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Abstract

This paper presents a comparison of two
similar dialogue analysis tasks: segment-
ing real-life medical team meetings into
patient case discussions, and segment-
ing scenario-based meetings into topics.
In contrast to other methods which use
transcribed content and prosodic features
(such as pitch, loudness etc), the method
used in this comparison employs only the
duration of the prosodic units themselves
as the basis for dialogue representation. A
concept of Vocalisation Horizon (VH) al-
lows us to treat segmentation as a clas-
sification task where each instance to be
classified is represented by the duration
of a talk spurt, pause or speech overlap
event in the dialogue. We report on the re-
sults this method yielded in segmentation
of medical meetings, and on the implica-
tions of the results of further experiments
on a larger corpus, the Augmented Multi-
party Meeting corpus, to our ongoing ef-
forts to support data collection and infor-
mation retrieval in medical team meetings.

1 Introduction

As computer mediated communication becomes
more widespread, and data gathering devices start
to make their way into the meeting rooms and the
workplace in general, the need arises for mod-
elling and analysis of dialogue and human com-
municative behaviour in general (Banerjee et al.,
2005). The focus of our interest in this area is
the study of multi-party interaction at Multidis-
ciplinary Medical Team Meeting (MDTMs), and
the eventual recording of such meetings followed
by indexing and structuring for integration into
electronic health records. MDTMs share a num-
ber of characteristics with more conventional busi-
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ness meetings, and with the meeting scenarios tar-
geted in recent research projects (Renals et al.,
2007). However, MDTMs are better structured
than these meetings, and more strongly influenced
by the time pressures placed upon the medical pro-
fessionals who take part in them (Kane and Luz,
2006).

In order for meeting support and review systems
to be truly effective, they must allow users to effi-
ciently browse and retrieve information of interest
from the recorded data. Browsing in these media
can be tedious and time consuming because con-
tinuous media such as audio and video are difficult
to access since they lack natural reference points.
A good deal of research has been conducted on in-
dexing recorded meetings. From a user’s point of
view, an important aspect of indexing continuous
media, and audio in particular, is the task of struc-
turing the recorded content. Banerjee et al. (2005),
for instance, showed that users took significantly
less time to retrieve answers when they had access
to discourse structure annotation than in a control
condition in which they had access only to unan-
notated recordings.

The most salient discourse structure in a meet-
ing is the topic of conversation. The content within
a given topic is cohesive and should therefore be
viewed as a whole. In MDTMs, the meeting con-
sists basically of successive patient case discus-
sions (PCDs) in which the patient’s condition is
discussed among different medical specialists with
the objective of agreeing diagnoses, making pa-
tient management decisions etc. Thus, the individ-
ual PCDs can be regarded as the different “topics”
which make up an MDTM (Luz, 2009).

In this paper we explore the use of a content-
free approach to the representation of vocalisation
events for segmentation of MDTM dialogues. We
start by extending the work of Luz (2009) on a
small corpus of MDTM recordings, and then test
our approach on a larger dataset, the AMI (Aug-
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mented Multi-Party Interaction) corpus (Carletta,
2007). Our ultimate goal is to analyse and apply
the insights gained on the AMI corpus to our work
on data gathering and representation in MDTMs.

2 Related work

Topic segmentation and detection, as an aid to
meeting information retrieval and meeting index-
ing, has attracted the interest of many researchers
in recent years. The objective of topic segmenta-
tion is to locate the beginning and end time of a
cohesive segment of dialogue which can be sin-
gled out as a “topic”. Meeting topic segmentation
has been strongly influenced by techniques devel-
oped for topic segmentation in text (Hearst, 1997),
and more recently in broadcast news audio, even
though it is generally acknowledged that dialogue
segmentation differs from text and scripted speech
in important respects (Gruenstein et al., 2005).

In early work (Galley et al., 2003), meeting
annotation focused on changes that produce high
inter-annotator agreement, with no further specifi-
cation of topic label or discourse structure. Cur-
rent work has paid greater attention to discourse
structure, as reflected in two major meeting cor-
pus gathering and analysis projects: the AMI
project (Renals et al., 2007) and the ICSI meet-
ing project (Morgan et al., 2001). The AMI cor-
pus distinguishes top-level and functional topics
such as “presentation”, “discussion”, “opening”,
“closing”, “agenda” which are further specified
into sub-topics (Hsueh et al., 2006). Gruenstein
et al. (2005) sought to annotated the ICSI cor-
pus hierarchically according to topic, identifying,
in addition, action items and decision points. In
contrast to these more general types of meetings,
MDTMs are segmented into better defined units
(i.e. PCDs) so that inter-annotator agreement on
topic (patient case discussion) boundaries is less of
an issue, since PCDs are collectively agreed parts
of the formal structure of the meetings.

Meeting transcripts (either done manually or
automatically) have formed the basis for a num-
ber of approaches to topic segmentation (Galley
et al., 2003; Hsueh et al., 2006; Sherman and Liu,
2008). The transcript-based meeting segmentation
described in (Galley et al., 2003) adapted the un-
supervised lexical cohesion method developed for
written text segmentation (Hearst, 1997). Other
approaches have employed supervised machine
learning methods with textual features (Hsueh et
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al., 2006). Prosodic and conversational features
have also been integrated into text-based represen-
tations, often improving segmentation accuracy
(Galley et al., 2003; Hsueh and Moore, 2007).

However, approaches that rely on transcription,
and sometimes higher-level annotation on tran-
scripts, as is the case of (Sherman and Liu, 2008),
have two shortcomings which limit their applica-
bility to MDTM indexing. First, manual transcrip-
tion is unfeasible in a busy hospital setting, and
automatic speech recognition of unconstrained,
noisy dialogues falls short of the levels of accu-
racy required for good segmentation. Secondly,
the contents of MDTMs are subject to stringent
privacy and confidentiality constraints which limit
access to training data. Regardless of such appli-
cation constraints, some authors (Malioutov et al.,
2007; Shriberg et al., 2000) argue for the use of
prosodic features and other acoustic patterns di-
rectly from the audio signal for segmentation. The
approach investigated in this paper goes a step fur-
ther by representing the data solely through what
is, arguably, the simplest form of content-free rep-
resentation, namely: duration of talk spurts, si-
lences and speech overlaps, optionally comple-
mented with speaker role information (e.g. medi-
cal speciality).

3 Content-free representations

There is more to the structure (and even the
semantics) of a dialogue than the textual con-
tent of the words exchanged by its participants.
The role of prosody in shaping the illocution-
ary force of vocalisations, for instance, is well
documented (Holmes, 1984), and prosodic fea-
tures have been used for automatic segmentation
of broadcast news data into sentences and topics
(Shriberg et al., 2000). Similarly, recurring audio
patterns have been employed in segmentation of
recorded lectures (Malioutov et al., 2007). Works
in the area of social psychology have used the sim-
ple conversational features of duration of vocalisa-
tions, pauses and overlaps to study the dynamics
of group interaction. Jaffe and Feldstein (1970)
characterise dialogues as Markov processes, and
Dabbs and Ruback (1987) suggest that a “content-
free” method based on the amount and structure
of vocal interactions could complement group in-
teraction frameworks such as the one proposed
by Bales (1950). Pauses and overlap statistics
alone can be used, for instance, to characterise
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Figure 1: Vocalisation Horizon for event v.

the differences between face-to-face and telephone
dialogue (ten Bosch et al., 2005), and a corre-
lation between the duration of pauses and topic
boundaries has been demonstrated for recordings
of spontaneous narratives (Oliveira, 2002).

These works provided the initial motivation for
our content-free representation scheme and the
topic segmentation method proposed in this paper.
It is easy to verify by inspection of both the corpus
of medical team meetings described in Section 4
and the AMI corpus that pauses and vocalisations
vary significantly in duration and position on and
around topic boundaries. Table 1 shows the mean
durations of vocalisations that initiate new topics
or PCDs in MDTMs and the scenario-based AMI
meetings, as well as the durations of pauses and
overlaps that surround it (within one vocalisation
event to the left and right). In all cases the dif-
ferences were statistically significant. These re-
sults agree with those obtained by Oliveira (2002)
for discourse topics, and suggest that an approach
based on representing the duration of vocalisa-
tions, pauses and overlaps in the immediate con-
text of a vocalisation might be effective for auto-
matic segmentation of meeting dialogues into top-
ics or PCDs.

Table 1: Mean durations in seconds (and standard
deviations) of vocalisation and pauses on and near
topic boundaries in MDTM and AMI meetings.

Boundary Non-boundary t-test
AMI vocal. 5.3(8.2) 1.6 (3.5 p<.01
AMI pauses 2.6 (4.9) 1.22.8) p<.01
AMI overlaps 0.4 (0.4) 030.6) p<.01
MDTM vocal. 12.0 (15.5) 8.1 (14.7) p < .05
MDTM pauses 9.7 (12.7) 8.2(14.8) p< .05

We thus conceptualise meeting topic segmenta-
tion as a classification task approachable through
supervised machine learning. A meeting can
be pre-segmented into separate vocalisations (i.e.
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talk spurts uttered by meeting participants) and si-
lences, and such basic units (henceforth referred
to as vocalisation events) can then be classified
as to whether they signal a topic transition. The
basic defining features of a vocalisation event are
the identity of the speaker who uttered the vocali-
sation (or speakers, for events containing speech
overlap) and its duration, or the duration of a
pause, for silence events. However, identity la-
bels and interval durations by themselves are not
enough to enable segmentation. As we have seen
above, some approaches to meeting segmentation
complement these basic data with text (keywords
or full transcription) uttered during vocalisation
events, and with prosodic features. Our proposal
is to retain the content-free character of the ba-
sic representation by complementing the speaker
and duration information for an event with data de-
scribing its preceding and succeeding events. We
thus aim to capture an aspect of the dynamics of
the dialogue by representing snapshots of vocali-
sation sequences. We call this general representa-
tion strategy Vocalisation Horizon (VH).

Figure 1 illustrates the basic idea. Vocalisa-
tion events are placed on a time line and com-
bine utterances produced by the speakers who took
part in the meeting. These events can be labelled
with nominal attributes (si, sa,...) denoting the
speaker (or some other symbolic attribute, such as
the speaker’s role in the meeting). Silences (gaps)
and group talk (overlap) can either be assigned re-
served descriptors (such as “Floor” and “Group”)
or regarded as separate annotation layers. The
general data representation scheme for, say, seg-
ment v would involve a data from its left context
(v1,v3, v3, .. .) and its right context (v, v, v3, . . .)
in addition to the data for v itself. These can be a
combination of symbolic labels (in Figure 1, for
instance, s; for the current speaker, s3, so, S1, . . .
for the preceding events and s3, s2, S3, . .. for the
following events), durations (d, di, ds, ds, . . . etc)
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The general processing architecture for meeting
segmentation assumed in this paper is shown in
Figure 2. The system will received the speech sig-
nal, possibly on a single channel, and pre-segment
it into separate channels (one per speaker) with
intervals of speech activity and silence labelled
for each stream. Depending on the quality of the
recording and the characteristics of the environ-
ment, this initial processing stage can be accom-
plished automatically through existing speaker di-
arisation methods — e.g. (Ajmera and Wooters,
2003). In the experiments reported below man-
ual annotation was employed. In the AMI cor-
pus, speaker and speech activity annotation is done
on the word level and include transcription (Car-
letta, 2007). We parsed these word-level labels,
ignoring the transcriptions, in order to build the
content-free representation described above. Once
the data representation has been created it is then
used, along with topic boundary annotations, to
train a probabilistic classifier. Finally, the topic
detection module uses the models generated in the
training phase to hypothesise boundaries in unan-
notated vocalisation event sequences and, option-
ally, performs post-processing of these sequences
before returning the final hypothesis. These mod-
ules are described in more detail below.

4 MDTM Segmentation

The MDTM corpus was collected over a period of
three years as part of a detailed ethnographic study
of medical teams (Kane and Luz, 2006). The cor-
pus consists in 28 hours or meetings recorded in
a dedicated teleconferencing room at a major pri-
mary care hospital. The audio sources included a
pressure-zone microphone attached to the telecon-
ferencing system and a highly sensitive directional
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microphone. Video was gathered through two sep-
arate sources: the teleconferencing system, which
showed the participants and, at times, the medi-
cal images (pathology slides, radiology) relevant
to the case under discussion, and a high-end cam-
corder mounted on a tripod. All data were im-
ported into a multimedia annotation tool and syn-
chronised. Of these, two meetings encompassing
54 PCDs were chosen an annotated for vocalisa-
tions (including speaker identity and duration) and
PCD boundaries.

Vocalisation events were encoded as vectors
v = (s,d,s1,di,...,Sn,dn,S1,d1, ..., Sn,dn),
where the variables are as explained in Section 3.
The speaker labels s, s; and s; are replaced, for the
sake of generality, by “role” labels denoting med-
ical specialties, such as “radiologist”, “surgeon”,
“clinical oncologist”, “pathologist” etc. In addi-
tion to these roles, we reserved the special labels
“Pause” (a period of silence between two vocal-
isations by the same speaker), “SwitchingPause”
(pause between vocalisations by different speak-
ers), and “Group” (vocalisations containing over-
laps, i.e. speech by more than one speaker). We set
a minimum duration of 1s for a talk spurt to count
as a speech vocalisation event and a 0.9s minimum
duration for silence period to be a pause. Shorter
intervals (depicted in Figure 1 as the fuzzy ends of
the speech lines on the top of the chart) are incor-
porated into an adjacent vocalisation event.

The segmentation process can be defined as the
process of mapping the set of vocalisation events
V to {0,1} where 1 represents a topic bound-
ary and O represents a non-boundary vocalisation
event. In order to implement this mapping we
employ a Naive Bayes classifier. The conditional
probabilities for the nominal variables (speaker
roles) are estimated on the training set by max-
imum likelihood and combined into multinomial
models, while the continuous variables are log
transformed and modelled through Gaussian ker-
nels (John and Langley, 1995).

These models are used to estimate the probabil-
ity, given by equation (1), of a vocalisation being
marked as a topic boundary given the above de-
scribed data representation, and the usual condi-
tional independence assumptions applies.

P(B =b|V =v) = P(B = b|Sx = sa, Dx
.., 8=s,...

The model can therefore be represented as a
simple Bayesian network where the only depen-



Figure 3: Bayesian model employed for dialogue
segmentation.

dencies are between the boundary variable and
each feature of the vocalisation event, as shown
in Figure 3.

Luz (2009) reports that, for a similar data repre-
sentation, horizons of length 2 < n < 6 produced
the best segmentation results. Following this find-
ing, we adopt n 3 for all our experiments.
We tested two variants of the representation: V4
that discriminated between pause types (pauses,
switching pauses, group pauses, and group switch-
ing pauses), as in (Dabbs and Ruback, 1987), and
Vip which labelled all pauses equally. The evalua-
tion metrics employed include the standard classi-
fication metrics of accuracy (A), the proportion of
correctly classified segments, boundary precision
(P), the proportion of correctly assigned bound-
aries among all events marked as topic bound-
aries, boundary recall (R), the proportion of target
boundaries correctly assigned, and the F} score,
the harmonic mean of P and R.

Although these standard metrics provide an ini-
tial approximation to segmentation effectiveness,
they have been criticised as tools for evaluating
segmentation because they are hard to interpret
and are not sensitive to near misses (Pevzner and
Hearst, 2002). Furthermore, due to the highly un-
balanced nature of the classification task (bound-
ary vocalisation events are only 3.3% of all in-
stances), accuracy scores tend to produce over-
optimistic results. Therefore, to give a fairer
picture of the effectiveness of our method, we
also report values for two error metrics proposed
specifically for segmentation: P (Beeferman et
al., 1999) and WindowDiff, or WD, (Pevzner and
Hearst, 2002).

The P metric gives the probability that two vo-
calisation events occurring k vocalisations apart
and picked otherwise randomly from the dataset
are incorrectly identified by the algorithm as be-
longing to the same or to different topics. Py is
computed by sliding two pairs of pointers over the
reference and the hypothesis sequences and ob-
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serving whether each pair of pointers rests in the
same or in different segments. An error is counted
if the pairs disagree (i.e. if they point to the same
segment in one sequence and to different segments
in the other).

WD is as an estimate of inconsistencies between
reference and hypothesis, obtained by sliding a
window of length equal k£ segments over the time
line and counting disagreements between true and
hypothesised boundaries. Like the standard IR
metrics, P, and WD range over the [0, 1] interval.
Since they are error metrics, the greater the value,
the worse the segmentation.

Table 2: PCD segmentation results for 5-fold cross
validation, horizon n = 3 (mean values).

Threshold Filter Data A P R F1 P, WD

MAP Vep 094 020 0.21 0.18
Vpa 095 0.17 0.20 0.16

0.33
0.30

0.44
0.38

no

0.32
0.29

0.38
0.34

yes Vi 095 020 0.16 0.16

Vpa 095 0.16 0.12 0.13

0.26
0.27

0.36
0.42

Proport. Vep 095 0.28 0.28 0.28

Vea 095 0.26 0.27 0.26

0.25
0.27

0.31
0.33

yes Vi 095 030 0.22 0.25

Vea 095 022 0.14 0.17

Table 2 shows the results for segmentation of
MDTMs into PCDs under the representational
variants mentioned above and two different thresh-
olding strategies: maximum a posteriori hypothe-
sis (MAP) and proportional threshold. The latter
is a strategy that varies the threshold probability
above which an event is marked as a boundary ac-
cording to the generality of boundaries found in
the training set. The motivation for testing propor-
tional thresholds is illustrated by Figure 4, which
shows a step plot of MAP hypothesis (h) super-
imposed on the true segmentation (peaks repre-
sent boundaries) and the corresponding values for
p(blv). Tt is clear that a number of false positives
would be removed if the threshold were set above
the MAP level' with no effect on the number of
false negatives.

Another possible improvement suggested by
Figure 4 is the filtering of adjacent boundary hy-
potheses. Wider peaks, such as the ones on in-
stances 14 and 172 indicate that two or more
boundaries were hypothesised in immediate suc-
cession.  Since this is clearly impossible, a
straightforward improvement of the segmentation

'Te. p(blv) > 0.5; above the horizontal line in the centre.
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hypothesis can be achieved by choosing a sin-
gle boundary marker among a cluster of adjacent
ones. This has been done as a post-processing
step by choosing a single event with maximal es-
timated probability within a cluster of adjacent
boundary hypotheses as the new hypothesis.
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Figure 4: Segmentation profile showing true
boundaries (r), boundaries hypothesised by a MAP
classifier (h) and probabilities (dotted line).

The results suggest that both proportional
thresholding and filtering improve segmentation.
As expected, accuracy figures were generally high
(an uninformative) reflecting the great imbalance
in favour of negative instances and the conser-
vative nature of the classifier. Precision, recall
and £ (for positive instances only) were also pre-
dictably low, with V,, under a proportional thresh-
old attaining the best results. However, in meeting
browsing marking the topic boundary precisely is
far less important than retrieving the right text is in
information retrieval or text categorisation, since
the user can easily scan the neighbouring intervals
with a slider (Banerjee et al., 2005). Therefore,
Py and WD are the most appropriate measures of
success in this task. Here our results seem quite
encouraging, given that they all represent great
improvements over the (rather reasonable) base-
lines of P, = .46 and WD = .51 estimated by
Monte Carlo simulation as in (Hsueh et al., 2006)
by hypothesising the same proportion of bound-
aries found in the training set. Our results also
compare favourably with some of the best results
reported in the meeting segmentation literature to
date, namely P, = 0.32 and WD = 0.36, for a lex-
ical cohesion algorithm on the ICSI corpus (Gal-
ley et al., 2003), and P, = 0.34 and WD = 0.36,
for a maximum entropy approach combining lexi-
cal, conversational and video features on the AMI
corpus (Hsueh et al., 2006).

Although these results are promising, they pose
a question as regards data representation. While
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Vpa yielded the best results under MAP, V,
worked best overall under a proportional thresh-
old. What is the effect of encoding more detailed
pause and overlap information? Unfortunately, the
MDTM corpus has not been annotated to the level
of detail required to allow in-depth investigation
of this question. We therefore turn to the far larger
and more detailed AMI corpus for our next exper-
iments. In addition to helping clarify the represen-
tation issue, testing our method on this corpus will
give us a better idea of how our method performs
in a more standard topic segmentation task.

5 AMI Segmentation

The AMI corpus is a collection of meetings
recorded under controlled conditions, many of
which have a fixed scenario, goals and assigned
participant roles. The corpus is manually tran-
scribed, and annotated with word-level timings
and a variety of metadata, including topics and
sub-topics (Carletta, 2007). Transcriptions in the
AMI corpus are extracted from redundant record-
ing channels (lapel, headset and array micro-
phones), and stored separately for each partici-
pant. Because timing information in AMI is so
detailed, we were able to create much richer VH
representations, including finer grained pause and
overlap information.

The original XML-encoded AMI data were
parsed and collated to produce our variants of
the VH scheme. We tested four types of VH:
V., which includes only vocalisation events; V,
which includes only pause and speech over-
lap events; V,, which includes all vocalisations,
pauses and overlaps; and V., which is similar to
Vpa in that it includes speaker roles in addition to
vocalisations. Pauses and overlaps were encoded
by the same variable g;, where g; > 0 indicates a
pause g; < 0 an overlap, as shown in Figure 1. Un-
like MDTM, no arbitrary threshold was imposed
on the identification of pause and overlap events.
As before, we tested on a horizon n = 3, in order
to allow comparison with MDTM results.

The training and boundary inference process
also remained as in the MDTM experiment, ex-
cept that the larger amount of meeting data avail-
able enabled us to increase the number of folds for
cross validation so that the results could be tested
for statistical significance.

The error scores and the number of boundaries
predicted for the different representational vari-



ants, filtering an thresholding strategies are shown
in Table 3. Although all methods significantly
outperformed the baseline scores of P, = 0.473
and WD = 0.542 (paired t-tests, p < 0.01, for
all conditions), there were hardly any differences
in P scores across the different representations,
even when conservative boundary filtering is per-
formed. Filtering, however, caused a significant
improvement for WD in all cases, though the com-
bined effects of proportional thresholding and fil-
tering caused the classifier to err on the side of
underprediction. A 3-way analysis of variance in-
cluding non-filtered scores for proportional thresh-
old resulted in F'[4,235] = 31.82, p < 0.01 for
WD scores. These outcomes agree with the results
of the smaller-scale MDTM segmentation exper-
iment, showing that categorisation based on con-
versational features tend to mark clusters of seg-
ments around the true topic boundary. In addition,
the trend for better performance of proportional
thresholding exhibited in the MDTM data was not
as clearly observed in the AMI data, where only
WD scores were significantly better than MAP
(p < 0.01, Tukey HSD).

Table 3: Segmentation results for 16-fold cross
validation on AMI corpus, horizon n = 3. Cor-
rect number of boundaries in reference is 724.

Threshold Filter Data P, WD # bound.
MAP no Va 0.270 0.462 3322
Vy 0.278 0.433 1875

Vo 0.273 0.449 3075

V. 0.271 0.448 3073

yes Va 0.272 0.362 574

Vy 0.277 0.391 851

Ve 0.275 0.358 468

V. 0.274 0.357 469

Proport. no Va 0.289 0.398 1233
Vy 0.290 0.382 735

Vo 0.293 0.387 1002

Vi 0.293 0.387 1002

yes Va 0.293 0.353 241

Vy 0.290 0.362 383

Vo 0.297 0.350 183

Vi 0.297 0.350 182

It is noteworthy that the finer-grained represen-
tations from which speaker roles were excluded
(Vy, Vg, and V,) yielded segmentation perfor-
mance comparable to the MDTM segmentation
performance under V;, and V4. In fact, adding
speaker role information in V,. did not result in im-
provement for AMI segmentation. Also interest-
ing is the fact that representations based solely on
pause and overlap information also produced good
performance, thus confirming our initial intuition.
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5.1 MDTM revisited

Since V,, V,; and V,, seem to perform well with-
out including speaker role information (except for
the current vocalisation’s speaker role) we would
like to see how a similar representation might af-
fect segmentation performance for MDTM. We
therefore tested whether excluding preceding and
following speaker role information from Vj, and
Vpa had a positive impact on PCD segmenta-
tion performance. However, contrary to our ex-
pectations neither of the modified representations
yielded better scores. The best results, achieved
for the modified V},4q under proportional thresh-
olding (Px = 0.27 and WD = 0.34), failed to
match the results obtained with the original repre-
sentation. It seems that the various and more spe-
cialised speaker roles found in medical meetings
can be good predictors of PCD boundaries. For
example: a typical pattern at the start of a PCD
is the recounting of the patient’s initial symptoms
and clinical findings by the registrar in a narrative
style. In AMI, on other hand, the roles are much
fewer, being only acted out by the participants as
part of the given scenario, which might explain the
irrelevance of these roles for segmentation.

5.2 Conclusion

MDTM segmentation differs from topic segmen-
tation of the AMI meetings in that PCDs are more
regular in their occurrence than meeting topics
proper. Speaker role information was also found
to help MDTM segmentation, which was expected
since there are many more very distinct active
speaker roles in MDTM (10 specialties, in total).
Furthermore, V, and V), represent pauses and
overlaps as reserved roles, so that the information
encoded in V, and V, as separate variables ap-
pear in the speaker role horizon of V, and V4.
It is possible that the finer-grained timing annota-
tion of the AMI corpus (including detailed overlap
and pause information unavailable in the MDTM
data) contributed to the relatively good segmen-
tation performance achieved on AMI even in the
absence of speaker role cues. It would be inter-
esting to investigate whether finer pause and over-
lap timings can also improve MDTM segmenta-
tion. This suggests some requirements for MDTM
data collection and pre-processing, such as the use
of individual close-talking and the use of a speech
recogniser to derive word-level timings. We plan
on conducting further experiments in that regard.
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