form a distribution

over each of the bins of interest, e.g., in the fine-grained task we have counts for seconds, minutes, hours,

etc. We discard pattern distributions with very low total counts, and normalize the remaining pattern

distributions based on the frequency with which the pattern occurs in general. Finally, we uniformly

merge the distributions from all patterns, and use the resulting distribution to select a duration label for

the event. The following sections detail this process.

5.2.1 Coarse-Grained Prediction

For the coarse-grained task of less than a day vs. more than a day, we collect counts using the two

yesterday patterns described above. We then normalize these counts by the count of the event’s occurrence

in general. For example, given the event run, we query for “ran yesterday” and divide by the count of

“ran”. This gives us the probability of seeing yesterday given that we saw ran. We average the probabilities

from the two yesterday patterns, and classify an event as lasting less than a day if its average probability

exceeds a threshold t. We optimized t to our training set (t = .002). This basically says that if an event

occurs with yesterday more than 0.2% of the time, we will assume that the event lasts less than a day.

5.2.2 Fine-Grained Prediction

As with the coarse-grained task, our fine-grained approach begins by collecting counts using the three

fine-grained patterns discussed above. Since each fine-grained pattern has both an <event> and a <bucket>

slot to be filled, for a single event and a single pattern, we end up making 8 queries to cover each of the 8

buckets: seconds, minutes, hours, days, weeks, months, years and decades. After these queries, we have a

pattern-specific distribution of counts over the various buckets, a coarse measure of the types of durations

that might be appropriate to this event. Figure 1(a) shows an example of such a distribution.

As can be seen in Figure 1(a), this initial distribution can be skewed in various ways – in this case,

years is given far too much mass. This is because in addition to the single event interpretation of words

like “saying”, there are iterative or habitual interpretations (Moens and Steedman, 1988; Frawley, 1992).

Iterative events occur repeatedly over a period of time, e.g., “he’s been saying for years that. . . ” The two

interpretations are apparent in the raw distributions of smile and run in Figure 2. The large peak at years

for run shows that it is common to say someone “was running for years.” Conversely, it is less common to

say someone “was smiling for years,” so the distribution for smile is less biased towards years.
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Figure 2: Two double peaked distributions.

Coverage of Fine-Grained Query Patterns

Number of Patterns Total Events Precision

At least one 1359 (81.7%) 57.3

At least two 1142 (68.6%) 58.6

All three 428 (25.7%) 65.7

Figure 3: The number of events that match n fine-

grained patterns and the pattern precision on these

events. The training set consists of 1664 events.

While the problem of distinguishing single events from iterative events is out of the scope of this paper

(though an interesting avenue for future research), we can partially address the problem by recognizing

that some buckets are simply more frequent in text than others. For example, Figure 1(b) shows that it is

by far more common to see “for <bucket>” filled with years than with any other duration unit. Thus, for

each bucket, we divide the counts collected with the event patterns by the counts we get for the pattern

without the event3. Essentially, this gives us for each bucket the probability of the event given that bucket.

Figure 1(c) shows that the resulting normalized distribution fits our intution of how long “saying” should

last much better than the raw counts: seconds and minutes have much more of the mass now.

After normalizing an event’s counts for each pattern, we combine the distributions from the three

different patterns if their hit counts pass certain confidence thresholds. The total hit count for each pattern

must exceed a minimum threshold tmin = 100 and not exceed a maximum threshold tmax = 100, 000
(both thresholds were optimized on the training data). The former avoids building distributions from a

sparse number of hits, and the latter avoids classifying generic and polysemous events like ‘to make’ that

return a large number of hits. We found such events to produce generic distributions that do not help in

classification. If all three patterns pass our confidence thresholds, we merge the pattern distributions by

summing them bucket-wise together and renormalizing the resulting distribution to sum to 1. Merging the

patterns mitigates the noise from any single pattern.

To predict the event’s duration, we then select the bucket with the highest smoothed score:

score(bi) = bi−1 + bi + bi+1

where bi is a duration bucket and 0 < i < 9. We define b0 = b9 = 0. In other words, the score of the

minute bucket is the sum of three buckets: second, minute and hour. This parallels the smoothing of the

evaluation metric introduced by (Pan et al., 2006) which we also adopt for evaluation in Section 7.

In the case that fewer than three of our patterns matched, we backoff to the majority class (months for

fine-grained, and more-than-a-day for coarse-grained). We experimented with only requiring one or two

patterns to match, but found the best results on training when requiring all three. Figure 3 shows the large

jump in precision when all three are required. The evaluation is discussed in Section 7.

5.2.3 Coarse-Grained Prediction via Fine-Grained Prediction

We can also use the distributions collected from the fine-grained task to predict coarse-grained labels. We

use the above approach and return less than a day if the selected fine-grained bucket was seconds, minutes

or hours, and more than a day otherwise. We also tried summing over the duration buckets: p(seconds) +

p(minutes) + p(hours) for less than day and p(days) + p(weeks) + p(months) + p(years) + p(decades) for

more than a day, but the simpler approach outperformed these summations in training.

3We also explored normalizing not by the global distribution on the Web, but by the average of the distributions of all the

events in our dataset. However, on the training data, using the global distribution performed better.
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6 Datasets

6.1 Timebank Duration

As described in Section 3, Pan et al. (2006) labeled 58 documents with event durations. We follow their

method of isolating the 10 WSJ articles as a separate test set which we call TestWSJ (147 events). For

the remaining 48 documents, they split the 2132 event instances into a Train and Test set with 1705 and

427 events respectively. Their split was conducted over the bag of events, so their train and test sets may

include events that came from the same document. Their particular split was unavailable.

We instead use a document-split that divides the two sets into bins of documents. Each document’s

entire set of events is assigned to either the training set or the test set, so we do not mix events across

sets. Since documents often repeat mentions of events, this split is more conservative by not mixing test

mentions with the training set. Train, Test, and TestWSJ contain 1664 events (714 unique verbs), 471 events

(274 unique), and 147 events (84 unique) respectively. For each base verb, we created queries as described

in Section 5.1.2. The train/test split is available at http://cs.stanford.edu/people/agusev/durations/.

6.2 Mechanical Turk Dataset

We also collected event durations from Amazon’s Mechanical Turk (MTurk), an online marketplace from

Amazon where requesters can find workers to solve Human Intelligence Tasks (HITs) for small amounts

of money. Prior work has shown that human judgments from MTurk can often be as reliable as trained

annotators (Snow et al., 2008) or subjects in controlled lab studies (Munro et al., 2010), particularly when

judgments are aggregated over many MTurk workers (“Turkers”). Our motivation for using Turkers is to

better analyze system errors. For example, if we give humans an event in isolation (no sentence context),

how well can they guess the durations assigned by the Pan et. al. annotators? This measures how big the

gap is between a system that looks only at the event, and a system that integrates all available context.

To collect event durations from MTurk, we presented Turkers with an event from the TimeBank (a

superset of the events annotated by Pan et al. (2006)) and asked them to decide whether the event was most

likely to take seconds, minutes, hours, days, weeks, months, years or decades. We had events annotated

in two different contexts: in isolation, where only the event itself was given (e.g., “allocated”), and in

subject-object context, where a minimal phrase including the event and its subject and object was given

(e.g., “the mayor allocated funds”). In both types of tasks, we asked 10 Turkers to label each event,

and they were paid $0.0025 for each annotation ($0.05 for a block of 20 events). To filter out obvious

spammers, we added a test item randomly to each block, e.g., adding the event “minutes” and rejecting

work from Turkers who labeled this anything other than the duration minutes.

The resulting annotations give duration distributions for each of our events. For example, when

presented the event “remodeling”, 1 Turker responded with days, 6 with weeks, 2 with months and 1

with years. These annotations suggest that we generally expect “remodeling” to take weeks, but it may

sometimes take more or less. To produce a single fine-grained label from these distributions, we take the

duration bin with the largest number of Turker annotations, e.g. for “remodeling”, we would produce the

label weeks. To produce a single coarse-grained label, we use the label less-than-a-day if the fine-grained

label was seconds, minutes or hours and more-than-a-day otherwise.

7 Experiment Setup

As discussed in Section 3, we convert the minimum and maximum duration annotations into labels by

converting each to seconds using ISO standards and calculating the arithmetic mean. If the mean is

≤ 86400 seconds, it is considered less-than-a-day for the coarse-grained task. The fine-grained buckets

are similarly calculated, e.g., X is labeled days if 86400 < X ≤ 604800. The Pan et al. (2006) evaluation

does not include a decades bucket, but our system still uses “decades” in its queries.

We optimized all parameters of both the supervised and unsupervised systems on the training set, only

running on test after selecting our best performing model. We compare to the majority class as a baseline,
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Coarse-Grained

Test TestWSJ

Supervised, Pan 73.3 73.5

Supervised, all 73.0 74.8

Fine-Grained

Test TestWSJ

Supervised, Pan 62.2 61.9

Supervised, all 62.4 66.0

Figure 4: Accuracies of the supervised maximum entropy classifiers with two different feature sets.

Coarse-Grained

Test TestWSJ

Majority class 62.4 57.1

Supervised, all 73.0* 74.8*

Web counts, yesterday 70.7* 74.8*

Web counts, buckets 72.4* 73.5*

Fine-Grained

Test TestWSJ

Majority class 59.2 52.4

Supervised, all 62.4 66.0†

Web counts, buckets 66.5* 68.7*

Figure 5: System accuracy compared against supervised and majority class. * indicates statistical

significance (McNemar’s Test, two-tailed) against majority class at the p < 0.01 level, † at p < 0.05

tagging all events as more-than-a-day in the coarse-grained task and months in the fine-grained task.

To evaluate our models, we use simple accuracy on the coarse-grained task, and approximate agreement

matching as in Pan et al. (2006) on the fine-grained task. In this approximate agreement, a guess is

considered correct if it chooses either the gold label or its immediate neighbor (e.g., hours is correct if

minutes, hours or days is the gold class). Pan et al. use this approach since human labeling agreement is

low (44.4%) on the exact agreement fine-grained task.

8 Results

Figure 4 compares the performance of our two supervised models; the reimplementation of Pan et al.

(2006) (Supervised, Pan), and our improved model with new features (Supervised, all). The new model

performs similarily to the Pan model on the in-domain Test set, but better on the out-of-domain financial

news articles in the TestWSJ test. On the latter, the new model improves over Pan et al. by 1.3% absolute

on the coarse-grained task, and by 4.1% absolute on the fine-grained task. We report results from the

maximum entropy model as it slightly outperformed the naive bayes and support vector machine models4.

We compare these supervised results against our web-based unsupervised systems in Figure 5. For the

coarse-grained task, we have two web count systems described in Section 5: one based on the yesterday

patterns (Web counts, yesterday), and one based on first gathering the fine-grained bucket counts and

then converting those to coarse-grained labels (Web counts, buckets). Generally, these models perform

within 1-2% of the supervised model on the coarse-grained task, though the yesterday-based classifier

exactly matches the supervised system’s performance on the TestWSJ data. The supervised system’s

higher results are not statistically significant against our web-based systems.

For the fine-grained task, Figure 5 compares our web counts algorithm based on duration distributions

(Section 5) to the baseline and supervised systems. Our web counts approach outperforms the best

supervised system by 4.1% absolute on the Test set and by 2.7% absolute on the out-of-domain TestWSJ.

To get an idea of how much the subject/object context could help predict event duration if integrated

perfectly, we evaluated the Mechanical Turk annotations against the Pan et. al. annotated dataset using

approximate agreement as described in Section 7. Figure 6 gives the performance of the Turkers given

two types of context: just the event itself (Event only), and the event plus its subject and/or object (Event

and args). Turkers performed below the majority class baseline when given only the event, but generally

above the baseline when given the subject and object, improving up to 20% over the event-only condition.

Figure 7 shows examples of events with different learned durations.

4This differs from Pan et al. who found support vector machines to be the best classifier.
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Mechanical Turk Accuracy

Coarse Fine

Test WSJ Test WSJ

Majority class 62.4 57.1 59.2 52.4

Event only 52.0 49.4 42.1 43.8

Event and args 65.0 70.1 56.7 59.9

Figure 6: Accuracy of Mechanical Turkers

against Pan et. al. annotations.

Learned Examples

talk to tourism leaders minutes

driving hours

shut down the supply route days

travel weeks

the downturn across Asia months

build a museum years

Figure 7: Examples of web query durations.

9 Discussion

Our novel approach to learning event durations showed 4.1% and 2.7% absolute gains over a state-of-the-

art supervised classifier. Although the gain is not statistically significant, these results nonetheless suggest

that we are learning as much about event durations from the web counts as we are currently able to learn

with our improvements to Pan et al.’s (2006) supervised system. This is encouraging because it indicates

that we may not need extensive manual annotations to acquire event durations. Further, our final query

system achieves these results with only the event word, and without considering the subject, object or

other types of context.

Despite the fact that we saw little gains in performance when including subjects and objects in our

query patterns, the Mechanical Turk evaluation suggests that more information may still be gleaned from

the additional context. Giving Turkers the subject and object improved their label accuracy by 10-20%

absolute. This suggests that finding a way to include subjects and objects in the web queries, for example

by using thesauri to generate related queries, is a valuable line of research for future work.

Finally, these MTurk experiments suggest that classifying events for duration out of context is a

difficult task. Pan et al. (2006) reported 0.88 annotator agreement on the coarse-grained task when given

the entire document context. Out of context, given just the event word, our Turkers only achieved 52%
and 49% accuracy. Not surprisingly, the task is more difficult without the document. Our system, however,

was also only given the event word, but it was able achieve over 70% in accuracy. This suggests that rich

language understanding is often needed to correctly label an event for duration, but in the absence of such

understanding, modeling the duration by web counts appears to be a practical and useful alternative.

10 A Database of Event Durations

Given the strong performance of our model on duration classification, we are releasing a database of

events and their normalized duration distributions, as predicted by our bucket-based fine-grained model.

We extracted the 1000 most frequent verbs from a newspaper corpus (the NYT portion of Gigaword

Graff (2002)) with the 10 most frequent grammatical objects of each verb. These 10, 000 events and their

duration distributions are available at http://cs.stanford.edu/people/agusev/durations/.
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