
Sentence Generation as Planning with Probabilistic LTAG

Daniel Bauer
Department of Computer Science

Columbia University
1214 Amsterdam Ave.

New York, NY 10027, USA
bauer@cs.columbia.edu

Alexander Koller
Cluster of Excellence
Saarland University

Campus C7 4
66041 Saarbrücken, Germany

koller@mmci.uni-saarland.de

Abstract

We present PCRISP, a sentence generation
system for probabilistic TAG grammars which
performs sentence planning and surface real-
ization in an integrated fashion, in the style of
the SPUD system. PCRISP operates by con-
verting the generation problem into a metric
planning problem and solving it using an off-
the-shelf planner. We evaluate PCRISP on the
WSJ corpus and identify trade-offs between
coverage, efficiency, and accuracy.

1 Introduction

Many sentence generation systems are organized in
a pipeline architecture, in which the input semantic
representation is first enriched, e.g. with referring
expressions, by a sentence planner and only then
transformed into natural language strings by a sur-

face realizer (Reiter and Dale, 2000). An alternative
approach is integrated sentence generation, in which
both steps are performed by the same algorithm, as
in the SPUD system (Stone et al., 2003). An inte-
grated algorithm can sometimes generate better and
more succinct sentences (Stone and Webber, 1998).
SPUD itself gives up some of this advantage by us-
ing a greedy search heuristic for efficiency reasons.
The CRISP system, a recent reimplementation of
SPUD using search techniques from AI planning,
achieves high efficiency without sacrificing com-
plete search (Koller and Stone, 2007; Koller and
Hoffmann, 2010).

While CRISP is efficient enough to perform well
on large-scale grammars (Koller and Hoffmann,
2010), such grammars tend to offer many different

ways to express the same semantic representation.
This makes it necessary for the generation system to
be able to compute not just grammatical sentences,
but to identify which of these sentences are good.
This problem is exacerbated when using treebank-
derived grammars, which tend to underspecify the
actual constraints on grammaticality and instead rely
on statistical information learned from the treebank.
Indeed, there have been a number of systems for
statistical generation, which can exploit such infor-
mation to rank sentences appropriately (Langkilde
and Knight, 1998; White and Baldridge, 2003; Belz,
2008). However, to our knowledge, all such systems
are currently restricted to performing surface real-
ization, and must rely on separate modules to per-
form sentence planning.

In this paper, we bring these two strands of re-
search together for the first time. We present the
PCRISP system, which redefines the SPUD gener-
ation problem in terms of probabilistic TAG gram-
mars (PTAG, (Resnik, 1992)) and then extends
CRISP to solving the probabilistic SPUD genera-
tion problem using metric planning (Fox and Long,
2002; Hoffmann, 2003). We evaluate PCRISP on a
PTAG treebank extracted from the Wall Street Jour-
nal Corpus (Chen and Shanker, 2004). The evalua-
tion reveals a tradeoff between coverage, efficiency,
and accuracy which we think are worth exploring
further in future work.

Plan of the paper. We start by putting our re-
search in the context of related work in Section 2
and reviewing CRISP in Section 3. We then describe
PCRISP, our probabilistic extension of CRISP, in

Sentence Generation as Planning with Probabilistic LTAG

127

Section 4 and evaluate it in Section 5. We conclude
in Section 6.

2 Related Work

Statistical methods are popular for surface realiza-
tion, but have not been used in systems that inte-
grate sentence planning. Most statistical genera-
tion approaches follow a generate-and-select strat-
egy, first proposed by Knight and Hatzivassiloglou
(1995) in their NITROGEN system. Such systems
generate a set of candidate sentences using a (possi-
bly overgenerating) grammar and then select the best
output sentence by applying a statistical language
model. This family includes systems such as HALo-
gen (Langkilde and Knight, 1998; Langkilde, 2000)
and OpenCCG (White and Baldridge, 2003). The
FERGUS system (Bangalore and Rambow, 2000) is
a variant of this approach which, like PCRISP, em-
ploys TAG. It first assigns elementary trees to each
entity in the input sentence plan using a statistical
tree model and then computes the most likely deriva-
tion using only these trees with an n-gram model on
the output sentence. An alternative to the n-gram
based generate and select approach is to use a prob-
abilistic grammar model, like PTAG, trained on au-
tomatic parses (Zhong and Stent, 2005). A related
approach uses a model over local decisions of the
generation system itself (Belz, 2008). Both models
can either be used to discriminate a set of output can-
didates, or more directly to choose the next best de-
cision locally. Our approach is similar in that it uses
PTAG to find the most likely output structure. How-
ever, the previous work discussed so far addresses
surface realization only. We extend this to a statis-
tical NLG algorithm which does surface realization
and sentence planning at the same time.

Our treatment of integrated sentence planning and
surface realization as planning is inherited directly
from CRISP (Koller and Stone, 2007). Planning
has long played a role in generation, but has fo-
cused on discourse planning instead of specifically
addressing sentence generation (Hovy, 1988; Ap-
pelt, 1985). The applicability of these ideas was
limited at that time because efficient planning tech-
nology was not available. Recently the develop-
ment of more efficient planning algorithms (Hoff-
mann and Nebel, 2001) spawned a renewed interest

in planning for NLG. CRISP uses such algorithms
to efficiently solve the sentence generation prob-
lem defined by SPUD (Stone et al., 2003). SPUD,
which instead uses an incomplete greedy algorithm,
is based on a TAG whose trees are augmented with
semantic and pragmatic constraints. Given a com-
municative goal, a solution to the SPUD problem
realizes this goal and simultaneously selects refer-
ring expressions. The next section explores CRISP
in more detail.

3 Sentence Generation as Planning

In this section we review the original non-statistical
CRISP system (Koller and Stone, 2007). Follow-
ing SPUD (Stone et al., 2003), CRISP is based on
a declarative description of the sentence generation
problem using TAG. Given a knowledge base, a
communicative goal and a grammar, we require to
find a grammatical TAG derivation that is consis-
tent with this knowledge base and satisfies a commu-
nicative goal. A number of semantic and pragmatic
constraints that must be satisfied by the solution can
be added, for instance to enforce generation of un-
ambiguous referring expressions. Koller and Stone
(2007) describe how to encode this problem into an
AI planning problem which can be solved efficiently
by off-the-shelf planners. We describe the general
mechanism in the following section and then review
the encoding into planning in section 3.2.

3.1 Sentence Generation in CRISP

Like SPUD, CRISP uses an LTAG in which ele-
mentary trees are assigned semantic content. Each
node in a CRISP elementary tree is associated with
a semantic role. Semantic content is expressed as
a set of literals, encoding relations between these
roles. All nodes that dominate the lexical anchor
are assigned the role ‘self’, which intuitively corre-
sponds to the event or individual described by this
tree. Fig. 1(a) shows an example grammar of this
type.

In a derivation we may only include elementary
trees whose semantic content has an instantiation in
the knowledge base. For each substitution and ad-
junction, the semantic role associated with the role
of the target node is unified with the ‘self’ role of the
child tree. For example, given the knowledge base

Daniel Bauer, Alexander Koller

128

N:self

NP:self

the

cat

semcontent: {cat(self)}

N:self

NP:self

the

fish

semcontent: {fish(self)}

N*

N:self

raw

semcontent: {raw(self)}

V:self

S:self

semcontent: {eats(self, subj, obj)}

NP:subj
VP:self

eats

NP:obj

(a) (b)

V:e

S:e

NP:c
VP:e

eats

NP:f1

N:c

NP:c

the

cat N:f1

NP:f1

the

fish

N*

N:f1

raw

Figure 1: (a) An example grammar with semantic content. (b) A derivation for “the cat eats the raw fish”.

{cat(c), fish(f1), raw(f1), fish(f2), eats(e, c, f1)}
and the grammar in 1(a), CRISP could produce the
derivation in 1(b). Notice that CRISP can generate
the unambiguous referring expression ‘the raw fish’
for f1, to distinguish it from f2.

3.2 CRISP Planning Domains

Before we describe CRISP’s encoding of sentence
generation as planning, we briefly review AI plan-
ning in general. A planning state is a conjunction of
first order literals describing relations between some
individuals. A planning problem consist of an initial
state, a set of goal states and a set of planning opera-
tors that describe possible state transitions. A plan is
any sequence of actions (instantiated operators) that
leads from the initial state to one of the goal states.
Planning problems can be solved efficiently by gen-
eral purpose planning systems such as FF (Hoffmann
and Nebel, 2001).

In CRISP, planning states correspond to par-
tial TAG derivations and record open substitution
and adjunction sites, semantic individuals associated
with them, and parts of the communicative goal that
have not yet been expressed. The initial state also
encodes the knowledge base and the communicative
goal. Each planning operator contributes a new ele-
mentary tree to the derivation and at the same time
can satisfy part of the communicative goal, as de-
scribed in the previous section. In a goal state there
are no open substitution sites left and all literals in
the communicative goal have been expressed.

Fig. 2 shows planning operators for part of the

subst-t28-eats-S(u, x1, x2, x3):
Precond: referent(u, x1),

subst(S, u), eats(x1, x2, x3)
Effect: ¬needtoexpr(pred-eats, x1, x2, x3),

¬subst(S, u),
subst(NP, subj), subst(NP, obj),
referent(subj, x2), referent(obj, x3)
adj(VP, u), adj(V, u), adj(S, u)

subst-t3-cat-NP(u, x1):
Precond: referent(u, x1),

subst(NP, u), cat(x1)
Effect: ¬needtoexpr(pred-cat, x1),

¬subst(NP, u),
adj(N, u), adj(NP, u)

adj-t5-raw-N(u, x1):
Precond: referent(u, x1),

adj(N, u), raw(x1)
Effect: ¬needtoexpr(pred-raw, x1),

¬adj(N, u)

Figure 2: CRISP operators for some of the elementary
trees in Fig. 1.

grammar in Fig. 1(a). The operators are simpli-
fied for lack of space, and in particular we do
not show the preconditions and effects that en-
force uniqueness of referring expressions; see Koller
and Stone (2007) for details. The preconditions
of the operators require that a suitable open sub-
stitution node (i.e. of the correct category) or
internal node for adjunction exists in the partial
derivation. In the operator effect, open substitu-
tion nodes are closed and new identifiers are cre-
ated for each substitution node and internal node
in the new tree. Given the knowledge base from
above, a plan corresponding to the derivation in

Sentence Generation as Planning with Probabilistic LTAG

129

t81
t13VP

NP

NP

merged
NP

the banks

PP

VP

in 1985

VP*

t81

t252

VP

NP

NP

merged
NP

the banks
PP

VP

in 1985

VP*

(b)

(a)

Figure 3: Two derivations with a large grammar, that sat-
isfy the same communicative goal. Sentence (b) is dis-
preferred by most readers.

Fig. 1 would be subst-t28-eats-S-eats(root, e, c, f1);
subst-t3-cat-NP(subj, c); subst-t3-fish-NP(obj, f1);
adj-t5-raw-N(obj, f1). This plan can be automati-
cally decoded into a derivation tree for Fig. 1b.

3.3 CRISP and Large Grammars

Koller and Hoffmann (2010) report on experi-
ments that show CRISP can generate sentences with
the large-scale XTAG grammar (XTAG Research
Group, 2001) quite efficiently. However, because
CRISP has no notion of how “good” a generated
sentence is compared to other grammatical alterna-
tives, it will sometimes compute dispreferred sen-
tences with large grammars. This is especially true
for treebank-induced grammars, which tend to over-
generate and rely on statistical methods to rank good
sentences highly. Fig. 3 illustrates this problem.
Assuming a (treebank) grammar that includes trees
for both right adjoining (t13) and left adjoining PPs
(t252), both derivations (a) and (b) are grammati-

cal derivations that satisfy the same communicative
goal. However, most readers disprefer the reading
in (b). Clearly, to use CRISP with such a grammar
we need a method of distinguishing good derivations
from bad ones.

4 Statistical Generation as Planning

We now extend CRISP to statistical generation
(PCRISP). The basic idea is to add a statistical gram-

mar model while leaving the sentence generation
mechanism untouched. This way we can select the
highest scoring derivation which satisfies all con-
straints (grammaticality, expresses the communica-
tive goal, uses unambiguous referring expressions,
etc.).

As a straightforward probability model over
LTAG derivations we choose probabilistic TAG
(PTAG) (Resnik, 1992). Our choice of PTAG for
sentence generation is motivated by a number of at-
tractive properties. PTAG is lexicalized and there-
fore does not only assign probabilities to opera-
tions in the grammar (as for example plain PCFG),
but also accounts for binary dependencies between
words. Unlike n-gram models however, these co-
occurrences are structured according to local syntac-
tic context as a result of TAG’s extended domain of
locality. The probability model describes how the
syntactic arguments of a word are typically filled.
Furthermore, as TAG factors recursion from the do-
main of dependencies, the probability for core con-
structions remains the same independent of addi-
tional adjunctions. We review PTAG in section 4.1.

While we leave the basic sentence generation
mechanism intact, we need to modify the concrete
formulation of CRISP planning operators to accom-
modate bilexical dependencies. Likewise, we need
to take the step from classical planning to metric

planning systems which can use the probabilities. In
metric planning (Fox and Long, 2002), planning ac-
tions can modify the value of numeric variables in
addition to adding and deleting logical literals from
the state. The goal state specifies constraints on this
variable. In the simplest case the variable can only
be increased by a static cost value in each action, and
the goal state contains the objective to minimize the
total cost. While systems such as Metric-FF (Hoff-
mann, 2003) do not guarantee optimality, they do
generally offer good results. We address our en-
coding of sentence generation with PTAG as metric
planning in section 4.2.

4.1 Probabilistic TAG

PTAG (Resnik, 1992) views TAG derivations as se-
quences of events of three types: initial events, sub-
stitution events, and adjunction events.

The probability distribution for initial events de-
scribes how likely it is to start any derivation with a

Daniel Bauer, Alexander Koller

130

given initial tree. It is defined over all initial trees
α ∈ I with their possible lexicalizations w ∈Wα:

∑

α∈I

∑

w∈Wα

Pi(init(α, w)) = 1

For substitution events, there is a probability dis-
tribution for each substitution node n of each ele-
mentary tree τ lexicalized with v, which describes
how likely it is to substitute it with an initial tree α
lexicalized with w.

∑

α∈I

∑

w∈Wα

Ps(subst(τ, v, α, w, n)) = 1

Similarly for each internal node there is a distribu-
tion that describes the probability to adjoin an aux-
iliary tree β ∈ A lexicalized with w. In addition
some probability mass is reserved for the event of
not adjoining anything to such a node at all.

Pa(noadj(τ, v, n)) +
∑

β∈A

∑

w∈Wβ

Pa(adj(τ, v, β, w, n)) = 1.

PTAG assumes that all events occur indepen-
dently of each other. Therefore it defines the to-
tal probability for a derivation as the product of the
probability of its individual events.

4.2 PCRISP Planning Domains

Using the definition of PTAG, we now reformulate
the CRISP planning operators described in section
3.2. The independence assumption in PTAG allows
us to continue to model each addition of a single el-
ementary tree to the derivation (with a certain prob-
ability score). However, while CRISP planning op-
erators can add an elementary tree to any site of the
correct category, PTAG substitution and adjunction
events are binary events between lexicalized trees at
a specific node. We therefore adapt the literals that
record open substitution and adjunction sites in par-
tial derivations accordingly and create one operator
for each node in each possible combination of lexi-
calized trees. Fig. 4 shows an example planning op-
erator for each type.

Finally, we set the cost of an operator to be its
negative log probability. For example

Cost(subst-t3-cat-t28-eats-n1) =

− logPs(subst(t3, ‘cat’, t28, ‘eats’, n1))).

subst-t3-cat-t28-eats-n1(u, x1):
Precond: referent(u, x1),

subst(t28-eats, n1, u), cat(x1)
Effect: ¬needtoexpr(pred-cat, x1),

¬subst(t-28-eats, n1, u),
adj(t3-cat, n2 u)

Cost: 4.3012
adj-t5-raw-t3-fish-n2(u, x1):

Precond: referent(u, x1),
adj(t28-eats,n2, u), raw(x1)

Effect: ¬needtoexpr(pred-raw, x1),
¬adj(t-28-eats, n2, u)

Cost: 6.9076
init-t28-eats(u, x1, x2, x3):

Precond: referent(u, x1),
eats(x1, x2, x3)

Effect: ¬needtoexpr(pred-eats, x1, x2, x3),
subst(t-28-eats, n1,subj), subst(t28-eats, n4,obj),
adj(t-28-eats, n2, u), adj(t-28-eats, n3, u)

Cost: 8.5172
noadj-t28-eats-n3(u):

Precond: adj(t-28-eats, n3,u)
Effect: ¬ adj(t-28-eats, n3, u)
Cost: 0.1054

Figure 4: Some PCRISP operators for the grammar from
Fig. 1.

This way the plan which minimizes the sum of the
costs of its actions corresponds to the TAG deriva-
tion with the highest probability.

4.3 Dealing with Data Sparseness

The event definition of PTAG is very-fine grained.
Substitution and adjunction events depend on spe-
cific parent and child trees with specific lexicaliza-
tions and on a node in the parent tree, as illustrated in
Fig. 5, B.1. When we estimate a probability model
from training data, we cannot expect to observe ev-
idence for all combinations of trees. Derivations
that include such unseen events have zero probabil-
ity and are therefore impossible. As we show in sec-
tion 5, this gives rise to a massive data sparseness
problem.

A straightforward way to deal with data sparse-
ness is to drop all lexicalizations from event defini-
tions, as illustrated in Fig. 5, A. Unfortunately this
model no longer accounts for bilexical dependen-
cies between words. Since our system has to add a
lexicalized tree in each step, lexicalizations for this
child tree should always be taken into account by the
probability model, if available. Despite these draw-
backs, we perform experiments with the unlexical-

Sentence Generation as Planning with Probabilistic LTAG

131

t3

cat

t28

eats

1) 2) 3)A B

n1

t3

cat

t28

n1

t3

t28

n1

t3

cat

NP

Figure 5: Illustration of the unlexicalized probability
model (A) and the three back-off levels of the linear in-
terpolation model (B).

ized model as a baseline. This allows us to inves-
tigate if purely syntactic information is sufficient to
achieve high quality generation output.

An alternative model computes linear interpola-
tion between three back-off levels. The first level
is just standard PTAG (Fig. 5, B.1), for the second
level the lexicalizations of the parent tree is dropped
(Fig. 5, B.2), for the third level the model describes
only the distribution of lexicalized child trees over
each category (Fig. 5, B.3). Notice also that the third
level is similar in spirit to a probabilistic version of
original CRISP operators (compare Fig. 5, B.3 and
Fig. 2).

5 Evaluation

We now report on some experiments with PCRISP.
We are interested in the output quality and runtime
behavior of different combinations of planning sys-
tems and probability models. Like CRISP, PCRISP
is an integrated sentence generation system capa-
ble of generating referring expressions during sur-
face realization. However, for lack of an appropri-
ate evaluation dataset for full sentence generation,
we only evaluate PCRISP on a realization task here.
Further experiments and more details can be found
in Bauer (2009).

5.1 Evaluation Data

For our experiments we use an LTAG grammar and
treebank that was automatically extracted from the
Wall Street Journal using the algorithm described by
Chen and Shanker (2004).

This algorithm outputs a grammar that allows
multiple adjunctions at the same node. For such a
grammar PTAG is not a suitable probability model.
Models that can deal with multiple adjunction are
discussed by Nasr and Rambow (2006), but em-

ploying them would require non-trivial modifica-
tions to our encoding as a metric planning prob-
lem. We therefore preprocess the treebank by lin-
earizing multiple adjunctions. Furthermore, we reat-
tach prepositions to the trees they substitute in, to in-
crease the expressiveness of the bilexical probability
distribution.

We then automatically create semantic content for
all lexicalized elementary trees by assigning a single
semantic literal to each tree in the treebank, using
the lexical anchor as the predicate symbol and vari-
ables for each substitution node and the ‘self’ role
as arguments. We calculate the role associated with
each node in each tree by assigning role names to
each substitution node (‘self’ is assigned to the lexi-
cal anchor) and then percolating the roles up the tree,
giving preference to the ‘self’ role.

We estimate our probability models on section 1
to 23 of the converted WSJ using maximum like-
lihood estimation. We use section 0 as a testing
set. However, since the number of PCRISP opera-
tors grows quadratically with the grammar size, gen-
erating long sentences requires too much time to run
batch experiments. We therefore restrict our evalua-
tion to the 416 sentences in Section 0 that are shorter
than 16 words.

For this testing set we automatically create se-
mantic representation for each sentence, by instan-
tiating the semantic content of each elementary tree
used in its derivation. We use these representations
as input for our system and compare the system out-
put against the original sentence.

5.2 Generation tree accuracy

To evaluate the output quality of our statistical gen-
eration system we compare the system output O
against the reference sentence R in the treebank
from which the input representation was generated.
We adopt the generation tree accuracy (GTA) mea-
sure discussed by (Bangalore et al., 2000). This
measure is computed by first creating a list of all
’treelets’ from the reference derivation tree D. A
‘treelet’ is a subtree consisting only of a node and
its direct children. For each treelet we calculate the
edit distance, sum the distances over all treelets and

Daniel Bauer, Alexander Koller

132

then divide by the total length of the reference string:

1−

∑
d∈treelets(D)

editDist(O|d, R|d)

length(R)
,

where D is the reference derivation tree and S|d are
the tokens associated with the nodes of treelet d in
the order they appear in S (if at all). Edit distance
is modified to treat insertion-deletion pairs as sin-
gle movement errors. Compared to a purely string-
based metric like BLEU, GTA penalizes swapped
words less harshly if they can be explained by local
tree movements.

5.3 Results

Table 1 presents the results of the experiment for
five different generation systems. We compare three
variants of PCRISP: the fully lexicalized PTAG
model (“PTAG”), the fully unlexicalized model
(“unlexicalized”), and a linear interpolation model
(“interpolation”) in which we (manually) set the
weight of level 2 to 0.9 and the weight of level 3 to
0. We also list results for the non-statistical CRISP
system of Koller and Stone (2007) (“CRISP”) and
the greedy search heuristic used by SPUD. All these
systems are based on a reimplementation of the FF
planner (Hoffmann and Nebel, 2001), to which we
added a search heuristic that takes action costs into
account for the PCRISP systems.

For each system, we determine the proportion
of sentences in the test set for which the sys-
tem produced an output (“success”), did not find a
plan (“fail”), and exceeded the five-minute timeout
(“timeout”). The column “gta” records the mean
generation tree accuracy for those sentences where
the system produced an output.

The table confirms that the non-statistical CRISP
system has considerable trouble reconstructing the
original sentences from the treebank, with a mean
GTA of 0.66. This is still better than our reim-
plementation of SPUD, which fails to recover from
early mistakes of its greedy search heuristic for ev-
ery single sentence in the test set.

By contrast, the fully lexicalized PCRISP model
achieves a much better mean GTA. However, this
comes at the cost of a very low success rate of
only 10%, reflecting a serious data sparseness prob-
lem on unseen inputs. The data sparseness problem

System gta success fail timeout
SPUD n/a 0% 100% 0%
CRISP 0.66 45% 42% 13%
PTAG 0.90 10% 88% 2%
unlexicalized 0.74 62% 16% 22%
interpolation 0.88 19% 74% 7%

Table 1: Results for the realization experiment.

is reduced in the unlexicalized version of PCRISP
but this comes at the cost of decreased accuracy
and much increased runtimes. The linear interpo-
lation model strikes a balance between these two,
by improving the success rate over the lexicalized
model while sacrificing only a small amount of ac-
curacy. This suggests that smoothing is a promising
approach to balancing coverage, efficiency, and ac-
curacy, but clearly further experimentation is needed
to substantiate this.

6 Conclusion

We have described PCRISP, an approach to inte-
grated sentence generation which can compute the
best derivation according to a probabilistic TAG
grammar. This brings two strands of research – sta-
tistical generation and integrated sentence planning
and realization – together for the first time. Our gen-
eration algorithm operates by converting the gener-
ation problem into a metric planning problem and
solving it with an off-the-shelf planner. An evalu-
ation on the WSJ corpus reveals that PCRISP, like
PTAG in general, is susceptible to data sparseness
problems. Because the size of the planning problem
is quadratic in the number of lexicalized trees in the
grammar, current planning algorithms are also too
slow to be used for longer sentences.

An obvious issue for future research is to apply
improved smoothing techniques to deal with the data
sparseness. Planning runtimes should be improved
by further tweaking the exact planning problems we
generate, and will benefit from any future improve-
ments in metric planning. It is interesting to note that
the extensions we made to CRISP to accommodate
statistical generation here are compatible with recent
work in which CRISP is applied to situated genera-
tion (Garoufi and Koller, 2010); we expect that this
will be true for other future extensions to CRISP as

Sentence Generation as Planning with Probabilistic LTAG

133

well. Finally, we have only evaluated PCRISP on a
surface realization problem in this paper. It would
be interesting to carry out an extrinsic, task-based
evaluation of PCRISP that also addresses sentence
planning.

Acknowledgments. We are grateful to Owen
Rambow for providing us with the Chen WSJ-TAG
corpus and to Malte Helmert and Silvia Richter for
their help with running LAMA, another metric plan-
ner with which we experimented. We thank Kon-
stantina Garoufi and Owen Rambow for helpful dis-
cussions, and our reviewers for their insightful com-
ments.

References

D. Appelt. 1985. Planning English Sentences. Cam-
bridge University Press, New York, NY.

S. Bangalore and O. Rambow. 2000. Exploiting a proba-
bilistic hierarchical model for generation. In Proceed-

ings of ACL-2000.
S. Bangalore, O. Rambow, and S. Whittaker. 2000.

Evaluation metrics for generation. In Proceedings of

INLG-2000.
D. Bauer. 2009. Statistical natural language

generation as planning. Master’s thesis,
Department of Computational Linguistics,
Saarland University, Saarbrücken, Germany.
http://www.coli.uni-saarland.de/

˜dbauer/documents/MSc_Bauer2009.pdf.
A. Belz. 2008. Automatic generation of weather forecast

texts using comprehensive probabilistic generation-
space models. Natural Language Engineering,
14(4):431–455.

J. Chen and V.K. Shanker. 2004. Automated extraction
of TAGs from the Penn treebank. In Bunt H., J. Carrol,
and G. Satta, editors, New Developments in Parsing

Technology, pages 73–89. Kluwer, Norwell, MA.
M. Fox and D. Long. 2002. The third international plan-

ning competition: temporal and metric planning. In
Proceedings of the International Conference on Artifi-

cial Intelligence Planning and Scheduling (AIPS-02),
pages 333–335.

K. Garoufi and A. Koller. 2010. Automated planning for
situated natural language generation. In Proceedings

of ACL-2010.
J. Hoffmann and B. Nebel. 2001. The FF planning

system: fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–
302.

J. Hoffmann. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state
variables. Journal of Artificial Intelligence Research,
20:291–341.

E. Hovy. 1988. Generating Natural Language Under

Pragmatic Constraints. Lawrence Erlbaum, Hillsdale,
NJ.

K. Knight and V. Hatzivassiloglou. 1995. Two-level,
many-paths generation. In Proceedings of ACL-1995.

A Koller and J. Hoffmann. 2010. Waking up a sleeping
rabbit: On natural-language generation with FF. In
Proceedings of ICAPS-2010.

A. Koller and M. Stone. 2007. Sentence generation as
planning. In Proceedings of ACL 2007.

I. Langkilde and K. Knight. 1998. Generation that ex-
ploits corpus-based statistical knowledge. In Proceed-

ings of ACL-1998.
I. Langkilde. 2000. Forest-based statistical sentence gen-

eration. In Proceedings of NAACL-HLT 2000.
A. Nasr and O. Rambow. 2006. Parsing with lexical-

ized probabilistic recursive transition networks. In Fi-

nite State Methods and Natural Language Processing,
volume 4002 of Lecture Notes in Computer Science,
pages 156–166. Springer.

Ehud Reiter and Robert Dale. 2000. Building Natural

Language Generation Systems. Cambridge University
Press, Cambridge, UK.

P. Resnik. 1992. Probabilistic tree-adjoining grammar as
a framework for statistical natural language process-
ing. In Proceedings of COLING-1992.

M. Stone and B. Webber. 1998. Textual economy
through close coupling of syntax and semantics. In
Proceedings of INLG-98.

M. Stone, C. Doran, B. Webber, T. Bleam, and M. Palmer.
2003. Microplanning with communicative inten-
tions: The SPUD system. Computational Intelligence,
19(4):311–381.

M. White and J. Baldridge. 2003. Adapting chart real-
ization to CCG. In Proceedings of ENLG-2003.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for english. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

H. Zhong and A. Stent. 2005. Building surface realiz-
ers automatically from corpora. Proceedings of UC-

NLG05.

Daniel Bauer, Alexander Koller

134

