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Abstract

We present a system to translate natural language sentences to formulas in a formal or a knowl-

edge representation language. Our system uses two inverse λ-calculus operators and using them can

take as input the semantic representation of some words, phrases and sentences and from that de-

rive the semantic representation of other words and phrases. Our inverse λ operator works on many

formal languages including first order logic, database query languages and answer set programming.

Our system uses a syntactic combinatorial categorial parser to parse natural language sentences and

also to construct the semantic meaning of the sentences as directed by their parsing. The same parser

is used for both. In addition to the inverse λ-calculus operators, our system uses a notion of gener-

alization to learn semantic representation of words from the semantic representation of other words

that are of the same category. Together with this, we use an existing statistical learning approach to

assign weights to deal with multiple meanings of words. Our system produces improved results on

standard corpora on natural language interfaces for robot command and control and database queries.

1 Introduction

Our long term goal is to develop general methodologies to translate natural language text into a formal

knowledge representation (KR) language. In the absence of a single KR language that is appropriate

for expressing all the nuances of a natural language, currently, depending on the need different KR

languages are used. For example, while first-order logic is appropriate for mathematical knowledge, one

of its subset Description logic is considered appropriate for expressing ontologies, temporal logics are

considered appropriate for expressing goals of agents and robots, and various non-monotonic logics have

been proposed to express common-sense knowledge. Thus, one of of our goals in this paper is to develop

general methodologies that can be used in translating natural language to a desired KR language.

There have been several learning based approaches, mainly from two groups at MIT and Austin.

These include the following works: Zettlemoyer and Collins (2005), Kate and Mooney (2006), Wong

and Mooney (2006), Wong and Mooney (2007), Lu et al. (2008), Zettlemoyer and Collins (2007) and Ge

and Mooney (2009). Given a training corpus of natural language sentences coupled with their desired

representations, these approaches learn a model capable of translating sentences to a desired meaning

representation. For example, in the work by Zettlemoyer and Collins (2005), a set of hand crafted

rules is used to learn syntactic categories and semantic representations of words based on combinatorial

categorial grammar (CCG), as described by Steedman (2000), and λ-calculus formulas, as discussed

by Gamut (1991). The later work of Zettlemoyer and Collins (2007), also uses hand crafted rules. The

Austin group has several papers over the years. Many of their works including the one by Ge and Mooney

(2009) use a word alignment method to learn semantic lexicon and learn rules for composing meaning

representation.
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Similar to the work by Ge and Mooney (2009), we use an existing syntactic parser to parse natural

language. However we use a CCG parser, as described by Clark and Curran (2007), to parse sentences,

use lambda calculus for meaning representation, use the CCG parsing to compose meaning and have an

initial dictionary. Note that unlike the work by Ge and Mooney (2009), we do not need to learn rules

for composing meaning representation. We use a novel method to learn semantic lexicon which is based

on two inverse lambda operators that allow us to compute F given G and H such that F@G = H
or G@F = H . Compared to the work by Zettlemoyer and Collins (2005), we use the same learning

approach but use a completely different approach in lexical generation. Our inverse λ operator has been

tested to work for many languages including first order logic, database query language, CLANG by

Chen et al. (2003), answer set programming (ASP) as described by Baral (2003), and temporal logic.

Thus our approach is not dependent on the language used to represent the semantics, nor limited by a

fixed set of rules. Rather, the new λ-calculus formulas and their semantic models, corresponding to the

semantic or meaning representations, are directly obtained from known semantic representations which

were provided with the data or learned before. The richness of λ calculus allows us to rely only on the

syntactic parse itself without the need to have separate rules for composing the semantics. The provided

method yields improved experimental results on existing corpora on robot command and control and

database queries.

2 Motivation and Background

We now illustrate how one can use CCG parsing and λ-calculus applications to obtain database query

representation of sentences. We then motivate and explain the role of our “inverse λ” operator. A

syntactic and semantic parse tree for the sentence “Give me the largest state.” is given in Table 1.

Give me the largest state.

S/NP NP/N N/N N
S/NP NP/N N
S/NP NP

S

Give me the largest state.

λx.answer(A, x@A) λx.x λx.λy.largest(y, x@y) λz.state(z)
λx.answer(A, x@A) λx.x λy.largest(y, state(y))
λx.answer(A, x@A) λy.largest(y, state(y))

answer(A, largest(A, state(A)))

Table 1: CCG and λ-calculus derivation for “Give me the largest state.”

The upper portion of the figure lists the nodes corresponding to the CCG categories which are used to

syntactically parse the sentence. These are assigned to each word and then combined using combinatorial

rules, as described by Steedman (2000), to obtain the categories corresponding to parts of the sentence

and finally the complete sentence itself. For example, the category for “largest”, N/N is combined with

the category of “state.”, N , to obtain the category of “largest state.”, which is N . In a similar manner, each

word is assigned a semantic meaning in the form of a λ-calculus formula, as indicated by the lower por-

tion of the figure. The language used to represent the semantics of words and the sentence is the database

query language used in the robocup domain. The formulas corresponding to words are combined by ap-

plying one to another, as dictated by the syntactic parse tree to obtain the semantic representation of the

whole sentence. For example, the semantics of “the largest state.”, λy.largest(y, state(y)) is applied

to the semantics of “Give me”, λx.answer(A, x@A), to obtain the semantics of “Give me the largest

state.”, answer(A, largest(A, state(A))).
The given example illustrates how to obtain the semantics of the sentence given the semantics of

words. However, what happens if the semantics of the word “largest” is not given? It might be either

missing completely, or the current semantics of “largest” in the dictionary might simply not be applicable
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for the sentence “Give me the largest state.”.

Let us assume that the semantic representation of “largest” is not known, while the semantic repre-

sentation of the rest of the sentence is known. We can then obtain the semantic representation of “largest”

as follows. Given the formula answer(A, largest(A, state(A))) for the whole sentence “Give me the

largest state.” and the formula λx.answer(A, x@A) for “Give me”, we can perform some kind of an in-

verse application 1 to obtain the semantics representation of “the largest state”, λy.largest(y, state(y)).
Similarly, we can then use the known semantics of “the”, to obtain the semantic representation of “largest

state.” as λy.largest(y, state(y)). Finally, using the known semantics of state, λz.state(z) we can ob-

tain the the semantics of “largest” as λx.λy.largest(y, x@y).
It is important to note that using @ we are able to construct relatively complex semantic representa-

tions that are properly mapped to the required syntax.

Given a set of training sentences with their desired semantic representations, a syntactic parser, such

as the one by Clark and Curran (2007), and an initial dictionary, we can apply the above idea on each

of the sentences to learn the missing semantic representations of words. We can then apply a learning

model, such as the one used by Zettlemoyer and Collins (2005), on these new semantic representations

and assign weights to different semantic representations. These can then be used to parse and represent

the semantics of new sentences. This briefly sums up our approach to learn and compute new semantic

representations. It is easy to see that this approach can be applied with respect to any language that can

be handled by “inverse λ” operators and is not limited in the set of new representations it provides.

We will consider two domains to evaluate our approach. The fist one is the GEOQUERY domain used

by Zelle and Mooney (1996), which uses a Prolog based language to query a database with geographical

information about the U.S. It should be noted that this language uses higher-order predicates. An example

query is provided in Table 1. The second domain is the ROBOCUP domain of Chen et al. (2003). This is

a multi-agent domain where agents compete against each other in a simulated soccer game. The language

CLANG of Chen et al. (2003) is a formal language used to provide instructions to the agents. An example

query with the corresponding natural language sentence is given below.

• If the ball is in our midfield, position player 3 at (-5, -23).

• ((bpos (midfield our)) (do (player our 3) (pos (pt -5 -23))))

3 Learning Approach

We adopt the learning model given by Zettlemoyer and Collins (2005, 2007, 2009) and use it to assign

weights to the semantic representations of words. Since a word can have multiple possible syntac-

tic and semantic representations assigned to it, such as John may be represented as John as well as

λx.x@John, we use the probabilistic model to assign weights to these representations.

The main differences between our algorithm and the one given by Zettlemoyer and Collins (2005)

are the way in which new semantic representations are obtained. While Zettlemoyer and Collins (2005)

uses a predefined table to obtain these, we obtain the new semantic representations by using inverse λ
operators and generalization.

3.1 Learning model and parsing

We assume that complete syntactic parses are available2. The parsing uses a probabilistic combinatorial

categorial grammar framework similar to the one given by Zettlemoyer and Collins (2005). We assume a

probabilistic categorial grammar (PCCG) based on a log linear model. Let S denote a sentence, L denote

the semantic representation of the sentence, and T denote it’s parse tree. We assume a mapping f̄ of a

triple (L, T, S) to feature vectors Rd and a vector of parameters Θ̄ ∈ Rd representing the weights. Then

the probability of a particular syntactic and semantic parse is given as:

1Thus instead of applying G to F to obtain H , G@F = H , we try to find an F such that G@F = H given G and H .
2A sentence can have several different parses.
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P (L, T |S; Θ̄) = ef̄(L,T,S).Θ̄
∑

(L,T )
ef̄(L,T,S).Θ̄

We use only lexical features. Each feature fj counts the number of times that the lexical entry is used

in T .

Parsing a sentence under PCCG includes finding L such that P (L|S; Θ̄) is maximized.

argmaxLP (L|S; Θ̄) =
argmaxL

∑
T P (L, T |S; Θ̄)

We use dynamic programming techniques to calculate the most probable parse for a sentence.

3.2 The inverse λ operators

For lack of space, we present only one of the two Inverse λ operators, InverseL and InverseR of

Gonzalez (2010). The objective of these two algorithms is that given typed λ-calculus formulas H and

G, we want to compute the formula F such that F@G = H and G@F = H . First, we introduce the

different symbols used in the algorithm and their meaning :

• Let G, H represent typed λ-calculus formulas, J1,J2,...,Jn represent typed terms, v1 to vn, v and

w represent variables and σ1,...,σn represent typed atomic terms.

• Let f() represent a typed atomic formula. Atomic formulas may have a different arity than the one

specified and still satisfy the conditions of the algorithm if they contain the necessary typed atomic

terms.

• Typed terms that are sub terms of a typed term J are denoted as Ji.

• If the formulas we are processing within the algorithm do not satisfy any of the if conditions then

the algorithm returns null.

Definition 1 (operator :) Consider two lists of typed λ-elements A and B, (ai, ..., an) and (bj , ..., bn)
respectively and a formula H . The result of the operation H(A : B) is obtained by replacing ai by bi,
for each appearance of A in H.

Next, we present the definition of an inverse operators3 InverseR(H,G):

Definition 2 (InverseR(H,G)) The function InverseR(H,G), is defined as:

Given G and H:

1. If G is λv.v@J , set F = InverseL(H, J)

2. If J is a sub term of H and G is λv.H(J : v) then F = J .

3. If G is not λv.v@J , J is a sub term of H and G is λw.H(J(J1, ..., Jm) : w@Jp, ...,@Jq) with 1

≤ p,q,s ≤ m. then F = λv1, ..., vs.J(J1, ..., Jm : vp, ..., vq).

The function InverseL(H,G) is defined similarly.

Illustration: InverseR - Case 3:

Suppose H = in(river, Texas) and G = λv.v@Texas@river
G is not of the form λv.v@J since J = Texas@river is not a formula. Thus the first condition is not

satisfied. Similarly, there is no J that satisfies the second condition. Thus let us try to find a suitable J
that satisfies third condition. If we take J1 = river and J2 = Texas, then the third condition is satisfied

by G = λx.H((J(J1, J2) : x@J2@J1), which in this case corresponds to G = λx.H(in(river, Texas) :
x@Texas@river). Thus, F = λv1, v2.J(J1, J2 : v2, v1) and so F = λv1, v2.in(v2, v1).
It is easy to see that G @ F = H .

3This is the operator that was used in this implementation. In a companion work we develop an enhancement of this operator

which is proven sound and complete.
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3.3 Generalization

Using INV ERSE L and INV ERSE R, we are able to obtain new semantic representations of par-

ticular words in the sentence. However, without any form of generalization, we are not able to extend

these to words beyond the ones actually contained in the training data. Since our goal is to go beyond

that, we strive to generalize the new semantic representations beyond those words.

To extend our coverage, a function that will take any new learned semantic expressions and the cur-

rent lexicon and will try to use them to obtain new semantic expressions for words of the same category

has to be designed. It will use the following idea. Consider the non-transitive verb “fly” of category

S\NP . Lets assume we obtain a new semantic expression for “fly” as λx.fly(x) using INV ERSE L
and INV ERSE R. The GENERALIZE function looks up all the words of the same syntactic cat-

egory, S\NP . It then identifies the part of the semantic expression in which “fly” is involved. In our

particular case, it’s the subexpression fly. It then proceeds to search the dictionary for all the words of

category S\NP . For each such word w, it will add a new semantic expression λx.w(x) to the dictionary.

For example for the verb “swim”, it would add λx.swim(x).
However, the above idea also comes with a drawback. It can produce a vast amount of new se-

mantics representations that are not necessary for most of the sentences, and thus have a negative

impact on performance. Thus instead of applying the above idea on the whole dictionary, we per-

form generalization “on demand”. That is, if a sentence contains words with unknown semantics, we

look for words of the same category and use the same idea to find their semantics. Let us assume

IDENTIFY (word, semantics) identifies the parts of semantics in which word is involved and

REPLACE(s, a, b) replaces a with b in s. We assume that each lexical entry is a triple (w, cat, sem)
where w is the actual word, cat is the syntactic category and sem is the semantic expression correspond-

ing to w and cat.
GENERALIZED(L,α)

• For each lj ∈ L

– If lj(cat) = α(cat)

∗ I = IDENTIFY (lj(w), lj(sem))

∗ S = REPLACE(lj(sem), I, α(w))

∗ L = L ∪ (α(w), α(cat), S)

As an example, consider the sentence “Give me the largest state.” from Table 1. Let us assume that

the semantics of the word “largest” as well as “the” is not known, however the semantics of “longest”

is given by the dictionary as λx.λy.longest(y, x@y). Normally, the system would be unable to parse

this sentence and would continue on. However, upon calling GENERALIZED(L,“largest”), the

word longest is found in the dictionary with the same syntactic category. Thus this function takes the

semantic representation of “longest” λx.λy.longest(y, x@y), modifies it accordingly for largest, giving

λx.λy.largest(y, x@y) and stores it in the lexicon. After that, the INV ERSEL and INV ERSER can

be applied to obtain the semantics of “the”.

3.4 Trivial inverse solutions

Even with on demand generalization, we might still be missing large amounts of semantics information

to be able to use INV ERSEL and INV ERSER. To make up for this, we allow trivial solutions

under certain conditions. A trivial solution is a solution, where one of the formulas is assigned a λx.x
representation. For example, given H , we are looking for F such that H = G@F . If we set G to be

λx.x, then trivially F = H . Thus we can try to carefully set some unknown semantics of words as

λx.x which will allow us to compute the semantics of the remaining words using INV ERSEL and

INV ERSER. The question then becomes, when do we allow these? In our approach, we allow these

for words that do not seem to have any contribution to the final semantic meaning of the text. In some
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cases, articles such as “the”, while having a specific place in the English language, might not contribute

anything to the actual meaning representation of the sentence. In general, any word not present in the

final semantics is a potential candidate to be assigned the trivial semantic representation λx.x. These are

added with very low weights compared to the semantics found using INV ERSEL and INV ERSER,

so that if at one point a non-trivial semantic representation is found, the system will attempt to use it over

the trivial one.

As an example, consider again the sentence “Give me the largest state.” from Table 1 with the se-

mantics answer(A, largest(A, state(A))). Let us assume the semantic representations of “the” and

“largest” are not known. Under normal circumstances the algorithm would be unable to find the seman-

tics of “largest” using INV ERSEL and INV ERSER as it is missing the semantics of “the”. However,

as “the” is not present in the desired semantics, the system will attempt to assign λx.x as its semantic

representation. After doing that, INV ERSEL and INV ERSER can be used to compute the semantic

representation of “largest” as λx.λy.largest(y, x@y).

3.5 The overall learning algorithm.

The complete learning algorithm used within our approach is shown below. The input to the algorithm

is an initial lexicon L0 and a set of pairs (Si, Li), i = 1, ..., n, where Si is a sentence and Li its corre-

sponding logical form. The output of the algorithm is a PCCG defined by the lexicon LT and a parameter

vector ΘT .

The parameter vector Θi is updated at each iteration of the algorithm. It stores a real number for each

item in the dictionary. The initial values were set to 0.1. The algorithm is divided into two major steps,

lexical generation and parameters update. The goal of the algorithm is to extract as much information as

possible given the provided training data.

In the first step, the algorithm iterates over all the sentences n times and for each sentence constructs a

syntactic and (potentially incomplete) semantic parse tree. Using the semantic parse tree, it then attempts

to obtain new λ-calculus formulas by traversing the tree and performing regular applications and inverse

computations where possible. Any new semantics are then generalized and stored in the lexicon.

The main reason to iterate over all the sentences n times is to extract all the possible information

given the current parameter vector. There may be cases where the information learned from the last

sentence can be used to learn additional information from the third sentence, which can then be used to

learn new semantics from the second sentence etc. By looping over all sentences n times, we ensure we

capture and learn as much information as possible.

Note that the semantic parse trees of the sentences may change once the parameters of words change.

Thus even though we are looping over all the sentences T times, the semantic parse tree of a sentence

might change as a result of a change in the parameter vector. This change can be very minor, such as

change in the semantics of a single word, or in a rare case a major one where most of the semantic

expressions present in the tree change. Thus we might learn different semantics of words given different

parameter vectors.

In the second step, the parameter vector Θi is updated using stochastic gradient descent. Steps one

and two are performed T times. In our experiments, the value of T ranged from 50 to 100.

Overall, steps one and two form an exhaustive search which optimizes the log-likelihood of the

training model.

• Input:

A set of training sentences with their corresponding desired representations S = {(Si, Li) : i =
1...n} where Si are sentences and Li are desired expressions. Weights are given an initial value of

0.1.

An initial lexicon L0. An initial feature vector Θ0.

• Output:

An updated lexicon LT+1. An updated feature vector ΘT+1.
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• Algorithm:

– For t = 1 . . . T

– Step 1: (Lexical generation)

– For i = 1...n.

∗ For j = 1...n.

∗ Parse sentence Sj to obtain Tj

∗ Traverse Tj

· apply INV ERSE L, INV ERSE R and GENERALIZED to find new λ-calculus

expressions of words and phrases α.

∗ Set Lt+1 = Lt ∪ α

– Step 2: (Parameter Estimation)

– Set Θt+1 = UPDATE(Θt, Lt+1)
4

• return GENERALIZE(LT , LT ),Θ(T )

4 Experimental Evaluation

4.1 The data

To evaluate our algorithm, we used the standard corpus in GEOQUERY and CLANG. The GEOQUERY

corpus contained 880 English sentences with respective database queries. The CLANG corpus contained

300 entries specifying rules, conditions and definitions in CLANG. The GEOQUERY corpus contained

relatively short sentences with the sentences ranging from four to seventeen words of quite similar syn-

tactic structure. The sentences in CLANG are much longer, with more complex structure with length

ranging from five to thirty eight words.

For our experiments, we used the C&C parser of Clark and Curran (2007) to provide syntactic

parses for sentences. For CLANG corpus, the position vectors and compound nouns with numbers were

pre-processed and consequently treated as single noun.

Our experiments were done using a 10 fold cross validation and were conducted as follows. A set of

training and testing examples was generated from the respective corpus. These were parsed by the C&C
parser to obtain the syntactic tree structure. These together with the training sets containing the training

sentences with their corresponding semantic representations (SRs) and an initial dictionary was used to

train a new dictionary with corresponding parameters. This dictionary was generalized with respect of

all the words in the test sentences. Note that it is possible that many of the words were still missing their

SRs. This dictionary was then used to parse the test sentences and highest scoring parse was used to

determine precision and recall. Since many words might have been missing their SRs, the system might

not have returned a proper complete semantic parse.

To measure precision and recall, we adopted the measures given by Ge and Mooney (2009). Precision

denotes the percentage of of returned SRs that were correct, while Recall denotes the percentage of test

examples with pre-specified SRs returned. F-measure is the standard harmonic mean of precision and

recall. For database querying, an SR was considered correct if it retrieved the same answer as the standard

query. For CLANG, an SR was correct if it was an exact match of the desired SR, except for argument

ordering of conjunctions and other commutative predicates. Additionally, a set of additional experiments

was run with “(definec” and “(definer” treated as being equal.

We evaluated two different version of our system. The first one, INV ERSE, uses INV ERSEL

and INV ERSER and regular generalization which is applied after each step. The second version,

INV ERSE+, uses trivial inverse solutions as well as on demand generalization. Both systems were

4For details on Θ computation, please see the work by Zettlemoyer and Collins (2005)
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evaluated on the same data sets using 10 fold cross validation and the C&C parser using an equal number

of train and test sentences, randomly chosen from their respective corpus. The initial dictionary contained

a few nouns, with the addition of one randomly selected word from the set {what, where, which} in

case of GEOQUERY. For CLANG, the initial dictionary also contained a few nouns, together with the

addition of one randomly selected word from the set {if, when, during}. The learning parameters were

set to the values used by Zettlemoyer and Collins (2005).

4.2 Results

We compared our systems with the performance results of several alternative systems for which the

performance data is available in the literature. In particular, we used the performance data given by

Ge and Mooney (2009). The systems that we compared with are: The SYN0, SYN20 and GOLDSYN

systems by Ge and Mooney (2009), the system SCISSOR by Ge and Mooney (2005), an SVM based

system KRIPS by Kate and Mooney (2006), a synchronous grammar based system WASP by Wong and

Mooney (2007), the CCG based system by Zettlemoyer and Collins (2007) and the work by Lu et al.

(2008). Please note that many of these approaches require different parsers, human supervision or other

additional tools, while our approach requires a syntactic parse of the sentences and an initial dictionary.

Our and their reported results for the respective corpora are given in the Tables 2 and 3.

Precision Recall F-measure

INVERSE+ 93.41 89.04 91.17

INVERSE 91.12 85.78 88.37

GOLDSYN 91.94 88.18 90.02

WASP 91.95 86.59 89.19

Z&C 91.63 86.07 88.76

SCISSOR 95.50 77.20 85.38

KRISP 93.34 71.70 81.10

Lu at al. 89.30 81.50 85.20

Table 2: Performance on GEOQUERY.

Precision Recall F-measure

INVERSE+(i) 87.67 79.08 83.15

INVERSE+ 85.74 76.63 80.92

GOLDSYN 84.73 74.00 79.00

SYN20 85.37 70.00 76.92

SYN0 87.01 67.00 75.71

WASP 88.85 61.93 72.99

KRISP 85.20 61.85 71.67

SCISSOR 89.50 73.70 80.80

Lu at al. 82.50 67.70 74.40

Table 3: Performance on CLANG.

The INV ERSE + (i) denotes training where “(definec” and “(definer” at the start of SRs were

treated as being equal. The main reason for this was that there seems to be no way to distinguish in

between them. Even as a human, we found it hard to be able to distinguish between them.

4.3 Analysis

Our testing showed that our method is capable of outperforming all of the existing parsers in F-measure.

However, there are parsers which can produce greater precision, such as WASP and SCISSOR on

CLANG corpus, however they do at the cost in recall. As discussed by Ge and Mooney (2009), the

GEOQUERY results for SCISSOR, KRISP and Lu’s work use a different, less accurate representation

language FUNSQL which may skew the results. Also, SCISSOR outperforms our system on GEO-

QUERY corpus in terms of precision, but at the cost of additional human supervision.

Our system is particularly accurate for shorter sentences, or a corpus where many sentences have

similar general structure, such as GEOQUERY. However, it is also capable of handling longer sentences,

in particular if they in fact consists of several shorter sentences, such as for example “If the ball is in

our midfield, position player 3 at (-5,-23).”, which can be looked at as “IF A, B” where “A” and “B”

are smaller complete sentences themselves. The system is capable of learning the semantics of several

basic categories such as verbs, after which most of the training sentences are easily parsed and missing

semantics is learned quickly. The inability to parse other sentences mostly comes from two sources. First

one is if the test sentence contains a syntactic category not seen in the training data. Our generalization

model is not capable of generalizing these and thus fails to produce a semantic parse. The second problem

comes from ambiguity of SRs. During training, many words will be assigned several SRs based on the
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training data. The parses are then ranked and in several cases, the correct SR might not be on the top.

Re-ranking might help alleviate the second issue.

Unlike the other systems, we do not make use of a grammar for the semantics of the sentence. The

reason it is not required is that the actual semantics is analyzed in computing the inverse lambdas, and

the richness of λ-calculus allows us to compute relatively complex formulas to represent the semantic of

words.

We also run examples with increased size of training data. These produced larger dictionaries and in

general did not significantly affect the results. The main reason is that as discussed before, once the most

common categories of words have their semantics assigned, most of the sentences can be properly parsed.

Increasing the amount of training data increases the coverage in terms of the rare syntactic categories,

but these are also rarely present in the testing data. The used training sample was in all cases sufficient to

learn almost all of the categories. This might not be the case in general, for example if we had a corpus

with all of the sentences of a particular length and structure, our method might not be capable of learning

any new semantics. In such cases, additional words would have to be added to the initial dictionary, or

additional sentences of varying lengths would have to be added.

The C&C parser of Clark and Curran (2007) was primarily trained on news paper text and thus

did have some problems with these different domains and in some cases resulted in complex semantic

representations of words. This could be improved by using a different parser, or by simply adjusting

some of the parse trees. In addition, our system can be gradually improved by increasing the size of

initial dictionary.

5 Conclusions and Discussion

We presented a new approach to map natural language sentences to their semantic representations. We

used an existing syntactic parser, a novel inverse λ operator and several generalization techniques to learn

the semantic representations of words. Our method is largely independent of the target representation

language and directly computes the semantic representations based on the syntactic structure of the

syntactic parse tree and known semantic representations. We used statistical learning methods to assign

weights to different semantic representation of words and sentences.

Our results indicate that our approach outperforms many of the existing systems on the standard

corpora of database querying and robot command and control.

We envision several directions of future work. One direction is to experiment our system with cor-

pora where the natural language semantics is given through other Knowledge Representation languages

such as answer set programming (ASP)5 and temporal logic. We are currently building such corpora.

Another direction is to improve the statistical learning part of the system. An initial experimentation

with a different learning algorithm shows significant decrease in training time with slight reduction in

performance. Finally, since our system uses an initial dictionary, which we tried to minimize by only hav-

ing a few nouns and one of the query words, exploring how to reduce it further and possibly completely

eliminating it is a future direction of research.
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